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Abstract
We examine the planner’s dynamic regulation problem in an emission trading system 
(ETS) with allowance banking. The planner sets the emissions cap for the next period after 
the current period allowance market has cleared, but before knowing the next period’s 
abatement cost realization. This creates a time consistency problem when banking is pos-
sible. We examine two policies to overcome the consistency problem: a commitment solu-
tion and the Markov perfect solution. We show that the endogenous price floor generated 
by the banking demand becomes an integral feature of the two policies. Hence, they can be 
best described as hybrid policies that combine elements from emissions taxes and tradable 
allowances. This reveals new welfare implications that have an influence on instrument 
choice in the traditional prices versus quantities setup. We compare the expected welfare 
outcomes of four different policy instruments: the commitment policy, the Markov policy, 
a Pigouvian tax, and a no-banking ETS. We show that allowing banking can yield welfare 
gains compared to tax and quantity regulation, with or without commitment.

Keywords  Prices versus quantities · Dynamic consistency · Markov perfect solution · Price 
quantity hybrid · Rational expectations · Emissions tax

JEL Classification  E32 · Q54 · Q58

1  Introduction

The relative performance of price and quantity policies in the presence of abatement cost 
uncertainty has been an active area of research since Weitzman’s (1974) seminal paper. 
In the canonical form, the regulator has to set the policy before the realization of the cost 
shock and rank the alternative instruments, e.g. a Pigouvian tax or an emissions quota, 

 *	 Jussi Lintunen 
	 jussi.lintunen@luke.fi

	 Olli‑Pekka Kuusela 
	 olli‑pekka.kuusela@oregonstate.edu

1	 Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State 
University, 313 Snell Hall, Corvallis, OR 97331, USA

2	 Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland

http://orcid.org/0000-0002-4635-634X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10640-019-00395-y&domain=pdf


422	 O.-P. Kuusela, J. Lintunen 

1 3

based on their expected welfare performance. Whether one instrument dominates over the 
other depends on the relative slopes of the marginal benefit and marginal damage curves. 
Such an information structure provides a relatively accurate description for many real 
world policies, such as those in the European Union Emissions Trading System (EU ETS), 
where the regulator must set the cap for the next regulation period before knowing the true 
abatement cost realization.

To complicate matters, banking of allowances is also a typical feature of emission trad-
ing systems. Using a two-period model setup, the prices versus quantities approach has 
been applied to determine the conditions for intertemporal trading of allowances, i.e., 
banking and borrowing, to improve expected welfare relative to taxes and no-banking cap-
and-trade systems (Yates and Cronshaw 2001; Feng and Zhao 2006; Weitzman 2018).1 
The conclusions from these studies seem somewhat surprising: banking and borrowing 
can improve the expected welfare outcome only if the regulator uses intertemporal trading 
ratios which are designed to modify the rate of return of banked allowances.2 However, 
such trading ratios are not explicitly used in real world policies. Instead, emission trad-
ing systems impose restrictions on borrowing of allowances from future allocations. This 
creates a policy and theory challenge since it is not fully known how the cap should be set 
when only banking (saving) of allowances is possible but borrowing is not, and how such 
restrictions influence the welfare ranking of policies in the prices versus quantities setup.

The purpose of our paper is to solve the dynamic policy rules for setting the periodic 
cap when the regulation problem has an infinite horizon and when banking of allowances 
is possible (but not borrowing), and to evaluate the welfare performance of the alternative 
rules. The policy rules are derived from the regulator’s goal of maximizing the net present 
value of net benefits from the emissions, given that the regulator can set the cap for each 
period after observing cost realization in the previous period. We use the regulation of flow 
pollutants as our policy example, with the steepness of marginal damages allowed to vary 
to represent different pollutants. We furthermore use a simple IID shock process to cap-
ture the perpetual uncertainty in marginal benefits which gives rise to stochastic allowance 
demand and, hence, creates an incentive and opportunity for banking.

Banking of allowances complicates the regulation problem in two important ways in the 
infinite horizon prices versus quantities setup. First, it raises the question of time consist-
ency of the policy plan, which stems from the information structure of the regulation game 
(Lintunen and Kuusela 2018). Namely, the decision to save allowances depends on the 
expectations of the allowance price in the next period; however, the next period’s allow-
ance price depends on the regulator’s cap decision which is set after the banking decision 
has been made. Hence, before actually deciding the cap for the next period, the regulator 
may want to directly influence the price expectations to further control the emissions out-
come in the current period. However, such a policy is not time consistent since the regula-
tor may have an incentive to deviate from the plan at some subsequent point in time (Groot 
et al. 2003). To credibly steer the price expectations, the regulator has to be able to commit 
to the cap rule.

1  By now the standard model has been extended to several new directions, including stock externalities, 
policy updating, and infinite horizon problem (Kollenberg and Taschini 2016; Pizer and Prest 2016; Ger-
lagh and Heijmans 2018; Lintunen and Kuusela 2018).
2  The purpose of intertemporal trading ratios is to better to align the market emissions trajectory with the 
socially optimal one (Kling and Rubin 1997).
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Second, the presence of banking motives separates the allowance market realizations 
into two distinct contingencies: one where the emissions cap is binding and one where it 
is not. By a binding cap, we refer to a market outcome where all available allowances are 
used in the current period and hence no allowances are saved to be used in the subsequent 
period. A non-binding cap refers to a situation where some share of the available allow-
ances are banked and not used in the current period. Whether the cap binds or not in any 
given period will be a stochastic outcome that is influenced by the regulator’s policy and 
by the strength of the banking demand. While the possibility of a binding cap may first 
seem unlikely, we show that these two possible outcomes are integral features of the regu-
lator’s dynamic policy rules. In fact, the dynamic adjustments to allowance injections pre-
vent the accumulation of allowance surpluses and hence support the possibility of binding 
outcomes.3

The main contribution of our paper is to derive a policy rule that relies on the regula-
tor’s ability to commit to a cap in the presence of allowance banking demand, and to com-
pare its welfare performance to three alternative policy instruments. The first alternative 
is the time consistent policy rule with banking, which we formulate as a purely forward 
looking Markov perfect solution. Markov policy is consistent by definition since the regu-
lator’s policy is conditional only on the current state of the regulation game (e.g. Groot 
et al. 2003). We show that the regulator’s commitment solution and the Markov solution 
differ mainly in the way they account for possible shock contingencies. The commitment 
regulator takes into account all shock contingencies, whereas the Markov regulator simply 
disregards the non-binding shock contingencies when choosing the optimal cap. Hence, the 
commitment policy provides a better expected welfare outcome since the regulator controls 
both binding and non-binding market outcomes. The two other alternative instruments are 
an emissions tax and a cap-and-trade without banking.

The regulator’s credibility and the ability to commit to a policy rule, or lack thereof, 
have been identified as important determinants of environmental policy outcomes (Helm 
et al. 2003; Brunner et al. 2012; Ulph and Ulph 2013; Jakob and Brunner 2014). In stud-
ies of banking and borrowing, on the other hand, the regulator’s commitment has been an 
explicit, but often overlooked, assumption (Yates and Cronshaw 2001; Newell et al. 2005; 
Feng and Zhao 2006). Lintunen and Kuusela (2018) have recently characterized the con-
sistent policy in a cap-and-trade system with banking that is subject to persistent business 
cycle shocks.4 However, their results focus on the constant marginal damage case, where 
the Pigovian tax is always preferable to a quantity-based instrument, and they do not solve 
the model with commitment. The present paper focuses on the general case where marginal 
benefits and damages are important determinants of the welfare ranking of the different 
environmental policies. The above features also set our paper apart from a related body of 
research on credibility and commitment in environmental policies (Ulph and Ulph 2013; 

3  Interestingly, the Market Stability Reserve (MSR) of the EU ETS is revised to cancel accumulated allow-
ances under certain conditions (EU 2018). Perino (2018) calls this as a mechanisms for puncturing the 
waterbed. It can be also interpreted as a moderate version of the injection rules presented in this paper.
4  The consistency problem has been analyzed in several studies in macroeconomics (Kydland and Prescott 
1977; Barro and Gordon 1983). Especially relevant are studies that have focused on the hierarchical Stack-
elberg structure of the dynamic regulation game (Simaan and Cruz 1973; Kydland 1975; Groot et al. 2003). 
In time-consistent regulation setup, the regulator is the leader (the dominant player) who can set the policy 
before the reaction of the market. Thus, Markov perfectness can be also understood as the Stackelberg feed-
back solution of the game.
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Jakob and Brunner 2014). Most importantly, the role of banking has not been included in 
previous studies focusing on policy commitment.

Banking of allowances can be understood as a form of forward-looking, speculative 
storage (e.g. Wright and Williams 1982; Deaton and Laroque 1992). We show that, given 
the presence of banking motives, the commitment and Markov rules generate a “hybrid 
policy” with both price and quantity features. The resulting “policy locus” has a form of an 
inverted L-shape, with the discounted expected price determining the horizontal part and 
the cap determining the vertical part. The horizontal part forms an endogenous price floor 
which becomes an essential feature of the dynamic policy rules. The advantage of hybrid 
policies has been recognized and modeled at least since Roberts and Spence (1976) and 
Weitzman (1978). This literature typically finds that hybrid policy instruments, by com-
bining elements of price-based and quantity-based regulation, can improve the expected 
outcomes from regulation (Pizer 2002; Grüll and Taschini 2011; Mandell 2008; Burtraw 
et al. 2010; Fell and Morgenstern 2010; Wood and Jotzo 2011; Fell et al. 2012a). Previ-
ous research has recognized that banking of allowances for future use is another form of a 
safety valve (Newell and Pizer 2003a; Newell et al. 2005).5 However, a formal analysis of 
the optimal hybrid policy with endogenous price floor is missing in the prices versus quan-
tities literature.

Recently, Weitzman (2018) finds using a two-period model with additively separable 
damages that it is never optimal to allow banking and borrowing of allowances, since either 
a tax or a cap without intertemporal trading is always more efficient. Feng and Zhao (2006) 
show that the option to bank and borrow allowances enhances welfare when the marginal 
benefits are steeper than the marginal damages. However, for this result to hold requires the 
design and use of intertemporal trading ratios. In contrast to these studies, we demonstrate 
that a cap-and-trade system with banking but no borrowing can in fact dominate alterna-
tive policy instruments, even without such trading ratios. This occurs in pollutant cases 
where the marginal benefits and marginal damages have similar slopes in absolute terms. 
Such dominance holds for both the commitment rule and the time consistent Markov pol-
icy. The difference of our results in comparison to previous findings is explained by the 
non-linear policy locus in our model that can mimic the marginal damage function better 
than simple price and quantity instruments. The welfare effect of allowing banking but not 
borrowing has also been analyzed in a related paper by Fell et al. (2012b). They conduct 
a welfare analysis based on optimal firm decisions under uncertainty while the allowance 
allocation path, i.e. the emissions cap, is exogenously given. We depart from this by identi-
fying and solving the regulator’s periodic allowance allocation rule both with and without 
commitment.

Using quadratic benefit and damage functions, we demonstrate how the optimal banking 
policies operate and highlight the important determinants of the policies, such as the dis-
count rate and the degree of uncertainty in the shock process. For example, we show that 
the commitment solution tries to keep the expected emissions at the same level as an opti-
mal tax or a cap-and-trade policy without banking. Our welfare comparisons reveal that 
the banking policy with commitment is never the worst instrument (but in some instances 
equally bad as the worst alternative), whereas the Markov policy can become the worst 

5  For example, an allowance price collar acts as safety valve to reduce abatement cost uncertainty in emis-
sion trading systems (ETS) (Jacoby and Ellerman 2004; Murray et  al. 2009). Most of the major carbon 
ETS’s now incorporate cost containment reserves, or reserve prices in auctions, which implement the idea 
of price collars in practice (Newell et al. 2013; Schmalensee and Stavins 2015).
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instrument when marginal damages have a steep slope and the discount rate is small. Our 
results demonstrate the value of commitment which is defined as the welfare advantage of 
the commitment solution over the Markov solution. Finally, we also show that the commit-
ment cap is greater than the Markov cap in certain contingencies but smaller in others.

While we do not focus on analyzing any particular emissions trading system, our mod-
eling work and results provide useful information for interpreting and guiding the develop-
ments of real world systems, such as the EU ETS. Recent changes in the EU ETS have 
emphasized and strengthened rule-based approaches to adjusting the cap in response to 
business cycle fluctuations (Perino and Willner 2016; Perino 2018).6 In principle, such 
rules function similarly to our dynamic policies. Given the absence of allowance price tar-
gets in the EU ETS, such new rules can be characterized to bear more resemblance to the 
Markov policy in our paper than to the commitment policy. Our results suggest that the 
value of commitment becomes greater when the market discount rates are low (or when the 
compliance period is short) and when the degree of uncertainty around the demand shock 
is high, i.e., when banking demand is expected to be strong.

The rest of the paper is organized as follows. Section 2 first presents a model of specula-
tive banking demand, followed by the regulator’s dynamic policy with and without com-
mitment. Section 3 presents and derives the optimal no-banking cap policy and the emis-
sions tax policy. Section  4 demonstrates and compares the performance of the different 
instruments using quadratic benefit and damage functions. Section 5 provides a discussion 
and conclusions.

2 � ETS with Banking

2.1 � The Setup

Consider a polluting industry that causes aggregate emissions, qt , as a byproduct in each 
period t. The firms in the industry can reduce their emissions, but only at a cost. Since 
avoided abatement is associated with higher profits, we define an aggregate profit func-
tion, B(qt, �t) , that is strictly concave in the level of emissions.7 Profits from avoiding 
abatement are subject to random shocks, �t , that represent fluctuations impacting the 
demand for the industry’s products, or random variation in the cost of polluting inputs.8 
We let high shock realizations lead to higher marginal profits, Bq𝜃 > 0 , where sub-
scripts  indicate partial derivatives. This means that the cost of abatement is also vary-
ing from one period to another. In the absence of regulation the aggregate emissions 
correspond to the profit maximizing level of production, which we define here via the 
first-order condition Bq(q̄t, 𝜃t) = 0 . Unregulated emission, q̄t , are higher when the shock 
realization is high, and lower with low shock realizations. To keep the model as simple 
as possible, we assume that the periodic shocks are identically and independently distrib-
uted (IID).

6  For example, the decision to backload allowance auctions can be interpreted as signaling a lapse in pol-
icy commitment (EU 2014), and the introduction of the market stability reserve (MSR) during the trading 
period (phase 3) as a subsequent attempt to create rule-based adjustments to enhance credibility (EU 2015).
7  The marginal profit function satisfies conditions Bq(0, 𝜃) > 0 and limq→∞ Bq(q, 𝜃) < 0.
8  For example, when the price of polluting inputs increases, the opportunity cost of abatement becomes 
smaller, and vice versa.
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Emissions cause environmental damages denoted by an increasing and convex damage 
function D(qt) . These damages represent a classic externality problem. Using a chosen pol-
icy instrument, the regulator’s objective is to maximize the expected net present value of 
welfare that comprises of the industry’s profits net of the emission damages:

where β=(1+r)−1 is the discount factor and r the periodic discount rate. The main policy 
instruments of interest are the quantity based ETS with and without banking, and an emis-
sions tax. In this section, we develop a model of an ETS with banking. The next section 
develops the optimality conditions for emission taxes and for an ETS without banking. For 
each policy instrument, the timing of actions is as follows. At the end of each compliance 
period, t, the regulator sets the policy level (a tax or a cap) for the next period t + 1 before 
observing the next shock realization �t+1 , but after the realization of �t . In the beginning 
of period t + 1 , the firms under regulation observe the period t + 1 shock and make their 
abatement decision. With this timing of actions, each time period could be interpreted to 
mean the time segment between cap setting decisions and not the actual trading periods 
(i.e. phases in ETS terminology), in case they do not coincide.9 In what follows, we first 
derive the industry’s emission response, and then in the following subsections, we derive 
the optimal policy rules that are subject to the emissions response.

2.2 � Allowance Market Response

Under an ETS policy, scarcity of allowances generates a market price, pt . To comply with 
the policy, each firm in the industry has to surrender enough allowances to cover its emis-
sions at the end of each compliance period, t.10 We call this demand as the allowance com-
pliance demand to distinguish it from speculative banking demand. The amount of emis-
sions, and hence the level of compliance demand, is given as a solution to the following 
problem

The compliance demand for allowances, qt = q(pt, �t) , is implicitly given by the first-order 
condition

To model banking of allowances for future use, we introduce speculative banking demand, 
denoted by bt . Whether the speculators and producers are the same entities or distinct does 
not matter; the only critical requirement is that their expectations are rational (Williams 
and Wright 2005). The decision to bank allowances depends on the following intertempo-
ral arbitrage condition:

(1)�0

∞∑

t=1

� t
[
B(qt, �t) − D(qt)

]
,

(2)max
qt

B(qt, �t) − ptqt.

(3)Bq(qt, �t) − pt = 0.

(4)bt ≥ 0, −pt + ��tpt+1 ≤ 0 and (−pt + ��tpt+1)bt = 0.

9  For example, the calendar date when the amount of allowances for the EU ETS phase 4 (2021–2030) was 
decided would represent the end of the previous time period in our model.
10  We assume that all firms in the industry are fully compliant with the policy.
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This arbitrage condition means that when the expected present value of the next period’s 
allowance price, ��tpt+1 , is lower than the current allowance price, banking is not profit-
able and hence bt = 0 . If the opposite holds, banking becomes profitable, and bt > 0 . In 
the competitive equilibrium, all intertemporal arbitrage possibilities are fully exploited, 
with banking demand increasing the current allowance price until the second inequality in 
(4) holds as an equation, pt = ��tpt+1 . Since borrowing of allowances is not possible, the 
amount of banked allowances can be zero or positive.

Banked allowances add to the available supply of allowances in the next compliance 
period. The regulator injects It new allowances for period t, totaling in an allowance 
supply, Qt:

We refer to variable Qt as the periodic cap or the periodic supply of allowances. The market 
equilibrium condition can be written as

where the total demand is the sum of compliance and banking demands, qt + bt.
There are two possible types of market outcomes depending on the shock realization 

�t . When the shock realization is high enough, the emissions will be equal to the peri-
odic cap, Qt . When the shock realization is low enough, the emissions will be less than 
the cap. The two outcomes are divided by a cut-off shock level 𝜃t . We provide a formal 
definition for the cut-off shock in “Appendix 1” and discuss it in more detail when we 
derive the necessary condition for the commitment solution. More importantly, the way 
the market price is determined differs under the two outcomes. When the emissions are 
equal to the cap, qt = Qt (the cap is binding), the allowance price is simply determined 
by the market equilibrium condition (3): pt = Bq(Qt, �t) . When the cap is not binding, 
qt < Qt , there is positive banking bt > 0 , and according to the speculative market rule 
(4), the current allowance price is equal to the present value of the expected allowance 
price in the next period, �Etpt+1 . In this case, we call the resulting price level the non-
binding price. Compliance use of allowances, and hence the emissions, is then given by 
q(�Etpt+1, �t).

The market’s emissions reaction function to the cap Qt can be defined in a compact form 
as:

The first part of the right-hand side refers to the outcome where the cap is not binding, and 
the second part to the binding outcome. This form of the reaction function will have an 
important effect on the optimal policy as will be seen in the next sections. The emissions 
reaction, q̂ , depends on the shock, �t , the cap, Qt , and the expected allowance price in the 
next period, �tpt+1 (and also on the parameter � ). We assume that these expectations are 
rational (Muth 1961). Before defining the rational expectations equilibrium, we first write 
the allowance price function in a more compact form:

The above expression simply summarizes the possibility of a binding and a non-binding 
price outcome.

(5)Qt ∶= It + bt−1.

(6)Qt − qt − bt = 0,

(7)qt = q̂(Qt,�tpt+1, 𝜃t) ∶= min
{
q(𝛽�tpt+1, 𝜃t), Qt

}
.

(8)pt = max
{
��tpt+1, Bq(Qt, �t)

}
.
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Using the price function in (8), we define an equilibrium price function p(Qt, �t) that 
is similar to Deaton and Laroque (1996) and Lintunen and Kuusela (2018), and that will 
depend on the allowance cap and on the shock realization:

Definition 1  A stationary rational expectations equilibrium is a price function p(Qt, �t) 
implicitly defined as a solution to the functional equation

The equilibrium conditions (7) and (9) are the optimal responses of the private agents to 
the emission regulation. They act as constraints in the regulator’s planning problem.

2.3 � The Planning Problem

The regulator maximizes (1) by determining the optimal sequence of injections {It}∞t=0 . 
Each periodic injection decision is made under uncertainty as the allocation for period t 
is decided at the end of period t − 1 . The regulator observes the amount of banked allow-
ances, bt−1 , and therefore can effectively decide the resulting supply of allowances (total 
cap), Qt = It + bt−1 . The regulator’s problem hence becomes one of setting the sequence of 
optimal allowance caps, {Qt}

∞
t=0

.

Using the reaction functions in (7) and (9), we can write the objective function (1) as:11

Notice that the net benefits in any period t depend on the current period cap Qt , and on the 
next period cap Qt+1 via price expectations. Since the caps are set sequentially, it is possible 
that the regulator that sets Qt and announces Qt+1 at the end of period t − 1 has an incentive 
to choose different Qt+1 once the period t shock is observed. This raises a dynamic consist-
ency problem (Kydland 1975; Groot et al. 2003; Lintunen and Kuusela 2018).

When �t is an IID shock process, the regulator’s cap setting problem remains identical 
from period to period. As a result, the regulator sets the same cap level for each period. 
However, the cap, Qt , depends on the regulator’s ability to commit to the announced Qt+1 . 
To examine the effects of the ability to commit, we provide two solutions to the maximiza-
tion of (10). The first one is a commitment solution, in which we assume that the regula-
tor has the ability to commit to Qt+1 . The commitment solution is compared to a Markov 
solution, in which case the regulator cannot commit to Qt+1 . Instead, the regulator decides 
the cap, Qt , with the understanding that the next period cap, Qt+1 , will be set with the same 
strategy in the next period. This Markov perfect equilibrium policy is time-consistent but 
inefficient compared to the policy with commitment.12

(9)p(Qt, �t) = max
{
��tp(Qt+1, �t+1), Bq(Qt, �t)

}
.

(10)�0

∞∑

t=1

𝛽 t
[
B
(
q̂
(
Qt,�tp

(
Qt+1, 𝜃t+1

)
, 𝜃t

)
, 𝜃t

)
− D

(
q̂
(
Qt,�tp(Qt+1, 𝜃t+1), 𝜃t

))]
.

12  Since the regulator’s decision is constrained by the market response, the Markov perfect solution can 
also be understood as the feedback Stackelberg solution (Groot et al. 2003).

11  The benefit and damage functions could be assumed to have time dependent but exogenous trends (e.g. 
increasing marginal damage for the same emissions level). But such an assumption would prevent the deri-
vation of a stationary solution which is our main focus. However, the time dependency of the functional 
forms will not change the underlying logic of the optimal policies we will derive.
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2.4 � A Commitment Solution

In this section, we specify a periodic cap level that maximizes the objective function (10). 
We maintain that the regulator is able to commit and solve the commitment outcome.13 
Such a commitment policy is interesting in at least two respects. First, it is very simple, 
consisting of a single cap for all periods. Second, it provides a welfare maximizing bench-
mark for the banking only regulation.14

From Eq. (10), it is evident that the anticipated choice of Qt has an effect on the equilib-
rium emissions in period t − 1 via the expected allowance price, �t−1pt . We can write the 
direct dependency between the cap and the expected price as �(Qt) ∶= �t−1p

(
Qt, �t

)
 for all 

t where the price function is defined in Eq. (9). Hence, the regulator uses cap Qt to control 
both period t and t − 1 emissions, where the latter effect works through the expectations 
channel. By applying the IID assumption, we can therefore write the regulator’s problem in 
the following two-period format using unconditional expectations:

where the equilibrium emissions are qt−1 = q̂(Qt−1,𝜇(Qt), 𝜃t−1) and qt = q̂(Qt,𝜇(Qt+1), 𝜃t) , 
with function q̂ defined by Eq. (7). Due to the IID assumption, the above problem remains 
the same from period to period, and hence the solution to (11) defines a constant cap, 
Qt = Q for all periods.

For each period, the first-order condition to the regulator’s problem (11) is

Hence, the optimal policy equalizes the expected values of marginal benefits and marginal 
costs, with additional “weighting” given by the partial derivatives inside the second square 
brackets. These partial derivatives capture the impact of the cap on the emissions. The first 
term inside the second square brackets represents the direct effect of the cap on next peri-
od’s emissions and it is therefore discounted. The second weighting term captures the regu-
lator’s influence on the current price expectations. Its presence stems from the regulator’s 
ability to commit to the cap level even after observing the actual qt−1 realization. In the 
next section, we show that the time-consistent Markov policy rule omits this term. Hence, 
the commitment policy rule (12) is not time consistent.

It can be shown that the term 𝜕q̂∕𝜕Q in condition (12) has a non-zero value only when 
the cap is binding, whereas the term 𝜕q̂∕𝜕𝜇 in the same condition has a non-zero value only 
when the cap does not bind (“Appendix 1”). The two outcomes (binding vs. non-binding) 

(11)max
Qt

�
{[
B(qt−1, �t−1) − D(qt−1)

]
+ �

[
B(qt, �t) − D(qt)

]}
,

(12)�

{[
Bq(q̂(Q,𝜇(Q), 𝜃), 𝜃) − Dq(q̂(Q,𝜇(Q), 𝜃))

][
𝛽
𝜕q̂

𝜕Q
+

𝜕q̂

𝜕𝜇

𝜕𝜇(Q)

𝜕Q

]}
= 0.

13  Whether the assumption of commitment is plausible depends on the policy situation. With IID shocks, 
the same cap can be applied in every contingency, which is likely to increase the likelihood for commit-
ment. If the policy requires a complicated updating rule, then commitment may become more difficult.
14  An alternative and more complicated commitment solution would be one where the regulator reacts to 
the observed �t−1 level. For example, with such a policy, the regulator could commit to adjusting t − 1 emis-
sions in low �t−1 contingencies by lowering the expected next period emission price with a higher cap Qt . 
Thus, such a policy would imply Qt = Q(�t−1) even with IID shocks. Contrary to the “open loop” solution 
that we are examining, this can be interpreted as a “closed loop” solution where the regulator announces a 
state dependent policy rule in the beginning of the planning horizon. Derivation of such a solution under 
stochasticity is a challenge (Dockner et al. 2000). We will not pursue this possibility further in this paper 
and leave it for future work.
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are separated by the cut-off shock 𝜃 . The cut-off shock is endogenous and it is implicitly 
defined by the following condition which equalizes the binding and non-binding allowance 
prices:

Using the explicit forms of the partial derivatives 𝜕q̂∕𝜕Q , 𝜕q̂∕𝜕𝜇 , and ��∕�Q (“Appendix 
1”), the first-order condition of the commitment solution (12) can be written using two dis-
tinct terms, one for each contingency. This is presented in the following proposition:

Proposition 1  The regulator’s optimal commitment policy, QC, satisfies

where 𝜃C is the cut-off shock level and PC the probability that the cap is binding.

Proof  “Appendix 1”. 	�  ◻

The first part of the above condition is related to the expected marginal net benefit when 
the cap is binding, i.e., when the shock realizations are above the cut-off shock level 𝜃C . 
This has a probability of PC . The second part is related to the expected marginal net ben-
efit when the cap is not binding, i.e., when the shock realizations are below the cut-off 
shock level. This has a corresponding probability of 1 − PC . In the second term, the ratio 
P∕(1 − (1 − P)�) stems from the link between the emissions cap and the price expectations 
(see more details in “Appendix 1”). Additionally, both parts are weighted by the curvature 
term 1∕Bqq , which denotes the price sensitivity of compliance demand (Eq. (3)). We will 
see in the next two sections that the inclusion of the curvature term has similarities with the 
optimal tax policy, but it is redundant in the necessary condition of the Markov solution 
(19).

The equilibrium is fully specified by the emission cap QC , cut-off shock level 𝜃C , and 
the expected price level �C . The expression for the expected price can be written as:

The probability of a binding cap, PC , is defined as the probability of 𝜃 > 𝜃C , which is given 
by the function

where F(�) is the cumulative distribution function of the random variable � . Equa-
tions (13)–(15) together with the definition in (16) determine the equilibrium solution of 
the commitment policy.

The expression in (15) states that the expected price is the sum of the expected non-
binding and binding allowance prices, adjusted with probability weights. Note that the 
possibility for the cap to bind, PC > 0 , is a requirement for positive equilibrium price 

(13)Bq(Q, 𝜃) = 𝛽𝜇(Q).

(14)

PC
�
[
Bq(Q

C, 𝜃) − Dq(Q
C)|𝜃 > 𝜃C

]

�
[
Bqq(Q

C, 𝜃)|𝜃 > 𝜃C
]

+ (1 − PC)
PC

1 − (1 − PC)𝛽
�

[
Bq(q̂, 𝜃) − Dq(q̂)

Bqq(q̂, 𝜃)
|𝜃 ≤ 𝜃C

]
= 0,

(15)𝜇C = (1 − PC)𝛽𝜇C + PC
�
[
Bq(Q

C, 𝜃t)|𝜃t > 𝜃C
]
.

(16)P(𝜃C) ∶= ∫
∞

𝜃C
dF(𝜃),
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expectation, 𝜇C > 0 . The equation (15) also highlights the hybrid nature of the policy. With 
probability 1 − PC the price is equal to the non-binding price level ��C . This is the endog-
enous price floor created by the speculative banking demand (Lintunen and Kuusela 2018). 
We illustrate this feature in Sect. 4 in more detail using quadratic functional forms.

2.5 � The Markov Perfect Solution

Since the regulator sets Qt after the t − 1 emissions have already been realized, any attempt 
to influence the expectations �t−1pt with Qt is susceptible to dynamic inconsistency.15 One 
solution around the consistency issue is for the regulator to simply disregard the expected 
price effect when deliberating the choice for Qt . This results in a Markov perfect solution 
which is time consistent by construction. The market will also anticipate such a consistent 
policy. In the Markov perfect solution, the price expectations are determined in the equilib-
rium, and the regulator takes the expected price as given.

Denote the expected price by �t ∶= �t−1p
(
Qt, �t

)
 . When the regulator takes �t as given 

for every period t, the maximization of (10) leads to the following period-by-period optimi-
zation problem:16

Furthermore, since the shock process is assumed to be IID, there are no explicit linkages 
between subsequent periods. Hence, the conditioning can be removed from the expectation 
operator. This directly implies that there is one periodic cap level Qt = Q and a constant 
expected price, �t+1 = � , for all periods t.17 While the above problem looks relatively sim-
ple, the main complication arises from the equilibrium dependence of the price expecta-
tion, � , on the regulator’s policy, and vice versa.

Under the IID shock assumption, the first-order condition of (17) can be formally writ-
ten as:

where emissions q̂ are given by (7). As in the commitment case, the partial derivative 
𝜕q̂∕𝜕Q differs between binding and non-binding contingencies. Hence, the approach to 
refining the condition in (18) is the same as in the commitment case. We formally state it in 
the following proposition.

Proposition 2  Suppose the shock process is IID. The regulator’s optimal Markov policy, 
QM, satisfies

(17)max
Qt

�t−1

[
B(q̂(Qt,𝜇t+1, 𝜃t), 𝜃t) − D(q̂(Qt,𝜇t+1, 𝜃t))

]
.

(18)�

{[
Bq(q̂(Q,𝜇, 𝜃t), 𝜃t) − Dq(q̂(Q,𝜇, 𝜃t))

] 𝜕q̂
𝜕Q

}
= 0,

15  The discussion in this section derives from Lintunen and Kuusela (2018).
16  It is straightforward to formulate the problem as a Bellman equation. Since the only state variable is the 
random shock �t , we can reduce the Bellman equation in the format shown in (17).
17  It is important to notice that the regulator is not simultaneously choosing the cap for all periods, even 
though the Markov perfect cap is constant. The policy belongs to the class of time consistent policies, and 
the regulator decides the cap sequentially. The IID assumption causes the equilibrium cap nevertheless to 
remain constant. In Lintunen and Kuusela (2018), the Markov perfect solution does change from one period 
to another because of the correlation in the shock process.
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where 𝜃M is the equilibrium specific cut-off shock level.

Proof  “Appendix 1”. 	�  ◻

The above proposition is the same as in Lintunen and Kuusela (2018), but here we 
have derived it using the IID assumption. As can be seen from Proposition 2, the regula-
tor chooses the Markov perfect cap to equate the marginal damages from emissions with 
the expected marginal benefits from emission, conditional on the cap being binding, and 
simply ignores the contingencies when the cap is not binding. Such a restricted attention 
to binding contingencies only is the key difference between the Markov and the commit-
ment policies. Recall that in the commitment case the regulator consideres all contingen-
cies (Eq. (12)).

The equilibrium Markov policy is determined by the same system of Eqs. (13) and (15), 
with the variables replaced by QM and 𝜃M , in combination with the condition (19). Since 
the optimal policy differs between the commitment solution and the Markov perfect solu-
tion, the level of the price floor will also differ in general. We show in Sect. 4 that the dif-
ference in the commitment and the Markov solutions has a distinct impact on the optimal 
cap levels and on the expected price level.

To summarize, the main difference between the commitment and Markov perfect policy 
is in the way the regulator accounts for possible shock contingencies. With the commitment 
policy, the regulator attempts to directly influence the expected price, � , by committing to 
a cap level QC for all periods. Hence, in Proposition 1, the necessary condition assigns 
weight for both the binding and the non-binding contingencies. With the Markov perfect 
policy, the regulator disregards the explicit effect of the current cap, QM , on the expected 
allowance price. Therefore, the necessary condition (19) is not conditional on those shock 
contingencies that occur in the non-binding regime.

3 � ETS Without Banking and a Pigouvian Tax

Even though there is no banking demand, we can still use the above framework to model 
the market reaction under the no-banking ETS policy. Replacing the intertemporal banking 
condition (4), we now have a similar type of a market equilibrium condition:

There are two possible market outcomes: either the emissions are equal to the periodic cap, 
Qt or the emissions are equal to the unregulated level of emissions, q̄t . The former case rep-
resents a binding cap and the latter a non-binding cap. In the non-binding case, the allow-
ance price is zero. The current realization of the shock �t ultimately determines whether or 
not the cap is binding.

The cap is now equal to the number of injected allowances, Qt = It . Using the same for-
mulation as in Eqs. (7) and (8), the market’s emissions reaction function is now defined as

and the current allowance price by

(19)�
{
Bq(Q

M , 𝜃)|𝜃 > 𝜃M
}
= Dq(Q

M),

(20)pt ≥ 0, Qt − qt ≥ 0 and (Qt − qt)pt = 0.

(21)qt = q̂NO(Qt, 𝜃t) ∶= min
{
q̄t, Qt

}
,
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The absence of speculative banking demand makes the market’s reaction function much 
simpler. Instead of an endogenously determined price floor pt = ��tpt+1 , there is now a 
fixed price floor pt = 0 . Typical of hybrid policies, even a price floor that is simply the 
non-negativity constraint can be useful in some situations.

The regulator again sets the sequence of optimal caps, {Qt}
∞
t=0

 . The regulator’s problem is 
essentially the same as in (17) since the only state variable is the exogenous shock. Although 
there is no banking demand, and hence no rational expectation equilibrium, we can use the 
same approach as in the banking case and derive the optimality condition (see “Appendix 1”). 
Hence, Proposition 2 continues to hold even under the no-banking policy. Notice that there is no 
commitment problem in the no-banking case since the speculative banking demand is absent. 
This is a standard result in situations where the follower’s current response does not depend on 
the leader’s decision in the next period (Basar and Olsder 1982). The non-binding regime now 
refers to outcomes where the allowance price is zero. We can define the cut-off shock value 
using the condition B(QN , 𝜃) = 0 . With IID shocks, the optimal cap will be constant.

Interestingly, the optimality condition is similar to the one in the banking case, but now 
the price floor is fixed at zero. The regulator again sets the optimal cap so that the expected 
marginal benefits conditional on a binding cap equal to the expected marginal damages. 
The intuition here is that the price floor forms a kink in the policy, and depending on the 
type of damages, the regulator can sometimes prefer an outcome where the cap is non-
binding. For example, with flat marginal damages the non-binding price floor forms essen-
tially a safety valve for the policy maker. In other words, the policy may not strictly fix 
emissions to be qt = Q , but the emissions can also be lower. The same intuition holds with 
the banking policy case.

An emissions tax, �t , sets an exogenous price per a unit of emissions. We can directly 
write the market’s emissions response function as qt = q(�t, �t) , where the tax replaces the 
allowance price as the argument. The regulator decides the sequence of optimal emissions 
taxes, {�t}∞t=0 . Since the only state variable is the exogenous shock, the problem of setting 
the optimal tax is sequential:

The necessary first-order condition to this problem is:

From the market’s reaction, we have Bq(qt, �t) = �t , and substituting in this expression, we 
get:

The above equation implicitly determines the optimal tax level, �∗ . Under the assumption 
of IID shock process, the optimality condition in (25) does not change from one period to 
another, and the optimal tax is constant. Term q� (�t, �t) = B−1

qq
(qt, �t) describes the chang-

ing curvature of the marginal benefit function.18 Tax policy enables simple solutions in two 

(22)p(Qt, �t) = max
{
0, Bq(Qt, �t)

}
.

(23)max
�t

�t−1[B(q(�t, �t), �t) − D(q(�t, �t))].

(24)�t−1[Bq(q(�t, �t), �t)q� (�t, �t)] − �t−1[Dq(q(�t, �t))q� (�t, �t)] = 0.

(25)�t�t−1[q� (�t, �t)] − �t−1[Dq(q(�t, �t))q� (�t, �t)] = 0.

18  The curvature term in the first-order condition gives more weight to those contingencies where the con-
stant tax forces a larger change in the production level. The past literature has typically used the case of 
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special cases: If the marginal damages are constant, Dq(q) = d for all q, then �∗ = d , for 
each period as the curvature terms cancel out.19 If the benefit function is quadratic, the cur-
vature term is constant and tax is implicitly determined by �∗ = �t−1Dq(q(�

∗, �t)).

4 � Results

4.1 � The Setup

As discussed in the previous sections, the presence of speculative banking demand creates 
an endogenous price floor �� . There are two critical parameters that influence the likeli-
hood of banking demand. The first one is the intertemporal discount factor � . Speculators 
purchase allowances today only if the current price is low enough to justify non-negative 
expected profits in present value terms ( �� ≥ pt ). The smaller the discount factor (banking 
is costly), the less likely it is to witness a low enough shock realization that induces posi-
tive banking demand. The value of � parameter depends on the type of speculators that are 
in the market, and it can also vary depending on the length of the compliance period. The 
second parameter is the degree of uncertainty inherent in the shock process, measured by 
the variance term �2 . This variability is linked to the likelihood of observing positive bank-
ing demand. When the distribution becomes tighter around the mean, the less likely it will 
be to observe positive banking demand, since sufficiently large negative demand shocks are 
less frequent. Hence, it again becomes less likely for speculators to buy allowances with 
the expectation of non-negative profits.

To examine the policies in more detail, we assume that the benefit and damage func-
tions are quadratic polynomials, and that the IID shock process has a symmetric mean zero 
distribution. Formally, we assume linear marginal benefit

and marginal damage functions

where parameters Dqq ≥ 0 and Bqq < 0 denote the constant slopes of the marginal damage 
and the marginal benefit lines, respectively. Since �� = 0 , the above specification can be 
understood as a quadratic approximation of arbitrary benefit and damage functions in the 
neighborhood of point ( ̄q , d̄).

Given the above functional form assumptions, the Markov and the commitment solu-
tions (QM ,QC) can be derived using the systems of equations as explained in previous sub-
sections. Since Bqq is constant, we are able to simplify the planner’s first-order conditions 
and write them in a more compact form:

(26)Bq(q, 𝜃) = 𝜃 + d̄ − |Bqq|(q − q̄),

(27)Dq(q) = d̄ + Dqq(q − q̄),

Footnote 18 (continued)
quadratic benefit and damage functions. In that case the curvature term is constant and has no effect on the 
solution of the problem.
19  With constant marginal damages, the tax policy achieves the first best outcome.
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where the indicator parameter IC = 1 for the commitment case and IC = 0 for the Markov 
case. For both solutions, the equilibrium is defined by the first-order condition (28), 
together with Eqs. (13), (15), and definition (16). Given the above solution structure, it is 
not possible to derive simple closed form expressions or measures for welfare differences, 
as is typically the case in prices versus quantities papers. We now turn to numerical policy 
solutions under differing parameter values to characterize and compare the different policy 
outcomes and to illustrate the effect of relative marginal slopes on policy outcomes.

4.2 � A Comparison of Policies

There are six parameters of interest that determine the optimal policy: q̄ , d̄ , � , � , Bqq , and 
Dqq . Parameters, q̄ and d̄ , define the point where the marginal benefit and the marginal 
damage lines are expected to intersect. Under the linearity assumption, these two param-
eters are sufficient to define the optimal tax and the optimal emission cap when banking is 
not allowed, that is, 𝜏 = d̄ and QN = q̄ , respectively (see Sect. 3).20 However, the optimal 
cap in the two banking cases will also depend on the four other parameters � , � , Bqq , and 
Dqq . In this subsection, we examine the effects of these four parameters on the banking 
policy outcomes. The next subsection examines their impacts on welfare.

In the numerical solutions that follow, we use a normally distributed shock variable, 
�t ∼ N(0, �2) . To keep our results comparable to previous studies (cf. Weitzman 1974; 
Feng and Zhao 2006), we start from a set of policy solutions where we vary the relative 
slopes of marginal damages and marginal benefits, |Dqq∕Bqq| , while keeping the no-bank-
ing cap level and the emission tax level constant, at point ( ̄q , d̄ ). In other words, the point 
of intersection for the marginal damage line and the expected marginal benefit line remains 
the same, even when we vary the steepness of the marginal damage line. These solutions 
are illustrated in Figs. 1 and 2 where we compare the non-linear policy loci under the com-
mitment and Markov policies. The downward sloping blue lines represent the expected, 
�� = 0 , marginal benefit function, i.e., compliance demand, and the red lines represent the 
different marginal damage functions (flat, intermediate, steep). High (i.e., above average) 
demand shock realizations lead to the marginal benefit function that is above the depicted 
blue line (see Eq. (26)). The opposite holds for low shocks.

In all sub-figures, the policy loci are the kinked black curves (inverted L-shape) and they 
illustrate the hybrid nature of the optimal policy. The horizontal part is the price floor, �� , 
and the vertical part is the cap, Q. Since the policy loci represent the supply of allowances 
for the compliant firms, the actual emissions and price realizations, (qt, pt) , are determined 
by the intersection of the relevant policy locus and the marginal benefit line realization. 
The deviations of emission realizations from the first-best emissions, which are determined 
by the intersection of the actual marginal benefit and damage lines, cause welfare losses. 
Therefore, the regulator will attempt to set the cap so that the resulting equilibrium policy 
locus approximates the marginal damage function as closely as possible.

(28)�
[
Bq(Q, 𝜃) − Dq(Q)|𝜃 > 𝜃

]
+

1 − P

1 − (1 − P)𝛽
�
[
Bq(q̂, 𝜃) − Dq(q̂)|𝜃 ≤ 𝜃

]
IC = 0,

20  If � is sufficiently large, it will have an effect due to the non-negativity constraint on allowance prices 
and emissions (c.f. Eq. (22)).
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The sub-figures in Fig. 1 illustrate the regulator’s optimal policy under three different 
scenarios of increasing severity of marginal damages (red lines) relative to the marginal 
benefits, |Dqq∕Bqq| ∈ {0, 1, 10} . The first row of figures shows the commitment policy, and 
the second row the Markov policy. In the first scenario from the left, the ratio of marginal 
damages to marginal benefits is zero, representing a constant marginal damage function.21 
In the second scenario this ratio is one, representing moderately increasing marginal dam-
ages, and in the third scenario, the ratio is 10, representing steeply increasing marginal 
damages. The inverted L-shaped curves represent optimal policy loci, each corresponding 
to a different level of the discount factor, �.

The first observation from Fig.  1 is that the Markov policy is very responsive to the 
steepness of the marginal damages. Both the cap and the price floor are changing across 
the sub-figures for a given discount factor. In contrast, the commitment policy is virtually 
identical across the subfigures for a given discount factor. This is an interesting feature 
of the commitment solution, and we will explain the reason behind this stability in more 
detail in our subsequent discussion. Under both policies, higher discount factor translates 
to a higher cap for a given marginal damage scenario.

The advantage of hybrid policies is commonly framed as their potential to more closely 
mimic the marginal damages than a simple price or a quantity instrument can. In the above 
setup, a tax or an emissions cap without banking would create horizontal and vertical pol-
icy loci, respectively, that would pass through the point (0.5, 0.5) (not shown). From the 
sub-figures, it can be seen that, with banking, the vertical part of the inverted L-shaped 
policy locus can indeed provide a better match for the marginal damage line than a simple 
tax would when the marginal damages are not flat. In turn, when the slope of marginal 
damages is moderate or low, banking can provide a better match for the marginal damage 
line compared to the no-banking case by introducing horizontal price-like part in the policy 
locus.

The closeness of the approximation seems to depend on the discount factor, especially 
in the case of the Markov policy. By inspecting the first sub-figure, it can be seen that a 
high discount factor is beneficial for the Markov regulator since the dotted line mimics the 
flat marginal damages most closely. By inspecting the third sub-figure, it can be seen that 
high discount factor provides the worst fit for the Markov regulator, as now the L-shaped 
policy locus resembles the marginal damages the least (in the next subsection, we measure 
the welfare outcomes in more detail). In other words, with pollutants associated with flat 
marginal damages, the presence of high banking demand (high discount factor) can be ben-
eficial. With pollutants associated with steep marginal damages, the Markov regulator may 
actually prefer a low discount factor. The same observations continue to hold under the 
commitment policy, but the contrast to the Markov policy is significant. Especially in the 
case of steep marginal damages, the policy locus in these two policies follows a very differ-
ent pattern. The commitment policy prescribes a higher cap level and a lower price floor, 
whereas under the Markov policy, the cap is smaller and the price floor is higher. We return 
to these observations shortly.

Figure 2 shows the impact of higher risk in the form of a wider shock distribution while 
holding the discount factor constant. The interpretation of the lines in all sub-figures is 
the same as in Fig.  1, except now each of the three kinked policies relate to a different 
standard deviation, � . As can be seen, the Markov policy is again more responsive to the 

21  For example, this could represent the negative effects of CO2 emissions (Lintunen and Kuusela 2018; 
Weitzman 2018).
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Fig. 1   The three sub-figures in each row illustrate the commitment and Markov policies for different levels 
of marginal damages: |Dqq∕Bqq| ∈ {0, 1, 10} (in columns, respectively). In all sub-figures, the blue line rep-
resents the expected marginal benefit function and the red lines represent marginal damage functions. The 
slope of the marginal benefit line is held fixed at Bqq = −1 . The black lines correspond to optimal policies 
under three different levels of discount factor. The optimal no banking cap QN = 0.5 and optimal second 
best tax � = 0.5 in all cases ( ̄d = 0.5 and q̄ = 0.5 ). The shock is normally distributed, �t ∼ N(0, �2) , with 
� = 0.05
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steepness of marginal damages and also to the shock variability, while the commitment 
policy remains stable across the sub-figures. The Markov regulator increases the cap (verti-
cal line) in response to higher values of � . The commitment policy does the same. How-
ever, under the commitment policy the price floor remains virtually the same in all sub-
figures, indicating the same price expectations, � , despite the increase in shock dispersion. 
The change in the price floor is more pronounced under the Markov policy. In the first 
sub-figure in the second line, the Markov regulator actually increases the cap enough to 
lead to a decrease in the price floor. In other marginal damage scenarios, the responses are 
qualitatively the same as in Fig. 1.

Figure 3 presents the optimal caps (QC,QM) , the expected share of banking, �b∕Q , 
the expected emissions, �q , and the expected allowance price, �p , as functions of the 
discount factor � . The expression for the expected price under the commitment and the 
Markov perfect policy was given in Eq. (15).22 We again compare the outcomes under 
the three different fixed slope ratios ( |Dqq∕Bqq| ∈ {0, 1, 10} ). In line with our above 
results, Fig. 3 shows that a greater discount factor leads to larger emissions caps. Under 
the Markov policy, the increase in the cap is much more pronounced with flat mar-
ginal damages than with steep marginal damages. The expected proportion of banking 
demand is also increasing in � , since the probability of observing a low enough shock 
realization is increasing as well ( � is held constant).
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Fig. 3   The effect of discount factor, � , on the policy outcomes under three different marginal damage sce-
narios. The shock dispersion parameter � is held fixed at value � = 0.05

22  We can similarly derive an expression for the expected emissions using the linear functional form for 
marginal benefits:

The first part of above expression is the level of emissions when the cap is not binding, and the second part 
is the level of emissions when the cap binds. The expected banking is defined as �b = Q − �q.

�q = (1 − P)

(
q̄ +

�[𝜃|𝜃 < 𝜃] + d̄ − 𝛽𝜇

|Bqq|

)
+ PQ
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Interestingly, the response in the expected emissions, �q , differs between the Markov 
and commitment policies. In the commitment case, the expected emissions are the same 
across the marginal damage scenarios, whereas in the Markov case, both the steepness 
of marginal damages and the discount factor clearly influence the expected emissions. 
These results suggest that in the commitment case the regulator chooses the cap so that 
the expected price and the emissions are (almost) identical to the tax level and the no-
banking cap (� = 0.5,QN = 0.5) . The slope ratio |Dqq∕Bqq| does not affect the tax or the 
no-banking solutions and, in a correspondent way, we observe a similar outcome in the 
commitment case. However, we will show below that the correspondence is not straight-
forward. The critical difference is that the commitment solution actually depends on the 
steepness of marginal benefits. Hence, examination of the ratio of marginal damages to 
marginal benefits is not enough.

In the Markov case, the steepness of marginal damages does influence the expected 
emissions and the optimal cap. The explanation for this is the Markov regulator’s 
first-order condition that relies only on those shock realizations that are in the bind-
ing regime. This causes the steepness of the marginal damage curve to have an impact 
on the Markov cap. When the Markov cap is compared to the optimal no-banking cap 
( QN = 0.5 ), we see that the steeper marginal damages result in lower expected emissions 
( �q < 0.5 ), whereas with flatter damages the expected emissions are higher ( �q > 0.5).

Figure 4 presents the same outcomes as in Fig. 3 but now we have fixed the level of 
the discount factor and allow the variance of the shock term to change. The results are 
qualitatively similar to Fig. 3. In the next subsection, we will see, however, that the wel-
fare effects of � and � are not the same.

As alluded to earlier, the results in Figs. 1, 2, 3 and 4 seem to collectively suggest 
that the regulator’s commitment policy does not depend on the ratio of the slopes, 
|Dqq∕Bqq| . However, in all these figures, we have fixed the slope of the marginal benefits 
to equal Bqq = −1 . Hence, the role of the slopes is not yet fully explored. Figure 5 shows 
the impact of both parameters Bqq and Dqq on the commitment and Markov caps. Again, 
we set (q̄, d̄) = (1∕2, 1∕2) , which implies the same optimal tax and no-banking solutions 
as before. The left sub-figure shows that the optimal cap under the commitment policy 
is decreasing in parameter Bqq , but for a given Bqq , it does not respond to parameter Dqq . 
The right sub-figure contrasts the cap response under the Markov policy which can be 
seen to depend on parameter Dqq as well.

The explanation for this difference stems from the necessary condition of the plan-
ner’s problem (28). The first-order condition in the commitment case can be formulated 
as:

The second term in the above equation is essentially the same first-order condition as in the 
case of the tax policy and the no-banking policy. The first term is typically close to zero 
when the discount factor is close to 1. On the other hand, when 𝛽 << 1 , the probability 
of binding cap should be fairly large since the price floor will be at a low level. Hence the 

(1 − 𝛽)(1 − P)�
[
Bq(Q, 𝜃) − Dq(Q)|𝜃 < 𝜃

]

+ �
[
Bq(q(Q,𝜇(Q), 𝜃), 𝜃) − Dq(q(Q,𝜇(Q), 𝜃))

]
= 0
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term (1 − P) ≈ 0 when � is small. As a result, the condition �(Bq − Dq) ≈ 0 is likely to 
hold for a large set of � values (especially for the ones used in Figs. 1, 2, 3 and 4).23

The above explains why we observed the expected emissions and the expected prices 
to be the same in the commitment case as in the tax and the no-banking cases. Further-
more, the steepness of marginal damages does not influence the cap level that achieves 
�(Bq − Dq) ≈ 0 , since it is the intersection of the marginal benefits and the policy locus 
that determines the emissions outcome. However, the policy locus depends on marginal 
benefits, since the price floor depends on demand. Therefore, in response to different Bqq 
parameter values, the commitment regulator has to adjust the cap to maintain an expected 
emissions outcome that still achieves �(Bq − Dq) ≈ 0.

4.3 � Welfare Comparisons

To compare the social welfare (SW) outcomes under the alternative policy instruments, we 
define the ratio of the expected welfare loss relative to the expected welfare under a first-
best policy ( SW∗):

This type of a welfare comparison has been common in the literature since Weitzman 
(1974). First-best policy means that the regulator can set the policy for period t after 
observing the shock realization, �t.

In Fig. 6, we compare the relative expected social welfare under the four policy instru-
ments with differing values of the discount factor, � . These results are based on the same 
solution setup as in Figs.  1, 2, 3 and 4. In other words, we are comparing the welfare 
outcomes under different slope ratios, |Dqq∕Bqq| ∈ {0, 1, 10} , while keeping the point 
of intersection of the marginal damage and the expected marginal benefit lines fixed at 
(q̄, d̄) = (1∕2, 1∕2) . Consequently, the no-banking cap and the emissions tax solutions 
remain the same. The difference in welfare outcomes between the Markov solution and the 
commitment solution can be understood as the value of commitment.

In Fig.  6, the welfare outcomes under the commitment and Markov policies are con-
trasted to a tax instrument (dotted line) and a no-banking ETS policy (broken line). The 
figure shows that 1) a tax is optimal when marginal damages are constant (left panel), 2) a 
no-banking policy is best when the marginal damages are much steeper than the marginal 
benefits, and 3) a tax and a no-banking policy perform equally well when the marginal ben-
efits and marginal damages are equally steep (Weitzman 1974). The discount factor does 
not have an effect on these two policies, and hence the welfare outcomes remain constant 
within each sub-figure. In contrast, both of our banking policies respond to changes in the 
discount factor, and their welfare outcomes also vary when the discount factor changes. 
The value of commitment can be seen to be increasing in the discount factor.

As explained before, the presence of banking demand creates an endogenous price floor 
in the regulator’s solution. Therefore, we expect the welfare outcomes with banking to lie 

(29)
��SWSB − ��SW

∗

��SW
∗

23  However, an increasing dispersion of the shock term will decrease P. If we increase the dispersion while 
holding � constant, the first term will gain more weight in the planner’s first-order condition and we should 
expect the expected emissions and the expected price to deviate further away from the optimal tax and no-
banking solutions.
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between the tax and the no-banking outcomes most of the time. This is true when the mar-
ginal damages are flat (Fig. 6, left panel). In the case of steep marginal damages, this is 
true for the commitment solution (right panel). However, with steep marginal damages the 
Markov solution actually performs the worst as the discount factor approaches unity. This 
deterioration could be anticipated from the lower right panel of Fig. 1 since the Markov 
policy, which only considers the contingencies where the cap is binding, sets a relatively 
tight emissions cap. Together with the high discount factor, this leads to a relatively high 
expected allowance price and, consequently, to high price floor. As a result, the inverted 
L-shaped policy locus can mimic the marginal damages only with high demand realiza-
tions, and the realized intersections of the marginal benefit line and the policy locus are 
typically far above the expected intersection of the marginal benefit and damage lines; 
hence the poor welfare performance.
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However, when the discount factor approaches unity in the case of flat marginal dam-
ages, the welfare outcomes with both banking policies approach the optimal tax regulation 
(cf. Fig. 1, left column). Thus, we can conclude from these observations that the introduc-
tion of banking in an ETS: (1) improves the welfare outcome when the marginal damages 
are flat, with the benefit increasing in the discount factor, and (2) deteriorates the welfare 
outcome when the marginal damages are steep.

As indicated earlier, the inverted L-shape of the policy locus can best mimic the mar-
ginal damages, when they are moderately sloped (cf. Fig. 1, middle column). The middle 
panel of Fig. 6 shows that this property can yield welfare gains when compared to the tax 
and no-banking policies. Again, a very high discount factor deteriorates the performance 
of the Markov policy, but in general, both banking policies yield a better welfare outcome 
than the tax and the no-banking case.

Figure 7 compares the efficiencies of alternative policies when the degree of uncertainty 
is increasing while keeping the discount factor constant at � = 0.975 . The sub-figures show 
similar welfare rankings as in Fig. 6. The main difference is that an increasing shock dis-
persion leads to lower welfare in all cases (except when the tax is the first best policy). In 
contrast to the effect of an increasing discount rate in Fig. 6, the expected welfare of the 
two banking policies is decreasing in the shock dispersion. When the marginal damages are 

β

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

∆
 E

 S
W

 / 
E

 S
W

*
|D

qq
/B

qq
|=0

Commitment
Markov
No Banking
Tax

β

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

|D
qq

/B
qq

|=1

0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 0.85 0.9 0.95

β

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

|D
qq

/B
qq

|=10

Fig. 6   The effect of discount factor, � , on the social welfare outcomes relative to the first-best. Here, 
� = 0.05 and Bqq = − 1

σ

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

∆
 E

 S
W

 / 
E

 S
W

*

|D
qq

/B
qq

|=0

Commitment
Markov
No Banking
Tax

σ

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

|D
qq

/B
qq

|=1

0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1

σ

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

|D
qq

/B
qq

|=10

Fig. 7   The effect of shock dispersion, � , on the social welfare outcomes relative to the first-best. Here, 
� = 0.975 and Bqq = − 1



443A Cap‑and‑Trade Commitment Policy with Allowance Banking﻿	

1 3

steep (right panel), the banking solutions experience significant deterioration as the shock 
dispersion increases. The Markov solution may actually become even worse than the tax 
policy. This is comparable to the case of a high discount factor (Fig. 6, right panel). In gen-
eral, an increasing dispersion widens the welfare difference between the Markov and the 
commitment solutions. Hence the value of commitment becomes greater when the extent 
of the uncertainty increases.

Finally, in Fig. 8, we examine the effects of different slopes Bqq and Dqq , like we did in 
Fig. 5. Each sub-figure shows the welfare outcomes under different marginal damage val-
ues conditional on four different levels of marginal benefit parameter, Bqq . The regions in 
the sub-figures where the Markov and the commitment curves are higher than either of the 
tax instrument or the no-banking curves, represent the values of Dqq where banking is pre-
ferred to the alternative instruments, conditional on the given parameter Bqq . These results 
are also conditional on the chosen � = 0.975 and � = 0.05.

Figure 8 replicates the well-known result for the condition that determines the choice 
between the tax and the no-banking quota instrument. The tax and the no-banking curves 
intersect at the point where Bqq = Dqq , and to the left of that point ( Bqq > Dqq ), the tax 
instrument dominates the no-banking instrument, and to the right ( Bqq < Dqq ), the oppo-
site holds. The graphs show that there is typically a region around the point Bqq = Dqq 
where the banking policies dominate both the tax and the no-banking cap policy. This dif-
fers from Feng and Zhao (2006, Proposition 2). They observe that with intertemporal trad-
ing ratio equal to unity, intertemporal trade (banking and borrowing) will decrease welfare 
if Dqq > |Bqq| . Figure 8 shows that it is possible that banking increases expected welfare 
even when Dqq > |Bqq| . Finally, the commitment policy is always better than the Markov 
policy. Under the chosen parameter values for � and � , the welfare difference (the value of 
commitment) between the two banking policies seems small in the region where banking is 
better than the tax policy and the no-banking cap policy.

4.4 � Comparative Statics Results

To characterize the properties of the solutions, the standard approach is to derive com-
parative statics with respect to the model parameters. In the Markov case, we can directly 
study these comparative statics effects if we assume a uniform distribution � ∼ U[−�, �] . 
In “Appendix 2”, we show that in this case the optimal cap is defined by a quadratic 
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equation.24 The comparative static results for the Markov solution are collected in the fol-
lowing proposition:

Proposition 3  Assume linear marginal benefit and damage functions,  (26) and (27), and a 
uniform shock distribution, � ∼ U[−�, �]. The optimal cap QM is increasing in the disper-
sion parameter � and in the discount factor �. Furthermore, the optimal cap is decreasing 
when either the marginal benefit line or the marginal damage line becomes steeper. The 
optimal cap is increasing in q̄ and decreasing in d̄.

Proof  Direct application of comparative statics. See “Appendix B.2” for details. 	�  ◻

In the Markov case, the regulator responds to a greater demand variation ( � ) and to a 
higher discount factor ( � ) by increasing the cap. The common element and explanation in 
these two cases is that the likelihood of banking demand is increasing in both parameters. 
The regulator responds to this higher likelihood by allocating more allowances into the 
market.

5 � Discussion and Conclusions

5.1 � Policy Implications and Relevance

Our results show that an ETS with banking but no borrowing of allowances can in certain 
situations outperform an emissions tax and a quantity instrument with no intertemporal 
trading. This is in contrast to some earlier findings with less favorable conclusions on the 
role of intertemporal trading of allowances (Feng and Zhao 2006; Weitzman 2018). Hence, 
from welfare perspective, there may very well be a justification for allowing banking in 
an ETS. In addition, banking motives can improve the welfare performance of quantity 
regulation when the marginal damages are relatively flat. Such a case provides a reasonable 
approximation for climate change related damages (Hoel and Karp 2002; Newell and Pizer 
2003a). Thus, the possibility to bank allowances should be viewed as an useful feature in 
an ETS that regulates greenhouse gas emissions, at least when the regulator is also actively 
adjusting the emissions cap. However, with pollutants that have steep marginal damages, 
banking may undermine the welfare performance of a cap and trade scheme.

The comparisons between the commitment and Markov policies revealed that the wel-
fare gain from commitment seems relatively modest. The largest welfare differences occur 
when the discount factor is close to unity and the allowance demand uncertainty is high. 
In such situations, the regulator benefits from commitment and is worse off from using the 
Markov policy. One policy relevant question is whether commitment, as it is defined in our 
paper, is easily achieved. Experiences from the EU ETS suggest that it can be challenging, 
especially if the trading period is long. For example, during the last trading period (phase 
3), the EU ETS used “backloading” of auctions to alter the time profile of new allowance 
injections (EU 2014). While the policy did not change the total emissions cap, it did raise 
questions about the credibility of the rules governing the trading system.

24  In the commitment case, the assumption of a uniform shock distribution leads to a cubic equation with a 
complicated structure. Hence, we do not pursue the analytical treatment of the commitment case.
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To address such concerns about credibility, the latest reforms in the EU ETS have 
focused on creating rule-based adjustments to the allowance supply (Jakob and Brunner 
2014). The Market Stability Reserve (MSR) was proposed in 2015 and it began function-
ing in 2019 (EU 2015) In 2017, the phase 4 MSR rules were appended to incorporate the 
cancellation of allowances if the reserve exceeds certain threshold (EU 2018; Perino 2018; 
Beck and Kruse-Andersen 2018). The goal is to create an endogenized cap that is rule-
based and hence predictable and transparent.25 In our model, the regulator also actively 
adjusts the injection of new allowances based on the allowance demand realizations, which 
prevents the accumulation of unused allowances and thus helps to maintain price stability. 
One of the benefits of such an endogenous cap is that it helps to preserve, at least partly, 
the emissions reductions achieved by other policies which have been implemented in addi-
tion to an ETS (Perino 2018) Hence, our results and analysis can be understood as provid-
ing policy rules for endogenizing the cap given the objective of maximizing social welfare. 
Such rules can be either implemented using legislation or by an agency with more discre-
tion (Brunner et al. 2012).

One could also ask whether the recent changes to the MSR rules are more aligned with 
the Markov policy or with the commitment policy, at least in principle. The low EU ETS 
allowance prices prior to 2018 suggest that the expectations of phase 4 price level have 
been low prior to the revision of the rules. Recent increases in the allowance prices, on 
the other hand, highlight the revised expectations of allowance prices in phase 4. Such an 
increase in prices is in line with both the Markov and commitment policies that prescribe 
adjustment rules for the cap. However, we could surmise that the reform creates a policy 
rule that resembles the Markov policy because the rules in the MSR do not refer to a spe-
cific price level.26 Given the absence of such price target means that the regulator is not 
aiming to directly influence the expected price either, which would be reasonable require-
ment in the commitment policy case. However, our model and the MSR mechanism are 
not perfectly comparable, and to analyze the differences between our two policies in the 
context of the EU ETS would require finding numerical solutions to a fully parametrized 
model that includes time-dependent functional forms and a correlated shock process. We 
leave such development for future research.

5.2 � Intertemporal Trading Ratio

Early research on intertemporal trading of allowances showed that banking and borrowing 
adjust the time profile of emissions in a manner that guarantees cost-effective intertempo-
ral abatement effort (Cronshaw and Kruse 1996; Rubin 1996). Additionally, a correctly 
specified intertemporal trading ratio (ITR) can bring further improvements in efficiency 
by encouraging socially more beneficial banking behavior (Kling and Rubin 1997; Yates 
and Cronshaw 2001; Feng and Zhao 2006). Returning back to the intermediate case in 
Fig. 6, we observed that there can be some optimal discount factor that minimizes the wel-
fare loss relative to the first best. Similarly, in the case of constant marginal damages, a 

25  In addition to creating such rules, there have been suggestions to create a governing board similar to 
central banking authorities, which would be given the mandate to manage the carbon market by considering 
economic benefits and environmental harms (Mason 2009; Jakob and Brunner 2014).
26  The European Court of Justice wrote in its decision (Case C-5/16) on June 21, 2018: “It must be held, as 
observed by the defendant institutions, that, first, the price of allowances set by the market has no influence 
on the functioning of the MSR, which remains, by its nature, neutral in that respect.”
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higher discount factor improves the relative expected efficiency as well. This suggests that, 
given the market discount factor � , the regulator can potentially use an ITR to achieve an 
improvement in efficiency.

Define an effective discount factor, 𝛽  , as

Here � denotes the ITR and it can be negative or positive depending on the speculative 
discount rate. A positive ITR means that the regulator pays interest for saved allowances. 
This has the effect of increasing the effective discount factor. A negative ITR means that 
the regulator imposes a penalty on saved allowances. This has the effect of decreasing 
the effective discount factor. For example, if the original discount factor is low and we 
are dealing with moderately increasing marginal damages, the regulator can introduce a 
positive � that would effectively raise the price floor and enable the regulator to improve 
efficiency. Naturally, the budgetary cost of introducing positive � must be included in the 
analysis to determine whether such an ITR is justifiable. On the other hand, if we are deal-
ing with steep marginal damages and a high initial discount factor, the regulator could dis-
courage excessive banking by introducing a negative � that will drive the price floor lower 
and enable the regulator to again improve efficiency.27

5.3 � Possible Extensions

Since the random shocks in our model are not correlated, the focus of our analysis can be 
understood to be on managing uncertainty in an ETS and not on information asymmetries 
and learning. Future work should examine the effect of relaxing the IID assumption, as the 
allowance demand shocks can be persistent, at least to some extent. However, while the 
IID assumption may seem restrictive, it may not actually be that limiting after all given our 
research question. If the shocks were autocorrelated, the expected effects of autocorrelation 
would be anticipated by all rational agents but the uncorrelated shock innovation would 
remain unpredictable and it would hence still be an essential part of the model solution 
(Lintunen and Kuusela 2018). Therefore, our model can be understood as a residual model 
where the autocorrelation has been removed from the original model setup. Hence, relax-
ing the IID assumption would not change the underlying results regarding the implications 
of a hybrid policy instrument. With the quadratic approximation of benefits and damages, 
the welfare effects of random shocks would be the same as before. But shock correlation 
could cause persistent variation in both quantities and prices.

It would be possible to write the model using time dependent benefit and damage func-
tions. Such modeling choice would enable us to study the case for a decreasing emission 
cap, as seen for example in the EU ETS. However, such generality would complicate the 
solution of the model by preventing a stationary solution. We can speculate on the possi-
ble regulation outcomes if, for example, marginal damages were increasing in time. The 
regulator would respond to this by decreasing the number of allowances injected in future 
years, assuming the marginal benefits would remain constant. Formally, the Eq. (11) would 
have different damage functions in the current period and the next period. A decreasing and 
anticipated profile for allowance injections would make banking more attractive since future 

(30)𝛽 =
1 + 𝛾

1 + r

27  In extreme conditions, it may make sense to ban banking altogether.
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allowance prices would be expected to be higher than in the case with a constant cap. This 
would increase the endogenous price floor. The regulator would anticipate this and use this 
knowledge in setting the cap levels for the current and the next period. However, the regula-
tor would still set the cap in such a way that the cap would be binding in random periods. 
The exact reaction would be an interesting research question. However, we would like to 
stress here that the presence of these types of additional features would not necessarily yield 
any more insight on the main question of our study: how the regulator should deal with the 
randomness in demand shocks (abatement costs) given the possibility to bank allowances.

The regulation of stock based externalities have been examined in the past prices versus 
quantities literature (Hoel and Karp 2002; Newell and Pizer 2003b). Our model could be 
extended to a case with a stock pollutant, but as to be expected, this would complicate the 
solution and the optimal policy. Namely, the optimal policy would depend on the current 
level of the pollution stock, which would be a state variable in the model. The shadow 
price of the pollution stock would depend on the current emissions and the past emissions. 
In the flow pollutant setup, such a case could be approximated by positively autocorrelated 
marginal damages. If marginal damages are increasing in time due to stock accumulation, 
the regulator might restrict the injection of future allowances thus potentially making bank-
ing more attractive (this is a comparable to time-dependent functional forms). Overall, this 
would again add structure on how the optimal cap is set in each contingency, but it would 
not change the qualitative aspects of the Markov and commitment policies to managing 
allowance demand risk in the presence of allowance banking. We leave the implications of 
these extensions on the optimal dynamic policy design to be determined in future research.
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Appendix 1: Proofs of Propositions 1 and 2

Cut‑Off Shock, �̃

The current shock realization, �t , determines whether the cap is binding. A high shock real-
ization leads to high compliance demand and to a greater likelihood of a binding cap. We 
can hence define a cut-off level, 𝜃 , for the shock realization that separates the two shock 

http://creativecommons.org/licenses/by/4.0/
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regimes where the cap is either binding (there is no banking, bt = 0 ) or non-binding (bank-
ing is positive, bt > 0).

Definition 2  The cut-off value of the shock, 𝜃 , is the highest shock realization for which 
the equilibrium cap level Q is not binding and there is positive banking demand, i.e.

Under IID shocks, the cut-off shock level is implicitly defined by 𝛽𝜇 = Bq(Q, 𝜃)

The response in current emissions to a changing cap level Q differs depending on 
whether the current shock is above or below the cut-off shock. This will be shown 
below.

Commitment Solution (Proposition 1)

The optimality condition for the commitment solution (12) is

where q = q̂(Q,𝜇(Q), 𝜃) ∶= min{q(𝛽𝜇(Q), 𝜃),Q}.
Proposition 1 is proved by analyzing the partial derivatives 𝜕q̂∕𝜕Q , 𝜕q̂∕𝜕𝜇 , and ��∕�Q . 

These partial derivatives have different values depending on whether the cap is binding or 
not, i.e., 𝜃 > 𝜃 or 𝜃 < 𝜃 , respectively. This dichotomy is caused by the form of the market 
response function (7). The values of the partial derivatives are presented in the following 
series of lemmas.

Lemma 1  Denote the cut-off shock level, 𝜃. When the cap is binding (𝜃 > 𝜃):

When the cap is not binding (𝜃 ≤ 𝜃):

Proof  The proof of Lemma 1 is shown in Lintunen and Kuusela (2018). It follows from 
using the Definition 2 and the emissions response function (7). In the binding shock 
regime, a small change in the cap translates to an identical change in the emissions. In 
the non-binding shock regime, a small change in the cap has no effect on the emissions 
because the emission level is determined by the expected price, and not by Qt . 	�  ◻

Lemma 2  Denote the cut-off shock level, 𝜃. When the cap is binding (𝜃 > 𝜃):

When the cap is not binding (𝜃 ≤ 𝜃):

(31)𝜃 ∶= sup{𝜃t|bt > 0}.

E

[(
Bq(q, 𝜃) − Dq(q)

)(
𝛽
𝜕q̂

𝜕Q
+

𝜕q̂

𝜕𝜇

𝜕𝜇

𝜕Q

)]
= 0,

(32)
𝜕q̂

𝜕Q
= 1.

(33)
𝜕q̂

𝜕Q
= 0.

(34)
𝜕q̂

𝜕𝜇
= 0.
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Proof  The results in Lemma 2 can be directly derived using the emission response function 
q̂(Q,𝜇, 𝜃) ∶= min{q(𝛽𝜇(Q), 𝜃),Q}.

When the cap binds, the partial derivative is zero as the cap Q determines the emissions. 
When the cap does not bind, 𝜕q̂∕𝜕𝜇 = 𝜕q∕𝜕𝜇 . Since function q(p, �) is defined by the FOC 
Bq(q, �) = p , �q∕�p = B−1

qq
(q, �) . The result follows from the fact that, when cap does not 

bind, p = �� . 	�  ◻

Using Lemmas 1 and 2, the first-order condition in the commitment case (12) can be 
rewritten as:

The final partial derivative, ��∕�Q , determines the effect of the periodic cap on the price 
expectations. It depends on the probability for the cap to bind, P ∶= Pr(𝜃 > 𝜃) , the curva-
ture of the benefit function, Bqq , and the discount factor, � . The partial derivative is given 
in the following lemma:

Lemma 3  The effect of the cap on the equilibrium expected price is given by

Proof  Take the accounting identity:

and definition

Total differentiation

leads to

By definition of cut-off shock realization 𝛽𝜇 = Bq(Q, 𝜃) , and hence the two first terms in 
the RHS cancel out and we end up with:

(35)
𝜕q̂

𝜕𝜇
= 𝛽B−1

qq
(q, 𝜃) < 0.

(36)
P�

[(
Bq(q, �) − Dq(q)

)
|BIND

]

− (1 − P)�

[(
Bq(q, �) − Dq(q)

) 1

Bqq(q, �)

��

�Q
|NOBIND

]

(37)𝜕𝜇

𝜕Q
=

P�[Bqq(Q, 𝜃)|𝜃 > 𝜃]

1 − (1 − P)𝛽
.

𝜇 = (1 − P)𝛽𝜇 + P�
[
Bq(Q, 𝜃)|BIND

]
= (1 − P)𝛽𝜇 + ∫

∞

𝜃

f (𝜃)Bq(Q, 𝜃)d𝜃

P ∶= ∫
∞

𝜃

f (𝜃)d𝜃

(38)d𝜇 = (1 − P)𝛽d𝜇 − 𝛽𝜇d ∫
∞

𝜃

f (𝜃)d𝜃 + d ∫
∞

𝜃

f (𝜃)Bq(Q, 𝜃)d𝜃

(39)(1 − (1 − P)𝛽)d𝜇 = 𝛽𝜇f (𝜃)d𝜃 − Bq

(
Q, 𝜃

)
f (𝜃)d𝜃 + dQ∫

∞

𝜃

f (𝜃)Bqq(Q, 𝜃)d𝜃
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The second equality follows from the definition of the conditional expectation value. 	� ◻

Some intuition can be provided using a simple exercise. Assuming a small change in cap 
ΔQ , the mean price change when cap binds (probability P) is ΔpBIND = �[Bqq|BIND]ΔQ , 
and when cap is not binding (probability 1 − P ) the price change is ΔpNO = �Δ� . Since 
Δ� = PΔpBIND + (1 − P)ΔpNO , we get Δ�∕ΔQ = P�[Bqq|BIND]∕(1 − (1 − P)�) . Hence, 
the denominator follows from the fact that Δ� is on both sides of the equilibrium equation.

Finally, we can prove Proposition 1:

Proof  Inserting the expression in Lemma 3 into the first-order condition in (36) yields the 
expression in Proposition 1. 	�  ◻

Markov Perfect Solution (Proposition 2)

Proposition 2 is proved in Lintunen and Kuusela (2018) but we will present it here for the IID 
case.

Proof  From Lemma 1, we know that the function q(Qt, �t) is differentiable almost every-
where and the zero-measure point of non-differentiability does not contribute to the expec-
tation value, as the function q(Qt, �t) is continuous. Thus, we can directly obtain the first-
order condition presented in (18):

where we have used the following shorthand notation: q̂t ∶= q(Qt, 𝜃t) and q̂Qt ∶= qQ(Qt, 𝜃t) . 
From Lemma 1, we also know that q̂Qt = 1 , if 𝜃t > 𝜃 and zero elsewhere. In addition, 
q̂t = Qt , if 𝜃t > 𝜃 . Making use of these properties, we can rewrite the optimality condition 
as:

where F(�t) is the distribution function of an IID shock process. Indicator function 
1BIND(�) , has value one when � ∈ BIND and zero elsewhere. The set BIND consists of 
shock realizations in which the emissions are bound by the cap, i.e. BIND ∶= {𝜃t|𝜃t > 𝜃} . 
Thus, we can write

Since ∫
BIND

dF(�t) = Pr(� ∈ BIND) , this directly leads to the optimality conditions

Recall that 𝜃 is implicitly defined by the condition B(Q, 𝜃) = 𝛽𝜇 . 	�  ◻

𝜕𝜇

𝜕Q
=

∫ ∞

𝜃
f (𝜃)Bqq(Q, 𝜃)d𝜃

1 − (1 − P)𝛽
=

P�
[
Bqq(Q, 𝜃)|BIND

]

1 − (1 − P)𝛽

(40)�[Bq(q̂t, 𝜃t)q̂Qt] − �[Dq(q̂t)q̂Qt] = 0,

∫ Bq(Qt, �t)1BIND(�t)dF(�t) = Dq(Qt)∫ 1BIND(�t)dF(�t),

∫BIND

Bq(Qt, �t)dF(�t) = Dq(Qt)∫BIND

dF(�t).

(41)�[Bq(Qt, 𝜃t)|𝜃t > 𝜃] = Dq(Qt),
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Appendix 2: Analytical Solution with IID Uniform Shocks

Setup

The benefit and damage functions are quadratic polynomials, and the shock � is IID and 
follows a continuous, uniform distribution � ∼ U[−�, �] . Thus, the expected value �� = 0 . 
We furthermore calibrate the benefits and damages so that the linear marginal benefits and 
damages intersect on average at the point ( ̄q , d̄ ) in (q, p) -plane. Thus, we denote the mar-
ginal damages as

and marginal benefits

where Dqq ≥ 0 and |Bqq| > 0 . The above specification can be understood as a quadratic 
approximation of arbitrary benefit and damage functions in the neighborhood of point ( ̄q , 
d̄).

We assume two additional parametric restrictions that make sense given the scope of our 
analysis. First, without banking the optimal cap is binding under all the realizations of the 
shock � , that is, 𝜎 < d̄ . Second, with banking there is always a positive probability for positive 
banking, that is, 𝜎 > (1 − 𝛽)d̄ . If � is smaller, there is never banking and the policy reduces 
to the cap and trade without banking. Together, these restriction imply that 𝜎 ∈

(
(1 − 𝛽)d̄, d̄

)
.

Given the above setup, it is easy to show that the optimal tax is 𝜏 = d̄ , and the optimal cap 
without banking QN = q̄.

Markov Solution

The optimality condition (19) is

with cut-off shock value

and price function

Directly taking the expectation of the price function, we get:

where P(𝜃) stands for probability that the cap is binding, i.e.

Using the first-order condition and a short-hand notation � ∶= �p(Q, �) we end up with

Dq(q) = d̄ + Dqq(q − q̄)

Bq(q, 𝜃) = 𝜃 + d̄ − |Bqq|(q − q̄),

�[Bq(Q, 𝜃)|𝜃 > 𝜃] = Dq(Q)

(42)𝜃 = 𝛽�p(Q, 𝜃) − d̄ + |Bqq|Q,

p(Q, �) = max{��p(Q, �), Bq(Q, �)}.

�p(Q, 𝜃) = (1 − P(𝜃))𝛽�p(Q, 𝜃) + P(𝜃)�[Bq(Q, 𝜃)|𝜃 > 𝜃],

(43)P(𝜃) = ∫
∞

𝜃

dF(𝜃) =
1

2
−

𝜃

2𝜎
,
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Finally we need to calculate the expectation value explicitly:

This leads to the first-order condition:

Equation (46) is the first equation of the two that define the equilibrium. The second equa-
tion is the expected price Eq. (44), which can be rewritten, using Eqs. (42), (43), and (45), 
as

Inserting Eqs. (46)–(47) we end up with a quadratic equation for the optimal cap

where

and

Since a2 > 0 the parabola opens upwards. By the positive banking probability assumption 
( 𝜎 > (1 − 𝛽)d̄ ), a0 > 0 , which implies that both roots of the polynomial are positive. This 
confirms that the optimal cap is greater than q̄ , which is the optimal non-banking cap level. 
If there is no uncertainty, that is, � = 0 , the solution reduces to the one without banking 
( Q = q̄ ) since a1 =0 and a0 = 0 . Thus, if there is no stochasticity present, the banking has 
no role in the optimal policy.

The minimum of the quadratic polynomial, �(Q) , is at the emission level

where the first two terms in the RHS form the emission level at which the maximum reali-
zation of marginal benefits crosses the marginal damages, that is, Bq(q, �) = Dq(q) . The 
last term is positive. Thus, it follows directly that the optimal cap, Q∗ , is the smaller of 
the two roots of the polynomial as the larger one is non-optimal solution to the planner’s 
problem. As the parabola opens upwards and the optimal cap level is the smaller of the two 
roots, we know that 𝜑Q(Q

∗) < 0.

(44)� = (1 − P)�� + PDq(Q).

(45)�[Bq(Q, 𝜃)|𝜃 > 𝜃] = ∫
𝜎

𝜃

𝜃 + d̄ − |Bqq|Q
𝜎 − 𝜃

d𝜃 = (𝜎 + 𝜃)∕2 + d̄ − |Bqq|Q,

(46)𝜃 = 2(|Bqq| + Dqq)(Q − q̄) − 𝜎.

(47)4𝜎(1 − 𝛽)(𝜃 + d̄ − |Bqq|Q) = 𝛽(𝜎 − 𝜃)2.

𝜑(Q) ∶= a2(Q − q̄)2 + a1(Q − q̄) + a0 = 0,

a2 =�(|Bqq| + Dqq)
2,

a1 = − (2Dqq + (1 + �)|Bqq|)�,

a0 = (𝜎 − (1 − 𝛽)d̄)𝜎

Qmin = q̄ −
a1

2a2
= q̄ +

𝜎

|Bqq| + Dqq

+
(1 − 𝛽)(|Bqq| + 2Dqq)

2𝛽(|Bqq| + Dqq)
2

,



453A Cap‑and‑Trade Commitment Policy with Allowance Banking﻿	

1 3

Comparative Statics

The optimal solution is uniquely determined by the level parameter of the marginal damages, 
d̄ , the slope parameters of the marginal damage and benefit lines, Dqq and |Bqq| , the dispersion 
of the random marginal benefit shocks, � , and by the discount factor �.

The comparative statics results can be directly derived from the results in the preceding 
sub-section. However, it proves useful to define an auxiliary function that gives the price level 
associated with the cut-off shock realization 𝜃 that also satisfies the planner’s first-order condi-
tion (46). This “price floor” function is defined as:

where 𝜃(Q) is obtained from (46). With the optimal cap, p(Q∗) = �� holds.
The effect of the dispersion parameter on the optimal cap is directly obtained as:

Using Eq. (48), a short manipulation leads to

The positive sign follows directly from the fact that the maximum price realization Bq(Q, 𝜃̄) 
is bound to be higher than the expected value, as long as 𝜎 > 0 and 𝛽 < 1 . Thus, the opti-
mal cap increases with increasing dispersion.

By direct calculation we can similarly derive the effect of the discount factor on the 
optimal cap:

The last term is positive since it is the expected marginal benefit at qt = Q∗ , which is 
greater than or equal to 𝛽𝜇 > 0.

The level variables: The effect of the emission baseline, q̄ , is directly

The effect of damage baseline, d̄ , is

The cap is decreasing in both of the slope parameters |Bqq| and Dqq:

(48)p(Q) ∶= Bq(Q;𝜃(Q)) = −𝜎 + d̄ + (|Bqq| + 2Dqq)(Q − q̄),

𝜕Q

𝜕𝜎
=

(2Dqq + (1 + 𝛽)|Bqq|)(Q∗ − q̄) − 2𝜎 + (1 − 𝛽)d̄

𝜑Q(Q
∗)

.

𝜕Q

𝜕𝜎
=

𝛽[Bq(Q
∗, 𝜃̄) − 𝜇] + (1 − 𝛽)𝜎

|𝜑Q(Q
∗)|

> 0.

𝜕Q

𝜕𝛽
=

(|Bqq| + Dqq)
2(Q∗ − q̄)2 + [d̄ − |Bqq|(Q∗ − q̄)]𝜎

|𝜑Q(Q
∗)|

> 0.

𝜕Q

𝜕q̄
=

𝜑Q(Q
∗)

𝜑Q(Q
∗)

= 1.

𝜕Q

𝜕d̄
= −

(1 − 𝛽)𝜎

|𝜑Q(Q
∗)|

< 0.
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In both cases, we have used the function (43) and the facts that P(𝜃) ∈ (0, 1) and Q∗ > q̄.
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