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Abstract
We quantify the causal effects of the coronavirus disease 2019 (COVID-19) on air quality 
in the context of China. Using the lockdowns in different cities as exogenous shocks, our 
difference-in-differences estimations show that lockdown policies significantly reduced air 
pollution by 12% on average. Based on the first lockdown city, Wuhan, we present three 
underlying mechanisms driving our findings: anticipatory effects, spillover effects, and a 
city’s level of connection with Wuhan. Our findings are more pronounced in cities whose 
population was more willing to self-isolate or more susceptible to anxiety, or whose gov-
ernment faces less pressure to stimulate economic growth. Overall, this study contributes 
to the literature by evaluating the unintended consequences of the COVID-19 outbreak for 
air quality, and provides timely policy implications for policymakers.
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1  Introduction

The coronavirus disease 2019 (COVID-19) crisis was caused by a viral pandemic that 
abruptly and severely constricted human mobility and economic activity. Governments 
worldwide have increasingly implemented strict public health measures in response to the 
outbreak, such as social distancing and even complete lockdowns.
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The shock of the COVID-19 crisis gives us a unique opportunity to investigate the 
causal effect of social distancing or a pause in human mobility and economic activities, 
which is generally impossible, on air quality. In this paper, we exploit the exogenous shock 
of COVID-19 and use a variety of high-quality data sets to study the causal effect of an 
unprecedented change in human mobility and economic activity on air pollution in the Chi-
nese context.

We focus on China for two reasons. First, China suffers from severe air pollution (Chen 
et al. 2018; Freeman et al. 2019; Heyes and Zhu 2019; Shi and Xu 2018; Wang et al. 2018). 
Second, China offers a good setting for assessing the economic impact of COVID-19. It 
was the first country in the world to experience a large-scale outbreak, starting in January 
2020, which means that there has been a sufficiently long post-outbreak period to ensure 
we have the statistical power for credible estimation.

We use various difference-in-differences (DID) estimation strategies to disentangle the 
effect of COVID-19 on AQI from other confounding effects (Fang et al. 2020). In particu-
lar, we introduce two alternative specifications of the treatment group to ensure the reli-
ability of our estimation. In both specifications, we present strong evidence that lockdown 
policies significantly reduced air pollution. In our estimation, lockdown policies designed 
to suppress the spread of COVID-19 in China decreased air pollution by 12% on average.1

We then check the robustness of our findings. First, we verify the identifying assump-
tion associated with our baseline DID specification; that is, we assume that the change 
in air pollution in the treatment group would have followed the same trend as that in the 
control group if no lockdown policies had been issued. Second, we introduce a regression 
discontinuity design (RDD) to examine whether our findings are sensitive to the window 
width before and after the policy period. In both robustness checks, we got highly consist-
ent results.

To explore the mechanism underlying our findings, we conduct three tests examining 
the anticipatory effects, spillover effects, and cities’ connection to Wuhan. First, we present 
evidence that the prior information leakage about lockdowns distorted human anticipation 
and behaviors, induced a significant increase in air pollution. Second, the Wuhan lockdown 
had significant spillover effects on other cities in terms of increased air quality, due to the 
effect on human mobility. Third, we construct a variable Connections to capture a city’s 
level of connection to Wuhan based on real-time between-city population movements data 
from Baidu. Our results show that connection with Wuhan significantly strengthened the 
effect of lockdown policies and the spillover effect of the Wuhan lockdown.

Finally, we examine the heterogeneous effects of public willingness to self-isolate, pub-
lic panic, or government GDP incentives on our baseline findings, and find that the effect 
of lockdown policies is higher in cities that have more people willing to self-isolate, more 
public panic, or governments under less pressure to stimulate economic growth.

Our study is related to, but differs from, a recent paper (He et al. 2020) that also exam-
ines the effect of the COVID-19 pandemic on air pollution. First, we use two alternative 
settings to conduct DID estimation, to ensure that our findings are solid. Second, our rich 

1  It is worth noting that air pollution levels are back to normal in many Chinese cities (https​://www.reute​
rs.com/artic​le/us-healt​h-coron​aviru​s-china​-pollu​tion/china​-sees-post-lockd​own-rise-in-air-pollu​tion-study​
-idUSK​BN22U​09F). Although the impact of COVID-19 on pollutions is temporary, this study focusses on 
the evaluation of the first-order effect of COVID-19 shock on air quality and identification of the underly-
ing mechanisms behind our findings. In effect, the fact that air pollution levels are back to normal further 
validate our findings given that the increase in air pollution is associated with the relax of lockdown and 
resumption of a large part of business activities in China.

https://www.reuters.com/article/us-health-coronavirus-china-pollution/china-sees-post-lockdown-rise-in-air-pollution-study-idUSKBN22U09F
https://www.reuters.com/article/us-health-coronavirus-china-pollution/china-sees-post-lockdown-rise-in-air-pollution-study-idUSKBN22U09F
https://www.reuters.com/article/us-health-coronavirus-china-pollution/china-sees-post-lockdown-rise-in-air-pollution-study-idUSKBN22U09F
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data set based on population movements data from Baidu allows us to explore the moderat-
ing effect of human mobility and a city’s connection to Wuhan behind our baseline results. 
Third, based on a mechanism analysis, we explore how the anticipations of lockdown poli-
cies moderates the effect of these policies and the spillover effect of the Wuhan lockdown 
on other cities’ air quality. Finally, we analyze cross-sectional heterogeneity based on will-
ingness to self-isolate, public panic, or government’s GDP incentives, which enriches our 
understanding of the effects of COVID-19 on air quality.

We contribute to the literature in two ways. First, we add to the rapidly growing litera-
ture about the economic consequences of the COVID-19 pandemic by showing its sizeable 
effects on air quality. We thus complement existing studies of consumption, labor markets, 
capital market violability, human mobility, and firm operations (Baker et al. 2020; Bartik 
et  al. 2020; Chen et  al. 2020; Ding et  al. 2020; Hassan et  al. 2020; Dingel and Neiman 
2020; Fang et al. 2020; Coibion et al. 2020). We also complement policy evaluation of the 
unintended consequences of different policies for air quality (Barron and Torero 2017; Fu 
and Gu 2017; Lalive et al. 2018; Zhang et al. 2017). Second, by evaluating the determi-
nants of air quality in China, this study complements the emerging literature on its causes 
and consequences (Chen et  al. 2018; Freeman et  al. 2019; Heyes and Zhu 2019; Wang 
et al. 2018), thereby offering timely implications for policymakers. In addition, we present 
strong evidence that human mobility, economic activities, economic connection, willing-
ness to self-isolate, public panic, and GDP growth incentives are important driving forces 
of air pollution. Such findings could be taken as a benchmark for regulators aiming to 
improve environmental protection and reduce toxic emissions when the economy recovers 
from COVID-19.

The remainder of this paper is organized as follows. Section 2 describes the data set and 
empirical strategy. Section 3 presents the baseline results. Section 4 explores the underly-
ing mechanisms and cross-sectional heterogeneity. Section 5 concludes the paper.

2 � Data and Empirical Strategy

2.1 � Data and Descriptive Statistics

The two main data sets that we use are daily air quality index (AQI) data and daily weather 
reports for major cities in China.

2.1.1 � AQI Data

To describe the air pollution level in each city, we obtain AQI data from the website of the 
Ministry of Ecology and Environment of the People’s Republic of China (http://www.zhb.
gov.cn/). The website provides daily information on the AQI, air quality class, and primary 
pollutants in 400 cities in China. According to the standard of the Ministry of Ecology and 
Environment of the People’s Republic of China, the AQI is based on the level of six atmos-
pheric pollutants: sulfur dioxide ( SO2 ), NO2 , suspended particulates smaller than 10 μm in 
aerodynamic diameter ( PM10 ), suspended particulates smaller than 2.5 μm in aerodynamic 
diameter ( PM2.5 ), carbon monoxide ( CO ), and ozone ( O3 ). Based on the concentrations of 
each pollutant, an Individual Air Quality Index ( IAQI ) score is assigned, and the final AQI 
is the highest of these six scores. A higher AQI means more atmospheric pollutants in air 
and a higher level of air pollutions.

http://www.zhb.gov.cn/
http://www.zhb.gov.cn/
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2.1.2 � Weather Data

To measure the weather conditions, we obtain data on the maximum wind speed, precipita-
tion, average humidity, and average temperature at each station from the China Meteoro-
logical Administration (CMA) website. We then define city level weather conditions as the 
average of stations within the corresponding city.

2.2 � Model Specifications

According to some reports, the COVID-19 virus is so dangerous that the median time 
between the onset of symptoms and death may be as little as 10 days. Moreover, COVID-
19 can be transmitted while the carrier is still asymptomatic. These characteristics make 
COVID-19 a huge threat to healthcare capacity. To suppress the spread of COVID-19, 
China imposed an unprecedented extreme intervention by placing Hubei province and 
especially Wuhan city on lockdown. Wuhan was placed on lockdown at 10 a.m., January 
20, 2020, and other cities in Hubei were locked down several days later. As COVID-19 
spread, more and more cities issued different lockdown policies. According to Fang et al. 
(2020), 80 cities in 22 provinces issued different levels of lockdown policies before Febru-
ary 20, 2020.

Based on this setting, we use several DID estimation strategies by comparing different 
treatment and control groups to identify the impact of lockdown policies on air quality. The 
DID specification can be described as follows:

where i denotes the city and t denotes the day. The dependent variable ln(AQI)i,t is a meas-
ure of air pollution in city i on day t , which equals the logarithm of the air quality index. 
The key variable of our DID design is Treati,t ∗ Posti,t . Considering that within different 
specific designs we use different control groups, and the definitions of Treati,t and Posti,t 
thus vary between research designs, we are explicit about their definitions below. Accord-
ing to Fu and Gu (2017), weather conditions influence emissions and air quality. For exam-
ple, precipitation and wind speed are key meteorological variables influencing near-surface 
particulate matter within cities (Jones et al. 2010), and cloudy, cool, rainy, or windy days 
hinder the formulation of ozone. We also control for daily weather variables Wi,t , a vector 
of daily weather for city i on day t , including maximum wind speed, precipitation, average 
humidity, and average temperature, to eliminate the impact of weather conditions. Lastly, 
we control for several fixed effects. We control for city fixed effect �i to eliminate the 
impact of unobserved, time-unvarying city attributes on air quality. We control for the date 
fixed effect Xi,t to eliminate the impact of time-varying attributes on air quality, includ-
ing a weekend dummy, month dummies, year 2020 dummy, and Spring Festival Holiday 
dummy.

Model (1) has the special cases in our different research designs. First, following the 
DID strategy, we can estimate Model (1) by studying the different effects of the lockdown 
policy on a treatment group versus a control group. Second, if we choose a small window 
before and after the lockdown policy, Model (1) can be estimated following the regres-
sion discontinuity design (RDD) method, because such an estimation can show whether the 
trend in air quality has a “jump” during and after the policy period (Fu and Gu 2017). Fol-
lowing Gelman and Imbens (2019), who provide three reasons why high-order polynomials 

(1)ln(AQI)i,t = �i + �1Treati,t ∗ Posti,t +Wi,t + Xi,t + �i,t
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should not be used in RDD, we add a linear or quadratic polynomial term f (t) in our RDD 
estimation. The RDD specification can be described as follows:

where i and t denote the city and day respectively, f (t) denotes a flexible polynomial time 
trend term controlling for unobserved confounding factors that may affect daily air quality.

3 � Estimation Result

3.1 � Summary Statistics

We present the summary statistics of the key variables in Table 1. We winsorize all of the 
continuous variables at the 1st and 99th percentiles to alleviate the concern that our results 
may be driven by outliers. Panel A of Table 1 presents the summary statistics for the full 
sample. The dependent variable ln(AQI) has a mean of 4.172 with a variance of 0.586. This 
means that during our sample period, the average air quality of China could be categorized 
as “good” according to the standard of the Ministry of Ecology and Environment of the 
People’s Republic of China. However, the 75th percentile of ln(AQI) is 4.566, which means 
that nearly a quarter of city-days should still be categorized as “lightly polluted” or worse.

(2)ln(AQI)i,t = �i + �1Treati,t ∗ Posti,t +Wi,t + Xi,t + f (t) + �i,t

Table 1   Summary statistics

This table presents the descriptive statistics of our main variables. 
Panel A reports the summary statistics of all cities in 2020 and 2019. 
Then we report the air quality or air pollution before and after the 
official lockdown issue of locked cities. Panel B reports the statistics 
before the official lockdown. Panel C reports the statistics after the 
official lockdown

Mean SD P25 Median P75

Panel A: all cities
AQI 4.172 0.586 3.747 3.747 4.566
PM2.5 3.681 0.752 3.161 3.161 4.217
NO2 3.122 0.624 2.680 2.680 3.588
Wind speed 4.515 2.401 3.000 3.000 6.000
Precipitation 1.115 3.760 0.000 0.000 0.100
Humidity 0.659 0.198 0.514 0.514 0.814
Temperature 3.433 9.633 − 2.840 − 2.840 10.014
Observations 17,160
Panel B: pre-lockdown of locked cities
AQI 4.185 0.566 3.765 3.765 4.651
PM2.5 3.800 0.688 3.345 3.345 4.356
NO2 2.914 0.548 2.546 2.546 3.269
Panel C: post-lockdown of locked cities
AQI 3.985 0.570 3.528 3.528 4.420
PM2.5 3.492 0.745 2.974 2.974 4.058
NO2 2.656 0.536 2.337 2.337 2.996



640	 S. Liu et al.

1 3

Panel B presents the air quality within the pre-lockdown period of cities that imple-
mented lockdown interventions and Panel C reports the air quality for the post-lockdown 
period of these cities as. Whether it is measured by ln(AQI) , ln

(

PM2.5

)

 , or ln
(

NO2

)

 , the air 
quality after lockdown is much better than the air quality before lockdown, suggesting a 
reduction in air pollution due to the lockdown policy.2

3.2 � Baseline Results

In this section, we estimate Model (1) to identify the impact of lockdown policies on air 
pollution. Here, we implement two DID strategies that differ in the estimation sample, and 
the definition of the variable Treat.

First, we use the sample of 80 cities that issued lockdown policies during the coronavi-
rus outbreak. Following Fang et al. (2020), we compare the change in air quality in these 
cities in 2020 to the same cities in the matching lunar calendar period in 2019. Under this 
setting, Treati,t takes the value of 1 for the 2020 data of city i , and 0 for the 2019 data. 
Posti,t is a dummy variable that takes the value of 1 for the sample period after city i issued 
a lockdown policy in 2020, or after the same lunar calendar date in 2019, and 0 otherwise.

Second, we use the sample of 2020 data for 80 locked-down cities and 284 cities that 
were never locked down during the coronavirus outbreak. Under this setting, Treati,t takes 
the value of 1 if city i issued any lockdown policy in 2020, and 0 otherwise. Thus, the con-
trol group consists of 284 cities that were not subject to lockdowns.3 Posti,t takes the value 
of 1 for the sample period after city i issued a lockdown policy, and 0 otherwise.

We interpret the coefficient of Treati,t ∗ Posti,t as the impact of lockdowns on air quality 
or pollution in both of the above strategies. Panel A of Table 2 presents the results.

The dependent variable of Panel A is the logarithm of AQI. Columns (1) and (2) are 
results of the first strategy and columns (3) and (4) are results of the second strategy. The 
coefficient of Treat ∗ Post in column (1) is significantly negative and shows that in 2020 
the AQI decreased by 13.5% during the lockdown period compared with the same lunar 
calendar period in 2019. Column (2) presents the results of Model (1) with a vector of 
weather variables and a vector of fixed effects. The coefficient of Treat ∗ Post is signifi-
cantly negative and is larger in magnitude. Columns (3) and (4) present consistent results.

The AQI level is based on the levels of six atmospheric pollutants. Based on the con-
centrations of each pollutant, an individual Individual Air Quality Index ( IAQI ) score is 
assigned to each and the final AQI is the highest of these six scores. Therefore, we conduct 
two robustness checks by investigating the impact of lockdown policies on the IAQI of 
PM2.5 and NO2 . we define ln

(

PM2.5

)

 and ln
(

NO2

)

 as the logarithms of the IAQI s of PM2.5 
and NO2 , and regress them as Model (1). Panel B and C of Table 2 report the regression 
results.

Panel B of Table 2 presents the results of ln
(

PM2.5

)

 , and shows that the coefficients of 
Treat ∗ Post are all significantly negative and suggest that the level of PM2.5 decreased by 

3  One concern here is that the strong supply-chain effects of virus may potentially bias our estimated 
results. Specifically, cities that were not subject to lockdowns still may be affected by the virus through the 
decreasing population mobility or labor demand of locked cities. Given the data limitation, we leave this 
issue in the future study.

2  We compare the difference of other control variables, and find no significant difference after controlling 
the fixed effects. For brevity, related results are not presented but available upon request.
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Table 2   Baseline results

This table reports the impact of the lockdown policy on air pollution. 
Column (1) and (2) compare the locked cities in 2020 to itself in 2019, 
and column (3) and (4) compare the locked cities in 2020 to unlocked 
cities in 2020. Besides, column (1) and (3) present the result with the 
fixed effects, and column (2) and (4) present the regression with both 
the weather conditions and fixed effects. The dependent variable is 
AQI , PM2.5 and NO

2
 in panel A, B and C, respectively. The key inde-

pendent variable is Treat ∗ Post

Significance at 10%, 5%, and 1% levels was indicated by *, **, and 
***, respectively

Treatment group AQI

Locked cities 2020 Locked cities 2020

Control group Locked cities 2019 Unlocked cities 2020

(1) (2) (3) (4)

Panel A: AQI
Treat * Post − 0.135*** − 0.159*** − 0.083*** − 0.106***

(0.020) (0.019) (0.016) (0.015)
Weather No Y No Y
Fixed effects Y Y Y Y
Constant 4.252*** 3.864*** 4.118*** 3.843***

(0.007) (0.035) (0.004) (0.024)
Observations 6602 6602 13,860 13,858
R2 0.453 0.527 0.525 0.580
Panel B: PM2.5
Treat * Post − 0.247*** − 0.241*** − 0.114*** − 0.140***

(0.025) (0.024) (0.020) (0.019)
Weather No Yes No Yes
Fixed effects Yes Yes Yes Yes
Constant 3.818*** 3.257*** 3.661*** 3.199***

(0.009) (0.044) (0.005) (0.029)
Observations 6602 6602 13,860 13,858
R2 0.449 0.545 0.550 0.618
Panel C: NO2

Treat * After − 0.359*** − 0.382*** − 0.140*** − 0.160***
(0.016) (0.016) (0.014) (0.013)

Weather No Yes No Yes
Fixed effects Yes Yes Yes Yes
Constant 3.321*** 3.104*** 3.036*** 2.804***

(0.006) (0.029) (0.003) (0.019)
Observations 6602 6602 13,860 13,858
R2 0.691 0.736 0.709 0.751
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11% or 24% during the lockdown period. Panel C of Table 2 presents the result of ln
(

NO2

)

 , 
and shows consistent results.4

In summary, we find a significant and robust relationship between lockdown policies 
and air pollution with different control groups. The lockdown policies intended to suppress 
the spread of COVID-19 in China significantly decreased air pollution by 12% on average.5

3.3 � Robustness Checks

First, the identifying assumption associated with our baseline DID estimation specification 
is that the change in AQI in the treatment group would have followed the same trend as 
that in the control group if no lockdown policies had been issued. Thus, we examine the 
dynamic effect in the regression framework to address possible concerns about our identi-
fying assumption. Specifically, we create a series of time dummy variables Post�

i,t
 by modi-

fying the official issue date of lockdown policies within 1 week around the real date, and 
interact each of them with our treatment variable using the following regression:

where Postn
i,t

 is a dummy variable that takes the value of 1 for n days after (before) city i 
issues a lockdown policy in 2020, or the same lunar calendar date in 2019, and 0 other-
wise. A total of seven dummies are accumulated, spanning a week around the official issue 
date. In this regression, we are particularly interested in the difference in the coefficients 
for all of the interaction terms, which we plot in Fig. 1.

Figure  1 presents the difference in the interaction terms’ coefficients. The left (right) 
graph shows the distribution of interaction terms’ coefficients when we compare locked-
down cities in 2020 to the same cities in 2019 (locked-down cities to unlocked-down cit-
ies in 2020). Both these plots show that during the pre-lockdown days the coefficients are 
clearly insignificantly different from zero, while the coefficients during the post-lockdown 
days are clearly significantly negative. This figure demonstrates that the impact of lock-
down policies on air pollution was not induced by time trends.

Next, to check whether the preceding results are sensitive to the window width before 
and after the policy period, we use the RDD method with local linear or quadratic polyno-
mial time terms to estimate the “jump” in air pollution before and after the lockdown poli-
cies within a narrow window. Specifically, we regress ln(AQI) as Model (2), which adds a 
linear or quadratic time trend before and after the issue of each city’s lockdown policies. 
To perfectly capture the “jump” of AQI, we only focus on observations 7 days around the 
issue of lockdown policies. Table 3 reports the regression results.

Column (1) (2) and (3) present the results with no, linear and quadratic time trend 
respectively. All coefficients of Treat ∗ Post are significantly negative, suggesting that 
air pollution did “jump” with the issuing of lockdown policies, which is consistent with 
Table 2.

(3)ln(AQI)i,t = �i +
n=3
∑

n=−4

�nTreati,t ∗ Postn
i,t
+Wi,t + Xi,t + �i,t

4  We also construct the control group more comparable with the treatment group by focusing on the cities 
adjoining boundary to Hubei province, or prefecture-level cities only, and find our conclusions are robust. 
For brevity, related results are not presented but available upon request.
5  Given that the national policies with COVID-19, such as the school and firm shutdown, could also affect 
cities that were not subject to lockdown, the pure effect of lockdown might be underestimated here. As our 
findings is quite solid and strong, we believe that after the adjustment of the potential underestimation, our 
results might be more significant than the current results.
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4 � Potential Mechanisms and Heterogenous Effects

4.1 � Anticipatory Effects

Although the lockdown had a considerable impact on air pollution and significant effects 
on AQI and IAQI , it may also have increased air pollution. Fang et al. (2020) show that a 
panic effect in reaction to the outbreak could significantly impact human behaviors. For 
example, before the government officially confirmed the lockdown, rumors that Wuhan 
would be locked down spread on the Internet. For example, the Baidu Search Index for 
“Wuhan lockdown” was 0 before January 20, increased to 15,649 and 21,905 in the next 
2  days. Such information leakage has a significant impact on human behaviors and can 
cause major social chaos. It can also have had a significant effect on air pollution, such as 
increasing public and private transportation, or abnormal information seeking of people 
who anticipated the lockdown policy.

To investigate the impact of anticipated future lockdowns, we first provide visual evi-
dence in Fig. 2 by applying the RDD method and estimating the effect of the lockdown pol-
icy on air pollution in Wuhan, the first city to be locked down in response to the COVID-19 
outbreak.

Figure 2 shows the quadratic trend of AQI within three periods: from 11 to 3 days before 
the issue of the lockdown policy, from 3 days before to the issue day, and from the issue 
day to 7 days after. The left graph presents the trend in 2020 and suggests that the air pollu-
tion of Wuhan “jumps” twice in our sample. Due to anticipatory of lockdown, air pollution 
increased greatly from 3 days before. After Wuhan was officially placed on lockdown, air 
pollution decreased much more, and even lower than the level within the period 11 days 

Fig. 1   Dynamic DID. Note This figure plots the difference of interaction terms’ coefficients between the 
period before and after the official lockdown day under a continuous treatment variable. The solid line 
shows the estimated coefficients over time. In each day, the dashed line surrounding the coefficient is 95% 
confidence intervals of it
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before. The right graph of Fig. 2 presents that there is no similar pattern in 2019. Figure 2 
suggests that although the lockdown policy considerably decreased air pollution during 
the lockdown period, the anticipatory effects induced a significant increase of air pollution 
before the official issue of the lockdown policy, due to information leakage.

Next, we provide empirical evidence of the “anticipatory effects” of lockdown policies 
in terms of air pollution. We include a pre-lockdown period indicator Beforei,t , which is 
a dummy variable and takes the value of 1 for the period from 3 days before the unprec-
edented announcement of a lockdown policy in city i , and 0 otherwise. Beforei,t allows us 
to capture the anticipatory effects of lockdown policies. We re-estimate the impact of lock-
down policies on air pollution using city-level data and the following DID specifications:

where i denotes the city and t denotes the day. The key variables here are Treati,t ∗ Beforei,t 
and Treati,t ∗ Posti,t : the former captures the anticipatory effects of lockdown policies and 
the latter captures the normal effect of lockdown policies. Table 4 reports the regression 
results.

The coefficient of Treat ∗ Before is significantly positive, which suggests that air pollu-
tion increased by 28% during the period from 3 days before to the official announcement 
date. We interpret this as the anticipatory effects of leaked information about lockdown 

(4)ln(AQI)i,t = �i + �2Treati,t ∗ Beforei,t + �2Treati,t ∗ Posti,t +Wi,t + Xi,t + �i,t

Table 3   RDD estimation

This table reports the impact of the lockdown policy on air pollution 
within a small window of locked cities. Column (1) presents the result 
of Model (1) but focusing on observations within 7  days before and 
after the issues of intervention policies. Column (2) and (3) presents 
the results of RDD strategy by adding a linear or quadratic time trend 
separately. The dependent variable is AQI . The key independent vari-
able is Treat ∗ Post

Significance at 10%, 5%, and 1% levels was indicated by *, **, and 
***, respectively

AQI

(1) (2) (3)

Treat * Post − 0.174*** − 0.112** − 0.120**
(0.031) (0.057) (0.057)

Wind speed − 0.011 − 0.011 − 0.012
(0.009) (0.009) (0.009)

Precipitation − 0.013** − 0.013** − 0.013**
(0.006) (0.006) (0.006)

Humidity 0.555*** 0.539*** 0.525***
(0.141) (0.142) (0.143)

Temperature 0.048*** 0.050*** 0.050***
(0.005) (0.005) (0.005)

Time trend No 1st order 2nd order
Fixed effects Yes Yes Yes
Constant 3.706*** 3.678*** 3.696***

(0.116) (0.118) (0.120)
Observations 825 825 825
R2 0.590 0.591 0.591
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Fig. 2   AQI of Wuhan. Note This figure plots the distributions of AQI of Wuhan city against date. The left 
and right graphs present the result in 2020 or 2019 around the lunar calendar date of official locked down 
day, respectively. The lunar calendar date of official locked down day of cities in 2020 is normalized to 0

Table 4   Anticipatory effects

This table reports the impact of the lockdown policy on air pollution. 
Column (1) and (2) compare the locked cities in 2020 to itself in 2019, 
and column (3) and (4) compare the locked cities in 2020 to unlocked 
cities in 2020. Besides, column (1) and (3) present the result with the 
fixed effects, and column (2) and (4) present the regression with both 
the weather conditions and fixed effects. The dependent variable is 
AQI . The key independent variable is Treat ∗ Before

Significance at 10%, 5%, and 1% levels was indicated by *, **, and 
***, respectively

Treatment group AQI

Limited cities 2020 Limited cities 2020

Control group Limited cities 2019 Normal cities 2020

(1) (2) (3) (4)

Treat*Before 0.281*** 0.261*** 0.094*** 0.074**
(0.066) (0.064) (0.035) (0.033)

Treat * Post − 0.115*** − 0.160*** − 0.081*** − 0.107***
(0.037) (0.037) (0.017) (0.016)

Weather No Yes No Yes
Fixed effects Yes Yes Yes Yes
Constant 4.252*** 3.864*** 4.118*** 3.843***

(0.007) (0.035) (0.004) (0.024)
Observations 6602 6602 13,860 13,858
R2 0.453 0.527 0.525 0.580
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policies. Columns (2) to (4) show that this finding is consistent when weather conditions 
are taken into account and when locked-down cities and unlocked-down cities in 2020 are 
compared.6

4.2 � Spillover Effects

Although the lockdown policy issued by the Wuhan government was only effective in 
Wuhan city, it had repercussions across China. People began to realize the seriousness of 
COVID-19, and modified their social behaviors. Many people outside Wuhan also tried to 
spend less time outdoors to reduce the risk of exposure to the virus. Factories and corpo-
rations began to reduce their physical interaction with firms or people from Wuhan. All 
of these behavioral shifts changed local economic and social life, and in turn affected air 
pollution.

To investigate the spillover effects of the Wuhan lockdown, we include a dummy vari-
able PostWuhant , which takes the value of 1 after Wuhan city issued its lockdown policy, 
or after January 23, 2020, for all cities, and 0 otherwise. PostWuhant allows us to capture 
the change in air pollution induced by the Wuhan lockdown outside Wuhan. Specifically, 
we re-estimate the impact of lockdown policies on air pollution using the following DID 
specification:

where i denotes the city and t denotes the day. The key variables here are Treati,t ∗ Posti,t 
and Treati,t ∗ PostWuhani , which captures the impact of each city’s lockdown policies and 
the spillover effect of the Wuhan lockdown policy. Table 5 reports the regression results.

Column (1) and (2) compares the locked-down cities in 2020 to the same cities in 2019 
and the locked-down cities to unlocked-down cities in 2020, respectively. For robustness, 
we also compare the unlocked-down cities in 2020 to the same cities in 2019 in column 
(3). The coefficients of Treat ∗ Post are consistent with previous results. These coefficients 
are significantly negative in all columns, although they are slightly smaller than the coef-
ficients of Treat ∗ Post in magnitude. Furthermore, column (3) estimates the impact of the 
Wuhan lockdown policy on cities without any official lockdown policy in 2020 and sug-
gests that those cities also had lower air pollution in 2020 after Wuhan was locked down. 
These results suggest that the Wuhan lockdown had a significant spillover effect on other 
cities.7

(5)ln(AQI)i,t = �i + �2Treati,t ∗ Posti,t + �2Treati,t ∗ PostWuhani +Wi,t + Xi,t + �i,t

7  One concern is that this spillover effect could be totally explained by the spillovers a perception of health 
risk rather than future lockdown policies. To further distinguish these two channels, we thus conduct further 
tests by adding an interaction of Treat ∗ PostWuhan with variable Distance , which captures the real dis-
tance to Wuhan of each city, into model (5). The results present that the coefficients of interaction are sig-
nificantly positive and the coefficients of Treat ∗ PostWuhan are still significantly negative, suggesting that 
after eliminating this concern of health risk perception, our findings remain robust. Due to the limitation of 
space, we do not present the details but related results are available upon request.

6  As the anticipatory effect is an expected behavioral effect of trying to move out before quaranteen is 
imposed, it should be largely related to public traffic. To further explore this mechanism, we thus conduct 
further tests by adding an interaction of Treat ∗ Before with variable Traffic , which captures the public traf-
fic or the total number of high-speed rails in each city, into model (4). The results present that the coeffi-
cients of interaction are significantly positive, which provide further evidence of the anticipatory effect. Due 
to the limitation of space, we do not present the details but related results are available upon request.
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4.3 � Connections with Wuhan

In this section, we investigate how cities’ connections with Wuhan affect our findings. As a 
key element of virus propagation and the target of lockdown policies, the route of transmis-
sion considerably impacts people’s risk of exposure to COVID-19. It would also distort the 
behaviors of people and governments by increasing public panic, and encouraging people 
to escape from dangerous cities, promoting government intervention. Thus, it should also 
affect the relationship between lockdown policies and air pollution.

We examine this by adding the variable Connections to capture the effect of connec-
tions to Wuhan. We collect between-city population movements data during January 1 to 
15, 2020, from the Baidu Migration data. The Baidu Migration data are based on real-
time location records for every smart phone that uses the Baidu Map app or other apps 
imbedding the Baidu Map Software Development Kit. Baidu currently dominates the 
search engine market in China for both desktop computers and especially mobile phones 
(accounting for 79.63% of the mobile phone market in May 2019).8 Thus, Baidu’s migra-
tion data can precisely reflect population movements. We choose the daily In-Migration 
Index of Wuhan city, which is the percentage of population inflow from a corresponding 

Table 5   Spillover effects

This table reports the spillover effect of the lockdown policy. Column (1) compares the locked cities in 
2020 to itself in 2019, column (2) compares the locked cities in 2020 to unlocked cities in 2020, and col-
umn (3) compares the unlocked cities in 2020 to itself in 2019. All columns present the regression with 
both the weather conditions and fixed effects. The dependent variable is AQI . The key independent variable 
is Treat ∗ PostWuhan . Significance at 10%, 5%, and 1% levels was indicated by *, **, and ***, respectively

Treatment group AQI

Locked cities 2020 Locked cities 2020 Normal cities 2020

Control group Locked cities 2019 Unlocked cities 2020 Normal cities 2019

(1) (2) (3)

Treat * Post − 0.127*** − 0.083*** –
(0.023) (0.020) –

Treat * PostWuhan − 0.054** − 0.038* − 0.114***
(0.023) (0.020) (0.010)

Weather Yes Yes Yes
Fixed effects Yes Yes Yes
Constant 3.880*** 3.846*** 3.906***

(0.036) (0.024) (0.018)
Observations 6602 13,858 20,996
R2 0.528 0.580 0.576

8  https​://www.marke​tmech​ina.com/baidu​-searc​h-engin​e-marke​t-share​-in-china​-may-2019.

https://www.marketmechina.com/baidu-search-engine-market-share-in-china-may-2019
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city into Wuhan relative to the total population inflow for Wuhan, and calculate the average 
In-Migration Index of each city to Wuhan. Next, we define Connections as a dummy vari-
able takes the value of 1 if population inflow from city i to Wuhan is larger than average, 
and 0 otherwise, and then estimate the following model:

where i denotes the city and t denotes the day. The key variable of our DID design here 
is Connectionsi ∗ Treati,t ∗ Posti,t , which captures the impact of a city’s connection to 
Wuhan and how this connection affect the effect of lockdown. Table 6 reports the regres-
sion results.

The coefficient of Connections ∗ Treat ∗ Post in column (1) is significantly negative, 
which suggests that air pollution decreased more in cities that had more connections 
with Wuhan. Columns (2) to (4) show that the impact of connections is consistent when 
weather conditions are taken into account or when locked-down cities are compared 
to unlocked-down cities in 2020. Note that the coefficient of Treat*Post in column (3) 
is insignificantly different from zero. However, when we include weather conditions 
in estimating the model in column (4), this coefficient becomes significantly nega-
tive again. All of these results demonstrate that connections with Wuhan significantly 
affected the effect of the lockdown policy.

(6)
ln(AQI)i,t = �i + �2Treati,t ∗ Posti,t + �2Connectionsi ∗ Treati,t ∗ Posti +Wi,t + Xi,t + �i,t

Table 6   Connections with Wuhan

This table reports the impact of connections with Wuhan on the effect of lockdown policy. Column (1) and 
(2) compare the locked cities in 2020 to itself in 2019, and column (3) and (4) compare the locked cities in 
2020 to unlocked cities in 2020. Besides, column (1) and (3) present the result with the fixed effects, and 
column (2) and (4) present the regression with both the weather conditions and fixed effects. The dependent 
variable is AQI . The key independent variable is Connections ∗ Treat ∗ Post

Significance at 10%, 5%, and 1% levels was indicated by *, **, and ***, respectively

Treatment group AQI

Limited cities 2020 Limited cities 2020

Control group Limited cities 2019 Normal cities 2020

(1) (2) (3) (4)

Treat * Post − 0.056* − 0.092*** − 0.036 − 0.054*
(0.030) (0.029) (0.030) (0.028)

Connections * Treat * Post − 0.105*** − 0.088*** − 0.063* − 0.071**
(0.031) (0.029) (0.034) (0.032)

Weather No Yes No Yes
Fixed effects Yes Yes Yes Yes
Constant 4.252*** 3.869*** 4.118*** 3.843***

(0.007) (0.035) (0.004) (0.024)
Observations 6602 6602 13,860 13,858
R2 0.454 0.528 0.525 0.580
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Next, we also investigate whether this kind of connection affects the spillover effect 
of the Wuhan lockdown. Specifically, we add Connection to Model (6). Table 7 reports 
the regression results.

The first, second, and last two columns of Table 7 compare the locked-down cities 
in 2020 to the same cities in 2019, locked-down cities to unlocked-down cities in 2020, 
and unlocked-down cities in 2020 to the same cities in 2019, respectively. We are inter-
ested in the coefficient of Connections ∗ Treat ∗ PostWuhan , which is significantly nega-
tive. These results suggest that connections with Wuhan also affected the spillover effect 
of the Wuhan lockdown.

Table 8   Heterogeneity

This table reports the heterogeneity of the impact of lockdown policy. Column (1) and (2) compare 
the locked cities in 2020 to itself in 2019, and column (3) and (4) compare the locked cities in 2020 to 
unlocked cities in 2020. Besides, column (1) and (3) present the result with the fixed effects, and col-
umn (2) and (4) present the regression with both the weather conditions and fixed effects. The depend-
ent variable is AQI . The key independent variable in panel A, B, and C is Movements ∗ Treat ∗ Post , 
BaiduSearch ∗ Treat ∗ Post and GDP ∗ Treat ∗ Post , separately
Significance at 10%, 5%, and 1% levels was indicated by *, **, and ***, respectively

Treatment group AQI

Locked cities 2020 Locked cities 2020

Control group Locked cities 2019 Unlocked cities 2020

(1) (2) (3) (4)

Panel A: self-isolation
Movements * Treat * Post 0.106*** 0.103*** 0.078*** 0.086***

(0.019) (0.018) (0.021) (0.019)
Weather No Yes No Yes
Fixed effects Yes Yes Yes Yes
Observations 6602 6602 13,860 13,858
R2 0.456 0.530 0.526 0.581
Panel B: anxiety
BaiduSearch*Treat*Post − 0.044*** − 0.035** − 0.046*** − 0.049***

(0.015) (0.014) (0.017) (0.016)
Weather No Yes No Yes
Fixed effects Yes Yes Yes Yes
Observations 6602 6602 13,860 13,858
R2 0.435 0.494 0.492 0.547
Panel C: GDP incentive
GDP*Treat*Post 0.069** 0.089*** 0.014 0.055*

(0.028) (0.026) (0.033) (0.031)
Weather No Yes No Yes
Fixed effects Yes Yes Yes Yes
Observations 6602 6602 13,860 13,858
R2 0.457 0.533 0.517 0.577
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4.4 � Heterogeneity

There is substantial heterogeneity in city characteristics across China which could have 
crucial implications for our findings. We now explore whether heterogeneity in citizens’ 
willingness to self-isolate, public panic, or government GDP incentives might affect our 
main results.

First, we capture people’s willingness to self-isolate by the daily Within-City Migration 
Index of Wuhan city Movements , which is the logarithm of the percentage of the popula-
tion traveling outdoors to the total population living in the same city. Similar to the daily 
in-migration index, this index is based on Baidu Migration data. We interact this variable 
with Treat ∗ Post and include it in Model (1). Panel A of Table 8 reports the regression 
results.

Second, we capture public panic by Internet searches for COVID-19. Specifically, we 
collect the number of searches for COVID-19 from Baidu Index. First, Internet users com-
monly use a search engine to collect information, and Baidu continues to be the favorite 
in China, holding an 80% share of the Chinese search engine market. Second, and more 
critically, a search is a revealed private behavior. If someone searches for COVID-19, then 
he or she is undoubtedly feeling confused and threatened by it. Therefore, the aggregate 
search frequency is a good proxy for public panic. We define BaiduSearch as the logarithm 
of the search index and adjust it by the average search during the whole period within the 
corresponding city, and then interact it with Treat ∗ Post . Panel B of Table 8 reports the 
regression results.

Third, we capture governments’ GDP incentive by comparing provincial-level GDP 
growth and the GDP growth target. Following Chen et al. (2020), we hand-collect the GDP 
data of each province from the websites of the Statistics Communiqué on National Econ-
omy, government reports, and the popular press. Then we define GDP as the difference 
between actual GDP growth in 2019 and the GDP growth target at the beginning of 2019, 
and interact it with Treat ∗ Post . Panel C of Table 8 reports the regression results.

The first two columns and second two columns of Table 8 compare the locked-down 
cities in 2020 to the same cities in 2019 and locked-down cities to unlocked-down cities in 
2020, separately. Panel A shows that the coefficients of Movements*Treat*Post are signifi-
cantly positive, suggesting that within-city population movements considerably decrease 
the impact of lockdown policies. This demonstrates that the effectiveness of lockdown pol-
icies is significantly reduced within cities where fewer people prefer self-isolation. Panel 
B shows that the coefficients of Baidu Search*Treat*Post are significantly negative, which 
suggests that public panic would stop people going outside. This in turn would significantly 
decrease air pollution induced by daily activities and transportation. This demonstrates that 
the effectiveness of lockdown policies would be significantly increased within cities with 
a greater sense of public panic. Panel C shows that the coefficients of GDP*Treat*Post 
are significantly positive, which suggests that governments that failed to achieve their eco-
nomic target in the previous year are less effective when implementing lockdown policies.

In summary, we find that the effectiveness of lockdown policies is higher in cities that 
have more people willing to self-isolate, a greater sense of public panic, or a government 
facing less pressure to stimulate economic growth.
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5 � Conclusions

The COVID-19 crisis was caused by a viral pandemic that abruptly and severely con-
stricted human mobility and economic activity. To respond to the outbreak, governments 
worldwide have increasingly implemented strict public health measures, such as social dis-
tancing or even complete lockdown.

We contribute to the literature by examining the causal effects of COVID-19 on air qual-
ity in the Chinese context. Using the lockdowns of different cities as exogenous shocks, we 
conduct DID estimations and show that lockdown policies reduced air pollution in a sta-
tistically significant manner. We further present three underlying mechanisms driving our 
findings: anticipatory effects, spillover effects, and the connection with Wuhan. Lastly, our 
findings are more pronounced in cities that have more people willing to self-isolate, greater 
public panic, or governments that face less pressure to stimulate economic growth.

Overall, by evaluating the unintended consequences of the COVID-19 pandemic for air 
quality, this study provides timely policy implications for policymakers. In particular, our 
results indicate that policy makers should pay more attention to the fairness and timeliness 
of information disclosure to avoid the anticipatory effects, and take better into account the 
existing connections between cities, including economic, labor or cultural connections with 
other areas.
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