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Abstract
This article presents a meta-analysis based on 727 estimates from 83 hedonic pricing stud-
ies to provide new insights on the effects of waste sites on residential property values. 
Relative to previous meta-analyses on this subject, estimates are corrected for publication 
bias and the ability of the meta-regression model to produce reliable benefit-transfer esti-
mates is assessed. Proximity to severely contaminated waste sites has a supremely negative 
impact on residential property values, whereas on average the distance from non-hazardous 
waste sites has no effect. Correcting for publication bias has a sizeable impact, reducing 
the average effect size by up to 38%. Benefit-transfer errors based on the meta-regression 
model are fairly large and, in line with the broader literature, outperform simple value 
transfer when the underlying data sample is heterogeneous.
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PRISMA  Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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1 Introduction

The world’s annual generation of waste equalled two billion tonnes in 2016 and is expected 
to reach 3.4 billion tonnes by 2050 (Kaza et  al. 2018). This poses serious threats to the 
environment in general and may generate externalities for residents living in close prox-
imity to a waste site. These externalities include health risks, offensive smells, noises or 
unpleasant views (Giusti 2009). However, well-administered waste sites may nullify these 
adverse effects, indeed they may even be perceived positively due to their employment 
potential. Accordingly, it is important to understand whether and under what circumstances 
waste sites significantly affect local residents.

The hedonic pricing framework pioneered by Rosen (1974) is a prominent method used 
to evaluate the effect of waste sites on local residents.1 Studies relying on this concept 
explain the price variation in residential properties as a combination of the value of their 
respective characteristics, e.g., distance from a waste site. Empirical evidence on this price-
distance relationship, however, is ambiguous. The literature displays high variance in its 
assessment of the magnitude and significance of the effect as well as disagreement on its 
sign (see e.g. Reichert et al. 1992; Du Preez et al. 2016; Poor et al. 2007 and Ready 2010 
for landfill effects). Accordingly, it remains unclear whether waste site externalities sig-
nificantly affect local residents. In response to these open questions, I apply meta-analytic 
techniques (Stanley and Doucouliagos 2012; Ringquist 2013) to investigate the existence 
of adverse price effects on proximate residential property values at the aggregate level. The 
heterogeneity of the empirical results is discussed and explained with reference to the dif-
ferences in methodological approaches and waste-site characteristics across the literature. 
Relative to previous meta-analyses on this subject (e.g. Braden et  al. 2011; Simons and 
Saginor 2006), estimates are corrected for publication bias and the ability of the meta-
regression model to produce reliable benefit-transfer (BT) estimates is assessed. BT can 
be an especially valuable tool for policymakers in making predictions on effect sizes in 
areas where time, data, or money constraints do not permit primary studies (Johnston et al. 
2015). The present meta-regression analysis (MRA) builds on a meta-sample of 727 obser-
vations from 83 studies, going beyond previous MRAs in this area by using 56 studies 
hitherto unconsidered. The large sample also enables me to add nine moderators to explore 
new factors explaining heterogeneity. In the framework of cost–benefit analyses, the MRA 
can support policymakers in making informed decisions on such things as the placement of 
new waste sites or clean-up activities for hazardous waste sites.

The results confirm that proximity to severely contaminated waste sites has a 
supremely negative impact on residential property values, whereas on average the dis-
tance from non-hazardous waste sites has no effect. Correcting for publication bias has 
a sizeable impact, reducing the average effect size by up to 38%. The corrected average 

1 There are other methods for eliciting this relationship. However, studies that use methods other than 
hedonic pricing (such as contingent valuation) are not considered here as they rely on different welfare 
measures, which is likely to lead to problems of incomparability in meta-analyses (Smith and Pattanayak 
2002).
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effect size translates into a 1.5% to 2.9% property value increase per mile of increased 
distance from a waste site for a house at the distance of one mile. Together with waste-
site and study characteristics, the primary studies’ econometric specifications are iden-
tified as important dimensions influencing effect size and explaining observed het-
erogeneity. In particular, the effect size is reduced for cleaned-up waste sites and for 
residential properties at greater distances from hazardous waste sites, thus reconciling 
inconsistent previous findings. BT errors based on the meta-regression model are fairly 
large and, in line with the broader literature, outperform simple value transfer when the 
underlying data sample is heterogeneous. While the acceptable level of transfer error 
is context-dependent (Rosenberger 2015; Brander et  al. 2006), the predicted levels of 
transfer error limit practical application accordingly.

The remainder of the paper is organised as follows: The next section presents an 
overview of results from previous MRAs on this subject, in addition illustrating the 
requirements for valid and reliable MRA and BT. Section 3 introduces the meta-dataset 
used in this paper. Section 4 demonstrates the selection of the appropriate model and 
publication bias control. The results are presented and discussed in Sect. 5. Section 6 
concludes.

2  Literature Review

A meta-analysis is commonly described as a statistical analysis of previously reported 
research findings on a given empirical effect (Stanley and Doucouliagos 2012). In contrast 
to qualitative reviews, meta-analytic methods can estimate average effect sizes, quantify 
the extent of variance observed and help explain heterogeneous results (Borenstein et al. 
2011). Advances in meta-analytic methodology and the attendant guidelines (Nelson and 
Kennedy 2009; Stanley et al. 2013; Nelson 2015; Johnston et al. 2018; Stanley and Dou-
couliagos 2012) have made current meta-analyses more reliable and useful for both aca-
demic and practical purposes. More precisely, meta-analyses now typically rely on large 
meta-sample sizes and substantial sets of moderators to explain heterogeneous results. 
They control for publication bias and assess the usefulness of meta-regression results for 
BT applications. Unsurprisingly, meta-analytic tools have enjoyed increasing popularity in 
economic research over the past decade (Alinaghi and Reed 2018). Within the literature on 
environmental valuation, recent applications synthesise the empirical evidence pertaining 
to such things as water-quality improvements (Johnston et al. 2017; Klemick et al. 2018), 
river restoration (Chen et al. 2019; Brouwer and Sheremet 2017), wetland values (Vedog-
beton and Johnston 2020; Chaikumbung et al. 2016) or flood risk (Beltrán et al. 2018).

Within the strand of literature estimating price-distance relationships between waste 
sites and residential properties, several studies have already analysed and summarised 
the empirical evidence in a systematic fashion. Table A1 lists the most relevant MRAs, 
highlighting their findings and main study attributes. The brief discussion in the fol-
lowing section presents the estimated average effect sizes including identified modera-
tors and the type of waste site considered. It also indicates potential limitations. For the 
MRAs closest to this study (Simons and Saginor 2006; Lipscomb et al. 2013; Braden 
et al. 2011) I provide a more detailed overview.



384 M. Schütt 

1 3

2.1  Previous Reviews and Meta‑Analyses

The first reviews in this area (Farber 1998; Zeiss 1998; Boyle and Kiel 2001; Jackson 2001; 
also Brinkley and Leach 2019) were qualitative and aimed to identify moderators explain-
ing the apparent heterogeneity of waste site-related property-price effects (e.g., mean dis-
tance from waste site in the primary study, employment opportunities at the waste site, 
type of waste considered). Later studies confirmed the relevance of some of these research 
dimensions and added other moderating variables in initial meta-analyses on the topic. 
They identified the functional form employed, the type of waste site examined and the 
mean distance from the waste sites as influential research dimensions (Walton et al. 2006; 
Chèze 2007; Ready 2010). In one of these initial meta-analyses, Ready (2010) reports an 
average increase in residential property values of 1.3% to 5.9% per mile of increased dis-
tance from a landfill depending on the size of the latter. By contrast, Walton et al. (2006) 
record an average price premium of 6.7% per mile of increased distance for a different set 
of landfill studies. Chèze (2007) reports an average discount of 3.8% (8.4%) for living one 
mile closer to non-hazardous (hazardous) landfills or incinerators. Although they contain 
important initial insights, all of these studies are restricted in value by low sample sizes. 
Walton et al. (2006) cover 17 estimates from seven studies; Ready (2010) considers 15 esti-
mates from nine landfill studies; Chèze (2007) discusses 12 studies with 45 estimates. This 
drawback has motivated further research to validate the findings.

One of the largest meta-analyses in this area of research is Simons and Saginor (2006), 
with 290 observations from 75 articles, 42 of them with 164 observations using the hedonic 
pricing method. Their meta-dataset comprises studies dealing not only with contaminated 
waste sites but also with amenities, reliance on surveys, case studies or hedonic regression 
techniques. They report a 4% mean increase in property value for each mile of increased 
distance from the respective site (9.5% for studies focusing exclusively on a disamenity). 
Across specifications, they confirm that the geographic region, the mean distance from the 
waste site, the type of waste and the announcement of the closure of a site are important 
moderating dimensions. Although they acknowledge the importance of publication bias, 
the potential dependence of multiple observations from the same study and differing lev-
els of precision in the estimates, they do not explicitly accommodate these factors in their 
meta-regressions.

More recently, Lipscomb et al. (2013) have drawn upon 40 studies with 273 observa-
tions in their meta-analysis, about 227 of them from 33 articles using the hedonic pric-
ing method (see Table A1 for details). These observations differ not only in the type of 
disamenity (landfills, hazardous waste sites, power lines, railroad tracks, etc.) or amen-
ity (proximity to water bodies, view, etc.) discussed but also in the methods employed 
(hedonic regression, travel cost method, contingent valuation, etc.). More than half of the 
observations are not concerned with price-distance relationships between waste sites and 
residential properties as the focus here is on an attempt to detect differences in valuation 
through the choice of elicitation methods. Hence, it deviates from the focus of the present 
study and will not be discussed any further.2

2 There exist two additional studies that are close to this MRA. Both differ in some respects from the focus 
chosen here, so this review does not consider them in detail. Kiel and Williams (2007) use a probit regres-
sion meta-analysis to model the likelihood of being listed as a superfund site and hence do not focus on 
average effect sizes of superfunds. Saginor et al. (2011) synthesise the empirical evidence of environmental 
contamination effects on non-residential property values.
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The study by Braden et al. (2011) is closest in spirit to this meta-analysis. They con-
sider 46 hedonic studies with 129 estimates from various types of waste site, 114 of them 
from 38 studies of waste-site effects on residential property values. They use weighted least 
squares (WLS) and ordinary least squares (OLS) techniques with a large set of moderat-
ing regressors some of which are new to the relevant literature. They find that a one-mile 
increase in distance from a terrestrial (aquatic) hazardous waste site leads to an average 
increase in property values of 3.5% (15.9%). Nuclear and non-hazardous waste sites do not 
significantly influence property values, with the effects of non-hazardous waste sites being 
greater in magnitude (3.1% compared to -0.4%). Some of the newly added moderators help 
to significantly explain the variation in the data. These include control variables indicating 
the addition of socio-demographic variables in the primary studies’ regressions, the use of 
sales data instead of assessed values and listing on the National Priority List (NPL).3 To 
the surprise of the authors, remediating contaminated sites and the mean distance of prop-
erties from the waste site do not consistently influence effect sizes for hazardous and non-
hazardous waste sites, thus contradicting in the latter case the “fundamental premise of 
hedonic property valuation of environmental quality” (Braden et al. 2011: 198). One pos-
sible explanation for these surprising results may be that they consider observations from 
discrete and continuous distance specifications simultaneously, also encompassing linear 
and quadratic distance specifications. These differences in distance definition may lead to 
incomparability of effect sizes. In addition, the distance-decay effect may only be detect-
able for obvious disamenities like hazardous waste sites. I discuss both aspects in more 
detail in my remarks on the study selection process in Sect. 3 and in the results section. 
Despite their methodological improvements over previous meta-analyses, Braden et  al. 
(2011) do not correct for publication bias in their model.4

The meta-analyses reviewed provide valuable insights into the likely range of the aver-
age effect size and into heterogeneity aspects reflected in e.g. the type of waste site con-
sidered. However, none of these studies assess their meta-regression results for usage in 
BT applications or discuss validity and reliability requirements.5 Similarly, the omission 
of publication bias controls and the (partly) small sample sizes impose restrictions on their 
explanatory power. In the present study I emphasise its inherent value for BT, which is also 
reflected in the study selection criteria. Additionally, I address the potential presence of 
publication bias in the development of the econometric specification. Further, a large meta-
sample in combination with several sets of moderators enable me to assess the robustness 
of results and conduct subsample analyses. The next section discusses the requirements for 
consistent and reliable MRA and accurate BT.

3 The most severely contaminated waste sites in the USA are listed on the NPL. These sites have remedia-
tion priority (Environmental Protection Agency 2019).
4 However, they include dummy variables to control for the effect of publication and significance status on 
the magnitude of the effect size. Whether this serves as a viable approximation is not clear.
5 There exists, however, some anecdotal evidence. Walton et  al. (2006) provide preliminary insights 
into the potential of BT for landfills but themselves question the validity of this due to the small sample 
size. Eshet et al. (2007a) assess transferability of results from four individual hedonic estimates of waste-
transfer station effects from Eshet et  al. (2007b). Again, the small number of estimates restricts external 
validity. Finally, Braden et al. (2010) use the MRAs from Braden et al. (2011) for BT applications to the 
Great Lakes Areas of Concern. Due to a different focus in the underlying meta-model, only one variable 
in the meta-function can be calibrated to distinguish between sites. This limited capacity for differentiating 
between sites prompts the authors to advise against using their results for out-of-sample predictions.
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2.2  Validity and Reliability Requirements

BTs use existing effect-size estimates from one or more previous studies to infer the 
effect size for a new policy application (Boyle et al. 2013). In principle, BT based on 
MRA is a form of function transfer, as the meta-equation can be calibrated to fit the new 
context (Boyle and Wooldridge 2018). Importantly, BT can be a valuable tool in mak-
ing predictions on effect sizes in areas where time, data or money constraints make pri-
mary studies impracticable (Johnston et al. 2015). Consequently, BTs based on MRAs 
have increasingly been applied in the context of non-market values in recent years, 
especially for applied cost–benefit analyses (Vedogbeton and Johnston 2020). At the 
same time, many challenges remain unresolved, casting doubt on the validity and reli-
ability of BT applications under certain conditions (Johnston et al. 2018; Rosenberger 
2015; Vedogbeton and Johnston 2020). Arguably, one of the main requirements for a 
valid combination of studies on both MRA and BT is a “minimal degree of commod-
ity consistency across metadata observations” (Vedogbeton and Johnston 2020: 836). 
However, the pooling of observations from different studies with different attributes lies 
at the heart of any MRA. Hence, while commodity consistency is a commonly acknowl-
edged requirement, a too narrow definition of the commodity under consideration can 
drastically reduce sample size and impose considerable restrictions on statistical analy-
sis (Chaikumbung et  al. 2016; Bergstrom and Taylor 2006; Vedogbeton and Johnston 
2020). Alongside commodity consistency, welfare-measure consistency and outcome-
variable consistency are often called for (Nelson and Kennedy 2009; Vedogbeton and 
Johnston 2020; Klemick et al. 2018; see also Rosenberger 2015 for a detailed overview).

The trade-off between consistency and sample size is clearly reflected in the meta-
analyses reviewed here. One part of the literature (Walton et  al. 2006; Chèze 2007; 
Ready 2010) has synthesised very consistent sets of studies but is limited by small sam-
ple sizes restricting a detailed investigation of factors explaining heterogeneity. Other 
meta-analyses (Simons and Saginor 2006; Braden et  al. 2011; Lipscomb et  al. 2013) 
have opted for larger sample sizes and aim to control for greater heterogeneity in their 
MRA via moderators. However, this happens at the expense of commodity consistency 
(waste sites combined with power lines or parks, etc.), welfare consistency (hedonic 
pricing studies combined with studies using contingent valuation or travel cost meth-
ods, etc.) or outcome consistency (effects on residential property values combined with 
effects on non-residential property values) of the pooled observations (see Table A1 for 
details). In line with the last-named studies in this part of the literature, I argue that 
some diversity in waste sites is needed for insightful MRA (Vedogbeton and Johnston 
2020; Nelson 2015). However, as the results of this MRA will also be assessed for BT, I 
aim for a higher degree of consistency (Bergstrom and Taylor 2006; Rosenberger 2015; 
Smith and Pattanayak 2002). Hence, outcome validity and welfare validity are consist-
ently upheld, only allowing the inclusion of observations from hedonic pricing studies 
reporting price-distance relationships for waste sites and residential properties. Simi-
larly, waste sites are the only commodity allowed. The operative definition of waste here 
is “any substance or object which the holder discards or intends or is required to dis-
card” (European Commission 2008: Article 3). This definition encompasses different 
types of waste (e.g. hazardous or non-hazardous), disposed of at different facilities (e.g. 
landfills or incinerators) and affecting different elements (e.g. soil, air or water), thus 
allowing for a detailed analysis. The study selection criteria introduced in the next sec-
tion are designed to meet these minimal consistency criteria.
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Two observations from the literature motivate the procedure I have chosen to calculate 
BT errors. First, Boyle and Wooldridge (2018) emphasise that there is no single meta-ana-
lytic model necessarily appropriate for both purposes, i.e., explaining heterogeneity and 
providing low-error BT estimates. Thus, we can hardly expect any preferred model with 
major explanatory power to perform unusually well in terms of transfer error as well (Nel-
son 2015). However, smaller transfer error-rates may be expectable for subsets of obser-
vations that have an even higher degree of commodity consistency (Eshet et  al. 2007a), 
e.g., sharing the severity of pollution. To assess this eventuality, I thus calculate transfer 
errors based on both the entire meta-dataset and on subsets of more homogeneous studies. 
This approach also addresses commodity consistency concerns independent of the study-
selection criteria (Nelson 2015; Chaikumbung et al. 2016). Second, though it is generally 
assumed that in terms of transfer error MRA perform better than value transfer (Rosen-
berger 2015), some studies have shown that this is not necessarily the case (Lindhjem and 
Navrud 2008; Klemick et al. 2018; Johnston et al. 2018). Intuitively, BT based on MRA 
is expected to be beneficial in the context of dissimilar sites (Bergstrom and Taylor 2006; 
Bateman et  al. 2011; Johnston et  al. 2015), but counterexamples do exist (Rosenberger 
2015). Hence, I also calculate simple value transfer errors for both the entire meta-sample 
and subsets. This approach is conducive to insights in the way transfer errors depend on the 
degree of commodity consistency associated with the sample and transfer method chosen 
in this part of the literature.

3  Meta‑Dataset

3.1  Selection of Studies

The strategy employed for identifying relevant studies followed the MEAR-Net guidelines6 
for conducting and reporting meta-analyses (Stanley et al. 2013) and involved three steps. 
First, seven search engines suitable for the complexity of a predefined search query were 
used to identify initial records.7 The search query was a combination of synonyms for resi-
dential property values, HPM and waste sites (see Table A2 in the supplementary material 
for a full list). The search resulted in 2,000 initial records. Subsequently, I screened these 
initial records for eligibility, discarding all spuriously detected studies. Second, for all eli-
gible studies the respective reference lists were checked for additional suitable material. 
Third, for the resulting record, I searched four previously unused databases (sciencedirect, 
JSTOR, EVRI and Google scholar) manually for studies citing the studies already identi-
fied. The second and third steps were repeated until no other relevant studies were found. 
At the end of this process, 325 studies were included in a preliminary meta-sample (see 
Figure A1 in the supplementary material for a detailed PRISMA statement). I started the 

6 In accordance with the guidelines referred to in Stanley et al. (2013), a second coder separately coded “a 
substantial proportion” of the final dataset, i.e., 32 studies. Reassuringly, coding ambiguities were attribut-
able to the varying levels of reporting detail in in the primary studies and were reconciled. Coding decisions 
in the face of ambiguities are commented on in the meta-dataset available in the data repository linked to in 
the online version of this article. Remaining ambiguity is indicated in the categorisation of moderator vari-
ables as ‘unclear’.
7 These were EBSCO (including EconLit), ISI Web of Science, RePEc, opengrey.eu, science.gov, worldwi-
descience.org and wiso-net.de.
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search in April 2018 and finished in December 2018, using the reference management soft-
ware Citavi (version 5.7) to list the records identified.

For inclusion, the studies had to comply with the following criteria: (1) use of the basic 
hedonic pricing method, (2) price of residential properties as dependent variable, (3) dis-
tance from a waste site as independent variable, and (4) report of all necessary information 
for standardising the respective regression coefficient and its measure of precision. These 
restrictions ensure that the studies included measure a common effect—fulfilling commod-
ity, welfare and outcome consistency. Despite these study selection criteria, the studies 
included differ in terms of the waste-related activity they value, e.g., incineration, land-
fill, smelter. As discussed in the previous section, some degree of commodity diversity is 
inevitable and also necessary for meaningful statistical analysis. However, one might argue 
that these differences are sufficient to prohibit the combination and ultimately the meta-
analysis of these different types of observation.8 In this study, I prefer to synthesise the 
studies to explore the effect of heterogeneous types of waste site by means of appropriate 
control variables. This is in line with (and indeed rather conservative compared to) previ-
ous MRAs in this area of research (Simons and Saginor 2006; Lipscomb et al. 2013) but is 
also in accordance with other MRAs in the field of environmental valuation (Chaikumbung 
et al. 2016) and with the recommendations of Stanley and Doucouliagos (2012). Further, 
my hypothesis is that it is not the activity conducted at the waste site that determines the 
(assumed) disamenity effect. Instead, I conjecture that the potential undesirability of waste 
sites stems from the type of resultant pollution. More precisely, I consider the hazardous-
ness of the waste site and the element affected (soil, water, air) to be a set of attributes 
causing the effect of waste sites on residential property values to differ. Importantly, these 
factors cannot be ascribed to one particular type of waste site alone, i.e., hazardous waste 
can be both landfilled or incinerated, thus affecting soil or air (see, e.g., Affuso et al. 2010; 
Zegarac and Muir 1998). Ultimately, this approach conserves the sample size and enables 
me to examine a wide spectrum of waste-site effects. However, as already indicated, sub-
sample analyses are provided to assess the sensitivity of this decision. More formally, the 
study selection criteria ensure that studies included in the meta-sample report results from 
a variant of the following stylized hedonic pricing specification:

with P being the residential property value, DIST  the distance from a waste site, Xn a 
set of control variables (with �1 being the estimated coefficient of interest) and u a common 
error term. Consequently, several sets of studies included in the preliminary dataset of 325 
studies had to be discarded. Table A3 lists these studies with the reasons for exclusion.

Two sets of excluded studies are discussed in more detail to emphasise the importance 
of comparable estimates in the meta-sample. First, studies that use quadratic distance spec-
ifications were eliminated because of the absence of information on the estimates’ preci-
sion. Given the stylised hedonic pricing specification,

(1)P = �0 + �1DIST +

N
∑

n=2

�nXn + u

(2)P = �0 + �1DIST + �2DIST
2
+

N
∑

n=3

�nXn + u

8 I would like to thank one anonymous reviewer for pointing to this important aspect.
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with all variables defined as above, the marginal effect of distance is given by.

While it is frequently possible to calculate the marginal effect from the information 
given in the studies, the information required to calculate its standard error is usually 
not provided (in particular, the covariance between the linear and quadratic term is never 
reported). Gunby et al. (2017) argue convincingly that it is incorrect to include either of the 
coefficients individually because they represent incomplete information about the marginal 
effect of distance on the price of properties. Thus, nine studies were discarded. Second, I 
have excluded 40 studies using discrete distance specifications, i.e., defining the location of 
a house to be inside or outside a certain radius. Although this is the largest set of excluded 
studies, omission is unavoidable. First, the respective radius is defined differently across 
studies, so pooling studies with discrete distance definitions for meta-analytic purposes is 
only possible if the different measurement units can be matched. This would entail assump-
tions on the distribution of houses around the respective waste site and on the nature of 
the distance-decay effect, e.g., assuming that the effect vanishes linearly over distance and 
that houses are evenly distributed in concentric circles around the waste site (Debrezion 
et al. 2007). These assumptions would necessarily introduce measurement error unknown 
both in extent and in nature.9 Second, discrete distance definitions cannot be matched with 
continuous measures (Ready 2010) as a continuous effect size like a percentage increase in 
property prices per mile cannot be aligned with a dummy variable indicating, say, the value 
reduction of a house situated within a certain radius around a waste site compared to a 
house outside this radius. Hence, in contrast to Braden et al. (2011), I consider studies with 
discrete distance specifications to lead to mutually incomparable estimates and exclude 
them. As a result, the final dataset consists of 83 studies with 727 observations covering 13 
countries and spanning approximately 40 years.10 For a full list of the studies included, see 
Table A4 in the supplementary material. To facilitate the overview, Table A5 summarises 
the basic characteristics of the studies included.

The final dataset consists of studies with various model specifications. Accordingly, the 
standardisation of the respective regression coefficients to a common metric is required to 
reconcile different distance variable definitions across studies (e.g., feet or kilometres), the 
functional form used (e.g., linear or logarithmic) and the estimation strategy (e.g., OLS or 
spatial autocorrelation) (Nelson and Kennedy 2009). In this meta-study, the common effect 
size selected is the distance elasticity of residential property prices, or more formally:

(3)
�P

�DIST
= �1 + 2 ∗ �2 ∗ DIST

(4)Elasticity =
� logP

� logDIST
=

�P

�DIST
×
DIST

P

9 One reviewer recommended running a separate regression for this set of excluded studies. I agree that it 
would help strengthen my argument of incomparability and for exclusion. However, in the light of the nec-
essary assumptions needed to convert the respective study estimates into a common effect size, I prefer not 
to combine these types of study in a separate MRA.
10 Three observations generally met the inclusion criteria but were still discarded because the reported 
effect sizes far exceeded reasonable levels, which hints at typing errors or the like. These were two observa-
tions from Bilbao-Terol (2009) and the only observation from Li et al. (2015). They reported price-distance 
elasticities of 92 and 81 (Bilbao-Terol 2009) and 521 (Li et  al. 2015). Leaving these observations aside 
reduces the simple mean of the effect size from 0.991 to 0.042. Attempts to get an explanation for these 
seemingly bizarre results were unsuccessful.
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If original estimates differ from this common effect size, they are consistently converted, 
see Table A6 in the supplementary material for a detailed description. Elasticities result-
ing from such conversion are evaluated at the mean of the respective distance and price 
variables, if applicable. Similarly, the standardisation process for the measures of statisti-
cal precision in the original estimates (standard error, t-value or p-value) is summarised in 
Figure A2 in the supplementary material. The effect size can be interpreted as the percent-
age change in the price of a residential property in response to a one-percent increase in its 
distance from a waste site and serves as the dependent variable in this meta-analysis. Given 
the results from the previous literature, the elasticity is expected to be positive, viz. greater 
distance from a waste site is expected to be beneficial for residential property values.

3.2  Selection of Moderators

The moderators, their respective definitions and descriptive statistics are summarised in 
Table 1. The selection of moderators is undertaken on the basis of previous findings as dis-
cussed in the literature review.11 The asterisks (*) indicate previously unconsidered mod-
erators reflecting additional methodological particularities in the primary hedonic pricing 
studies.

In general, the moderators can be grouped into three categories reflecting site character-
istics, data characteristics and researcher decisions on methodology. Considering site char-
acteristics serves to distinguish the effects of different types of waste site, i.e., the severity 
of contamination, the element affected,12 the activity status of the site or the continent on 
which the site is located. Similarly, the number of proximate waste sites and the clean-up 
stage of hazardous waste sites may influence the estimated effect size. Hazardous waste 
sites, for example, are expected to have more adverse effects on property values than non-
hazardous sites due to their greater expected impact on people’s health in their vicinity. 
Additionally, multiple waste sites are presumably related to greater effect sizes than the 
single-site case due to the greater likelihood of noise or offensive smells.

Data characteristics reflect some particularities of the respective sample of residential 
property values, such as mean distance from the waste site, sample size and whether the 
properties in question were sold rather than assessed. Only a subset of all observations 
reports the mean distance of houses from a waste site in the respective sample. Two newly 
introduced moderators serve as potential alternatives. First, a dichotomising moderator 
indicates studies with reported sample mean distances greater than the mean distance in 
this meta-sample (4.29 miles). Second, a dummy variable signals whether the definition 
of the distance variable is in miles or kilometres as opposed to, say, feet or metres. I pre-
sume that studies defining their distance variable in miles or kilometres will report smaller 
estimates than studies with, say, feet or metres as the chosen metric. Full information on 
both alternatives is available. All else being equal, greater mean distances can be expected 
to lead to smaller effect sizes. The choice of these dummy moderators is designed to shed 

11 In some cases I adopt the naming conventions used by Braden et al. (2011) as I consider them informa-
tive and intuitive. I hope that this enhances the comparability of results.
12 I collected the information for the affected element from the primary studies and the US EPA, where 
applicable (see https ://cumul is.epa.gov/super cpad/cursi tes/srchs ites.cfm). If a site affected more than one 
element and the main affected element could not be inferred from these sources, the coding was based on 
the judgements of two separate coders. In ambiguous cases the element was coded as ‘unclear’.

https://cumulis.epa.gov/supercpad/cursites/srchsites.cfm
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more light on the surprising absence of a distance-decay effect in the findings by Braden 
et al. (2011), as discussed in Sect. 2.

Unique methodological approaches in estimation strategy or econometric specifica-
tion are also suspected of systematically influencing results. Although there is no fixed set 
of prescribed variables for inclusion in a hedonic regression, estimates from regressions 
with a very small set of control variables are likely to suffer from misspecification bias. 
Consequently, the reported effect size may also be biased (Wooldridge 2010; Phaneuf and 
Requate 2017). As a response to this hazard, I include moderators that control for the num-
ber and type of explanatory variables. In the same vein, uncommon functional forms or 
model specifications such as Box-Cox transformations or inverse distance specifications 
may influence the effect size. Two control variables address these eventualities.

Finally, three moderators are included that do not belong to the categories referred to 
earlier. First, a dummy variable for the publication year controls for time-trend effects. Two 
additional moderators aim to address publication bias, potentially influencing the effect 
sizes assembled. Publication bias occurs when the selection of results by a researcher or 
the selection of studies by a journal are dictated by statistical significance or theoretical 
expectations (Stanley and Doucouliagos 2012). Accordingly, if publication bias is present, 
there will be larger and more significant findings in the accessible literature that do not 
reflect the true population parameter (Card and Little 2016). Hence, there is good reason to 
believe that the standard error of the effect size is positively correlated with the effect size, 
which leads to its inclusion as a moderating variable. Additionally, the peer-review process 
itself may introduce changes in the set and composition of reported findings and this may 
also affect the effect size. Hence, a dummy moderator indicates estimates from studies pub-
lished in peer-reviewed journals to control for this possibility. In Sect. 4 the potential pres-
ence of publication bias is reflected in the development of the econometric specification.

3.3  Summary Statistics

The distribution of the effect size and its dependence on the conditions prevailing in the 
respective studies are of primary interest in this study. Figure A3 and Table  2 illustrate 
these two aspects. In Figure A3 the effect size is depicted in the form of a frequency distri-
bution. With 194 of 727 estimates being negative, there is a tendency towards positive elas-
ticity values in the meta-sample. However, approximately 70% of the estimates are between 
-0.1 and 0.1. This clearly indicates that the majority of estimated elasticities are clustered 
around zero. With only four observations greater than 1 in absolute terms, the price-dis-
tance relationship under investigation can be summarised as inelastic in almost all cases. In 
addition to the overall distribution of the effect size shown in Figure A3, a more nuanced 
picture may provide an initial impression of the heterogeneity observed. For this purpose, 
the summary statistics of the effect size are illustrated in Table 2, where the unweighted 
mean, fifth and 95th percentiles are displayed for the whole sample and several sets of sub-
samples defined by selected site characteristics.

Table  2 indicates that the mean effect size is positive for the whole sample and in 
most of the subsamples. The magnitude of the effect lies in the range of the results of the 
MRAs discussed earlier. Bearing in mind the definition of the effect size as an elasticity, 
the unweighted mean effect size for a house one mile away from a waste site is a 4.2% 
increase in property value per mile increase in distance. Turning to the percentiles reveals 
major disparities in the observations. Observations at the fifth percentile are generally neg-
ative, whereas observations at the 95th percentile have consistently positive effect sizes. 
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Moreover, the effect size from observations at the 95th percentile is approximately four to 
ten times larger than the mean, depending on the subsample considered. Comparing the 
effect size by study characteristics provides additional preliminary insights. Published stud-
ies apparently show a higher mean effect size than their unpublished counterparts. Clean-
ing up a contaminated site would seem to be beneficial for residential property values.

The purpose of inspecting summary statistics is to explore the data and to identify ten-
dencies rather than to draw inferences. As Stanley and Doucouliagos (2012) emphasise, 
simple average effect sizes (weighted or unweighted) are distorted in the presence of pub-
lication bias because in that case the meta-sample would not be drawn at random from 
the underlying population. Additionally, using simple averages implicitly assumes that 
all observations are treated equally and ignores the potential interdependence of multiple 
observations per study, heterogeneity across studies and differences in statistical precision. 
These potential limitations motivate the choice of meta-analytic model(s) in the following 
section.

4  Methodology

The choice of the appropriate meta-analytic model is a point of ongoing discussion in the 
literature (Nelson and Kennedy 2009; Stanley and Doucouliagos 2012; Ringquist 2013). 
The core of the debate revolves around the best identification of, and correction for, pub-
lication bias and the justification for either random- or fixed-effects models (Stanley and 
Doucouliagos 2017; Alinaghi and Reed 2018). Here, I draw upon the variety of meta-ana-
lytic models and consider them an opportunity for ample robustness checks on the results. 
Accordingly, I begin with a brief overview of meta-model candidates discussed in the lit-
erature, and continue with an assessment of publication bias in the meta-dataset. The over-
view concentrates on the controversies related to fixed- and random-effects models, interde-
pendence of observations and heteroscedastic error terms. It follows the decision pathways 
presented in more detail by Feld and Heckemeyer (2011) and by Stanley and Doucouliagos 
(2012).

4.1  Choice of the Meta‑Analytic Model

Multivariate meta-analytic models including moderating variables have become a stand-
ard framework to help explain the very likely presence of heterogeneity in effect sizes in 
applied economic research (Stanley and Doucouliagos 2012; Ringquist 2013).13 Accord-
ingly, I adopt a general multivariate model framework as a starting point, i.e.,

(5)Elasticityi = �0 +

K
∑

k=1

�kCk,i + �i, i = 1, 2, ...,M

13 Simple meta-analytic models omitting heterogeneity-explaining moderators have been shown to be 
biased in the presence of publication selection (Stanley and Doucouliagos 2012). Later, in Sect. 4.2., a con-
trol for publication selection (FAT-PET-PEESE) is introduced, proceeding from this naïve framework to 
calculate corrected mean effect sizes (see Borenstein et al. 2011 and Ringquist 2013 for in-depth discus-
sions of meta-analytic models).
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with elasticity being the standardised effect size, Ck,i representing the k th study charac-
teristic attributed to estimate i and �i a random error term with �i ∼ N

(

0, �2
i

)

 . Here, �0 
is an estimate of the genuine mean effect size conditional on the set of controls Ck,i , i.e., 
an estimate of the magnitude and significance of the price effect of waste-site proximity 
on residential properties. This type of model is commonly referred to as the fixed effects 
model (Ringquist 2013).14 It crucially assumes that any deviation from the mean that is not 
explained by the moderator variables is entirely random due to sampling error (Feld and 
Heckemeyer 2011). By contrast, the random (also known as mixed) effects model intro-
duces a second error term allowing for unobserved heterogeneity across observations, i.e.,

Table 2  Distribution of effect size by selected study characteristics

The number of studies within a category of moderators sometimes exceeds the number of studies in this 
meta-study. This reflects the strategy of some studies analysing a waste site e.g. at different points in time 
with varying clean-up stages

Study Characteristics Number of observa-
tions [studies]

Mean P5 P95

Unweighted mean 727 [83] 0.042 − 0.183 0.327
Type of Waste Site
 Hazardous 571 [56] 0.042 − 0.177 0.327
 Non-hazardous 125 [28] 0.038 − 0.135 0.206
 Nuclear 31 [6] 0.055 − 0.343 0.404

Waste-affected element
 Soil 421 [40] 0.036 − 0.295 0.387
 Air 98 [22] 0.079 − 0.004 0.269
 Water 79 [11] 0.048 − 0.136 0.318
 Unclear 129 [22] 0.031 − 0.011 0.108

Continent
 North America 620 [61] 0.039 − 0.186 0.351
 Asia 59 [9] 0.046 − 0.295 0.244
 Europe 41 [10] 0.075 − 0.082 0.265
 Other 7 [3] 0.071 0.030 0.084

Clean-up Stage
 Not recognised 78 [12] 0.072 − 0.140 0.429
 Recognised, no clean-up plan exists 267 [31] 0.060 − 0.203 0.404
 Clean-up begun, but not finished 115 [20] 0.024 − 0.267 0.236
 Cleaned-up 42 [11] − 0.044 − 0.387 0.115
 Unclear 100 [21] 0.033 − 0.018 0.132

Publication Status
 Published 567 [69] 0.049 − 0.190 0.366
 Not published 160 [14] 0.016 − 0.138 0.157

14 Note that the terminology of fixed- and random-effects is different from their usage in panel models. The 
explanations in this section are intended to draw clear distinctions despite this ambiguity in wording.
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with �i ∼ iid
(

0, �2
)

 depicting unobserved heterogeneity. A standard test for assessing the 
presence of unobserved heterogeneity is Cochrane’s Q-test (Borenstein et  al. 2011). For 
these multivariate models, the null hypothesis of the Q-test assumes that all heterogeneity 
is explained by the moderating variables. If this can be rejected, the random effects model 
is generally favoured over its fixed effects counterpart (Feld and Heckemeyer 2011).

With many studies reporting multiple estimates, there is potential dependence among 
estimates from the same study through the study design, shared methodology or sample 
reuse (Stanley and Doucouliagos 2012; Penn and Hu 2019). One way to account for non-
independent observations is to use panel-econometric techniques. In this type of model, 
a second study layer explicitly reflects the nested structure of estimates. Accordingly, the 
multilevel or hierarchical model is given by

with j indexing the study level. The Breusch and Pagan Lagrangian multiplier (BPLM) 
test helps in deciding whether a panel-type model is appropriate. If the null hypothesis of 
no study-level effect is rejected, there are again two modelling options. First, the study-
level effect � can be estimated as an unobserved study-level error term resulting in a ran-
dom effects multilevel model (REML), or else it can be modelled explicitly by replacing � 
with study dummies, which is known as a fixed effects multilevel model (FEML) (Stanley 
and Doucouliagos 2012). The REML critically assumes that the unobserved study effect is 
uncorrelated with all regressors. If there is reason to suspect correlation, the FEML is the 
appropriate choice. A robust Hausman test serves as decision rule (Feld and Heckemeyer 
2011). Alternatively, if the BPLM test does not support a panel-type model, clustered 
standard errors can be calculated to correct correlated error terms at the study level. This 
is especially apposite if the number of clusters is high (Nelson 2015). A related approach 
assigns equal weights per study or equal weights per sample to avoid undue dominance of 
studies with many estimates over studies reporting only one (Penn and Hu 2019).15

Regardless of choice, any model should be estimated with WLS rather than OLS (Feld 
and Heckemeyer 2011). The meta-dataset includes studies with widely dispersed estimates 
and corresponding variances that induce heteroscedasticity in the error term(s). Hence, 
though estimating Eqs.  (5), (6) or (7) by OLS would produce unbiased results, the esti-
mates would be inefficient. Relying on WLS ensures efficient estimates of the coefficients 
(Wooldridge 2010). The employed analytic weights are the reciprocal error-term variances, 
which vary in accordance with the type of model chosen. In the case of the fixed effects 
model, the variance �2

i
 is given or transformed information on precision in the regressions 

of the original studies (see Sect. 3.1). Hence, heteroscedasticity is easily accommodated by 

(6)Elasticityi = �0 +

K
∑

k=1

�kCk,i + �i + �i,

(7)Elasticityij = �0 +

K
∑

k=1

�kCk,ij + �j + �ij, j = 1, 2, ..., S,

15 Another solution proposed is to evade the problem by using only one observation per primary study such 
as the ‘preferred’ estimate or ‘best evidence’ per study (Nelson 2004). However, this inherent selection has 
been criticised as arbitrary, as greatly diminishing sample size, discarding valuable information and con-
serving publication bias (Nelson 2015; Stanley and Doucouliagos 2012). Alternatively, the mean effect size 
per study could be used (Stanley 2001). While this also greatly reduces sample size and discards valuable 
information, the resulting average may still better reflect the ‘true’ effect size.
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using analytic weights wi =
1

�2
i

=
1

SE2
i

 , with SE being the standard error of each respective 
estimate.16 In the case of random effects models, the weight changes to wi =

1

�2
i
+�2

=
1

SE2
i
+�2

 
to incorporate the additional variance introduced by unobserved heterogeneity. In contrast 
to �2

i
 , the additional element of variance �2 is not known to the meta-analyst a priori and 

must be estimated in a first step.17 In both cases, the weights chosen reflect the precision of 
the respective estimates and thus give greater weight to more precise estimates.18 In con-
trast to the fixed effects weight, however, the random effects weight is typically more evenly 
distributed due to the added constant between-study variance.19

This setup identifies four classes of models, all of them estimated by WLS. Considering 
the wide range of notations and terminologies in the literature, I hope to clearly distinguish 
them by calling the fixed effects model in Eq. (5) WLS-FE and its random effects counter-
part in Eq. (6) WLS-RE (following Alinaghi and Reed 2018). As introduced above, their 
respective panel-type counterparts originating from Eq.  (7) are referred to as FEML and 
REML to underscore their multilevel nature (following Stanley and Doucouligaos 2012). 
This structured decision process is the framework used for selecting the most appropriate 
meta-analytic model. Choice is determined entirely by the meta-dataset at hand. Starting 
from the general multivariate model, Cochrane’s Q-test provides the criterion for choos-
ing either a WLS-FE or WLS-RE model. In the latter case, study-level effects reflecting 
the non-independence of multiple estimates from the same study can explain unexplained 
heterogeneity. A BPLM test helps investigating the existence of such study-level effects, in 
which case a multilevel model is the appropriate choice. Finally, the robust Hausman test 
indicates the appropriateness of either the REML or FEML model.

4.2  Publication Bias

A visual method commonly used to detect publication bias is the examination of a funnel 
plot. In a funnel plot, the effect sizes are plotted against their respective standard error. 
In an ideal setting without publication bias, the distribution of effect sizes from studies 
with large samples would cluster around the top of the plot (where precision is high), with 

19 There are major differences in the magnitudes of the effect sizes and their respective standard errors that 
eventually serve as weights. In the fixed effects framework, this means that some observations receive a lot 
of weight while others have barely any influence. While in principle this reflects the desired weighting 
mechanism, here it would lead to some observations dominating others. This could be handled by following 
Feld and Heckemeyer (2011) and excluding observations with extremely high weights. Here, however, there 
is no clear cut-off point, as there are many observations with both large and small weights simultaneously. 
Thus, the precision weight is logarithmised, or log(precision) = log(

1

SEi

) , as this transformation resulted in 
an approximately normal distribution of the precision variable ( p < 0.001 ). The subsequent regression 
results are close to the random effects framework, so that I consider the transformation a viable alternative 
in this case.

17 This is achieved by using the metareg package in Stata, which, for example, relies on residual maximum 
likelihood estimation.
18 Alternatively, heteroscedasticity-robust standard errors may be calculated. However, as weighting the 
estimates also serves to give greater importance to more precise estimates, I prefer using WLS to OLS with 
heteroscedasticity-robust standard errors.

16 Stata has several commands that estimate weighted regressions, with the same resulting regression coef-
ficients and corresponding standard errors in all cases. With no statistical guidance for preferring one com-
mand to the other (Ringquist 2013), I here use the simple and widely known regress command with manu-
ally weighted variables. This can be thought of as OLS applied to weighted observations.
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estimates from studies with smaller samples (and lower precision, i.e., higher standard 
errors) spreading down into the bottom area, thus creating an inverted funnel shape (Boren-
stein et al. 2011). This would reflect the random deviation from the genuine mean effect 
due to sampling error. If the funnel plot is asymmetric, this may hint at publication selec-
tion biasing the results (Ringquist 2013).

Figure A4 shows two funnel plots. The analysis of alternative funnel plots indicates the 
sensitivity of the visual impression. On the left-hand side, each point represents a single 
observation from the meta-sample. The points on the right-hand side are study means. Fur-
thermore, the type of waste site examined in each study serves as a label for the points 
depicted: hazardous, non-hazardous and nuclear-waste sites. I consider waste-site category 
labels to reflect the possibility that publication selection only occurs for some types of 
waste site. The standard funnel plot on the left is a rather symmetric, homogenous plot 
with many precise estimates clustered around the top. Despite the symmetric impression, 
there is considerable dispersal of estimates at the top, suggesting that the monetary effect 
of waste sites on residential property values may be moderated by some study characteris-
tics, such as the type of waste site. The funnel plot of study means on the right-hand side 
does not confirm the impression of a symmetric graph. Clearly, several estimates lie right 
to the centre, forming an asymmetric plot. Note, however, that taking study means narrows 
down the scales of the axes so that the two funnel plots cannot be compared directly. Turn-
ing to the waste-site labels in the funnel plot on the left-hand side, it becomes evident that 
studies examining hazardous waste sites report the most widely spread results. However, 
there is no clear visual evidence of differences in plot symmetry by waste-site labels. The 
funnel plot on the right-hand side generally supports this impression, with studies examin-
ing non-hazardous waste sites also reporting dispersed findings. The funnel plots taken as 
a whole suggest publication bias in the sample and show that the type of waste site may be 
one important explanatory factor for heterogeneity in the effect sizes observed. Consider-
ing study means instead of single estimates further supports the impression of an asym-
metric plot.

Although funnel plots are an informative visual tool, their interpretation remains subjec-
tive. A regression-based formal test framework known as FAT-PET-PEESE builds on the 
rationale of the funnel plot, adding in the first place the standard error SE of the estimated 
effects to a simple version of eq. (5) or (6), or

In this setting, the so-called Funnel Asymmetry Test (FAT) tests the hypothesis of 
�1 = 0 with a conventional t-test, assuming that, in the absence of publication bias, the 
effect size will be uncorrelated with its standard errors (Stanley and Doucouliagos 2012). 
Thus, rejecting the FAT hypothesis confirms that publication selection places a bias on the 
estimates in the meta-sample. Similarly, the Precision Effect Test (PET) tests for the pres-
ence of a genuine average effect size beyond publication bias ( H0 ∶ �0 = 0 ) (Stanley 2008, 
2017). In the case of a true non-zero effect confirmed by the PET, simulations have shown 
that the estimated average effect size â0 is often underestimated (Stanley and Doucouliagos 
2012, 2017). In these cases, replacing the standard error SE in Eq. (8) by its square pro-
duces less biased estimates of the true underlying effect, an approach known as Precision 
Effect Estimate with Standard Error (PEESE) (Stanley and Doucouliagos 2014). However, 
if the mean effect is not significantly different from zero, the PET is shown to be the better 
choice. Accordingly, I estimate both alternative specifications for this meta-analysis. How-
ever, while the FAT-PET-PEESE framework is a commonly applied control for publication 

(8)Elasticityi = �0 + �1SEi + �i
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bias, some simulation studies question its performance under certain conditions (Alinaghi 
and Reed 2018; Carter et al. 2019; Du et al. 2017). For this reason, I additionally check for 
the presence of publication bias by applying the publication bias control methods recently 
proposed by Andrews and Kasy (2019), Furukawa (2019), Ioannidis et al. (2017), Simon-
sohn et  al. (2014) and Stanley et  al. (2010).20 For conciseness, these methods and their 
results are set out in detail in section B of the supplementary material.

5  Results and Discussion

The presentation of results follows the shape of the remarks on model-selection strategy set 
out in the previous section. The results of the tests for publication bias come first, followed 
by the results for the models chosen, including subsample analyses and related robustness 
checks. The discussion of BT errors concludes this section.

5.1  Publication Bias and Corrected Mean Effect Size

The results of the tests for publication bias are summarised in Table 3. In all cases, the 
weighted mean effect size is reported along with the respective coefficient controlling for 
publication bias, where applicable.

Regardless of the chosen method, the results show that publication bias clearly distorts 
the average effect size. In comparison to the unweighted average in Table 2 (0.042) and the 
weighted average reported in columns (1) and (4) of Table 3 (0.030 and 0.024), all methods 
correct the effect downwards, with estimates ranging from 0.015 to 0.029. As expected, 
the FAT-PET estimates (0.015 and 0.019) correct more strongly than the PEESE alterna-
tives (0.023 and 0.029), with the PEESE estimates being less biased with regard to the 
significant mean effect size. In economic terms, the FAT-PET-PEESE range of estimates 
translates into an average increase of 1.5% to 2.9% in property values per mile of increased 
distance from a waste site for a house located one mile away from the waste site. For a 
house located 4.29 miles away from the waste site (the mean distance in this sample), the 
increase in value is 0.35% to 0.68%. These findings are at the lower bound of the results 
found in previous meta-analyses on the topic (see Sect. 2). In summary, Table 3 confirms a 
minor negative effect of waste sites on proximate residential property values at the aggre-
gate level. Publication selection is present, however, resulting in an upward bias of up to 
38% in this literature. This finding is corroborated by results for other publication bias con-
trol methods (see section B in the supplementary material).

Despite these findings at the aggregate level, the average effect size is based on a hetero-
geneous set of observations as indicated by Q-tests, funnel plots and summary statistics. I 
analyse the origin of this heterogeneity in the next section. As discussed previously, pub-
lication bias correction via the FAT-PET or the PEESE approach can easily be included in 
MRAs explaining heterogeneity. Where publication bias is clearly confirmed, fixed effects 
models should be the models of choice. On the other hand, Q-test statistics indicate a rejec-
tion of effect-size homogeneity that would appear to favour the random effects models.21 In 

21 The Q-test statistics are available on request.

20 See also Christensen and Miguel (2018) and van Aert and van Assen (2018) for a summary of 
approaches addressing publication bias.
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such a case, the literature provides no clear guidance on which estimator to prefer and the 
choice of the appropriate model follows the decision rules described in Sect. 4.1.

5.2  Heterogeneity of Effect Size

The meta-regression results are reported in Table 4. Column (1) shows the baseline WLS-
RE PEESE model. Selection of this specification follows the results of a Q-test rejecting 
the null hypothesis of no heterogeneity at the estimate level and a subsequent BPLM test 
lending no support for the hypothesis of additional study-level heterogeneity.22 In sum-
mary, the moderators included are sufficient to explain study-level heterogeneity so that 
there is no need to rely on panel-econometric models to reflect study-level effects.23 For 
this baseline specification I consider all moderators with non-missing observations defined 
in Table 1 so as to conserve sample size. The PEESE publication bias control is included 
as this is the preferred choice with a significant mean effect size resulting in a smaller 
bias, as set out below. Results including FAT-PET publication bias control are reported in 
Table A8 in the supplementary material.

I have checked the baseline model for normality of residuals, outliers, persistent hetero-
scedasticity and multicollinearity. The findings support inference validity; see Figures A5 
and A6 in the supplementary material for details on non-normality and outliers.24 How-
ever, persistent heteroscedasticity was identified despite reliance on WLS. Consequently, 
cluster-robust standard errors are used for all regressions. Multicollinearity was only a 
minor concern that did not affect the regression results in any relevant way.25

I explore the robustness of the results from a variety of perspectives. Column (2) repre-
sents the WLS-FE model, reflecting the discussion in the previous section on the preferred 
estimator in the presence of publication bias. The results for a reduced model are reported 
in column (3), following a general-to-specific (G-S) modelling approach recommended by 
Stanley and Doucouliagos (2012). This approach involves a stepwise removal of the least 
significant variable until only variables with a p-value less than 0.2 remain. Additional 
regressions based on trimmed datasets and reweighted observations confirm the robustness 
of the results. They are shown in Table A8 in the supplementary material.

The majority of moderators are binary or categorical variables. Accordingly, their cor-
responding coefficients can be interpreted ceteris paribus as the expected change in mean 
effect size caused by a departure from the benchmark scenario. The benchmark scenario 
for the categorical moderators is the omitted category indicated in parentheses. For all 

22 Here, the BPLM test cannot be performed in its standard version. However, this can easily be resolved 
by slightly altering the approach; see the detailed explanations in the Do-files made available in the data 
repository linked to in the electronic version.
23 Detailed test results are summarised in Table A7.
24 These exemplary diagnostic plots for the WLS-RE PEESE model detect six potentially outlying observa-
tions. I reassessed them for coding errors or any particularities justifying their exclusion. No obvious pat-
tern was detected. As the regression results are robust to the exclusion of the outlying observations, they are 
not discarded. See Table A8 in the supplementary material for details. Diagnostic plots for the other regres-
sion models based on the entire sample come up with almost identical results and are available on request.
25 The mean variance inflation factor (VIF) is 3.7 with only a few levels of some categorical regressors 
indicating multicollinearity. These are to be expected as e.g. the status on the NPL is, by design, correlated 
with the status North_America. Reassuringly, the reduced model in column (3) and the clear majority of 
robustness regressions confirm the same set of significant moderators, so that multicollinearity does not 
affect the results in any relevant way.
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binary regressors, the benchmark is the zero case. The remaining continuous variables 
are centred so that their coefficients can be interpreted as the effect of deviations from the 
mean.26 Hence, the constant can be interpreted as the mean effect size for a reference study 
indicated by the benchmarks. Table  4 shows that the results are robust across specifica-
tions based on all observations. With only small quantitative differences for most coeffi-
cients, the following description focuses on the results of the WLS-RE model and only has 
recourse to the WLS-FE and G-S alternatives in the case of pronounced disagreement.

Most notably, publication bias is confirmed throughout the models. This squares with 
the results from Tables 3 and B1, finding evidence of a highly significant upward bias in 
the literature. The corrected mean effect sizes in columns (1) to (3) range from about 0.074 
to 0.106 in magnitude and are significant in all cases. In comparison to mean effect sizes 
displayed in Table 2 and Table 3, mean effect sizes in the comprehensive meta-regressions 
are two to three times larger. This can be explained by the different cases reflected in the 
respective mean effect sizes.27 The R2 shows little variance, ranging between 0.232 and 
0.261. Turning to the explanatory variables, published and unpublished studies do not 
seem to differ in effect size magnitude when publication bias is controlled for. More recent 
publications tend to report greater effect sizes.

5.2.1  Site Characteristics

As expected, studies with multiple sites in the proximity of residential properties report 
higher effect sizes on average. In other words, multiple waste sites affect residential prop-
erty values more adversely than single sites. By contrast, there seem to be no significant 
differences in terms of effect size for waste sites with differing employment opportunities 
or status on the NPL. According to the reduced G–S model, sites with unclear activity 
status seem to have a less value-depressing impact than active sites. Surprisingly, the type 
of waste does not seem to influence effect size in any consistent way. Only in the WLS-FE 
and G–S model are the effects of non-hazardous waste sites significantly smaller than their 
hazardous counterparts (and only at the 10% significance level). I explore this result in 
more detail in the subsample regressions discussed below. Further, there seem to be dis-
tinctive differences in effect size depending on the element affected by waste. Waste sites 
emitting airborne pollutants clearly reduce residential property values more significantly 
than waste sites where the polluted element is unclear, whereas soil-polluting or water-pol-
luting waste sites do not significantly differ from the latter in terms of effect size. The con-
tinent on which a waste site is located does not seem to be of relevance. In neither case is 
there any significant difference from a European waste site.28 The clean-up stage seems to 
have a distinct impact on property values. Recalling the reference case of a waste site with 
recently discovered pollution, it transpires that, during the remediation phase, there is no 
significant recovery in residential property values. However, this recovery effect manifests 

27 The reference study in the meta-regressions displayed in Table 4 is, e.g., unpublished, does not include 
socio-demographic controls in its regression(s) and models the effect of a European waste site, as indicated 
by the definition of the moderators. As the majority of the studies in the meta-dataset are published, include 
socio-demographic controls and focus on North American waste sites, the mean effect sizes in Table 2 and 
Table 3 reflect a different reference case.
28 One reviewer suggested replacing the continent dummies with a continuous measure like the HDI or 
GDP per capita. Both replacements are tested and reported in Table A9. The results are similar to the base-
line specification.

26 This excludes, of course, the publication bias control variables SE and SE2.
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itself once the clean-up has been completed. This finding, intuitive as it is, contrasts with 
the results of Braden et al. (2011), who report insignificant effects from clean-up activities.

5.2.2  Data Characteristics

The data characteristics reveal that on average studies working with larger samples tend 
to report smaller estimates. By contrast, studies based on sales data collected at individual 
house level do not differ significantly from studies using assessed values or aggregated 
data. Apparently, studies with greater mean distances of the sampled houses from the 
respective waste site do not consistently report significantly smaller effect sizes than stud-
ies with smaller mean distances. Only in the WLS-RE model, the coefficient is significant, 
albeit weakly. This finding is seemingly at odds with the basic hedonic hypothesis that an 
environmental disamenity will be considered less serious the further away it is from the 
property in question. However, the effect may be obscured by the choice of the dummy 
variable dist_greater_mean as it is only a crude measure of the distance-decay effect. In 
addition, reported effect sizes may be biased if primary studies fail to control for important 
confounding factors. Finally, if on average non-hazardous waste sites are not perceived as 
disamenities, this may also mask the distance-decay effect. I investigate these eventualities 
in the subsample analyses.

5.2.3  Methodology

Whereas the mere number of explanatory variables does not seem to be an important fac-
tor, some moderators reflecting the comprehensiveness or quality of the econometric speci-
fication do significantly affect the reported effect size.29 First, not controlling for socio-
demographic factors, such as the crime rate or median household income in a census tract, 
results in significantly higher estimates of waste-site effects. This shows that the omission 
of important control variables in the primary literature potentially leads to biased estimates 
of the effect of waste sites on residential property values. However, controlling for other 
amenities or non-waste disamenities in the vicinity does not on average appear to influence 
the reported effect size.

Moreover, studies that use a distance-interaction term report considerably smaller aver-
age effect sizes. Evidently, the interaction term takes up some part of the effect size that 
would otherwise be reflected in the single term. By contrast, controlling for time-fixed 
effects via dummy variables or using price inflation adjustments does not seem to influence 
the reported effect size. Lastly, the estimation strategy is not a significant factor explain-
ing variance. More precisely, neither the functional form nor the chosen estimator seem to 
influence the reported effect size in any given case.

With very similar results across specifications and estimators, the subsample analy-
ses rely on the WLS-RE PEESE baseline model. Based on the results from Table 3 and 
Table  4, this is justifiable as the mean effect size consistently differs significantly from 
zero.

29 In a robustness check reported in Table A9, the number of total explanatory variables is replaced by the 
number of significant variables, which is also insignificant. The overall results remain unchanged except for 
an increased  R2. This effect, however, is not due to the exchanged variable but rather related to the effect of 
a smaller, more consistent subsample.
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5.3  Subsample Analysis

Several moderators are not included in the baseline regression shown in column (1) due to 
missing observations or because these moderators only serve as replacements for explana-
tory variables already included. In a first step, I add these moderators to the meta-regres-
sion separately, which naturally leads to a reduced sample size in each case. Moreover, 
the results from the baseline model identify sub-categories of observations that warrant 
further investigation. Accordingly, I use different subsample regressions to provide a more 
nuanced picture of the robustness of results. In most cases, the subsample analyses reveal 
only marginal differences from the baseline model. Reassuringly, however, expected dif-
ferences manifest themselves as well. The results for four subsamples are summarised in 
columns (4) to (8) in Table 4. For other subsample regressions, see Table A9 in the supple-
mentary material. Results are generally robust, so again I only discuss notable differences 
from the baseline model.

As expected, replacing Dist_greater_mean with Dist_mean in column (4) makes very 
little difference to the overall results. Notably, the coefficient on Dist_mean is insignifi-
cant, reproducing the counterintuitive finding of Braden et  al. (2011). Hence, a continu-
ous distance-decay effect cannot be confirmed for the full sample. When we turn to the 
subsamples in columns (5) to (7), the differences from the baseline model are more clear-
cut. Controlling for socio-economic factors (column (5)) seems to be an important quality 
dimension in the primary study. While the overall results remain similar to the baseline 
regression, the distance-decay effect is now confirmed. This finding manifests the impres-
sion that the design of the primary study may be one factor concealing this pattern. This 
interpretation is supported by an additional subsample regression that omits effect sizes 
from interactions (shown in Table A9).

For the subsample of non-hazardous waste-site observations in column (6), the mean 
effect size turns insignificant. On average, non-hazardous waste sites are apparently not 
value-depressing. This finding supports the hypothesis that waste-site effects on property 
values differ by waste categories that can be controlled for in MRAs. Similarly, no publica-
tion bias can be confirmed. Neither the dummy variable Publish nor the publication bias 
control variable SE significantly affect the average effect size. It appears that there are no 
prior expectations of the sign or significance of the effect size for this type of waste site. 
Moreover, in contrast to the baseline model, other disamenities in the vicinity significantly 
reduce the effect size of non-hazardous waste sites. In addition, a non-hazardous waste site 
offering no employment is clearly more value-depressing than otherwise. The R2 increases 
substantially compared to the baseline scenario (0.610 compared to 0.261).

Surprisingly, status on the NPL seemed to be of no relevance for the effect size in any 
of the previous regressions. Hence, in column (7) I explore the subsample of observations 
from waste sites on the NPL more closely. The mean effect size is approximately four-
fold in magnitude, confirming the expected negative effects of highly contaminated waste 
sites. Moreover, the R2 increases substantially compared to the baseline scenario (0.613 
compared to 0.261). The clean-up stage continues to be of importance. More precisely, 
for this subset of highly contaminated sites, an unclear clean-up stage increases effect size 
over and against a site with recently discovered contamination. In addition, the start of 
clean-up activities seems to be an important step towards remediation. As expected, the 
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distance-decay effect can be confirmed.30 Apparently, the type and level of contamination 
are determinants in detecting this pattern (see also the subsample regression on hazardous 
waste sites in Table A9).

5.4  Benefit Transfer

As noted previously, one of the potential merits of MRA is the use of the resulting coef-
ficients for BT applications. The usefulness for BT applications, however, depends on the 
magnitude of the inherent transfer error. Table 5 shows the transfer errors to illustrate the 
predictive power of this MRA. I calculate the transfer errors following common practice, 
using the Absolute Percentage Error (APE) as metric (Nelson 2015). The APE is shown 
for the baseline specification that includes all observations as well as for the subsamples of 
non-hazardous waste sites and waste sites on the NPL, respectively.31 Moreover, the APE 
is calculated using not only meta-functional transfer based on the respective results shown 
in Table 4, but also mean-value transfer based on a univariate WLS analogue of Eq. (6). 
Following Brander et al. (2006) and Chaikumbung et al. (2016),32 I calculate the transfer 
errors using n-1 out-of-sample regressions, i.e., omitting one observation at a time, re-esti-
mating the model and calculating the estimated BT for the observation omitted.

The general impression gained from the results on transfer errors is in line with previous 
discussions in the literature. First, meta-functional transfer outperforms simple value trans-
fer if the underlying sample is heterogeneous. If the sample consists of a more homogenous 
set of sites, e.g., waste sites on the NPL, simple value transfer results in smaller transfer 
errors. Second, regardless of the type of transfer, the APE is smaller if the pooled sites have 
a higher degree of commodity consistency. Third, the Mean APE is considerably larger 
than the Median APE, with BT errors ranging between 133% and 684% for the former, 
compared to values of 76% to 90% for the latter. A small number of outlying observations 
drives the mean APE upwards.33 This pattern is also apparent in Figure A7 in the supple-
mentary material, showing the distribution of BT errors.

The results are in line with expectations, but the order of magnitude of the BT errors 
warrants further investigation. In general, moderate to high transfer errors are common in 
the valuation literature. Rosenberger (2015) reviews the transfer errors for 38 valuation 
studies, reporting an average of 65% (36%) for the Mean (Median) APE based on function 
transfer and a corresponding average of 140% (45%) for value-transfer errors. However, 
though the BT errors shown in Table 5 are greater than this average in most cases, this 
is not necessarily surprising as the complex model was designed to identify sources of 
heterogeneity rather than to calculate transfer errors (Boyle and Wooldridge 2018; Nelson 
2015). Still, while the acceptable level of transfer error is context-dependent (Rosenberger 

30 For this subsample regression, the moderator Dist_mean was also significant (not shown).
31 In all cases, one observation with an extreme APE (770,261%) is omitted from the calculations and from 
the presentation in Table  5. Omitting this clearly outlying observation reduces e.g. the Mean APE from 
1,602% to 543% for the full sample, while the Median APE barely changes. Renewed perusal of the corre-
sponding paper (Schmalensee 1975) revealed no particularities.
32 I calculated in-sample transfer error as well (not shown). They follow the same pattern as the out-of-
sample predictions depicted in Table 5, albeit with smaller transfer errors throughout, as expected.
33 Omitting 14 observations from one study (Walsh and Mui 2017) that represent the vast majority of 
extreme APE reduces the Mean APE from 543% to 213%. Similarly, for the subset of observations on the 
NPL, four observations are clearly outlying. Omitting these observations reduces the corresponding Mean 
APE from 359% to 125%.
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2015; Brander et  al. 2006), the predicted levels of transfer error will in most cases pro-
hibit accurate policy applications. Apparently, waste-site effects on property values are dif-
ficult to predict reliably.34 Nevertheless, the BT estimates may still be informative for broad 
cost–benefit analysis at policy sites where primary studies are not feasible.

6  Conclusion

This meta-study confirms the existence of adverse price effects on residential property val-
ues caused by the proximity to waste sites at the aggregate level. Correcting for publica-
tion bias has a sizeable impact, reducing the average effect size by up to 38%. The cor-
rected average effect size translates into a 1.5% to 2.9% property value increase per mile 
of increased distance from a waste site for a house at a one-mile distance. These estimates 
are situated in the lower range of values produced by the previous literature. The results are 
generally robust across justifiable estimators, weighting schemes and the replacement of 
moderators. This need not necessarily hold in other circumstances, and future researchers 
would do well to adhere to the structured decision pathways that already exist (Feld and 
Heckemeyer 2011; Stanley and Doucouliagos 2012) in choosing the appropriate model for 
their respective meta-dataset.

Various site and data characteristics as well as the respective econometric specification 
are significant factors explaining the variation in the empirical findings. Notably, the dis-
tance decay of the waste-site effect is partly confirmed, e.g., for hazardous waste sites in 
general and waste sites on the NPL in particular. In addition, cleaning up a waste site is 
beneficial for residential property values, possibly restoring value formerly forfeited. This 
finding contrasts with previous insignificant findings by Braden et al. (2011), possibly due 
to smaller sample size or the absence of subsample analysis for hazardous waste sites. The 
subsample analyses revealed distinct differences for severely contaminated sites on the 
NPL and non-hazardous waste sites. As non-hazardous waste sites do not reduce property 
values on average, they are not considered a disamenity in these average cases. By contrast, 

Table 5  Benefit transfer errors

The meta-functional transfer calculations are based on the regressions in columns (1), (6) and (7) from 
Table 4. The mean value transfer is based on the univariate WLS-RE analogue of Eq. (6)

Mean APE (SD) Median APE Range of APE

Meta-Functional Transfer
 Full sample 543.41 (3228.37) 87.55 0.63–49,363
 Non-hazardous waste sites 463.90 (1708.55) 84.52 0.93–13,253
 Waste sites on the NPL 358.71 (2224.52) 90.45 0.19–29,098

Mean Value Transfer
 Full sample 683.56 (4635.68) 85.92 0.03–72,724
 Non-hazardous waste sites 601.33 (2234.48) 79.72 2.78–15,146
 Waste sites on the NPL 133.08 (333.77) 75.92 1.30–3575

34 This interpretation is supported by additional calculations of BT errors for even more consistent subsam-
ples like landfills or brownfields. The transfer errors were in the same range.
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severely contaminated waste sites on the NPL clearly reduce residential property values on 
average, with an estimated mean effect size of 42.2%. Future MRAs in this context may 
want to concentrate separately on these types of waste site, as this might be a way of iden-
tifying more waste-type-specific moderators. This might also increase forecast accuracy 
for BT applications. The BT errors in this MRA are consistent with general findings in the 
literature, showing that meta-functional transfer performs better than value transfer if sites 
are heterogeneous. The practical applicability of the BT estimates, however, is limited due 
to comparatively high transfer errors. Hence, more specialised MRAs focusing on waste 
sites with a higher degree of similarity and corresponding waste-type-specific moderators 
are needed to forecast estimates more reliably.

There are at least two avenues for future research to explore. First, new moderators need 
to be identified that can help shed light on the remaining unexplained variance. Second, 
there is still no unambiguous picture of the presumed distance-decay effect. With occa-
sional insignificance of the moderator controlling for the mean distance between houses 
and waste sites in at least two MRAs, this remains a partly unresolved issue. Clearly, it 
would be of great interest to find average distance cut-off points beyond which a waste site 
is no longer perceived as a disamenity.
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