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Abstract
We examine Nigerian preferences for the mitigation of negative impacts associated with oil 
and gas production using a discrete choice experiment. We analyse the data using a Bayes-
ian ‘infinite mixtures’ model, which given its flexibility can approximate an array of exist-
ing model specifications including the mixed logit and finite mixture specifications. The 
application of this model to our data suggest multimodality in the marginal willingness to 
pay distributions associated with mitigation policy characteristics. Individuals are willing 
to pay for mitigation of negative impacts, but are not necessarily willing to trade-off very 
large increases in unemployment or poverty to achieve these benefits.

Keywords Discrete choice experiment · Bayesian infinite mixture · Dirichlet process · 
Nigeria

JEL Classification O13 · Q34 · C11

1 Introduction

Nigeria is a large producer and exporter of crude oil, historically the largest in Africa (BP 
2015). The oil and gas (O&G) industry contributes over 60% of the country’s national 
budgetary revenue, 15% of GDP and 95% of foreign exchange earnings through crude oil 
exports (NBS 2012). Crude oil was first discovered in Nigeria in 1956 in Bayelsa State 
in the core Niger Delta region by Shell Darcy, now known as the Shell Petroleum Devel-
opment Company of Nigeria. This discovery had a significant impact on the economy of 
the region which traditionally has been dependent on the natural environment, with farm-
ing, forestry and fishing being the major economic activities. However, the region has 
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experienced numerous negative externalities as a result of the activities of the O&G indus-
try including soil and water pollution which have lead to habitat and biodiversity loss esti-
mated to be as high as US$11,000 per household (Adekola et al. 2015). These externalities 
have impacted the livelihoods of local communities through losses in production from fish-
ing, farming and forestry (Idemudia 2010) leading to poverty, unemployment and outward 
migration. There is also conflict with attacks on oil transport pipelines, violent protests, 
attacks on oil installations and kidnapping of oil workers, with insecurity in the region an 
international concern (Omofonmwan and Odia 2009). It is estimated that between 2000 
and 2010 the Nigerian Federal government lost in excess of 170 billion Naria due to such 
conflicts (Anifowose et al. 2012).1

In response, the Nigerian Federal government has enacted various environmental laws 
and attempted to regulate the operations of the O&G sector so as to reduce the negative 
consequences of their activities (Idemudia 2010). In addition, the O&G sector has also 
adopted measures to minimise negative environmental externalities and socio-economic 
problems associated with O&G production, including the payment of compensation to 
affected individuals and communities, and recognising corporate responsibilities (Idemu-
dia 2014). However, despite these efforts, the Niger Delta region remains vulnerable to 
O&G related environmental problems and associated economic hardship.

Using the Nigerian O&G sector as a case study, we make two contributions to the valu-
ation literature.

First, we examine the potential opportunity costs and benefits associated with O&G 
activity with a view to highlighting potential priorities in order to inform policy formula-
tion and regulation. Although the activities of the O&G sector impact local communities 
regarding the environment there are associated benefits in terms of employment and pov-
erty reduction that need to be taken account of in developing appropriate policy responses. 
Currently, it is unclear if benefits for maintaining employment and minimising poverty are 
greater than or less than the costs associated with reducing environmental externalities. To 
start to address these important policy trade-offs, we employed a Discrete Choice Experi-
ment (DCE) in the Niger Delta region of Nigeria. To date, virtually no stated preference 
research on this issue or any other environmental issue has been conducted in Nigeria, with 
the only exception being Urama and Hodge (2006) who undertook a contingent valuation 
study to examine farmers’ attitudes and willingness to pay (WTP) for a river basin manage-
ment scheme.2

In undertaking this DCE, the set of attributes employed take account of societal trade-
offs such as job creation (e.g. Colombo et  al. 2005; Longo et  al. 2008; Kosenius and 
Ollikainen 2013). Given the importance of the O&G sector, we considered it important to 
ask respondents not only to think about attributes that have private costs and benefits, but 
also attributes that have strong social consequences, including unemployment and poverty. 
In doing this, we recognise that the role of altruism and its place in valuation has raised 
a series of issues (e.g. Haab et al. 2013; Zhang et al. 2013). A strand of the literature has 
investigated the appropriateness of allowing respondents to consider welfare effects on the 
rest of society, distinguished between types of altruism, and even argued that some forms 
of altruism have no place in valuation (e.g. McConnell 1998; Flores 2002; Jacobsson et al. 
2007). Our position is that it is legitimate (and desirable) to include attributes with social 

1 The current exchange rate is £1 = N304.48.
2 The absence of non-market monetary values for Nigeria and the Niger Delta in particular is noted by 
Adekola et al. (2015) in relation to global efforts to value ecosystems such as wetlands.
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benefits within this DCE. Indeed, most stated preference studies for non-market environ-
mental goods and services require trade-offs between attributes that respondents will rec-
ognise to have an immediate or direct on themselves but also an impact on others. To the 
extent that respondents value outcomes that benefit or hurt others, this will be reflected in 
their marginal utilities (albeit it may not be possible to decompose the sources of utility). 
On a theoretical level this creates difficulties in the decomposition between what consti-
tutes private or social preferences, but it does not ultimately place restrictions on peoples 
ability to value changes in attributes. Putting theoretical objections aside, excluding attrib-
utes with social consequences from an experiment requires the assumption that respond-
ents either do not care about these attributes, or can and do hold these attributes constant 
when considering changes in the attributes that are included. In many cases, this will be in 
sharp conflict with what they would expect to happen in reality. Consequently, respondents 
will tend to factor this in when making their choices, and attempts to enforce unrealistic 
ceteris paribus assumptions are likely to induce dissonance in the minds of respondents 
when making their choice.

Our second contribution is to the bring to the attention of DCE researchers an alterna-
tive way to model respondent preference heterogeneity. We employ a Bayesian ‘infinite 
mixtures’ Logit (BIML) to estimate the preference parameters of respondents. To date the 
majority of the DCE applications in the literature model respondent heterogeneity of pref-
erences by using what has been termed the ‘Mixed Logit’ (ML) (Hensher and Greene 2003; 
Fiebig et al. 2010), also referred to, within Bayesian circles, as the Hierachical Bayesian 
Logit (HBL) (e.g., Balcombe et al. 2016). This approach models preference parameters as 
continuous preference distributions (e.g., normal or log normal). Alternatively, researchers 
employ latent class models (LCM) using Classical terminology (e.g., Greene and Hensher 
2003) which in a Bayesian setting is implemented using Finite Mixtures (FM). However, 
there are limitations with both approaches. For example, the ML (HBL) approach struggles 
to cope with circumstances where respondents fall into distinct groupings or the appro-
priate choice of distribution with which to model preference heterogeneity. At the same 
time, the key limitation of the LCM (FM) model is that it struggles to identify the correct 
number of mixtures (i.e., classes) and may be very poor at characterising cases when there 
are continuous preference distributions. While on one hand researchers have a multitude of 
model performance criteria available to them, they often conflict and very little is in fact 
known about how well these criteria can discriminate between these models (in finite sam-
ples). There is therefore little consensus as to precisely which criteria should be employed 
for model selection, nor consensus about which model should be seen as the leading candi-
ate model.

The BIML potentially provides the means by which to overcome the limitations of both 
approaches by introducing a greater degree of flexibility with regard to capturing prefer-
ence heterogeneity. Unlike the HBL, it is not necessary ex-ante to select random parameter 
distributions because the BIML estimates these non-parametrically. In addition, the use of 
the term ‘infinite’ indicates that this model does not require the number of mixtures to be 
set ex-ante (nor ex-post). The BIML is only ‘infinite’ in the sense that there is no upper 
bound on the number of mixtures allowed given infinite data. While a finite sample implies 
that the number of sample mixtures will be finite, the number may be much larger than 
typically observed in models reported in the literature. But, just as importantly, the BIML 
does not seek to select a number of mixtures upon which parameter estimation and infer-
ence becomes contingent, but instead treats the number of mixtures as a parameter to be 
estimated and the uncertainty about its value is embodied in all parameters of interest.
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The flexibility afforded by the BIML links to a recent strand of the literature follow-
ing Train (2008, 2016) who introduced and developed the logit-mixed logit (LML) model 
specification . The LML has gained traction in the DCE literature because of the flexibility 
associated with how random parameter distributions can be modelled (e.g. Bazzani et al. 
2018; Bansal et al. 2018; Caputo et al. 2018; Bhat and Lavieri 2018). The appeal of the 
LML is that it reduces the need for researchers to make parametric assumptions that may 
not be supported by the underlying data generating process. However, as is evident from 
the applications and extensions of the LML there remain a range of issues when employing 
this approach that warrant more attention.

The BIML provides an alternative Bayesian but related approach to the LML by provid-
ing greater flexibility in modelling DCE data. Importantly, in this paper we do not claim 
that the BIML is necessarily the best approach to model estimation. If preferences accu-
rately conform to the underlying assumptions of the HBL model or alternatively the LCM 
with a small number of mixtures, then the use of one or the other of these models will be 
optimal. However, what we argue here, is that the BIML is a flexible approach that works 
well where there are small number of classes, or in circumstances where there are a very 
large number of classes or even continuous distributions. It will not be our aim here to 
show that the BIML outperforms either the HBL or LCM model. We do, however, provide 
in “Appendix 1”, a simulation study that illustrates how the BIML performs when data 
generating processes are varied and would by design favour other model specifications. 
In addition, we compare our BIML results with those from an HBL and FM models for 
our data, and in doing so illustrate to DCE researchers that this approach is worth further 
investigation.

We proceed by outlining the econometric specification in Sect. 2. In Sect. 3, we discuss 
the DCE design, survey, sampling procedure and summarise the sample. Then in Sect. 4, 
we discuss our choice of model priors, explaining how they impact model performance. 
Next, we present the results of the BIML along with a discussion in relation to the DCE 
and in Sect. 6, we conclude.

2  The Econometric Specification

2.1  The Dirichlet Process and Discrete Choice

Within the BIML, individual preference parameters are formed from a mixture of distribu-
tions. The estimates for a given individual are constructed as a weighted sum of the dis-
tributions that compose the mixture, where the weights are the probabilities that a person 
belongs to a particular ‘class’. The BIML derives from a Dirichlet Process (DP) prior on 
the number of mixtures.3 The nature of the DP is sometimes described either in terms of 
the ‘Polya Urn’ or ‘Chinese restaurant process’. These analogies usefully convey the way in 
which individuals are allocated to groups, whereby the larger the population of a group, the 
larger the probability that a given individual will be allocated (or reallocated) to that group. 
In effect, the DP acts as a prior towards shrinking the number of classes (mixtures), unless 
a larger number of classes (mixtures) is supported by the data.

3 Models using DP priors have been given alternative names including Mixture of Dirichlet Process (or 
MDP) models.
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A general description of DP and its relationship with the Dirichlet distribution are 
described in Frigyik et al. (2010) with other useful discussions in McAuliffe et al. (2006) 
and Walker et al. (2007). In addition, there have been earlier applications of the DP within 
the economics literature; see Burda et al. (2008), Daziano (2013), Jin and Maheu (2016) 
and Bauwens et al. (2015). Here we give an outline of this approach in the context of a 
discrete choice framework.

As standard for a DCE, the utility Uijs of the jth respondent for the ith option in the sth 
choice set (i.e. the set of options offered to respondent j) can be expressed as follows:

where xijs is a ( K × 1 ) vector of known attributes, and �j is a vector of parameters character-
ising individual preferences. Commonly, it is assumed that u

(
xijs, �j

)
= x�

ijs
�j , but this need 

not be the case. The assumption of a Gumbel (extreme value) error eijs that is independent 
across, i, j and s implies that the probability of choosing option i (i.e. yielding maximum 
utility) for the jth person from the sth choice set is:

Within this general model structure preference heterogeneity can be treated in a number of 
ways. If employing the HBL approach researchers commonly assume that �j ∼ N(�,Ω) 
(i.e., a prior distribution is assigned to the latent parameters �j) such that the closer the pos-
terior distribution is to a normal distribution, the better a model performs. In contrast, with 
the FM formulation, �j are assumed to be a finite set of classes. It then follows that there 
are a finite set 

{
�
m

}M

m=1
 of vectors such that for each individual there is a class cj = m such 

that �j = �cj.
The model we explore here does not differ from these models in terms of the way that 

utility is treated as a linear combination of attributes with Gumbel error. It differs only in 
the way that it treats the heterogeneity in �j. As is standard across all of these approaches, 
we define:

and assume that this represents the choices made by individuals. However, when estimat-
ing the BIML, each individual in the sample is allocated to a class (mixture) according to a 
probability measure of belonging to each class at each iteration of the estimation process. 
The parameters which characterise each grouping are then drawn contingent on that group-
ing. All respondents are then reallocated membership of a class in the next iteration of 
estimation and the process continues iteratively. The main difference between the BIML 
and the FM is that any individual can be allocated to new classes which previously did 
not exist, and classes which hold no membership are ‘forgotten’. Therefore, the number of 
classes with a non-zero membership can increase or decrease throughout estimation where 
the number of classes is strictly limited to the number of individuals in the sample.

(1)

Uijs = u
(
xijs, �j

)
+ eijs

for

i = 1,… ,N

j =1,… , J

s =1,… , S

(2)pijs
�
�j
�
=

eu(xijs,�j)∑
i e

u(xijs,�j)

(3)yijs = 1 if Uijs = Max
(
U1js,… ,UN,j,s

)
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To show the main difference between the BIML and FM, we first introduce a Bayesian 
FM logit model with M classes using the definitions introduced:

where �m are the probabilities of falling into class m, G0 is some prior distribution for the 
parameters (frequently normal) and � is a hyperparameter, that determines the ‘concentra-
tion’ of classes. The main limitation of this model is that it requires the pre-selection of 
M, the number of classes. However, within the Bayesian literature, a way to determine the 
number of classes endogenously within the estimation process, is by using a DP model (as 
distinct to a Dirichlet distribution which is finite).

The DP model is a generalisation of the FM model such that the number of potential 
classes can be infinite (i.e. M → ∞) in principle. In practice, there will always be a finite 
number of classes where the number of classes is generated within a Monte Carlo Markov 
Chain (MCMC) algorithm (this number will change stochastically). The DP model with a 
Gumbel distribution for the error and for individual j′s responses 

{
yijs

}
i,s

 denoted Yj is:

where DP
(
G0, �

)
 represents a DP with base distribution G0 and concentration parameter 

�. While G0 can be continuous, G is a discrete distribution. Under the DP, the prior prob-
ability that an individual falls within a particular class becomes conditional on the number 
of members already falling within that class. Econometrically, increases in � will act to 
increase the number of classes. In principle, � can be set to a particular value for a given 
data set. In our model specification it is estimated using the hierachical priors following 
Escobar and West (1995).

2.2  BIML Estimation

The approach we take to model estimation is to employ an MCMC algorithm outlined 
by Neal (2000).4 Specifically, we implement a Metropolis Hastings (MH) algorithm with 
additional steps in the algorithm allocating individuals to classes. It is during these steps in 

(4)

yijs|cj,
{
�m

}
∼ pijs

(
�cj

)

cj|
{
�m

}
,C ∼Discrete

(
�1,… ,�M

)

�m ∼G0(
�1,… ,�M

)
∼Dirichlet

(
�

M
,… ,

�

M

)

(5)

Yj|�cj ∼ f
(
Yj|�cj

)
=

S∏
s=1

N∏
i=1

(
pijs

(
�cj

))yijs

�cj |G ∼G

G ∼DP
(
G0, �

)

� ∼Gamma(z, v)

4 Other authors such as Burda et al. (2008) have also used the algorithms described by Neal (2000).
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the algorithm that a class can be introduced or eliminated, and this process will continue 
until the model converges.

Our algorithm works as follows. At a given point in the MCMC we define {m}M
m=1

 as the 
set of non-empty classes, that is classes with at least one individual allocated to each class. 
We also have 

{
�m

}M

m=1
 and 

{
cj
}J

j=1
 as defined already. Next, we define nm to be the number 

of individuals allocated to class m and n−j,m the number of individuals allocated class m 
having excluded the jth individual. Following Neal (2000), we then define the proposed 
distribution for new classes following an iteration of the MCMC algorithm for each indi-
vidual as follows:

In Eq. (6) the top probability is that which is proposed such that at the next iteration the jth 
individual is allocated to an existing class. In contrast, the lower probability in Eq. (6) is 
that which applies if individual j is proposed to be in a class that does not currently exist. A 
summary of the the algorithm used for updating classes is as follows:

Step 1 for j = 1,… , J draw candidate c∗
j
= m∗ from the proposal distribution shown in 

Eq. (6);
Step 2 if c∗

j
 is not from an existing class then draw �∗ from G0, otherwise �∗ = �m∗;

Step 3 accept cj=c∗j  with probability [with f
(
Yj|�c∗

j

)
defined in (5)] 

Step 4 redefine {m}M
m=1

 , 
{
�m

}M

m=1
 , and 

{
cj
}J

j=1
 if necessary (that is add new non-empty 

classes and eliminate empty ones).

This algorithm sits within a MH algorithm for which values of 
{
�m

}M

m=1
 are updated con-

ditional on the existing number of classes. We initiate this process at an arbitrary starting 
point and then it is repeated for t = 1, 2,… , T + T0 , with the first T0 points being the ‘burn 
in’ phase.

At each iteration t (that is after completing the assignment of individuals to classes and 
the draw of the parameters associated with those parameters) there is a draw of � from its 
posterior distribution which is a function of the hyper parameters (z and v) in the prior for � 
along with its current values, the number of classes (M) and number of observations which 
in this case are the number of respondents (J ). How to draw the posterior distribution for 
� is outlined in Escobar and West (1995), whereby the following steps need to be taken5:

(6)
Pr ob

(
c∗
j
= m∗|m∗ ∈ {m}M

m=1

)
=

n−j,m∗

J − 1 + �

Pr ob
(
c∗
j
= m∗|m∗ ∉ {m}M

m=1

)
=

�

J − 1 + �

u = max

⎛
⎜⎜⎜⎝
1,

f
�
Yj��c∗

j

�
G0

�
�c∗

j

�

f
�
Yj��cj

�
G0

�
�cj

�
⎞
⎟⎟⎟⎠
; and

5 For details behind these derivations see Escobar and West, in particular page 585.
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Step 1 Draw � ∼ Beta(� + 1, J) and calculate b = (z +M − 1)∕(n(v − ln(�))) , and 
� =

b

1+b
 ; and

Step 2 Draw � = �y1+ (1 − �)y2 where y1 ∼ Gamma(z +M, (v − ln(�)) and 
y2 ∼ Gamma(z +M − 1, v − ln(�)).

At each iteration t,   we can estimate the parameters for each individual by constructing 
the posterior probabilities for class membership under a uniform prior probability that an 
individual belongs to any one of the classes. Next we can define �(t)

j,m
 as the posterior prob-

ability that individual j is in class m at iteration t, such that we can then take the estimate of 
their parameters to be �(t)

j
=
∑M(t)

m=1
�
(t)

j,m
�(t)
m
, and these are then recorded for all individuals 

for t = T0 + 1,… , T + T0. Finally, our parameter estimates are derived for each individual 
and are constructed from the mean or median for this distribution.

2.3  BIML and the Number of Classes

With the BIML the number of classes (or mixtures) needs to be viewed as a random param-
eter within a meta model. As such, we argue that it is reasonably sensible to consider this a 
parameter that should be estimated. However, researchers currently do not have a reliable 
way to estimate this parameter using existing methods. This is because:

1. there are either large numbers of classes to be estimated; and/or
2. there classes with overlapping high density regions; and/or
3. if the parameters in the models are better modelled as a continuous distributions rather 

than a discrete mixture.

Under “idealised” circumstances one can show that a FML or HBL model will do well pro-
vided that a researcher possesses knowledge of the true model, generates large quantities of 
data from that model and then uses the correct model to estimate the data. However, this 
ignores the central issue; in applied research, we do not know the correct number of classes 
a priori.

The classical way of approaching the class/mixture dimension issue [until Train (2016)] 
is most commonly to try and make a singular choice over the number of classes using 
information criteria. In some circumstances information criteria will do well, and in others 
they will do badly, depending on the degree of problems associated with the three points 
noted above. We believe the obvious way around this problem is not to view the central 
problem as being to select the correct or true number of classes, but to adopt an approach 
that recognises that the number of classes is inherently uncertain. Subsequently, we can 
ex-post take a mean or a median as a measure of the number of classes, but unlike the 
finite approach we do not assume necessarily that there is an optimal number of classes. 
Furthermore, if the underlying parameter distribution is multivariate normal, there is in 
one sense no “correct” number of classes. Therefore, what must be appreciated is that the 
DP prior approach is a way not only to map the class dimension but to place a distribution 
on the number of classes. Finally, we also observe that the classical instinct would perhaps 
be to go further and insist that estimation should then be restricted to the modal number of 
classes. However, the Bayesian response would be that this is simply restricting inference 
about parameters to a subspace of the posterior without any particularly good reason. For 
this reason the parameter estimates that are reported are a weighted average of the modal 
number of classes for the model once it has converged.
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3  DCE Survey Design and Data Collection

3.1  The Study Area

The Niger Delta region consists of nine states yielding the bulk of O&G produced in 
Nigeria. Within the Niger Delta, we focussed on three oil producing states: Akwa Ibom, 
Bayelsa and Rivers. These states are varied in terms of their economic situation as captured 
by key economic measures reported for 2011/12. Akwa Ibom is ranked 8th out of 36 states 
in terms of GDP, it is the largest state by O&G production, unemployment stands at 18.4%, 
and it has a population of 4,625,100. Bayelsa is ranked 26th out of 36 states in terms of 
GDP, unemployment stands at 23.9%, and it has a population of 1,970,500. Finally, Rivers 
is ranked 2nd out of 36 states in terms of GDP mainly due to the presence of Port Harcourt 
and its importance to the O&G sector, unemployment stands at 25.5%, and it has a popula-
tion of 6,162,100.

3.2  DCE Development

3.2.1  Focus Groups and In Depth Interviews

The development of the DCE began with a series of semi-structured focus groups which 
were qualitatively analysed in order to understand public perceptions of the impacts of the 
O&G industry in the study area. The purpose of this analysis was in part to identify and 
describe the main concerns regarding the O&G industry by different groups in the region, 
but also to inform the selection of attributes for the DCE. We undertook three focus groups 
between March and April, 2013, with one each of the three states selected. In total 31 par-
ticipants (20 male and 11 female) with different backgrounds from communities and Local 
Government Areas (LGAs) across the three states participated in the sessions.

In addition to the focus groups, in depth interviews were conducted with 10 environ-
mentalists and 10 O&G industry workers.

Both the focus groups and the in depth interviews began with a teaser question:
“If you have 1 million Naira as a gift from a friend, what comes into your mind first?”
The purpose of the teaser question was simply to create an interactive atmosphere before 

the main discussion started. The first question used to structure the discussion of the focus 
groups and in depth interviews was as follows:

“How does the oil and gas industry positively impact on people’s livelihood in your 
area?”

To understand the responses provided, we employed content analysis so as to identify 
themes which could be linked to outside variables such as the role of participant (Ritchie 
and Lewis 2011). Two main themes regarding participants’ concerns about the operations 
of the O&G industry were identified. These were:

1. the socio-economic impacts of the gas and oil industry; and
2. the environmental impacts associated to the O&G industry activities.

A number of sub-themes were also identified and concerns did vary according to respond-
ent type. However, the most important theme that emerged was that the majority of 
respondents view the activities of the O&G industry to be in competition with the local 
communities regarding the environment. Thus, although we might consider the benefits 
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associated with O&G industry activity in terms of employment and poverty reduction to be 
important, this cannot be taken for granted from the point of view of public perception. In 
the words of one focus group participant;

“oil companies have continuously destroyed the major sources of income of people, 
mainly land, forest and rivers which has brought poverty to the people, and have affected 
the living standards of people in the rural communities”.

This type of statement which emphasised the economic and environmental impact of the 
O&G industry was frequently repeated. Thus, there is an understanding of the trade-offs 
involved with having O&G sector operating in the Niger Delta.

Unsurprisingly, environmentalists’ major concerns regarding the O&G industry relate 
to the environmental impact. This group was less concerned with economic losses for the 
O&G industry even if they are the result of vandalism and sabotage. Nor did environmen-
talists emphasise the concerns of the focus group members in relation to the O&G indus-
try and the negative impacts on rural livelihoods. Rather, the environmental impacts were 
viewed by environmentalists to be independent of the impact on peoples livelihoods. In 
contrast, the O&G workers did not acknowledge the problems facing the wider community 
associated with the extraction of O&G. While this does not indicate that they are unaware 
of public concerns, they were very much secondary to the problems they face as a result 
of working in the industry, or their personal and economic security. Also, the focus group 
participants and environmentalists seemed dispassionate about issues of most concern to 
O&G workers such as kidnapping, militancy, vandalism and oil theft.

Overall the varying concerns of the groups consulted, as well as their different attitudes 
towards the O&G industry and associated impacts, brought into focus the important trade-
offs that needed to be considered when devising the DCE.

Finally, another important discussion that took place during the focus group research 
and the in-depth interviews was whether or not we should employ a willingness-to-accept 
(WTA) question in the DCE or a WTP question. If we assume that environmental policy 
should be based upon the implementation of the polluter pays principle then a WTA ques-
tion based on potential compensation for damages inflicted would be the appropriate way 
to frame the DCE question. However, it transpired during the focus groups that in general 
respondents did not consider it unreasonable that they could or should pay for mitigating 
the negative impacts of O&G. One way to explain this result is that because the public have 
been subject to environmental degradation for so long, the O&G industry has obtained an 
implicit property right to pollute because the reference point of society is based upon the 
historical existence of polluting activities. Thus, we framed the DCE question in terms of 
WTP.

3.2.2  DCE Attributes

Our DCE is designed primarily to estimate respondents WTP for alternative forms of miti-
gation activity targeted towards reducing the negative impacts of the O&G sector in the 
Niger Delta region.

Before we arrived at the final form of the DCE a trial version of the survey was imple-
mented as a pilot study. This was done in two phases in the study area. The first phase of 
the pilot survey was carried out using convenience sampling. A total of 58 questionnaires 
were completed and used for the preliminary analysis. After adjustment, a second pilot sur-
vey was carried out to pre-test the refined questionnaire. This involved 15 participants, with 
five participants from each of the three states.
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Based on the preceding research (qualitative and quantitative) the final version of the 
DCE contained eight attributes. These eight attributes are listed in Table 1.

As is shown in Table 1, we have set base levels for all of the attributes. This means that 
the DCE will consider policy changes from the current status quo. In order to place the set 
of attributes in context we provided all survey participants with a detailed description of 
the attributes that was considered before each interview was completed.

The way we described each attribute used in the DCE is as follows.
Tax: This attribute is defined to be the monthly increase in Nigerian Naira identified as 

credible and meaningful from the qualitative analysis. Within the final version of the DCE 
the Tax attribute was framed as follows:

“The Federal Government of Nigeria intends to formulate a policy to regulate the opera-
tions of the oil and gas industry. This policy will ensure reduction in environmental haz-
ards and economic hardship caused by the industry in the Niger Delta region. As a result 
of this policy, the oil and gas companies will be compelled to implement changes that will 
mitigate environmental hazards, and promote improvement in environmental quality and 
human livelihood. It is expected that the companies will incur additional costs that will 
affect their revenue and the amount of tax normally paid to the government by the compa-
nies. Hence, the government intends to impose a tax on every individual living within the 
region including you.

The tax will be collected by a special task force/Committee on environmental protection 
which will be made up of selected members of the oil producing communities. This task 
force will ensure proper implementation of government policies and compliance by the oil 
and gas companies.”

In framing the Tax attribute in this way we avoid issues associated with recycling of 
revenue collected by the Nigerian Federal Government back to the states.

Land occupied by oil and gas pipelines (km) Number of kilometres of the O&G industry 
pipeline infrastructure within the Niger Delta. The baseline level was established by draw-
ing on data provided by Akpoghomeh and Badejo (2006) and UNDP (2006). The impact of 
pipeline construction on forest fragmentation and associated biodiversity loss is examined 
in detail by Agbagwa and Ndukwu (2014).

Unemployment rate in Nigeria (%) The baseline level was established with reference to 
NBS (2012). Many of those individuals’ classified as unemployed might be more appropri-
ately defined as being under-employed (NBS 2015).

Table 1  Choice experiment attributes

km kilometers, p/a per annum
aIndicates percentage change from base level

Attribute (units) Name Base level Levels

Tax (Monthly increase in Nigerian Naira) TAX 0 0, 100, 200, 300, 400, 500
Land occupied by oil and gas pipelines (km) LANDOCC 4500 km 0, 10, 20, 30, 40, 50a

Unemployment rate in Nigeria (%) UNEMP 20% 20, 25, 30, 35
Number of oil spills SPILL 320 0, 10, 20, 30, 40, 50, 60*
Amount of gas flared (Billion cubic feet/day) FLARE 2.5 0, 5, 10, 15, 20, 25a

Population below the poverty line (%) POVERTY 63% 63, 65, 68, 70, 75
Food safety (items contaminated) (%) (p/a) FOODSAF 10% 1, 2, 3, 5, 7, 10
Number of pipeline explosions (p/a) EXPLO 15 2, 5, 7, 9, 11, 15
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Number of oil spills per annum The baseline level was set with reference to the num-
ber of oil spill cases in the Niger Delta in 2007 (Shell Petroleum Development Company 
2012). There is extensive discussion about the nature of environmental damage caused by 
oil spills resulting from sabotage as well as normal operations (see Anifowose et al. 2012).

Amount of gas flared (1000 standard cubic feet (SCF) per day)Anejionu et al. (2015) 
provides an extensive review of the environmental consequences of flaring from the O&G 
industry. The extent of SCF per day as a baseline level was estimated to be 2.5 SCF per day 
drawing on data reported by Omiyi (2001).

Population below the poverty line (%) The baseline level was taken from UNDP (2013). 
There are regional differences in poverty levels reported in Nigeria with 69% reported for 
rural areas and 51% for urban areas (NBS 2012). Although levels of poverty have declined 
in Nigeria the level of economic growth observed since 2000 has not resulted in the reduc-
tions in poverty that would be expected.

Food safety (items contaminated (% per annum)) There is scientific evidence linking 
O&G activities with food safety issues reported in UNDP (2006). Thus, we set the base 
level at a value above zero informed by the literature and examined reductions from the 
baseline level.

Number of pipeline explosions (per annum) Pipeline explosions serve as an indicator of 
poor infrastructure management as well as social unrest (Akpoghomeh and Badejo 2006). 
The annual number of pipeline explosions vary, as do the number of associated deaths 
(Anejionu et al. 2015). No specific data recording the number of explosions exists, there-
fore we took the expected values of focus group respondents to form a baseline value.

3.2.3  Choice Set Design

Given the set of attributes and their associated levels, it was decided to provide three 
options. The first option in all choice sets was a status quo option. The levels selected for 
the status quo reflected the information collected during the design stage of the DCE. The 
two remaining options, both unlabeled, represented a change from the status quo.6 We then 

Table 2  Example choice card

Attributes Base level Alternative options

Option A Option B Option C

Tax (monthly increase in Naira) 0 N400/month N100/month
Land occupied by oil and gas pipelines (km) 4500 km 10% reduction 20% reduction
Unemployment rate in Nigeria (%) 20% 30% 35%
Land and water pollution from oil spills 320 60% reduction 50% reduction
Amount of gas flared (billion cubic feet/day) 2.5 15% reduction 10% reduction
Population below the poverty line (%) 63% 68% 70%
Food safety (items contaminated p/a) (%) 10% 2% 1%
Number of pipeline explosions p/a 15 9 11
I would choose [tick one box only] [ ] [ ] [ ]

6 Each choice card also offered a “don’t know option. In total only 30 respondents out of 446 answered 
“don’t know” for one out of eight choice cards, with only two people answering don’t know to two out of 
eight choice cards (34 responses out of 3568 or 0.94% of responses). Given the very low rate of don’t know 
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employed an efficient design assuming a multinomial logit utility specification employing 
D-error as the measure of selection (Scarpa and Rose 2008). We assumed null priors on 
our model coefficients. To ensure respondent engagement with the DCE we blocked the 32 
choice sets into four groups such that each respondent was asked to complete eight choice 
sets. The survey questionnaire also contained supplementary questions about the demo-
graphics of the respondent as well as debriefing questions. An example of a choice card is 
presented in Table 2.

3.3  DCE Sample

We aimed to get at least 450 respondents with approximately even numbers in each of the 
three state. Approximately, 150 respondents were sampled from each of the three states. 
Within the three states 15 oil producing communities were selected for the study, from five 
LGA in each of the states:

• Akwa Ibom State Edo (Esit Eket LGA), Iko (Eastern Obolo LGA), Mkpanak (Ibeno 
LGA), Unyenge (Mbo LGA), Ukpene Ekang (Ibeno LGA).

• Bayelsa State Odi (Kolokuma-Opokuma LGA), Imiringi (Ogbia LGA), Etiama (Nembe 
LGA), Okotiama-Gbarain (Yenagoa LGA), Ogboibiri (Southern Ijaw LGA)

• Rivers State Chokota community (Etche LGA), Igbo-Etche (Etche LGA), Alesa-Eleme 
(Eleme LGA), Obigbo (Oyigbo LGA), Biara (Gokana LGA).

This sampling strategy meant that 30 respondents were selected from each of the 15 com-
munities. We recruited respondents door-to-door using a systematic sampling approach. 
Thus, every third house was contacted after a random starting point between the first and 
tenth house in each community. Not all houses visited agreed to participate in the survey, 
and not all respondents were suitable to participate i.e. all respondents need to be at least 
18 years of age and we also required at least a third of respondents to be female. This was 
because the questionnaire was designed to collect individual responses, not the opinions of 
a household or group. In total 455 respondents were successfully contacted and agreed to 
participate. Once a household agreed to participate, data collection was undertaken face-
to-face with a member of the household by trained field assistants. A total of 446 respond-
ents completed the questionnaire and were used in the subsequent analysis. The descriptive 
statistics of the respondents are provided in Table 3.

In Table  3, it can be seen that the samples are drawn almost equally from the three 
states. However, male participation was more easily obtained. In order to reduce the num-
ber of male respondents, we required, as noted that on average at least every third respond-
ent was female. The impact of this sampling strategy can be see by the percentage of female 
respondents in our sample. However, despite this approach to data collection, our sample 
has more male respondents than would be expected given the gender mix in Nigeria.

If we consider family size, we see that there are some small differences between the 
states. Drawing on available Nigerian Federal Government statistics (NBS 2012, 2015) it 

responses and the fact that the survey included a status quo option we did not include these responses in the 
analysis presented.

Footnote 6 (continued)
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Table 3  Survey respondents 
descriptive statistics

Region Akwa Ibom Bayelsa Rivers Full

Sample size 149 148 149 446
Gender
 Male 100 (67) 94 (64) 96 (64) 290 (65)
 Female 49 (33) 54 (36) 53 (36) 156 (35)

Martial status
 Single 53 (35) 35 (24) 46 (31) 134 (30)
 Married 86 (58) 104 (70) 92 (62) 282 (63)
 Widowed 10 (7) 9 (6) 11 (7) 30 (7)

Education
 Non-formal 23 (15) 19 (13) 22 (15) 64 (14)
 Primary 27 (18) 13 (9) 17 (11) 57 (13)
 Secondary 49 (33) 49 (33) 52 (35) 150 (34)
 Tertiary 50 (34) 67 (45) 58 (39) 175 (39)

Family size
 1–3 63 (42) 57 (39) 66 (44) 186 (42)
 4–6 63 (42) 68 (46) 58 (39) 189 (42)
 7–9 22 (15) 21 (14) 24 (16) 67 (15)
 > 10 1 (1) 2 (1) 1 (1) 4 (1)

Occupation
 Farming 27 (18) 18 (12) 21 (14) 66 (15)
 Civil servant 18 (12) 36(24) 21(14) 75(17)
 O&G 11 (7) 11 (7) 10 (7) 32 (7)
 Other 11 (7) 4 (3) 12 (8) 27 (6)
 Self employed 33 (22) 41 (28) 42 (28) 116 (26)
 Unemployed 10 (7) 19 (13) 21 (14) 50 (11)
 Student 31 (21) 14 (9) 21 (14) 66 (15)
 Fishing 8 (5) 5 (3) 1 (1) 14 (3)

Income (N)
 < 10,000 56 (38) 41 (28) 61 (41) 158 (35)
 10,000–20,000 37 (25) 46 (31) 39 (26) 122 (27)
 21,000–30,000 20 (13) 23 (16) 19 (13) 62 (14)
 31,000–40,000 12 (8) 7 (5) 5 (3) 24 (5)
 41,000–50,000 8 (5) 4 (3) 6 (4) 18 (4)
 51,000–60,000 5 (3) 5 (3) 4 (3) 14 (3)
 61,000–70,000 4 (3) 4 (3) 3 (2) 11 (2)
 >71,000 7 (5) 18 (12) 12 (9) 37 (8)

Age (years)
 Below 20 6 (4) 1 (1) 39 (2) 10 (2)
 20–29 28 (19) 18 (12) 25 (17) 71 (16)
 30–39 35 (23) 54 (36) 37 (25) 126 (28)
 40–49 48 (32) 47 (32) 48 (32) 143 (32)
 50–59 29 (19) 24 (16) 31 (21) 84 (19)
 60 and above 3 (2) 4 (3) 5 (3) 12 (3)
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is reported that average household size in 2009/2010 was 4.2 in Akwa Ibom, 3.7 in Bayelsa 
and 4.5 in Rivers. If we compare these to our sample then we see that we have sampled 
slightly larger households than average in Bayelsa whereas for the other two states we have 
replicated the state level average closely.

Martial status participation also shows some variation between the states. Comparing 
these to official data we find for Akwa Ibom that 47.3% are married and 41.4% never mar-
ried. For Bayelsa we have 70% married compared to 54.4% and those single 24% compared 
to 33.8%. Finally, for Rivers we have 62% married in the sample compared to 49.3% and 
for single we have 31% compared to 43.1% from official data. Thus, in terms of marital sta-
tus we have a slightly higher representation of married individuals than is typical.

In terms of the level of educational attainment of our sample, our respondents are sig-
nificantly more educated than Nigerians on average. For example, only 14.9% of Nigerian’s 
attained post-secondary education 2008 compared to our sample average of 39%.

Finally, comparing our income data to state level information in 2009/2010 for Akwa 
Ibom the NBS (2012) survey reports that 78.8% households have income less than 20,000 
Naria per month. For our sample we have 63% on average with Bayelsa at 59% whereas 
official data reports 61.5%. For Rivers our sample has 67% with official estimates of 56.1%. 
In summary, although our sample do not exactly correspond to the official statistics, our 
sample is broadly representative.

4  Model Priors and the Number of Mixtures

4.1  Model Priors

Before we present our results we explain our choice of priors and the impact on model 
estimates. In particular, we examine how our choice of specific priors influenced the num-
ber of mixtures produced by the BIML. Importantly, for our DCE data, we found some 
substantive differences, although in all important respects, we could have presented the 
results for any of the models considered and drawn the same basic conclusions regarding 
our DCE.

We arrived at our initial set of priors as follows.
First, our selection of G0 was ‘Empirically Bayesian’, in that we estimated a standard 

fixed parameter Logit (FPL) (under non-informative priors) in the first instance. The largest 
(in absolute terms) of the parameters within the fixed parameter model was a value of just 
below six. Since the base distribution should easily encompass the parameters in a fixed 
parameter model, we specified G0 = N

(
0, g0 × I

)
 where we experimented with three values 

for the standard deviations for base distribution: 
√
g0 = (6, 10 and 15). Alterations in the 

base distribution did have a larger effect on the results. This was most evident with the least 
diffuse base distribution standard deviation 

√
g0 = 6, which tended to push the marginal 

utilities towards zero. The effect was less obvious between the more diffuse distributions √
g0 = 10, 15. Importantly, however, while each of the individuals estimates were changed 

in terms of there overall magnitudes, the rankings of marginal utilities for individuals 
remained very similar for each of the attributes, and the WTP estimates even more similar. 
In what follows, we present (mainly) the results for the middle distribution 

√
g0 = 10.

Second, for estimation, we experimented with three sets of hyper parameters for the 
mean and variance for the Gamma distribution for �. The priors on the mean and vari-
ance of the concentration parameters had virtually no effect (at both the individual and 
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average level) at E(�) = 5 with Var(�) = 5 or Var(�) = 20, when comparing between any 
two models with the same base distribution G0. Thus, the more diffuse distribution did 
not have any tendency to increase the number of mixtures that were required to model 
the data. However, when using the more informative prior ( E(�) = 40, Var(�) = 80 ) this 
increased the number of mixtures and there was a moderate change in the individuals’ 
distributions, such that they became more “smooth”, with a greater number of mixtures 
being introduced. Importantly, this did not change the results dramatically with regard 
to the marginal utility estimates for individuals. Thus, the results we present are essen-
tially the same regardless of the settings for the hyper parameters for the concentration 
parameter. Therefore, the model results we present are for the most diffuse prior distri-
bution for � with E(�) = 5 and Var(�) = 20.

4.2  Model Classes

We now consider how the number of classes (or mixtures) are impacted by the choice of 
priors. As explained, new classes are introduced and eliminated as part of the estimation 
process. The number of classes at each of the 10,000 sample points were also recorded. 
We undertook this exercise for our preferred set of priors and the more diffuse set of pri-
ors for the concentration parameter ( � ). The frequency of the number of classes in both 
cases is shown in Fig. 1.

In Figs. 1 and 4a is for the relatively less diffuse prior with mean five, were as Fig. 4b 
is for the more diffuse prior and as such favours less concentration. As can be seen in 
Fig. 4a, the mode is three classes with four and five classes being more common than 
two. At no point during the estimation procedure were all individuals placed in the same 
mixture (which is indicated by the zero frequency of one mixture only), though there is 
no restriction against this happening. However, it should not be surmised on the basis 
of these results that there are three or four distinct groups, since if there is a continuous 
distribution of individual preferences, this will induce multiple mixtures.

Turning to Fig. 4b, when we employ a more diffuse prior we observe an increase in 
the estimated number of classes. For Fig. 4b the mode is five, with seven or eight classes 
also being relatively common, and two extremely rare. Readers might be tempted to 
assume that this will have a substantial impact on the resulting estimates especially 
with to WTP. However, the dependence of this prior turns out far less important than 
one might expect given how the resulting parameter estimates and associated WTP are 
arrived at.

Fig. 1  Frequency of number of classes under different priors
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Finally, neither Fig. 4a, b reveal how different the results within each component are. 
We can, however, reveal this information by examining the resulting marginal utility distri-
butions which can be seen in Fig. 2 which we present in the next section.

5  Empirical Results

In the results presented, we compare the BIML results with the HBL (all parameters being 
specified as normally distributed) and a standard FPL. All models have been estimated 
employing Bayesian methods. The estimation of the HBL is now reasonably standard with 
specific details covered in Train (2003) so we do not repeat this here.

5.1  Model Estimation and Convergence

Our BIML model specification was estimated using the DP algorithm described in Sect. 2. 
To generate the results, we report, we undertook a ‘burn-in’ of 50,000 draws. In this case a 
draw means a complete update of all (re)assignments and parameters having cycled com-
pletely through the individual estimates for each of the respondents. We then undertook a 
further 500,000 draws from which each 50th draw was collected (this is known as thinning 
the sample). The took this approach to reduce the likelihood of serial correlation being an 
issue. This yielded 10,000 draws from which to estimate the mean and variance parameters 
for the posterior. The initial number of classes (m) was set at two, but the sampler rapidly 
changed from this value within a few iterations and the results are independent of this ini-
tialisation. For the HBL models, we also took every 500th draw so as to obtain an accurate 
and relatively uncorrelated mapping of the posterior distribution.

To assess overall model convergence we considered visual plots of the sequence of data 
draw as well as undertaking formal tests for stability of the MCMC estimates. Gelman and 
Rubin (1992) Rhat was applied to two sets of runs initialised randomly at different starting 
points. The Gelman-Rubin Rhat delivered values of less than 1.01 for all parameters, which 
is much less than the recommended maximum value.

Table 4  Means and standard deviations for marginal utilities

�̂� = Mean Marginal Utility, Sd(�) =Standard Deviation of �
�̂� =Standard Deviation of Marginal Utilities (BIML and HBL only)

Attribute BIML HBL FPL

�̂� Sd(�̂�) �̂� Sd(�̂�) �̂� Sd(�̂�) �̂� Sd(�̂�) �̂� Sd(�̂�)

Tax 0.63 0.10 0.86 0.33 0.50 0.03 0.39 0.15 0.39 0.02
Landocc 1.07 0.46 0.70 0.71 1.28 0.30 1.50 1.01 0.79 0.25
Unemp 3.36 0.83 1.16 1.13 4.26 0.72 1.49 1.44 3.73 0.62
Spill 1.11 0.40 0.29 0.61 1.48 0.24 1.35 0.95 1.12 0.19
Flare 0.46 0.56 0.79 0.97 0.11 0.36 0.74 0.69 0.19 0.31
Poverty 4.83 0.92 0.33 0.95 6.93 0.96 1.17 1.37 5.01 0.73
Foodsaf 5.06 1.39 1.03 1.22 6.55 1.53 0.96 1.199 5.68 1.28
Explo 1.38 0.34 0.17 0.57 1.87 0.19 1.67 0.85 1.41 0.13
Statquo − 3.14 0.45 1.32 0.92 − 3.62 0.27 0.57 0.57 − 2.56 0.19
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5.2  Marginal Utility Estimates

Prior to estimation, we made sure that the signs and scales of the attribute variables 
were such that we could more easily check whether the parameter estimates were con-
sistent with our a priori expectations. TAX was, therefore, entered as a negative value 
so that its coefficient would be expected to be positive. The model was parameterised so 
that with regard to the UNEMP, POVERTY, and FOODSAF parameters, the resulting 
coefficients are marginal utilities for a percentage change for these quantities (e.g., the 
value of a 1% shift in unemployment from 21 to 20%). In contrast, the coefficients for 
LANDOCC, SPILL, FLARE, and EXPLO represent the marginal utilities for a percent-
age change relative to the base level (e.g., the value of a 1% fall in Flares from 2.5 bil-
lion cubic feet per day).

Fig. 2  BIML estimates of individuals marginal utility by attribute
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Table 4 presents the mean7 and standard deviation of the individual marginal utilities for 
the BIML in the first two columns. For reference, the estimates for the FPL and HBL are 
given in the columns to the right.

From Table 4, we can see that the estimates of the BIML means are similar to the FPL 
and HBL models. In and of itself, Table 4 is not particularly informative since it gives only 
a partial indication as to the distribution of the marginal utilities. In order to get a better 
sense of the distribution of marginal utilities, we turn to Fig. 2 which has histograms for 
the BIML estimates of individuals marginal utilities.

In the top left hand corner of Fig. 2, we have the marginal utility for the (-)TAX option. 
As can be seen, the mean for this attribute (0.65) reflects a very partial picture. While we 
have a spike just below 0.5, for individuals with relatively small negative utility for TAX 
increases, there is another dispersed distribution for individuals who have a much larger 
negative utility for TAX. This does not necessarily indicate very much about preferences, 
since the differences in marginal utilities may reflect scale effects rather than differential 
propensities to trade-off attributes. However, we can contrast the marginal utilities for 
TAX with the marginal utilities for variables such as EXPLO and FOODSAF which have a 
greater mass of individuals at the upper end of the ranges.

Our general observation is that these distributions are certainly not bell shaped and 
therefore not of the type that are easily captured by normals such as in the case of the HBL. 
For the other two base distributions that we used, the same patterns were observed, except 
that the distributions were more compact for the tighter base distribution (Go) and more 
spread out for the more diffuse base distribution. Thus, commonly employed distributions 
within a HBL specification, such as the log-normal would fail to capture the distributions 
for EXPLO or FOODSAF. Equally, however, there is little sign of bimodality or multimo-
dality in the marginal utility distributions that suggest clear groupings, with the vast major-
ity of individuals clustered close together (around 90% of the sample) with another 10% 
being widely distributed away from this majority point.

5.3  WTP Estimates

The marginal WTP for an attribute is calculated as the marginal utility for the attribute 
divided by the marginal utility of the TAX variable. In running the BIML model, no 

Table 5  WTP estimates from the BIML

Attributes 1% reduction from Mean 95% Median 5%

Landocc 4500 km 2.11 2.30 2.20 1.10
Unemp 20% 8.47 10.13 9.71 0.03
Spill 320 pa 2.49 2.85 2.73 0.69
Flare 2.5 SCF/day 0.70 1.32 0.57 0.45
Poverty 63% 11.36 13.22 12.07 1.65
Foodsaf 10% items contaminated pa 12.44 14.7 14.18 0.72
Explo 15 pa 3.29 3.96 3.74 0.40
Statquo – 6.56 7.48 7.18 2.45

7 Note that a mean of medians or median of median estimates are almost the same.
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explicit inequality constraints were placed on the parameters. Thus, the marginal utility 
distribution for the TAX attribute could have mass close to zero or be negative. Without 
further constraints the first and second moments for the WTPs will not necessarily be finite, 
and the empirical means and variances may be dominated by a few observations where the 
denominator is close to zero, resulting in very high WTPs. Accordingly, we censored the 
marginal utility distributions for each individual so that marginal utilities were accepted 
only if they generated WTPs less than N100 per month for a 1% change in the attributes.8 
These represent weak constraints in the sense that the extreme values exceed any realistic 

Fig. 3  Individual willingness to pay estimates from BIML

8 In principle, we could impose a prior on our model to achieve the same result. However, to do so would 
require we first estimate the model as there is little reason a priori to assume such outcomes. As such it 
makes practical sense to impose this restriction ex post.
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WTP and the distributional mass in these regions was low. Implementing constraints twice 
as stringent or twice as lenient resulted in almost identical WTP distributions.

The results presented in Table 4 are individual’s WTPs for each of the attributes. Spe-
cifically, we give the mean, median, lower and upper percentiles for individual’s WTPs.

As we can discern from Table 5, nearly all individuals have negative WTPs for the sta-
tus quo and positive WTPs for reductions in the “bads” associated with O&G production. 
These estimates represent WTPs for a 1% reduction for each attribute with the exception 
of the status quo. For example, the mean WTP for a 1% reduction in LANDOCC (from 
4.500km) is N2.15 per month, and a 1% decrease in contamination (FOODSAF) to 9% 
(from 10%) is worth on average N12.77 per month. Overall, these results indicate that 
respondents generally believe that some sort of action should be taken for the mitigation of 
negative effects of O&G activity. However, the lower 5% column reported in Table 5 shows 
that the average and median figures obscure the fact that there are a small but substantive 
mass of individuals at the lower end of the distribution who are prepared to pay very little. 
This feature of the results is also demonstrated in Fig. 3.

From Fig. 3, we can see that for seven out of the eight attributes we have a greater mass 
packed around an upper value (or lower value in the case of the STATQUO) with a more 
sparsely packed distribution towards zero. For five attributes there appears to be a small 
amount of bunching around or close to zero. The FLARE attribute is a notable exception 
with the greater mass packed at the lower end of the WTP range.

It is also worth noting the differences in interpretation of UNEMP, POVERTY, and 
FOODSAF coefficients relative to the others. These three are WTPs for changes in total 
percentages rather than as percentages relative to the baseline. Thus, a 1% change in unem-
ployment is equivalent to a 5% increase relative to its baseline level of 20%. Therefore, 
while it is evident that the WTPs in relation to the UNEMP, POVERTY, and FOODSAF 
attributes are large relative to the others, one should not conclude that the WTPs for these 
attributes is unambiguously greater. In addition, it is clear that individuals are willing to 
pay significant amounts to reduce LANDOCC, SPILL and EXPLOSIONS.

Of maybe greater importance is that these results indicate that respondents are not pre-
pared on average to sacrifice 1% higher unemployment or poverty in order for a 1% reduc-
tion in LANDOCC, SPILL and EXPLOSIONS, relative to their baseline levels. This result 
indicates that if the O&G industry is able to contribute to reductions in poverty and unem-
ployment, then our respondents are willing to bear some of the negative environmental 
effects of the O&G industry.

5.4  Distinct Groups

The nature of the plots in Figs. 2 and 3 do not clearly indicate multiple groups. Rather, 
they illustrate that there is a mass of individuals clustered around a common point, with a 
minority distributed away from this to varying degrees, yet not obviously forming an alter-
native cluster. To some, the rather “untidy” plots will hinder a simpler but more popular 
way (albeit imprecise) to report DCE results, which is to report only means and variances. 
However, the plots also reveal that employing a FM approach to analyse the data will fail 
to reveal to the true nature of the “clusters” that may well be important when it comes to 
developing a more thorough understanding of preferences.

One way to sharpen our interpretation is to conduct a cluster analysis on the 
WTP estimates for all eight attributes. A drawback of the Bayesian approach rela-
tive to the classical approach to mixtures is that the Bayesian approach has no natural 
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classification of groups in the sense that each individual is assigned to a particular 
class because the classes themselves can “label switch” and evolve. This is not only an 
issue associated with the infinite mixtures approach but also pertains to the Bayesian 
finite mixtures approach. Our purpose here is not to categorise respondents. However, 
to highlight the bimodal nature of the utilities and estimates we perform a k-means 
cluster approach. If a k-means cluster analysis is then conducted either on WTPs esti-
mates, around 10% of the sample is placed in one group and 90% in the other and the 
cluster means of these two groups tend to be very different. If more than two groups 
are specified then the cluster means of two of the groups tends to be very similar with 
another clearly differentiated from the others.

We present the clustered means for the WTPs for the k-means of the two groups in 
Table 6.

What we observe from Table 6 is that the large cluster has (unsurprisingly) WTP 
estimates that are very close to the overall means. However, those differentiated from 
this cluster have much lower WTPs for all the attributes except for the FLARE attrib-
ute which is still relatively small. Therefore, we have seem to have one large relatively 
homogenous group, with substantial WTPs that contain around 90% of individuals. 
There is another distinct 10% who are behaviorally very different. They appear to have 
very low WTPs for all the attributes.

5.5  In Sample Performance

As stated above, we do not attempt to perform a proper model comparison for the data 
set above. Such an excercise would require a proper comparison of appropriately penal-
ised model criteria requiring either the Bayesian information criteria or Marginalised Like-
lihoods. We did, however, examine the simple predictive performance of the BIML and 
HBL using the average estimates for each of the respondents. The BIML model predicted 
approximately 73% of choices correctly, with the HBL doing slightly better (at approxi-
mately 75%). Naturally, this is not a result that will convince readers that the BIML is 
the superior approach. However, we do not believe the viabilty or lack thereof of a given 
modelling approach should not be judged based on a singular data set. Additionally, we 
would note that using the BIML approach there were a number of individuals that whose 
responses were far better characterised using the BIML approach, and others worse. As 
for the parameters themselves, the BIML tended to have a greater bunching around given 

Table 6  WTP estimates by cluster

Cluster 1 n = 49, Cluster 2 n = 397

Attributes 1% reduction from Mean Cluster 1 Cluster 2

LANDOCC 4500 km 2.11 1.30 2.21
UNEMP 20% 8.47 0.72 9.43
SPILL 320 2.49 0.88 2.69
FLARE 2.5 billion cubic feet/day 0.70 1.01 0.66
POVERTY 63% 11.36 2.70 12.43
FOODSAF 10% items contaminated p/a 12.44 1.74 13.76
EXPLO 15 pa 3.29 0.63 3.62
STATQUO – 6.56 2.74 7.04
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points of predictive accuracy than the HBL approach. Thus we would argue that using this 
crude measure the BIML did about as well as the HBL overall, while giving quite different 
estimates for marginal utilities.

6  Discussion and Conclusions

In this paper, we have presented the results of a DCE undertaken in the Niger Delta region 
of Nigeria in order to better understand peoples WTP for the mitigation of negative impacts 
associated with the O&G industry. The DCE examines respondents’ valuations of environ-
mental goods and food security but also considers changes in poverty and employment. 
It is the first study to use a DCE within this context. To model the data we employed a 
‘Bayesian Infinite Mixtures Logit’ (BIML) approach in order to model heterogeneity in 
preferences. This approach allows for a potentially large number of mixtures, but does not 
require the researcher to fix or decide on the number of mixtures. This approach offers 
a flexible alternative to either a finite mixture approach or the popular ‘Mixed Logit’ or 
‘Hierachical Bayes’ approaches that require well specified continuous distributions.

When applied to our DCE data, the BIML had slightly worse in-sample fit relative to 
the HBL but revealed that there was a tendency towards bimodal WTP distributions with 
most (around 90%) respondents within our sample willing to pay considerable amounts for 
a number of attributes and a minority (around 10%) being prepared to pay very little. The 
distributions which emerged under the BIML approach were quite different to those that 
would be expected under a standard HBL model employing standard distributions (e.g. nor-
mal or log-normal distributions). However, our data here could have been (retrospectively) 
modelled well by a finite mixture model with as few as 3, but possibly as many as 5 classes.

The BIML nests alternative model specifications (FPL, HBL and FM). We emphasise 
that the BIML can do a good job at capturing both continuous distributions and/or a small 
number of classes (mixtures). Currently, researchers tend to employ one of the approaches 
listed above, without any real justification for their specific choice (ex ante or ex post). 
Indeed, the BIML model can be viewed as an alternative to the classical LML introduced 
by Train (2016) and examined in a series of recent papers. Like LML, the BIML does 
provide the researcher with far greater flexibility with regard to how we model heteroge-
neity of preferences. There is no doubt that these new approaches to modelling DCE data 
warrant further attention. However, it should not be assumed that the HBL or FM is no 
longer an appropriate model choice. But, as we have demonstrated with our case study 
(and appendix), the BIML warrants increased use and attention in future research because 
of its ability to capture a wide array of data generating processes that can be incorrectly 
modelled when making standard parametric assumptions in model implemetation.

Turning to the specific policy issues examined by the DCE, while the O&G industry 
provides both employment and wealth, these benefits are not always distributed widely or 
equitably. Interestingly, the Nigerian Federal government allocates state funding on the 
basis of population size not revenue generation (Imobighe 2011). Thus, the wealth cre-
ated by the O&G sector, has not always benefited O&G regions. Accordingly, the Nigerian 
Federal government has passed legislation allowing oil rich states to obtain 13% of the rev-
enues from mineral extraction. But the percentage amount has varied significantly over the 
period of O&G activity, because of political tensions between the northern and southern 
states in Nigeria (Songi 2015).
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Importantly, the public frequently view the O&G industry as a competitor for key 
resources and as a result a contributor to the poor economic and environmental situation 
of many people, rather than a source of wealth and prosperity for all. However, despite this 
context, our DCE results indicate that respondents in the Niger Delta region are willing to 
pay significant amounts to mitigate the ‘bads’ associated with the O&G industry. This is 
because, our respondents also value the benefits that come with higher levels of employ-
ment and poverty reduction. When taken together the results indicate that preferences for 
maintaining employment and minimising poverty are at least as important as reducing 
environmental externalities. Furthermore, the DCE revealed that improvements in food 
safety is the most highly valued attribute which places the importance on meeting the basic 
human needs of society in context. These results are not surprising when we consider that 
some 60% of the Nigerian population are considered to be living in poverty (UNDP 2015).

Our findings might be partly explained with reference to an environmental Kuznets 
curve whereby, in the states we studied, the turning point where economic activity at which 
environmental protection begins to gain greater value compared to economic development 
has yet to be achieved. Therefore, at least as far as the problems considered in this research 
are concerned, policies that attempt to deal with the environmental consequences of O&G 
activity will need to be implemented in such a way that they do not impact O&G contribu-
tions to employment and poverty reduction. That said, our results do reveal that people are 
generally prepared to pay for the mitigation of negative environmental effects. This does 
not imply that the public should pay for mitigation especially if Nigeria is to frame envi-
ronmental policy in terms of the polluter pays principle. However, we did not observe any 
tendency towards widespread refusal to pay for mitigation nor a sense of indignation at the 
prospect. The WTP estimates provided here may give some insights as to which impacts 
should be minimised. However, any policy would need to take account of the relative costs 
of alternative forms of mitigation not considered here.

Finally, the DCE policy scenarios assume that collected tax revenue will go directly to a 
local task force that will use the funds accordingly. As noted, this would be a change in how 
government funding works in Nigeria. Respondents appeared to be comfortable with this 
funding model. The need for alternative ways to manage and share the economic benefits that 
arises as a result of O&G activity suggests the need for greater LGA and local community 
involvement. This research provides evidence that respondents are comfortable with the poten-
tial use of mechanisms such as the foundation, trusts and funds model advocated by Songi 
(2015). The potential for this type of benefit sharing model is a topic for further research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Demonstrating the Flexibility of the Infinite Mixture 
Approach

Introduction

The purpose of this appendix is to demonstrate the flexibility of the BIML. Specifically, we 
demonstrate that the BIML approach has the desirable attribute of being able to deal with 
small and large dimensional mixtures, even when the underlying model has coefficients that 

http://creativecommons.org/licenses/by/4.0/
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come from a continuous distribution. To this end we present a simple monte carlo exercise 
examining relative model performance.

We use two polar data generating procedures, one which is continuous and wholly consist-
ent with a HBL model (in which case the BIML is “mispecified”) and another where there a 
finite mixture (in which case the HBL is “mispecified”). The expectation is that the HBL and 
BIML will outperform the other when the data generating process (DGP) is specified in a way 
that is consistent with these models. However, of more interest is how they perform when used 
to model a data from a DGP that is not wholly consistent with each of the respective models.

A key step in understanding the BIML approach is to appreciate that it is not the cen-
tral goal of this approach to select the mixture dimension. The BIML will be outperformed 
by a finite mixture model using a DGP which is finite, providing the number of mixtures is 
known. Practitioners that use latent class models commonly view the selection of the number 
of classes as a specification issue rather than seeing the number of classes as a parameter to 
be estimated (along with errors classifying the uncertainty around these estimates). By con-
trast, the BIML views the number of classes as a parameter of the model, albeit a discrete 
one. Within the Bayesian setting it has a distribution and the uncertainty about the number of 
classes is quantified within the estimation procedure, and reflected in the distributions of other 
parameters in the model.

Below, we generate two data sets from two distinctly different DGPs. One is a linear discrete 
mixture with three sets of fixed utility coefficients each representing a class, and the other is a 
continuous normally distributed set of utility coefficients, in accordance with the assumptions 
underpinning a standard HBL. These two data sets are then each estimated using the HBL and the 
BIML and the results compared. For the discrete mixture data, we also compare the BIML with 
the results obtained by specifying exactly three classes. We outline this in more detail below.

The Data Generating Processes

The data used herein is generated from the process

where j is the respondent, and x′
ijs

 represents the vector of attributes under the ith option in 
the sth choice set given to the jth respondent (here a draw from a standard normal vector 
of independent components). The vector x′

ijs
 is a one by five vector, thus representing five 

attributes within a discrete choice experiment (DCE). Each error eijs is Gumbel distributed 
independently across i,   j and s. The parameters �j are “marginal utilities” (MUs). As is 
standard in discrete choice models, it is assumed that individuals choose the option (i) with 
the highest utility.

For the demonstration below each respondent makes 10 choices ( s = 1,… , 10 ), where 
each choice set has three options (i = 1, 2, 3 ), and, there are 100 respondents (thus 1000 
choices in total). The two DGPs are identical and are only distinguished by the way the 
vectors �j are generated.

• Case 1 For the continuously distributed preferences we specify: 

Uijs = x�
ijs
�j + eijs

(7)�j ∼N
(
b1, I

)

(8)b1 =(1, 1, 1, 0, 0)
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• Case 2 For the discrete mixtures case �j is randomly selected (with equal probability) 
from one of b1, b2, b3 below: 

Below we will refer to these two distinct cases as the continuous DGPs (Case 1) and dis-
crete (Case 2). For Case 1 we are examining how well the BIML performs when the under-
lying DGP is accurately captured by the HBL (and is inconsistent with any finite mixture). 
For Case 2 we are examining how well the BIML performs without knowledge of the cor-
rect number of mixtures, and how well the HBL performs when the assumption of a con-
tinuous distribution is clearly false. Importantly, readers should realise that while the HBL 
assumes an a priori continuous distribution (e.g. normal), the latent estimates for individu-
als need not conform closely with this distribution.

Estimation Results

Each model is estimated using the HBL and the BIML, using priors that are commonly 
employed within the literature for the HBL (a Standard Normal for the mean and Wishart 
priors for the covariance matrix), and priors as in those within the main body of the paper 
for the BIML.

Distribution for “Mixture Dimension”

We first examine the distribution for the mixtures dimension for the two cases for the 
BIML as shown in Fig. 4. For the graph on the left hand side ,the true number of mixtures 
was three, as specified for the discrete DGP (Case 2 above).

Figure 4 shows the distribution for the number of mixtures (NOMs) which as discussed 
above is a discrete parameter within the BIML model. As can be seen by Fig. 4a (on the 
left hand side), the BIML selects three mixtures (the correct number) approximately 50% 
of the time, but also visits four or five mixtures occasionally, and a higher number of 

(9)

b1 =(1, 1, 1, 0, 0)

b2 =(−1,−1,−1, 0, 0)

b3 =(0, 0, 0, 1, 1)

Fig. 4  Distribution of mixture dimension for BIML
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mixtures more rarely. In this case it never visits less than 3 mixtures. It should be noted that 
one or more of these mixtures may contain very few respondents, often containing only 
single individuals, and only exist for short periods.

By contrast, for the continuous DGP (Case 1 above), Fig. 4b (on the right hand side) 
shows that the number of mixtures generated is very large, the median being 16 or 17. This 
illustrates that the BIML “mimics” the continuous case by selecting a very large number of 
mixtures.

Estimates of Individual Marginal Utilities

Case 1: Normally Distributed MUs (i.e. HBL is the “Correct” Model, BIML is the “Incor-
rect” Model)

We now examine model performance by looking at the individual estimates for respond-
ents. In Fig. 5, we start by plotting each of the estimates of the utility coefficients against 
there true (Monte Carlo generated) values under the first DGP (Case 1 above). In these 
circumstances the HBL (or mixed logit) is bound to give the optimal estimates since it is 
the “correct” model. In Fig. 5. the true values are referred to as beta1, beta2, etc. and are 
on the horizontal axis. The HBL are labelled as betaml1, betaml2 etc., whereas the BIML 
estimates are labelled betamx1, betamx2 etc.

As demonstrated by Fig 5a, while there is a good correlation between the actual mar-
ginal utilities (from a continuous normal distribution) and their estimated values for all five 
attributes using the HBL, these estimates still retain considerable noise (unsurprising given 
that each respondent makes 10 choices). For Fig. 5b when using the BIML we see that, 
from a visual perspective, the estimates look to have a broadly similar relationship with 
their true values as compared with the HBL in Fig. 5a. Indeed, while the BIML is bound 
to be slightly less accurate than the HBL, this is not visually evident for the case in hand. 
However, as reported in Table 7, in each case the R2 between the HBL estimates and the 
true marginal utilities is consistently higher than for the corresponding R2 for the BIML 
and the true values. Thus, the results on one hand confirm the obvious. The HBL will out-
perform the BIML for a correctly specified DGP. On the other hand the BIML seems to do 
surprisingly well for a discrete mixture model.

But, reassuringly, from Fig. 5c, the relationships between the BIML and HBL estimates 
is closer than for each of these with the true estimates (in all cases an R2 for HBL and 
BIML estimates is around 0.9 in all cases). This reflects the fact that the estimates for the 
BIML and HBL reveal the signal from the choices made by respondents, not just the under-
lying values underpinning these choices. Thus, these results demonstrate that when data is 
generated in accordance with the assumptions behind the HBL, the HBL unsurprisingly 
does best. However, the performance of the BIML is not far behind.Case 2: Discretely 
Distributed MUs (i.e. The BIML is the “Correct” Model, HBL is the “Incorrect” Model)

Table 7  R2 for MUs estimates 
continuous case

MU1 MU2 MU3 MU4 MU5

HBL v True 0.56 0.58 0.67 0.58 0.65
BIML v True 0.51 0.51 0.58 0.56 0.55
HBL v BIML 0.94 0.91 0.91 0.89 0.89
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Fig. 5  Normally distributed parameters



839Preferences for Mitigation of the Negative Impacts of the Oil…

1 3

Fig. 6  Three mixtures
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We now turn to the performance of the HBL and BIML for the second DGP outlined in 
Case 2 of Sect. 1.2. Our results are shown in Figs. 6 and 7. The same labelling structure is 
adopted as in Fig. 5.

In the same manner as for Fig. 5, in Fig. 6a the HBL estimates of the individual util-
ity values are compared against the true (as specified above for Case 2) values for each of 
the five parameters. As is evident from Fig. 6a, the HBL is able to approximately separate 
each of the groups, but the distributions tend to be quite dispersed around the true value. 
The distributions also overlap to some extent. This is illustrated by the bottom histogram 
of Fig. 7 which has an almost uniform distribution of MUs. The bottom histogram in Fig. 7 
corresponds to the upper left hand panel of Fig. 6a We only give a histogram for this first 
parameter since it is broadly indicative for all the other parameters. For those familiar with 
the HBL or classical variant of this model, these results are entirely predictable. The prior 

Fig. 7  HBL + BIML for coefficient 1, under three levels of utility

Fig. 8  BIML versus finite mixture with three mixtures
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assumption of a normal distribution for the parameters around a mean and given vari-
ance heavily pushes individual estimates to be generated in a manner consistent with this 
assumption, although with more observations for each individual the individual estimates 
would become more clustered around their true values (the prior normality assumption 
does not imply normally distributed posteriors for the individual MUs).

Next we turn to the performance of the BIML compared to the true values as repre-
sented by Fig. 6b and the bottom part of Fig. 7. As can be seen by Fig. 6b, there is not 
a perfect classification using the BIML, however, the estimates are much more densely 
packed around their true values than for the case of the HBL. This is to some extent 
obscured by the fact that the dots often represent the values for multiple respondents. The 
case of the first parameter is illustrated in the histogram at the bottom of Fig. 7, which cor-
responds the upper left and pain of Fig. 6b. We can see that there are three distinct densi-
ties close to the true values, with a “misclassification” of 2 out of 100 respondent utilities.

Finally, in Fig. 6c, we compare the HBL estimates and BIML estimates which further 
confirms the clustered nature of the BIML estimates (horizontal axis) compared to the 
HBL estimates. However, it also illustrates the same pattern as Case 1 where there is a ten-
dency towards a monotonic relationship between the estimates of the two models.

Finally, turning to Fig. 8, we explore the consequences of specifying three mixtures only 
within the BIML. Within the Bayesian context this can easily be accomplished by accept-
ing only those draws corresponding to have three mixtures only. This can be achieved pro-
viding this number has been visited enough times by the sampler, which is no problem 
for the current example. This also underlines the flexibility of the BIML approach, since 
researchers who wish to select a finite mixture can do so after estimation using the modal 
NOM. Note, this not an approach we recommend.

Figure 8 shows that there is the expected reduction in the dispersion of MU estimates at 
the values 0, − 1, and 1, but this is not a substantive reduction. This is consistent with the 
unrestricted BIML sampler proposing new mixtures periodically with higher dimensions 
that are populated by only a few (or only one) member, and being eliminated in subsequent 
draws. In short, their has only been a small reduction in selecting the correct number of 
classes by not setting the number of classes to its known value.

Summary

We have presented a comparative examination of the HBL and BIML models under two 
polar DGPs, one of which is completely consistent to the HBL and the other to a finite 
mixture model. In this study the BIML was able to handle both cases, not just the finite 
mixture case for which you would expect it to perform well. This highlights the potential 
of this model to flexibly estimate the marginal utilities within DCEs. It is not the purpose 
here to suggest based on a limited Monte Carlo experiment to claim that the BIML is supe-
rior. Clearly in many circumstances the HBL will perform as well, or better. However, the 
class of Dirichlet process models that underpin the BIML approach have had considerable 
acceptance within the statistics literature, yet they have not yet made their way onto the 
radar of most applied choice modellers. We believe that at the very least this class of mod-
els should be considered by applied choice modellers in the future.
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