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Abstract
This paper analyses the formation of international environmental agreements (IEAs) under
uncertainty, learning and risk aversion. It bridges two strands of the IEA literature: (i) the role
of learning when countries are risk neutral; (ii) the role of risk aversion under no learning.
Combining learning and risk aversion seems appropriate as the uncertainties surrounding
many international environmental problems are large, often highly correlated (e.g. climate
change), but are gradually reduced over time through learning. The paper analyses three
scenarios of learning. A key finding is that risk aversion can change the ranking of these
three scenarios of learning in terms of welfare and membership. In particular, the negative
conclusion about the role of learning in a strategic context under risk neutrality is qualified.
When countries are significantly risk averse, then it pays them to wait until uncertainties have
been largely resolved before joining an IEA. This may suggest why it has been so difficult
to reach an effective climate change agreement.
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1 Introduction

Environmental issues such as climate change pose three key challenges for economic analysis:
(i) there are considerable uncertainties about the likely future costs of environmental damages
and abatement; (ii) our understanding of these uncertainties changes over time as a result
of learning more about climate science, possible technological responses and behavioral
responses by households, firms and governments; (iii) the problem is global, but since there
is no single global agency to tackle climate change, policies need to be negotiated through
international environmental agreements (IEAs).1,2 Recently, these three issues have begun
to be integrated in one framework. Two strands of literature can be distinguished.

The first strand of literature studies uncertainty and IEA formation with the focus on the
role of learning, but under the assumption of risk neutrality. Ulph and Ulph (1996) and Ulph
andMaddison (1997) compare the fully cooperative and the non-cooperative scenarios when
countries face uncertainty about damage costs. They show that the value of learning about
damage costs may be negative when countries act non-cooperatively and damage costs are
correlated across countries. Na and Shin (1998), Ulph (2004), Kolstad (2007), Kolstad and
Ulph (2008, 2011) have considered how the prospect of future resolution of uncertainty affects
the incentives for countries to join an IEA.Kolstad andUlph consider amodelwhere countries
face common uncertainty about the level of environmental damage costs.3 Three scenarios
of learning are considered: with Full Learning, uncertainty about damage costs is resolved
before countries decide whether to join an IEA; withPartial Learning, uncertainty is resolved
after countries decide whether to join an IEA, but before they choose their emissions levels;
withNoLearning, uncertainty is neither resolved before stage 1 nor stage 2. They showed that
the prospect of learning, either full or partial, generally reduces the expected aggregate payoff
in stable IEAs. In particular, Kolstad and Ulph (2008, 2011) showed that Partial Learning
would yield the highest aggregate payoff for only a small proportion of parameter values.
For a significant majority of parameter values, the highest expected aggregate payoff arose
under No Learning. Hence, it is better to form an IEA before waiting for better information:
removing the “veil of uncertainty” seems to be detrimental to the success of international
environmental cooperation.

All these models have assumed that countries are risk neutral. However, in the climate
context, risks are highly correlated and hence possibilities for risk sharing are limited so that
the assumption of risk aversion may be quite relevant. Therefore, we extend the two-stage
coalition formation setting by Kolstad and Ulph (2008) by departing from the assumption of
risk neutrality. In this paper, we allow for countries to be risk averse, and show that if countries
have a relatively high degree of risk aversion, then for a majority of parameter values Full
Learning yields higher expected aggregate utility thanNo Learning. This may help to explain
why it has taken such a long time between the start of the process of tackling climate change
(theKyoto Protocol) to reach amore substantial agreement in Paris—countries are risk averse

1 On the first two issues, see for instance Arrow and Fisher (1974), Epstein (1980), Kolstad (1996a, b), Ulph
and Ulph (1997), Gollier et al. (2000) as well as Narain et al. (2007).
2 On the third issue, see for instance the classic papers by Carraro and Siniscalco (1993) and Barrett (1994).
The most influential papers have been collected in a volume by Finus and Caparrós (2015) who also provide
a survey.
3 By common uncertainty we mean that each country faces the same ex-ante distribution of possible damage
costs, and when uncertainty is fully resolved they face the same ex-post level of damage costs, i.e. the risks
they face are fully correlated across countries. Kolstad and Ulph (2011) extend this model to consider the case
where the risks each country faces are uncorrelated. Uncorrelated uncertainty is also considered in a slightly
different model in Finus and Pintassilgo (2013) and empirically investigated in a climate model with twelve
world regions in Dellink and Finus (2012).
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and so needed to wait until they hadmore information about the risk of climate change before
committing to significant action to tackle climate change.

The second strand of literature studies uncertainty and IEA formation with the focus on
the role of risk aversion, though under the assumption of No Learning. Endres andOhl (2003)
show in a simple two-player prisoners’ dilemma, using themean-standard deviation approach
to capture risk aversion, that risk aversion can increase the prospects of cooperation once it
reaches a certain threshold. The reason is that the benefits of mutual cooperation increase rel-
ative to the payoffs of unilateral cooperation and no cooperation because cooperation reduces
the variance of payoffs. The more risk averse players are, the more attractive cooperation
becomes compared to free-riding. In their model, there is a first threshold above which the
prisoners’ dilemma turns into a chicken game and a second threshold above which the game
turns into an assurance game. Compared to their paper, we allow for an arbitrary number of
players, model cooperation as a two-stage coalition formation game and consider explicitly
the role of learning.

Bramoullé and Treich (2009) consider risk-averse players in a global emission model,
in which all players behave non-cooperatively as singletons. They show that equilibrium
emissions are lower under uncertainty than under certainty, as part of a hedging strategy, but
the effect on global welfare is ambiguous. The authors also find that emissions decrease with
the level of risk aversion. Unlike our paper, Bramoullé and Treich are not concerned with
learning and coalition formation.

Boucher andBramoullé (2010) consider the effects of risk aversion on coalition formation,
but only with No Learning. They analyze the formation of an international environmental
treaty using a similar coalition game and payoff function as adopted in this paper. Using an
expected utility approach, their analysis focuses on the effect of uncertainty and risk aversion
on signatories’ efforts, the participation level in an agreement and expected aggregate utility.
They show that if additional abatement reduces the variance of countries’ payoffs, then, under
risk aversion, an increase in uncertainty tends to increase abatement levels and may decrease
equilibrium IEA membership while the reverse is true if additional abatement increases the
variance of countries’ payoffs.4 In this paper, our model of No Learning satisfies the first
condition, but we extend the analysis of Boucher and Bramoullé (2010) by considering also
Partial Learning and Full Learning.

Thus, taken together, in our paper, we generalize the analysis of Kolstad and Ulph (2008)
by allowing for risk aversion, and the analysis of Boucher and Bramoullé (2010) and Endres
and Ohl (2003) by considering the role of learning. The key findings are that as countries
becomemore risk averse it is no longer the case that for most parameter values the scenario of
No Learning yields the highest expected aggregate utility, but increasingly it is the scenario
Full Learning. Moreover, the set of parameter values for which the scenario Partial Learning
yields the highest expected aggregate utility, which is a small subset of such values when
countries are risk neutral, becomes slightly larger as countries become more risk averse.
Thus, we qualify the negative conclusion about the role of learning in a strategic context if
players are sufficiently risk averse.

As in Kolstad and Ulph (2008), our model consists of a two-stage game of IEA forma-
tion. The damage cost from global emissions is uncertain and three learning scenarios are
considered. Risk aversion is incorporated into the model, through risk preferences and the
expected utility framework. In our model, emissions last for just one period, which may

4 Hong and Karp (2014) show that it does not matter whether one analyses the provision of a public good or
the amelioration of a public bad. What matters is whether players’ actions increase or decrease the volatility of
payoffs. In our model, as in Endres and Ohl (2003) and the emission game in Boucher and Bramoullé (2010),
abatement (emissions) reduces (increase) the volatility of payoffs.
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seem restrictive in the context of dynamic environmental problems such as climate change.
However, it has been shown in the literature on IEA formation under uncertainty that one
periodmodels produce similar results to multi-periodmodels. For instance, Kolstad andUlph
(2008), using a one-period model, and Ulph (2004), using a two-period model, found similar
results regarding the implications of different scenarios of learning for the size of an IEA and
expected welfare.5

Taken together, the tension we seek to capture in our modeling is between No Learning,
where countries decide to join an IEA and base their decisions for ever on expected damage
costs ignoring any later information, Full Learningwhere countries delaymaking anydecision
to join an agreement until (almost) all uncertainty about damage costs has been resolved, or
Partial Learning where countries start the process of joining an IEA knowing that as they get
better information they will be able to use that to adjust their emissions policies. This would
seem to be particularly relevant to the kind of situation to which Weitzman (2009) has drawn
attention—a small probability of catastrophic climate change—but also generally, given the
continuous updates in recent years about expected damages from climate change.

The paper proceeds as follows. In Sect. 2, we set out the theoretical model and present our
general results in Sect. 3. Section 4 presents some additional results based on simulations,
while Sect. 5 summarizes our main conclusions and implications for future research.

2 TheModel

2.1 No Uncertainty

To establish the basic framework, we set out the model with no uncertainty. There are N
identical countries, indexed i � 1, . . . , N . Country i produces emissions xi with aggregate
emissions denoted by X � ∑N

i�1 xi . Aggregate emissions cause global environmental dam-
ages. The cost of environmental damages per unit of global emissions is γ and the benefit per
unit of individual emissions is normalized to 1. (Thus, γ essentiallymeasures the cost–benefit
ratio.) The payoff to country i , as a function of own and aggregate emissions, is given by

πi (xi , X) ≡ π0 + xi − γ X . (1)

with π0 a positive constant. In this simple model with a linear payoff function, following the
literature, the (continuous) strategy space can be normalized to xi ∈ [0, 1]. If benefits from
emissions are lower than damage costs then the equilibrium emissions are zero. If benefits
exceed costs, equilibrium emissions are set at their upper bound, which is normalised to 1.
To make this model interesting, we make the following assumption:

Assumption 1 (i) 1
/
N < γ < 1; (ii) π0 > γ (N − 1).

The individual benefit exceeds the individual unit damage cost from pollution, i.e. 1 > γ

(so countries pollute in the Nash equilibrium) but does not exceed the global unit damage
cost, i.e. 1 < γ N (so countries abate in the social optimum); the second condition is a
sufficient condition to ensure that πi (.) > 0, which we will need when we consider expected
utility.6

5 In many papers with a dynamic payoff structure but fixed membership, results are qualitatively similar to
the one period emission game (e.g. Rubio and Casino 2005). The extension to flexible membership would be
more interesting but is technically very challenging. See Rubio and Ulph (2007).
6 The lowest possible payoff arises when a country completely abates and all other countries emit at the
maximum level, in which case πi � π0 − γ (N − 1); so π0 > γ (N − 1) ⇒ πi (.) > 0.
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In order to study coalition formation, we employ the widely used two-stage model of IEA
formation (Carraro and Siniscalco 1993; Barrett 1994) which is solved backwards. In stage
2, the emission game, for any arbitrary number of IEA members n, 1 ≤ n ≤ N , the members
of the IEA and the remaining countries set their emission levels as the outcome of a Nash
game between the coalition and the fringe countries.7 That is, the coalition members together
maximize the aggregate payoff to their coalition, whereas fringe countries maximize their
own individual payoff. Hereafter, symbols c and f will be used to denote coalition countries
and fringe countries, respectively. Given 1 > γ , x f � 1 follows; coalition members chose
xc � 0 if 1 ≤ γ n, and so π f (n) � π0 +1−γ (N − n) and πc(n) � π0−γ (N − n); however
if 1 > γ n, then coalition members will also pollute, xc � 1 and so πc(n) � π f (n) �
π0 + 1 − γ N .8

Knowing the payoffs to coalition and fringe countries for any arbitrary number of IEA
members, we then determine the stable (Nash) equilibrium in stage 1, themembership game.
No member should have an incentive to leave the coalition, that is, the coalition is internally
stable,πc(n) ≥ π f (n−1), and no fringe country should have an incentive to join the coalition,
that is, the coalition is externally stable, π f (n) > πc(n + 1).9 It is now easy to show that
the stable IEA is of size n∗(γ ) � I (1/γ ), which is the smallest integer no less than 1/γ .
Consider internal stability and consider the non-trivial situation where n members do not
pollute because 1 ≤ γ n. If after one member left the coalition, the remaining coalition
members continued not to pollute, that is 1 ≤ γ (n − 1) was satisfied, then the gain from
leaving would be positive: the additional benefit is 1 and the additional damage is γ , with
1 > γ by Assumption 1. Thus, a coalition of n members can only be stable if and only
if 1 > γ (n − 1) is true after one member left as the remaining coalition members would
switch from xc(n) � 0 to xc(n − 1) � 1. Then the additional benefit from pollution of 1
falls short of the additional damage γ n, as by assumption 1 ≤ γ n in the initial situation
with n members. It is easily checked that such an equilibrium is also externally stable. The
aggregate payoff, that is, the sum of the payoffs over all countries, when a stable coalition of
size n∗(γ ) forms is given by:

�(γ ) ≡ n∗(γ )πc(n
∗(γ )) + (N − n∗(γ ))π f (n

∗(γ ))
� Nπ0 + (N − n∗(γ ))(1 − γ N )

. (2)

Thus, this simple model provides a relationship between the unit damage cost γ and
the equilibrium number of coalition members. The equilibrium is a knife-edge equilibrium
with n∗(γ ) countries forming the coalition, which de facto dissolves once a member leaves
the coalition as no country would abate anymore. The equilibrium coalition size weakly
decreases in the cost–benefit ratio from emissions γ—the larger is γ the smaller is the
number of countries in a stable IEA.

7 A sequential Stackelberg game in the second stage, as an alternative assumption (e.g. Barrett 1994), would
make no difference here as players have dominant strategies. This also applies to Boucher and Bramoullé
(2010).
8 It is now evident why we need Assumption 1: it avoids trivial outcomes where all countries either abate or
pollute in the Nash equilibrium and the social optimum (and hence also for partial cooperation).
9 Without loss of generality, the strong inequality for external stability could be replaced by a weak inequality
sign. Our assumption avoids knife-edge cases where a fringe country is indifferent between staying outside
and joining a coalition.
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2.2 Uncertainty, Risk Aversion and Learning

Now assume that the unit damage cost of global emissions is uncertain and equal for all
countries, both ex-ante and ex-post. We denote the value by γs in the state of the world s and
hence (1) becomes:

πi,s(xi , X) ≡ π0 + xi − γs X . (3)

Following Kolstad and Ulph (2008) and Boucher and Bramoullé (2010), we assume for
simplicity that γs can take one of two values: low damage costs, γl , with probability p, and
high damage costs, γh , with probability 1 − p, where γl < γh and 0 < p < 1. We denote
by γ̄ ≡ pγl + (1 − p)γh the expected value of unit damage costs and by ¯̄γ � 0.5(γl + γh)
the median value of damage costs. We define nl ≡ I (1/γl ), nh ≡ I (1/γh), n̄ ≡ I (1/γ̄ ),
¯̄n ≡ I (1/ ¯̄γ ) and make the following assumptions:

Assumption 2 (i) 1/N < γl < γh < 1; (ii) π0 > γh(N − 1); (iii) 2 ≤ nh < ¯̄n− 1 < ¯̄n +1 <

nl ≤ N .

Assumptions 2(i) and 2(ii) are just the analogues to Assumption 1(i) and 1(ii) when there
is uncertainty. Assumption 2(iii) means that uncertainty matters, in the sense that it implies
significant differences in the size of the stable IEAs that would arise if we knew for certain
which state of the world prevailed.

To allow for risk aversion, we assume that each country has an identical utility function
over payoffs: u(πi ), u′(πi ) > 0, u′′(πi ) < 0. While ex-ante countries face uncertainty
about the true value of unit damage costs, we want to allow for the possibility that countries
may learn information during the course of the game which changes the risk they face. We
shall follow Kolstad and Ulph (2008) in considering three very simple scenarios of learning,
denoted by m, m ∈ {NL, PL, FL}. With No Learning (m �NL) countries make their
decisions about membership and emissions with uncertainty about the true value of unit
damage costs. With Full Learning (m �FL) countries learn the true value of unit damage
costs before they have to take their decisions on membership (stage 1) and emissions (stage
2). With Partial Learning (m �PL) countries learn the true value of damage costs at the end
of stage 1, that is after they have made their membership decisions but before they make
their emission decisions (stage 2). Thus, in this simple analysis, learning takes the form of
revealing perfect information.10 We will compare the outcomes of the three scenarios of
learning in terms of the expected size of IEAs and expected aggregate utility from an ex-ante
perspective, i.e. before stage 1.

3 Analytical Results

In this section, we set out the equilibrium of the IEA model for each of the three models of
learning with risk aversion, generalizing the results of Kolstad and Ulph (2008) who assumed
risk neutrality. The proofs are provided in “Appendix A1”.

10 We use the term “Partial Learning” in line with the IEA-literature, although this may be misleading; partial
learning is usually referred to as delayed but perfect learning, so not partial learning in the sense of Bayesian
updating.
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3.1 Full Learning

We start with the benchmark scenario of Full Learning (FL). Players know the realization
of the damage parameter γ at the outset of the coalition formation game, i.e. before stage 1.
Thus, the results follow directly fromwhat we know from the gamewith certainty in Sect. 2.1
above.

Proposition 1: Full Learning If state s � l, h has been revealed before stage 1, then the
subsequent membership and emission decisions are as in the model with certainty with
damage cost parameter γ s. In each state s � l, h the size of the stable IEA is ns � I(1/γ s)
and the expected membership is E(nFL)�pnl +(1–p)nh. The expected aggregate utility is
given by:

E
(
UFL

)
� pnlu

(
π FL
c,l

)
+ p(N − nl )u

(
π FL

f ,l

)
+ (1 − p)nhu

(
π FL
c,h

)
+ (1 − p)(N − nh)u

(
π FL

f ,h

)

with π FL
c,l � π0 − γl (N − nl ), π FL

f ,l � π0 + 1 − γl (N − nl ), π FL
c,h � π0 − γh(N − nh) and

π FL
f ,h � π0 + 1 − γh(N − nh).

Note that with Full Learning, while the degree of risk aversion does not affect the expected
size of the IEA it will affect expected utility. Importantly, the expected size and expected
aggregate utility are computed from an ex-ante perspective to make a comparison with the
other models of learning meaningful.

3.2 No Learning

In this section,we address the scenario ofNoLearning inwhich players take theirmembership
(stage 1) and emission (stage 2) decisions under uncertainty.11 We begin by solving for
optimal emissions of countries for any number of IEA members n. Since the benefit of one
unit of emissions exceeds the damage cost in both states of the world, it is straightforward to
see that fringe countries will always pollute. To solve for the optimal emissions for a coalition
member for any n, which we denote by xc(n), we need to introduce some notation.We define:

E(uc(xc(n), n))) ≡ pu(πc,l (xc(n), n)) + (1 − p)u(πc,h(xc(n), n)) (4a)

where

πc,s(xc(n), n) � π0 − γs(N − n) + xc(n)(1 − γsn), s � l, h. (4b)

E(uc(xc(n), n))) is the expected utility to an IEA country when there are n IEA members
who set emissions xc and all fringe countries set emissions equal to 1. Then:

∂E(uc)

∂xc
� p(1 − γln)u

′[πc,l (xc, n)] + (1 − p)(1 − γhn)u
′[πc,h(xc, n)], (5a)

∂2E(uc)

∂(xc)2
� p(1 − γl n)

2u′′[πc,l (xc(n), n)] + (1 − p)(1 − γhn)
2u′′[πc,h(xc(n), n)] < 0.

(5b)

From (5a) it is clear that if γln ≥ 1, then ∂E(uc)
∂xc

< 0 and hence it is optimal for IEA

countries to completely abate, while if γhn ≤ 1, then ∂E(uc)
∂xc

> 0 and hence it is optimal for
IEA countries to completely pollute. To get tighter bounds onwhen IEA countries completely
pollute or abate, we define ñ as the largest value of n such that:

11 Our analysis of No Learning is similar to the analysis provided by Boucher and Bramoullé (2010).
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p(1 − γln)u
′[πc,l (1, n)] + (1 − p)(1 − γhn)u

′[πc,h(1, n)] > 0 ∀n < ñ. (6a)

and ˜̃n as the smallest value of n such that:

p(1 − γln)u
′[πc,l (0, n)] + (1 − p)(1 − γhn)u

′[πc,h(0, n)] ≤ 0 ∀n ≥ ˜̃n. (6b)

We summarise the results on emissions in the following Lemma:

Lemma 1: Emission Decisions with No Learning

(i) x f (n) � 1∀n, 2 ≤ n ≤ N ;
(ii) nh ≤ ñ ≤ ˜̃n ≤ n̄;
(iii) p → 0 ⇒ ñ, ˜̃n, n̄ → nh ; p → 1 ⇒ ñ, ˜̃n, n̄ → nl ;
(iv) n < ñ ⇒ xc(n) � 1;
(v) n � ñ ⇒ 0 ≤ xc(n) ≤ 1;
(vi) ñ < n < ˜̃n ⇒ 0 ≤ xc(n) < 1;
(vii) n ≥ ˜̃n ⇒ xc(n) � 0.

As already noted, for any size of an IEA, n, fringe countries always choose the upper limit
of emissions. For IEA members, there is a critical range of values for n, [ñ, ˜̃n], which lies
between nh and n̄ such that IEA members will completely abate if n ≥ ˜̃n, and choose the
upper limit of emissions for n < ñ; but if there are values of n which lie within the range]
ñ, ˜̃n

[
, then coalition members choose a level of emissions below the upper limit. Note that,

as in Boucher and Bramoullé (2010), with both risk neutrality and risk aversion xc(n) � 0 for
n ≥ n̄ and xc(n) � 1 for n < ñ ≤ n̄. With risk neutrality for both ñ ≤ n < ˜̃n and ˜̃n ≤ n < n̄
the emissions are xc(n) � 1; while with risk aversion 0 ≤ xc(n) ≤ 1 for ñ ≤ n < ˜̃n and
xc(n) � 0 for ˜̃n ≤ n < n̄. So for ñ ≤ n < n̄ aggregate emissions are lower with risk aversion
than with risk neutrality.

Proposition 2: No Learning With No Learning, for all parameter values, there exists a stable
IEA with membership nNL, which is the same in both states of the world with nNL ∈ [ñ, ˜̃n].
This is also expected membership, i.e. E(nNL ) � nNL ∈ [ñ, ˜̃n] which is (weakly) lower than
under risk neutrality with E(nNL ) � n̄ as ˜̃n ≤ n̄. Emissions of fringe and IEA members are
given in Lemma 1. Expected aggregate utility is given by:

E
(
UNL

)
� pnNLu

(
πNL
c,l

)
+ p

(
N − nNL

)
u

(
πNL

f ,l

)

+ (1 − p)nNLu
(
πNL
c,h

)
+ (1 − p)

(
N − nNL

)
u

(
πNL

f ,h

)

with πNL
c,l � π0 − γl (N − nNL ) + (1 − nNLγl )xc(nNL ), πNL

f ,l � π0 − γl (N − nNL ) + 1 −
nNLγl xc(nNL ), πNL

c,h � π0 −γh(N −nNL )+ (1−nNLγh)xc(nNL ) and πNL
f ,h � π0 −γh(N −

nNL ) + 1 − nNLγhxc(nNL ).

So the expected equilibrium coalition size is (weakly) smaller under risk aversion than
risk neutrality. With uncertainty, countries are unsure about the state of the world. With risk
aversion, and hence concave utility, countries shy away from the commitment to be amember
in an IEA. This is in line with the findings in Boucher and Bramoullé (2010).
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3.3 Partial Learning

In the scenario of Partial Learning, countries have to make their decision on whether to join
an IEA without knowing the true damage cost of emissions, but can make their subsequent
emission decisions based on that knowledge. It follows that the emission decisions of coun-
tries do not depend on risk aversion and so are the same as in Kolstad and Ulph (2008). Since
for one unit of emissions the benefit exceeds damage costs in each state of the world, a fringe
country will optimally set x f ,s � 1, s � l, h; for an IEA member optimal emissions depend
on the size of the IEA n; so n ≥ nl ⇒ xc,s(n) � 0, s � l, h; nh ≤ n < nl ⇒ xc,l (n) � 1
and xc,h(n) � 0; n < nh ⇒ xc,s(n) � 1, s � l, h. That is, fringe countries always pollute;
if there are at least nl IEA members, then IEA members always abate; if there are less than
nh IEA members, then IEA members always pollute; otherwise IEA members pollute in the
low damage cost state and abate in the high damage cost state.

As in Kolstad and Ulph (2008), for certain values of p there may be more than one stable
IEA with Partial Learning. In our model a second stable IEA exists iff p̃ ≤ p ≤ 1 where
p̃ ≡ χ

1+χ
with χ ≡ u[π0−(N−nl )γh+(1−γh )]−u[π0−(N−nl )γh ]

u[π0−(N−nl )γl ]−u[π0−Nγl+1]
> 0. It is straightforward to show

that when countries are risk neutral p̃ � 1−γh
nlγl−γh

, as in Kolstad and Ulph (2008). Irrespective
of the degree of risk aversion, it is straightforward to see that γh → 1 ⇒ p̃ → 0. However,
we have not been able to determine analytically how p̃ varies with the degree of risk aversion,
as this depends on the exact form of the utility function. In Sect. 4 we report our findings on
this from our simulation results.

Proposition 3: Partial Learning With Partial Learning, for all parameter values there always
exists a stable IEA with nPL1 � nh members. All countries pollute in the low damage cost
state, while in the high damage cost state coalition members abate and fringe countries
pollute. Expected aggregate utility is given by:

E
(
U PL1

)
� pnhu

(
π

PL1
c,l

)
+ p(N − nh)u

(
π

PL1
f ,l

)

+ (1 − p)nhu
(
π

PL1
c,h

)
+ (1 − p)(N − nh)u

(
π

PL1
f ,h

)
.

with π
PL1
c,l � π0 + 1 − γl N , π

PL1
f ,l � π0 + 1 − γl N , π

PL1
c,h � π0 − γh(N − nh) and

π
PL1
f ,h � π0 + 1 − γh(N − nh).

If p̃ ≤ p ≤ 1, then there is a second stable IEAwith nPL2 � nl members. In both states of
the world, coalition members abate and fringe countries pollute. Expected aggregate utility
is given by:

E
(
U PL2

)
� pnlu

(
π

PL2
c,l

)
+ p(N − nl )u

(
π

PL2
f ,l

)

+ (1 − p)nlu
(
π

PL2
c,h

)
+ (1 − p)(N − nl )u

(
π

PL2
f ,h

)

with π
PL2
c,l � π0 − γl (N − nl ), π

PL2
f ,l � π0 + 1− γl (N − nl ), π

PL2
c,h � π0 − γh(N − nl ) and

π
PL2
f ,h � π0 + 1 − γh(N − nl ).

Since the second equilibrium Pareto-dominates the first equilibrium if it exists, expected
membership is either E(nPL1 ) � nh if p < p̃ or E(nPL2 ) � nl if p̃ ≤ p ≤ 1.

As the degree of risk aversion affects p̃ it has an effect on the likelihood of a second
coalition with higher membership nl being stable. This effect is further explored in Sect. 4.
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3.4 Comparison Across the Three Scenarios of Learning

This section presents analytical results on the ranking of the learning scenarios in terms of
expected membership and expected utility. General results are exposed as well as results on
special cases with limit parameter values.

3.4.1 General Results

In this sub-section, we investigate what we can say generically about expected IEA mem-
bership, payoffs and expected utility across the four possible equilibria, FL, NL, PL1 and
PL2.

In terms of expected membership of an IEA it is clear that since E(nPL1 ) � nh , this
equilibrium has the lowest expected membership while since E(nPL2 ) � nl , this equilibrium
has the highest expected membership. Note also that:

E
(
nFL

)
≥ p

(
1

γl

)

+ (1 − p)

(
1

γh

)

� pγh + (1 − p)γl
γlγh

.

Moreover it is straightforward to show that:

pγh + (1 − p)γl
γlγh

≥ 1

pγl + (1 − p)γh
⇔ p(1 − p)(γh − γl )

2 ≥ 0.

Hence:

E(nFL ) >
1

pγl + (1 − p)γh
. (7a)

From Proposition 2 and Lemma 1 we have that:

E
(
nNL

)
≤ ˜̃n ≤ n̄ � I (

1

pγl + (1 − p)γh
). (7b)

Because E(nFL ) � pI ( 1
γl
) + (1 − p)I ( 1

γh
), (7a) and (7b) are not sufficient to ensure that

E(nNL ) ≤ E(nFL ). Moreover, as 0 < p < 1, then E(nPL1 ) < E(nFL ) < E(nPL2 ). Thus,
as we shall see, the following two rankings can occur, according to the parameter values:

E
(
nPL1

)
≤ E

(
nNL

)
≤ E

(
nFL

)
< E

(
nPL2

)
. (8a)

E
(
nPL1

)
< E

(
nFL

)
< E

(
nNL

)
≤ E

(
nPL2

)
. (8b)

In terms of payoffs across the four equilibria, it is straightforward to see from Propositions
1, 2 and 3 that:

π
PL2
c,l � π FL

c,l ≥ π
PL1
c,l ; π

PL2
f ,l � π FL

f ,l > π
PL1
f ,l ; π

PL2
c,h > π FL

c,h � π
PL1
c,h ;

π
PL2
f ,h > π FL

f ,h � π
PL1
f ,h . (9a)

For NL, in the low damage cost state of the world, the highest payoff to coalition members
is when xc �1, which is less than or equal to the payoff to coalition members in PL2 since
nlγl ≥ 1; in the high damage cost state of the world, the highest payoff to coalition members
is when xc �0, which is less than the payoff to members in PL2 since E(nNL )γh < nlγh . So
it must be the case that:

π
PL2
c,l ≥ πNL

c,l ; π
PL2
f ,l > πNL

f ,l ; π
PL2
c,h > πNL

c,h ; π
PL2
f ,h > πNL

f ,h . (9b)
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The results in (9a) and (9b) allow us to rank a number of the payoffs across the four
possible equilibria for both members and fringe countries in the high and low damage cost
states of the world. However, this is not sufficient to allow us to rank expected aggregate
utility across different models of learning at an analytical and general level because (i) the
weights of the different utilities in the aggregation depend on the equilibrium coalition size,
which differs across the learning scenarios; and (ii) how differences in payoffs translate into
differences in expected aggregate utility depend on the exact form of the utility function. The
next section reports the simulationswehave carried out to compare expected IEAmembership
and expected welfare across the different models of learning.

The analytic results obtained allow us, however, to get some insights about the role of risk
aversion on expected IEA membership and welfare. Comparing to the case of risk neutrality
explored by Kolstad and Ulph (2008), we conclude that risk aversion does not affect the
expected coalition under FL but (weakly) decreases it under NL. Regarding PL it does not
affect the two possible coalition sizes under PL, nPL1 � nh and nPL2 � nl , although it
affects the likelihood of the larger equilibrium. Hence, if we restrict our analysis to the
extreme cases of FL and NL, we can conclude that the prospects of learning being conducive
to larger IEAs are higher under risk aversion. Thus, the result found by Kolstad and Ulph
(2008) that expected welfare is higher under NL compared to FL is less likely under risk
aversion. Adding PL to this picture, the novelty is that the likelihood of the larger equilibrium
depends on the level of risk aversion.

3.4.2 Special Cases

In this subsection, the comparison of learning scenarios in terms of expected IEAmembership
and expected utility is undertaken for special parameter values. Following Karp (2012), we
use two limit cases regarding the probability of low damages: p � ε ≈ 0 and p � 1−ε ≈ 1,
where ε denotes an infinitesimal. Limit values for the damage cost from pollution were also
considered: γl � 1/

N + ε ≈ 1/
N and γh � 1 − ε ≈ 1.

Lemma 2 shows the results that could be obtained analytically on the ranking of learning
scenarios, in terms of expected membership.

Lemma 2: Expected Membership

(i) If p ≈ 0 then E(nFL ) > E(nPL ) � E(nNL );
(ii) If p ≈ 1 then E(nPL ) > E(nNL ) � E(nFL );
(iii) If γl ≈ 1/N then E

(
nFL

)
> nPL � nh ;

(iv) If γh ≈ 1 then nPL � nl > E
(
nFL

)
.

When high damages are very likely, p ≈ 0, then FL leads to larger expected IEA mem-
bership than PL and NL, irrespective of the level of risk aversion. Hence, in this context,
learning is conducive to the formation of larger agreements. The opposite holds when low
damages are very likely, p ≈ 1, with PL and NL leading to larger expected IEAmembership.

In the context of risk neutrality, Karp (2012) found that p ≈ 0 implies E
(
nFL

)
> E

(
nNL

)

and p ≈ 1 implies E
(
nNL

)
> E

(
nFL

)
. Thus, we show that Karp’s result also holds under

risk aversion and we have extended it to the scenario of PL.
If the low damage cost from pollution is close to its lower bound, γl ≈ 1/N , then under PL

the smaller equilibrium coalition size forms, nPL1 � nh , and hence the expected size of an
IEA under FL is higher than under PL. If the high damage cost is at its upper bound, γh ≈ 1,
then the larger IEA forms under PL, nPL2 � nl , which exceeds the expected coalition size
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under FL. For these two limit values of the damage cost, analytical results could not be found
on the rankings between FL and NL, as well PL and NL.

The results of the special cases in terms of expected utility are shown in Lemma 3.

Lemma 3: Expected Utility

(i) If p ≈ 0 then E(UFL ) > E(U PL );
(ii) If p ≈ 1 then E(U PL ) � E(UNL );
(iii) If γl ≈ 1/N then E(UFL ) > E(U PL );
(iv) If γh ≈ 1 then E(U PL ) > E(UFL ) and E(U PL ) > E(UNL ).

Regarding expected utility, for each special case we could obtain only pairwise rankings
of the three learning scenarios, and not a complete ranking. When high damages are very
likely, p ≈ 0, then FL yields higher expected utility than PL. When these damages have a
low likelihood, p ≈ 1, then PL and NL lead to same expected utility. When low damage cost
from pollution is close to its lower bound, γl ≈ 1/N , FL provides a larger expected utility
than PL. When γh ≈ 1, then as we showed in Sect. 3.3, p̃ ≈ 0, and PL2 will be the selected
equilibrium for Partial Learning, so expected utility will be higher than with either FL or NL.

Combining the results of expectedmembership size and expected utility a few conclusions
can be made. First, if p ≈ 0 then learning leads to a better outcome in terms of membership,
E(nFL ) > E(nPL ) � E(nNL ). Regarding utility, the only analytical result obtained also
points in that direction, E(UFL ) > E(U PL ). Second, for p ≈ 1, learning leads to worse
results in terms of membership, E(nPL ) � E(nNL ) > E(nFL ). The result obtained on
utility, E(UNL ) � E(U PL ), points to a neutrality of learning. Third, for γl ≈ 1/N the results
obtained indicate an advantage of learning in terms of membership, E

(
nFL

)
> nPL � nh ,

and utility E(UFL ) > E(U PL ). The opposite occurs for γh ≈ 1. Using these four limit
cases, we can conclude that under risk aversion the role of learning in terms of membership
and utility depends on the distribution of the damage cost, namely parameters, γl , γh, p. This
is in line with the results obtained by Karp (2012) under risk neutrality. In the next section
we comment on the implications for these limiting results arising from our simulations.

4 Results from Simulations

There are three sets of issues we were unable to resolve analytically in Sect. 3 and which we
explore using numerical simulations. (i)What is the expected size of the IEA in the case of No
Learning, E(nNL ), in relation to the theoretical limits ñ and ˜̃n and, more importantly, to the
key parameters of our model, nh and n̄ and how does this vary across different degrees of risk
aversion? (ii) In the case of Partial Learning what is the critical value of the likelihood of low
damage state of the world p̃ such that for p̃ ≤ p ≤ 1 there is second stable IEA (nPL2 � nl )
and how does p̃ vary across different degrees of risk aversion? (iii) Most importantly, how
does the expected size of IEAand expected aggregate utility compare across the three different
models of learning, Full Learning (FL), No Learning (NL), and Partial Learning (PL1, PL2)
and how does this comparison depend on the degree of risk aversion and other parameters of
the model?

We now discuss our choice of parameter values for the simulations. To guarantee non-
negative payoffs we set:

π0 � Bγh(N − 1), B > 1 (10)
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and to ensure that payoffs are sensitive to countries’ abatement decisions we chose B �
1.1.12 For the parameter of relative risk aversion, ρ, in the CRRA utility function u(πi ) �
[1/(1 − ρ)]π1−ρ

i we use ρ �0 (risk-neutral) as a benchmark case and then choose 7 values
of ρ �0.05, 0.5, 0.99, 2.5, 5.0, 10.0, and 20.0 to capture what we believe to be a reasonable
range of values for country-level risk aversion.13

For the remaining key parameters (N, p, γ l , γ h), we report results of 2 sets of simulations.
In Sect. 4.1we present results froma set of simulations using a small number of specific values
of the parameters (N, p, γ l , γ h) to get some insights into what drives results. Then in Sect. 4.2
we present results of a more general set of 500,000 simulations where the parameters (N, p,
γ l , γ h) are chosen randomly within a specified range. The details of how these parameters
are chosen are set out in the “Appendix A2”.

In addition to reporting the membership of the IEA and the expected utility for each of our
three models of learning,m, we also report expected damage costs as a percentage of GDP,14

which we define as Dm. The reason for doing this is to indicate that the environmental issue
has significant implications.

Finally, in Sect. 4.3, wewill test the robustness of our simulation results in three respects.15

First, we check whether the results in Sects. 4.1 and 4.2, derived for B �1.1, hold for higher
values of B. Second, we will undertake simulations using the limiting conditions adopted
in Lemmas 2 and 3, in Sect. 3.4, to check the ranking of the learning scenarios in terms
of expected IEA membership and expected utility. Third, in Sects. 4.1 and 4.2 we assume
that each country has a constant relative risk aversion (CRRA) utility function, and we will
test whether our key numerical results also hold if we use a constant absolute risk aversion
(CARA) utility function.

4.1 Results from Simple Simulations

In our simple simulations we use B �1.1 and N �20. The results16 are shown in Table 1.
A total of 13 simulations were used. The first part of the table shows the parameter values
we used, while the next three sections show the outcomes for NL, FL and PL respectively.
In the first 7 columns we use different values of risk aversion ρ, but keep constant the values
for p, γ l , γ h. In the remaining 6 columns we set ρ �2.5, the midpoint of the values we use,
and vary in turn p, (columns 8 and 9), and then γ l , γ h by choosing higher and lower values
of ¯̄γ (columns 10 and 11) and then tighter and wider spreads of γ l , γ h around ¯̄γ . For these
parameter values, expected damage costs as a percentage of GDP ranges between 0.34 and
3.40.

12 We are grateful to a referee for this suggestion.
13 Meyer and Meyer (2006) note that the CRRA utility function is widely used in empirical studies of risk
aversion, and that empirical estimates of ρ vary between 0 and 100. They note that such estimates depend on the
variable that enters the utility function, and for the three most commonly used variables—wealth, income and
profits—the appropriate empirical estimate increases as one moves from wealth to profits. In our one-period
model the relevant variable is income, though there is no distinction between wealth and income. Hence, we
have chosen a range of values for ρ at the lower end of the range noted by Meyer and Meyer, namely between
0 and 20.
14 A referee suggested we calculate this measure to indicate that the environmental problem is a significant
one. We define GDP as: π0N + (N − n) + nxc; each coalition country produces output π0 + xc; each fringe
country produces output π0 + 1.
15 We are grateful to two referees for these suggestions.
16 The key results are not sensitive to the choice of N .
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We now turn to the implications for the three sets of issues we want to examine using our
simulation results.

4.1.1 Implications for xc and nNL

From the first two rows, simulations 1–7, in the No Learning part, we see first that for both
low and high values of ρ the gap between ñ and ˜̃n tends to zero. The reason is that, for small
values of ρ, ñ and ˜̃n are bunched closely to the upper limit n̄ while for large values of ρ

they are bunched closely to the lower limit nh. Positive gaps between them only occur for
intermediate values of ρ. So, as can be seen from rows 3 and 4, it is more likely we get interior
solutions for xc for intermediate values of ρ. So these results show that as ρ increases, nNL

steadily decreases from n̄ to nh.
As we saw from Lemma 1 as p tends to 0, ñ, ˜̃n, n̄ → nh , and hence the gap between ñ and

˜̃n vanishes. This result was obtained in simulation 8 using p �0.05. From Lemma 1 we also
know that when p tends to 1, the gap between ñ and ˜̃n also converges to zero as ñ, ˜̃n, n̄ → nl .
In simulation 9 we set p �0.95, which is not sufficiently high for the convergence between
ñ and ˜̃n, and hence we get an interior solution. Similarly, from columns 10, 11, 12 and 13 we
see that for lower values of ¯̄γ and larger spreads of γ s around ¯̄γ we are more likely to have
significant gaps between ñ, ˜̃n,, and hence more likely to get an interior solution for xc.

4.1.2 Implications of Variations in� for p̃

The first row of the results for Partial Learning show, for different values of risk aversion ρ,
the critical value of p̃ such that for p ≥ p̃ there exists a second Partial Learning equilibrium.
The results of simulations 1–7 show that as risk aversion increases p̃ tends to falls, so there
is a wider range of parameter values for which there exists a second stable PL equilibrium.
Not surprisingly, columns 8 and 9 confirm that p̃ does not depend on p.

However, in looking at simulations 10–13 there is no clear pattern of results. In fact, a
broader range of simulation results we have carried out shows that p̃ is quite sensitive to
variations in these parameter values. While the decreasing relationship between p̃ and ρ

shown in Table 1 holds fairly generally, it is not universally true for all parameter values,
and these broader simulations show that there is no systematic relationship between p̃ and
the parameters γ l , γ h. The simulations we report in Sect. 4.2 give a better perspective on
how risk aversion affects p̃ and hence the likelihood of there being a second Partial Learning
equilibrium.

4.1.3 Implications for Ranking Expected Size of Stable IEA, Payoffs and Expected
Welfare Across Different Models of Learning

It is straightforward to see from Table 1 that for all the parameter values we have used it is
always the case that:

E
(
nPL1

)
< E

(
nNL

)
< E

(
nFL

)
< E

(
nPL2

)
(11)

consistent with (8a). This reflects the limited range of parameter values we used in Table 1.
In terms of the rankings of the payoffs for both members and fringe countries in the high

and low damage cost states of the world, it is readily checked that the payoffs in Table 1
are consistent with the rather limited set of comparisons we were able to make in (9a) and
(9b). Importantly the results also confirm that these are the only general results that hold.
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Table 2 Expected size of NL IEA for different degrees of risk aversion: B �1.1

ρ 00.05 00.50 00.99 02.50 05.00 10.00 20.00

% cases relating ñ, ˜̃n, nNL :

1 ñ ≤ nNL < ˜̃n
(0 < xc < 1)

13.54 43.47 50.45 49.90 38.30 23.47 13.14

2 ñ < nNL � ˜̃n
(xc = 0)

0.45 0.93 0.87 0.63 0.30 0.11 0.03

3 ñ � nNL � ˜̃n
(xc = 0)

86.01 55.59 48.68 49.47 61.40 76.42 86.83

% of cases relating nNL , nh , n̄:

4 nh � nNL < n̄ 0.37 4.18 9.46 30.18 57.12 77.83 86.72

5 nh < nNL � n̄ 69.88 27.47 16.56 6.75 3.08 1.20 0.37

6 nh < nNL < n̄ 20.82 59.46 65.02 54.08 30.45 11.41 3.33

7 nh � nNL � n̄ 8.93 8.89 8.94 8.99 9.35 9.56 9.58

In particular, for the different parameter values used in Table 1, all possible rankings of the
payoffs for NL relative to FL and PL1 are possible.

Finally, the last row of Table 1 shows the rankings of expected welfare across the different
models of learning for the different parameter values, where for Partial Learning it is only
for the parameters in column 9 that we are able to select PL2 as the appropriate equilibrium.
Columns 1–7 confirm that as ρ increases, welfare for NL moves from being the highest
relative to FL and PL1 to the lowest, while columns 8–13 show that keeping ρ �2.50,
introducing the other variations in parameter values, other than tightening the spread of γ l ,
γ h around the median (column 12), also imply that the welfare from NL moves from being
the highest relative to FL and PL to the lowest.

4.2 Results for Full Simulations

4.2.1 Implications for xc and nNL

Recall that fromKolstad andUlph (2008) the expected size of the stable IEAwithNoLearning
when countries are risk neutral is nNL � n̄. The first 3 rows of Table 2 shows how increasing
ρ affects how nNL relates to ñ, ˜̃n and whether 0<xc <1 or xc �0; while rows 4–7 show how
nNL relates to nh, n̄.

Row 1 shows that as ρ increases the proportion of cases for which xc is an interior solution
increases and then falls. The reason is the same as we argued in Sect. 4.1.1. As shown in
rows 3, 5 and 7, for ρ close to 0, the large majority of cases have nNL � n̄, with ñ, ˜̃n bunched
close to n̄ and ñ � nNL � ˜̃n. As ρ increases ñ, ˜̃n steadily decline, the gap between them
opens up, allowing more opportunity for xc to take an interior value, and the proportion of
cases where nNL � n̄ declines. But as ρ continues to increase above 1 ñ, ˜̃n tend towards nh,
the gap between them narrows, allowing less opportunity for xc to take an interior value.

4.2.2 Implications of Variations in ρ for p̃

The first row of Table 3 below shows for each value of ρ the average value of p̃, while the
second row shows the proportion of cases for which p ≥ p̃ and hence for which we can
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select the second equilibrium for Partial Learning, the onewith the highest expected aggregate
utility across the different models of learning.17 Consistent with the results in Table 1, as
ρ increases the average value of p̃ decreases and the proportion of cases for which p ≥ p̃
increases. However for any given value of ρ there is significant variation in the value of p̃
caused by the variation of the other parameters in the simulations; we do not report the details
here, but as an example with ρ �0.99, p̃ varies between 0.7864 and 0.9999.

So the general message is that as risk aversion increases the proportion of cases for which
the second Partial Learning equilibrium exists also increases.

4.2.3 Implications for Ranking Expected Size of Stable IEA, Payoffs and Expected
Welfare Across Different Models of Learning

Rows 3–5 of Table 3 show for each model of learning the maximum value (across all 500,000
simulations) of damage costs as a percentage of the value of output.18 Not surprisingly this
occurs in the high damage cost state of the world for which the equilibrium is the same for
Full Learning and the first Partial Learning equilibrium, which is why this percentage is the
same for Full Learning and Partial Learning.

For No Learning the maximum value of this percentage will tend to occur when nNL

is close to nh, and hence the number of signatories is low, and so would be similar to Full
Learning and Partial Learning. But there is an additional consideration. Aswe have seen from
Table 2, there are parameter values for which signatory countries will also pollute, which
will raise damage costs, and this effect is particularly pronounced for intermediate values of
ρ.

Rows 6–8 show the % of cases for which the expected IEA membership size is highest in
the three models of learning, while rows 9–11 show the similar figures for expected aggregate
utility. Consistent with the theoretical results in Sect. 3.4.1, rows 6 and 9 show that on both
measures the highest values occur for Partial Learning only when the second Partial Learning
equilibrium is feasible, and so these percentages are exactly the same as the percentage of
cases for which p ≥ p̃, as shown in row 2 of Table 3.

Our key results are in rows 7–8 and 10–11, which show that as risk aversion increases
from 0.0 to 20.0 the percentage of cases in which NL gives the highest number of expected
signatories falls from just under 9.5% to close to zero, and the percentage of cases in which
NL yields the highest level of expected utility falls from just under 87% to just over 2%.
These trends reflect both the decline in the IEA membership from n̄ to nh and the fact that,
for intermediate values of ρ, IEA signatories produce positive emissions. The implications
of the results for NL and PL are that as ρ increases from 0.0 to 20.0 the percentage of
cases where FL has the highest expected utility rises from just over 11% to just under 92%.
These increases are monotonic between ρ �0.0 and 10.0, but fall slightly when ρ �20.0,
due to the increase in the percentage of cases where PL has the highest expected signatories
and expected utility from just under 4% to just under 6%. It is also important to note that
percentage of cases where FL ranks first in expected utility exceeds that percentage for NL
as ρ increases from 0.0 to just 0.99.

So the general message is that quite modest increases in the level of risk aversion overturn
the presumption from the literature using risk neutrality that No Learning yields the highest

17 Of course, given our assumptions about the distribution of p in the simulations the second measure is just
1 minus the first measure expressed as a percentage.
18 In these simulations we report the maximum value of damage costs as a percentage of GDP, rather than
the average value, since we believe this is a more useful indicator of the plausibility of the parameter values
we have used.
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level of expected utility. This is also true for the expected utility of an individual country from
an ex ante perspective, which, for symmetric countries, is simply aggregate expected utility
divided by the number of countries. Thus, if countries were able to choose which model of
learning they should adopt, then, for quite modest levels of risk aversion, they would favour
leaving the decision to form an IEA and set their emissions until they had full information
about the likely damage cost of climate change.

4.3 Robustness Checks

In this sub-section we briefly discuss the sensitivity of the results we derived in Sects. 4.1
and 4.2 to changes in underlying assumptions in three respects.

First, in the simulations in Sects. 4.1 and 4.2 we set the value of the parameter B in π0 to
B �1.1 to ensure that payoffs were sensitive to countries’ abatement decisions. We have also
run the simulation results reported in Tables 1, 2 and 3 above with higher values of B, whilst
also ensuring that damage costs from emissions remain significant. We present the results in
“Appendix B”.19 These show that for higher values of B, the key findings in Tables 1, 2 and
3 are slightly less sensitive to changes in risk aversion, but the overall results are robust; in
particular, in relation to the results in Table 3, the percentage of cases where the payoff from
Full Learning is the highest across all models of learning now increases monotonically in ρ

(from 11% to 92%), and is greater than the percentage of cases where the payoff from No
Learning is highest for values of ρ ≥ 0.99.

Second, we checked the limiting cases we discussed in Lemmas 2 and 3 in Sect. 3.4
above through numerical simulations. To do this we used essentially the same underlying
parameter values as in Table 1, N �20, B �1.1, γ l �0.0615, γ h �0.1289, and p �0.5,
but then successively took limiting values for individual parameters of p ≈ 0.0, p ≈ 1.0,
γl ≈ 1/N , γh ≈ 1.0, holding all other parameters at their original levels. To save space
in Table 4 we report the results for 3 values of ρ �0.05, 2.50, 10.0, which illustrate the
limiting results derived in Lemmas 2 and 3. Moreover, the simulation results also indicate
that for p ≈ 0 not only E(UFL ) > E(U PL ) but also E

(
UFL

)
> E

(
UNL

)
, reinforcing

the message that learning leads to a better outcome in terms of expected utility. For p ≈ 1,
besides E

(
U PL

) � E
(
UNL

)
the simulation results reveal a full ranking of expected utility,

E
(
UFL

) ≤ E
(
U PL

) � E
(
UNL

)
, which indicate a negative effect of learning. For the third

limit parameter value, γl � 1/N , the results indicate that not only E
(
UFL

)
> E

(
U PL

)
but

also the level of risk aversion affects the ranking of expected utility between FL and NL, with
E

(
UNL

)
> E

(
UFL

)
for ρ � 0.05 and E

(
UFL

)
> E

(
UNL

)
for ρ � 10. Finally, for γh � 1

a full ranking of the learning scenarios was obtained: E
(
U PL

)
> E

(
UFL

) ≥ E
(
UNL

)
.

Finally, all the simulation results we have reported so far have been based on the constant
relative risk aversion (CRRA) utility function:

u(πi ) � 1

(1 − ρ)
π
1−ρ
i

where ρ ≥0 measures the degree of relative risk aversion. We now test the robustness of our
key results in Table 3 to the use of a constant absolute risk aversion (CARA) utility function:

u(πi ) � 1 − e−λπi (12)

19 To save space we report these results in “Appendix B” available on request from the authors.

123



Uncertainty, Learning and International Environmental… 1185

Ta
bl
e
4
R
es
ul
ts
fo
r
lim

it
ca
se
s:

ε
→

0

L
im

it
ca
se

p
�

ε
p

�
1

−
ε

γ
l
�

(1
/
N
)+

ε
γ
h

�
1

−
ε

ρ
0.
05

2.
50

10
.0

0.
05

2.
50

10
.0

0.
05

2.
50

10
.0

0.
05

2.
50

10
.0

R
es
ul
ts
E
(n
)

E
(n

P
L
)

8
8

8
17

17
17

8
8

8
17

17
17

E
(n

N
L
)

8
8

8
17

17
17

12
9

8
2

2
2

E
(n

F
L
)

8
+

ε
8
+

ε
8
+

ε
17

−ε
17

−ε
17

−ε
14

14
14

9.
5

9.
5

9.
5

R
an
k

E
(n

F
L
)
>

E
(n

P
L
)
�

E
(n

N
L
)

E
(n

P
L
)
�

E
(n

N
L
)
>

E
(n

F
L
)

E
(n

F
L
)
>

E
(n

N
L
)
>

E
(n

P
L
)
�

n h
E
(n

P
L
)
�

n l
>

E
(n

F
L
)
>

E
(n

N
L
)

R
es
ul
ts

E
(U

)

E
(U

P
L
)

25
.7

50
.0

59
.7

64
.6

87
.2

99
.9

42
.7

65
.7

79
.8

88
.4

99
.0

99
.9

E
(U

N
L
)

25
.8

50
.0

59
.8

64
.6

87
.2

99
.9

48
.9

67
.9

79
.8

49
.9

66
.7

91
.9

E
(U

F
L
)

25
.9

50
.1

59
.9

64
.5

87
.1

99
.9

42
.8

65
.8

79
.9

50
.4

66
.8

91
.9

R
an
k

E
(U

F
L
)
>

E
(U

N
L
)
≥

E
(U

P
L
)

E
(U

F
L
)
≤

E
(U

P
L
)
�

E
(U

N
L
)

E
(U

F
L
)
>

E
(U

P
L
);
E
(U

N
L
)
≥

E
(U

P
L
)

E
(U

P
L
)
>

E
(U

F
L
)
≥

E
(U

N
L
)

123



1186 A. Ulph et al.

Table 5 Expected membership and aggregate utility for three scenarios of learning—CARA utility function

ρ 00.05 00.50 00.99 02.50 05.00 10.00 20.00

1 λ 0.017 0.167 0.333 0.833 1.667 3.333 6.667

2 p ≥ p̃ 2.01 2.07 2.06 2.12 2.26 2.63 3.49

3 (%D)PL 6.67 6.67 6.67 6.67 6.67 6.67 6.67

4 (%D)NL 8.55 8.69 8.84 8.94 9.29 9.24 8.64

5 (%D)FL 6.67 6.67 6.67 6.67 6.67 6.67 6.67

Highest E(n)—%

6 PL 2.01 2.07 2.06 2.12 2.26 2.63 3.49

7 NL 9.28 7.83 6.79 4.78 3.16 1.71 0.69

8 FL 88.71 90.10 91.15 93.10 94.58 95.66 95.82

Highest E(U)—%

9 PL 2.01 2.07 2.06 2.12 2.26 2.63 3.49

10 NL 82.57 55.90 42.29 22.87 10.46 4.34 2.16

11 FL 15.42 42.03 55.65 75.01 87.28 93.03 94.35

where λ >0 measures the degree of absolute risk aversion. In checking how our results
using CARA relate to those using CRRA we need to ensure that the values we choose for
the parameters λ are broadly consistent with those we chose for ρ. For any level of π i the
coefficient of absolute risk aversion is related to the coefficient of relative risk aversion by the
formula λ �ρ/π i, and we discuss in “Appendix A2” how we use this relationship to choose
values of λ which are consistent with those we have used for ρ.

We have re-run the simulation results we presented in Table 3, which used the CRRA
utility function, but using the CARA utility function. The choice of the ranges for all other
parameter values other than ρ are exactly the same as in Table 3. The results are shown in
Table 5, where, as we have just discussed above, we have chosen the value of the parameter
λ in the CARA utility function to be consistent with the values of ρ we used in Table 3.

It is clear to see that while the individual numbers in Table 5 are slightly different from
those in Table 3 all the key findings we derived from Table 3 relating to the percentages
of cases for which the expected size of IEA or expected utility are largest across the three
models of learning carry over to those in Table 5.

So we conclude that the key findings from the simulation results reported in Sects. 4.1
and 4.2 are robust to a number of changes in the main aspects of the simulation modeling we
have employed.

5 Summary and Conclusions

This paper bridges two strands of literature on the formation of IEAs under uncertainty by
addressing the combined roles of learning and risk aversion. This approach allowed us to
explore the impact of learning for any given level of risk aversion as well as the impact of
changing risk aversion under various scenarios of learning.

We generalized themodel ofKolstad andUlph (2008)who showed that with risk neutrality
the possibility of learningmore information about environmental damage costs generally had
rather pessimistic implications for the success of the formation of IEAs. The authors found
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that learning reduces expected aggregate and individual payoffs for a wide range of parameter
values. This suggests that countries are better off forming an IEA rather thanwaiting for better
information.

In this paper, we have allowed countries to be risk averse using an expected utility approach
which maps payoffs into utility. We first derived the theoretical results for each of our
three scenarios of learning with risk aversion, confirming the main findings of Boucher and
Bramoullé (2010) for theNoLearning case. ForNo learning, risk leads to smaller stable coali-
tions and higher global emissions. In terms of equilibrium coalitions and global emissions,
we showed that Full Learning remains unaffected by risk and changes for Partial Learning are
small. However, even with special functional forms for the underlying utility functions there
was limited scope for deriving analytical comparisons across our three scenarios of learning,
primarily because welfare effects could differ for signatory and non-signatory countries. Our
simulation results showed that contrary to the finding with risk neutrality, when countries
become significantly risk averse, the set of parameter values for which countries are better
off with No Learning compared to Full Learning shrinks significantly and those cases for
which this is reversed increases accordingly. This may explain why it has taken so long for
a proper climate agreement to be reached—countries are risk averse and waited till they had
much better information about the risks of climate change.

In terms of future research, it would be desirable to use amodelwith asymmetric countries,
though it is unlikely to be possible to derive analytical results; so it may be more useful to
introduce different models of learning into Integrated Assessment Models of climate change.
It would also be interesting to endogenise the process of learning by allowing countries to
invest in research in order to obtain better information.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

Appendix A1: Proofs of Results

Proposition 1: Full Learning

Since the true state of the world is revealed before countries decide whether to join an IEA,
the results for stable IEAs, probabilities and payoffs in the four states of the world shown
in Proposition 1 follow immediately from Kolstad and Ulph (2008). The difference from
Kolstad and Ulph is that we now calculate aggregate expected utility using the expected
utility approach which captures attitudes to risk, rather than expected payoff. This completes
the proof of Proposition 1.

Lemma 1: Emission Decisions with No Learning

Fringe Country Output Decision

In stage 2, fringe country i takes as given the output of all other countries, X -i, and chooses xi
to maximise pu[π0 +xi −γl (xi +X−i )]+(1− p)u[π0 +xi −γh(xi +X−i )]. Since γl < γh < 1,
x f (n) � 1 ∀n, 2 ≤ n ≤ N . This proves result (i).
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Member Country Emission Decision

From (4b) we obtain the following:

0 < πc,h(xc, n) < πc,l (xc, n) ∀ n ≥ 1, 0 ≤ xc ≤ 1; (A1a)

∂πc,s

∂xc
≥ 0 ⇔ n ≤ 1

γs
; (A1b)

πc,s(0, n) � π0 − Nγs + nγs ; πc,s(1, n) � π0 − Nγs + 1 ≡ πc,s(1) ∀n (A1c)

and hence

πc,h(1) < πc,h(0, n) < πc,l (0, n) < πc,l (1) if
1

γh
< n <

1

γl
. (A1d)

As stated in Sect. 3.2, for a given n, each coalition member chooses xc(n) to maximise
E(uc(xc(n), n))) ≡ pu(πc,l (xc(n), n))+(1− p)u(πc,h(xc(n), n)) which leads to the following
first and second order conditions:

∂E(uc)

∂xc
� p(1 − γln)u

′
[πc,l (xc, n)] + (1 − p)(1 − γhn)u

′
[πc,h(xc, n)], (A2a)

∂2E(uc)

∂(xc)2
� p(1 − γln)

2u
′′
[πc,l (xc(n), n)] + (1 − p)(1 − γhn)

2u
′′
[πc,h(xc(n), n)] < 0.

(A2b)

Boundary Values for xc(n)

From (A2a):

n ≥ 1

γl
>

1

γh
⇒ ∂E(uc)

∂xc
< 0 ∀ xc ⇒ xc(n) � 0;

n ≤ 1

γh
<

1

γl
⇒ ∂E(uc)

∂xc
> 0 ∀ xc ⇒ xc(n) � 1.

Wenow look for tighter bounds forn that guarantees xc(n) � 0 and xc(n) � 1, respectively.
So we now focus on the range nh − 1 < 1

γh
< n < 1

γl
≤ nl . From (A1b), in this range

∂πc,l
∂xc

> 0;
∂πc,h
∂xc

< 0.

To make progress, we treat n as if it was a real value, z. To save notation define:

θ̃l ≡ u′[πc,l (1)], θ̃h ≡ u′[πc,h(1)],
˜̃
θl (z) ≡ u′[πc,l (0, z)] and

˜̃
θh(z) ≡ u′[πc,h(0, z)] where,

from (A1d):

θ̃l <
˜̃
θl (z) <

˜̃
θh(z) < θ̃h . (A3)

We first define z̃ as the unique value of z such that:

∂E(uc(1, z̃))

∂xc
� p(1 − γl z̃)θ̃l + (1 − p)(1 − γh z̃)θ̃h � 0 ⇒ z̃ � pθ̃l + (1 − p)θ̃h

γl pθ̃l + γh(1 − p)θ̃h
.

(A4)

From (A4) we get: 1
γh

< z̃ < 1
γl

and ∂E(uc(1,z̃))
∂xc

> 0 ∀ z < z̃. Thus, xc(z) � 1 ∀ z ≤ z̃.
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We now define ˜̃z such that:

(A5)

∂E(uc(0, ˜̃z))
∂xc

� p(1 − γl ˜̃z) ˜̃θl ( ˜̃z) + (1 − p)(1 − γh ˜̃z) ˜̃θh( ˜̃z) � 0

⇒ ˜̃z � p ˜̃
θl ( ˜̃z) + (1 − p) ˜̃θh( ˜̃z)

pγl
˜̃
θl ( ˜̃z) + (1 − p)γh

˜̃
θh( ˜̃z)

and again 1
γh

< ˜̃z < 1
γl
. Note, we have not been able to prove that there is a unique value of

˜̃z which solves (A5). We will discuss the implications shortly, but the next steps apply to any
˜̃z which solves (A5). As θ̃l > 0, θ̃h > 0, ˜̃

θl > 0 and ˜̃
θh > 0 then:

sign
( ˜̃z − z̃

)
� sign

(
[p ˜̃

θl ( ˜̃z) + (1 − p) ˜̃θh( ˜̃z)][pγl θ̃l + (1 − p)γh θ̃h]

−[pθ̃l + (1 − p)θ̃h][pγl
˜̃
θl ( ˜̃z) + (1 − p)γh

˜̃
θh( ˜̃z)]

)

� sign

(

p(1 − p)(γh − γl )θ̃l
˜̃
θl ( ˜̃z)[ θ̃h

θ̃l
−

˜̃
θh (

˜̃z)
˜̃
θl (

˜̃z)
]

) (A6)

Using (A3), it can be shown that:

sign
( ˜̃z − z̃

)
� sign

{

p(1 − p)(γh − γl )θ̃l
˜̃
θl ( ˜̃z)[ θ̃h

θ̃l
− ˜̃

θh ( ˜̃z)˜̃
θl ( ˜̃z)

]

}

≥ 0. So any ˜̃z which solves
(A5) must be at least as large as z̃.

Next we show that ˜̃z ≤ 1
γ̄
. Define ξ ≡ ˜̃

θh( ˜̃z)/ ˜̃
θl ( ˜̃z) ≥ 1. Then:

˜̃z ≤ 1/γ̄ ⇔ p + (1 − p)ξ

pγl + (1 − p)γhξ
≤ p + (1 − p)

pγl + (1 − p)γh
⇔ p(1 − p)(γh + ξγl ) ≤ p(1 − p)(ξγh + γl ) ⇔ (ξ − 1)(γh − γl ) ≥ 0. (A7)

So any ˜̃z which solves (A5) must be no greater than 1/γ̄ .

As ñ � I (z̃) and ˜̃n � I
( ˜̃z

)
then nh ≤ ñ ≤ ˜̃n ≤ n̄—result (ii).

From (A4) and (A5) it is straightforward to see that:
p → 0 ⇒ ñ, ˜̃n, n̄ → nh ; p → 1 ⇒ ñ, ˜̃n, n̄ → nl—result (iii).
Results (iv), n < ñ ⇒ xc(n) � 1, and (vii), n ≥ ˜̃n ⇒ xc(n) � 0, come directly from the

definitions of ñ and ˜̃n, in (6a) and (6b), respectively.
Wehave not been able to prove analytically that there is a unique value of ˜̃z. Thus, following

definition (6b), we will treat ˜̃z and hence ˜̃n as the largest such value.

Interior Values for xc(n)

If z̃ is an integer then ñ � z̃ and xc(ñ) � 1 as ∂E(uc(1,ñ))
∂xc

� 0. If z̃ is not integer then

0 ≤ xc(ñ) < 1 as ∂E(uc(1,ñ))
∂xc

< 0. Thus, n � ñ ⇒ 0 ≤ xc(n) ≤ 1—result (v).

From the definition of ñ in (6a), n > ñ ⇒ 0 ≤ xc(n) < 1 as ∂E(uc(1,n))
∂xc

< 0. From the

definition of ˜̃n in (6b), n < ˜̃n ⇒ 0 ≤ xc(n) ≤ 1. Thus, ñ < n < ˜̃n ⇒ 0 ≤ xc(n) < 1—result
(vi). Moreover, if there is a unique value of ˜̃z then n < ˜̃n ⇒ 0 < xc(n) ≤ 1 and hence
ñ ≤ n < ˜̃n ⇒ 0 < xc(n) < 1. This completes the proof of Lemma 1.
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Proposition 2: No Learning

FromLemma 1we know the values of xf (n) and xc(n) for all n.We now solve Stage 1. Define:
E(u f (n)) � pu(π0 + 1 − γl [N − n + nxc(n)]) + (1 − p)u(π0 + 1 − γh[N − n + nxc(n)]),
E(uc(n)) � pu(π0 + xc(n)−γl [N −n+nxc(n)])+ (1− p)u(π0 + xc(n)−γh[N −n+nxc(n)])
and �(n) � E(uc(n)) − E(u f (n − 1)), noting that nNL � E(nNL ) is a stable IEA iff
�(nNL ) ≥ 0 and �(nNL + 1) < 0.

To save notation, define πs � π0 − γs N s � l, h.

(i) n ≥ ˜̃n + 1

�(n) � pu(πl + γln) + (1 − p)u(πh + γhn) − pu(πl + γln + (1 − γl ))

− (1 − p)u(πh + γhn + (1 − γh)) < 0

So no such n could be stable.
(ii) n < ñ

All countries set x �1, so �(n)�0. We exclude these trivial cases.
(iii) ñ + 1 ≤ n < ˜̃n

�(n) � p[πl + nγl + xc(n)(1 − γl ) − γl (n − 1)xc(n)]

+ (1 − p)[πh + nγh + xc(n)(1 − γh) − γh(n − 1)xc(n)]

− p[πl + nγl + (1 − γl ) − γl (n − 1)xc(n − 1)]

− (1 − p)[πh + nγh + (1 − γh) − γh(n − 1)xc(n − 1)]

So, if xc(n) ≥ xc(n − 1), then �(n) < 0 and so n could not be a stable IEA. If
xc(n) < xc(n − 1), then the sign of �(n) depends on the precise values of xc(n) and
xc(n − 1).

(iv) n � ñ
From (ii) we know that xc(ñ−1) � x f (ñ) � 1 ⇒ E(uc(ñ−1)) � E(u f (ñ)). So when
n � ñ, IEA members could have set xc(ñ) � 1, but, by definition of ñ, they did not, so
E(uc(ñ)) > E(uc(ñ − 1)) � E(u f (ñ − 1)) ⇒ �(ñ) > 0.

To complete the argument, successively increase n from ñ until �(n) < 0, in which case
nNL �n −1 is a stable IEA. There must exist such a stable IEA since we know from (iv)
that �(ñ) > 0 and from (i) that �( ˜̃n + 1) < 0. We cannot rule out the possibility that there
is more than one stable IEA. This completes the proof of Proposition 2.

Proposition 3: Partial Learning

Because emission decisions in stages 2 are taken under certainty, the results are the same as
in Kolstad and Ulph (2008), namely:

Stage 2

(a) x f ,s(n) � 1 s � l, h ∀n
(b) n ≥ nl ⇒ xc,s(n) � 0 s � l, h
(c) nh ≤ n < nl ⇒ xc,h � 0, xc,l � 1
(d) n < nh ⇒ xc,s(n) � 1 s � l, h

So using the notation πs � π0 − γs N , s � l, h, introduced in the proof of Proposition 2,
the payoffs are:
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(i) n ≥nl

E(u f (n)) � pu[πl + nγl + 1] + (1 − p)u[πh + nγh + 1]

E(uc(n)) � pu[πl + nγl ] + (1 − p)u[πh + nγh]

(ii) nh ≤n <nl

E(u f (n)) � pu[πl + 1] + (1 − p)u[πh + nγh + 1]

E(uc(n)) � pu[πl + 1] + (1 − p)u[πh + nγh]

(iii) n <nh

E(u f (n)) � E(uc(n)) � pu[πl + 1] + (1 − p)u[πh + 1]

Stage 1

(i) n ≥ nl + 1

�(n) � pu(πl + nγl ) + (1 − p)u(πh + nγh) − pu(πl + nγl + (1 − γl ))

− (1 − p)u(πh + nγh + (1 − γh)) < 0

So no n in this range can be a stable IEA.
(ii) n � nl

�(nl ) � pu(πl + nlγl ) + (1 − p)u(πh + nlγh) − pu(πl + 1)

− (1 − p)u(πh + nlγh + (1 − γh))

As nlγl ≥ 1 so:

�(nl ) ≥ 0 ⇔ p

(1 − p)
≥ u(πh + nlγh + (1 − γh)) − u(πh + nlγh)

u(πl + nlγl ) − u(πl + 1)
≡ χ > 0

i.e. �(nl ) ≥ 0 ⇔ p ≥ χ
1+χ

≡ p̃ > 0.
Since, from (i), �(nl + 1) < 0, nl is stable iff p ≥ p̃.

(iii) nh + 1 ≤ n < nl

�(n)� pu(πl +1)+(1− p)u(πh +nhγh)− pu(πl +1)− (1− p)u(πh +nγh +(1−γh))

< 0

So no n in this range can be stable.
(iv) n � nh

�(nh) � pu(πl + 1) + (1 − p)u(πh + nhγh) − pu(πl + 1) − (1 − p)u(πh + 1)

�(nh) ≥ 0 as nhγh ≥ 1. From (iii) �(nh +1) < 0 and hence nh is always a stable IEA.
(v) n < nh

�(n) � 0; as in Proposition 2, we ignore these cases.
So there always exists a stable IEA with nPL � nh and if p ≥ p̃ there is a second
stable IEA with nPL � nl . This completes the proof of Proposition 3.

Lemma 2: ExpectedMembership

(i) Let p � ε ≈ 0. From Proposition 1, Lemma 1 and Proposition 3 we get:

E(nFL ) � εnl + (1 − ε)nh, E(nNL ) � nh, E(n
PL ) � nh .
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This proves E(nFL ) > E(nPL ) � E(nNL ).
(ii) Let p � 1 − ε ≈ 1. From Proposition 1, Lemma 1 and Proposition 3 we get:

E
(
nFL

)
� (1 − ε)nl + εnh, E

(
nNL

)
� nl , E

(
nPL

)
� nl .

This proves E(nPL ) � E(nNL ) > E(nFL ).
(iii) and (iv). From Proposition 1 we get:

E(nFL ) � pnl + (1 − p)nh .

From Proposition 3, under PL there always exists a stable IEA with nPL1 � nh members. If
p̃ ≤ p ≤ 1, then there is a second stable IEA with nPL2 � nl members, where p̃ � χ

1+χ
and

χ � u[π0−(N−nl )γh+(1−γh )]−u[π0−(N−nl )γh ]
u[π0−(N−nl )γl ]−u[π0−Nγl+1]

� Ω
Ψ
.

Thus, p̃ � χ
1+χ

can be rewritten as:

p̃ � �

� + �

� u[π0 − (N − nl )γh + (1 − γh )] − u[π0 − (N − nl )γh ]

u[π0 − (N − nl )γh + (1 − γh )] − u[π0 − (N − nl )γh ] + u[π0 − (N − nl )γl ] − u[π0 − Nγl + 1]

If γl ≈ 1/
N then nl � N . Thus: p̃ � u[π0+(1−γh )]−u[π0]

u[π0+(1−γh )]−u[π0−Nγl+1]
.

As γl ≈ 1/
N we get p̃ ≈ 1 and consequently the second stable IEA with nPL2 � nl

members will not occur. Therefore, nPL � nh and E
(
nFL

) � pnl + (1 − p)nh > nPL ,
which proves (iii).

If γh � 1 then p̃ ≈ 0
u[π0−(N−nl )γl ]−u[π0−Nγl+1]

� 0. Hence, the second stable IEA with

nPL2 � nl members will always occur, which Pareto-dominates nPL1 � nh . Therefore,
nPL � nl and nPL > E

(
nFL

) � pnl + (1 − p)nh , which proves (iv).

Lemma 3: Expected Utility

(i) If p ≈ 0 then from Propositions 1 and 3, the difference of expected utilities between PL
and FL is given by:

�1 � E
(
U PL

)
− E

(
UFL

)

� pnhu
(
π

PL1
c,l

)
+ p(N − nh)u

(
π

PL1
f ,l

)
+ (1 − p)nhu

(
π

PL1
c,h

)
+ (1 − p)(N − nh)u

(
π

PL1
f ,h

)

−
[
pnlu

(
π FL
c,l

)
+ p(N − nl )u

(
π FL

f ,l

)
+ (1 − p)nhu

(
π FL
c,h

)
+ (1 − p)(N − nh)u

(
π FL

f ,h

)]

where:

π
PL1
c,l � π0 + 1 − γl N < π

FL1
c,l � π0 − γ1(N − n1), π

PL1
f ,l � π0 + 1 − γl N < π

FL1
f ,l � π0 + 1 − γ1(N − n1),

π
PL1
c,h � π FL

c,h � π0 − γh (N − nh ), π
PL1
f ,l � π PL

f ,l � π0 + 1 − γ1(N − nh ).

As π
PL1
c,h � π FL

c,h and π
PL1
f ,h � π FL

f ,h , �1 can be simplified to:

�1 � p
[
nhu

(
π

PL1
c,l

)
− nlu

(
π FL
c,l

)]
+ p

[
(N − nh)u

(
π

PL1
f ,l

)
− (N − nl )u

(
π FL

f ,l

)]
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Thus,

d�1

dp
�

[
nhu

(
π

PL1
c,l

)
− nlu

(
π FL
c,l

)]
+

[
(N − nh)u

(
π

PL1
f ,l

)
− (N − nl )u

(
π FL

f ,l

)]

� nh
[
u
(
π

PL1
c,l

)
− u

(
π

PL1
f ,l

)]
+ nl

[
u
(
π FL

f ,l

)
− u

(
π FL
c,l

)]
+ N

[
u
(
π

PL1
f ,l

)
− u

(
π FL

f ,l

)]

The 1st and the 3rd square brackets are negative and the second is positive.
Note also that π FL

c,l � π PL
c,l � π0 − γl (N − nl ) − [

π0 + 1 − γl N
] � γlnl − 1 > 0.

Hence:

π
PL1
c,l � π

PL1
f ,l � π FL

c,l � π FL
f ,l and u

(
π FL

f ,l

)
− u

(
π FL
c,l

)
< u

(
π FL

f ,l

)
− u

(
π

PL1
f ,l

)
.

Therefore d�1
dp < 0.

As �1(p � 0) � 0, d�1
dp < 0 implies E(UFL)>E(UPL).

(ii) If p ≈ 1 then from Propositions 1 and 3, the difference of expected utilities between NL
and PL is given by:

�2 � E
(
UNL

)
− E

(
U PL

)

� pnlu
(
π NL
c,l

)
+ p(N − nl )u

(
π NL

f ,l

)
+ (1 − p)nlu

(
π NL
c,h

)
+ (1 − p)(N − nl )u

(
π NL

f ,h

)

−
[
pnlu

(
π

PL2
c,l

)
+ p(N − nl )u

(
π

PL2
f ,l

)
+ (1 − p)nlu

(
π

PL2
c,h

)
+ (1 − p)(N − nl )u

(
π

PL2
f ,h

)]

where

π NL
c,l � π0 − γl (N − nl ) � π

PL2
c,l , π NL

f ,l � π0 + 1 − γl (N − nl ) � π
PL2
f ,l

π NL
c,h � π0 − γh(N − nl ) � π

PL2
c,h , π NL

f ,h � π0 + 1 − γh(N − nl ) � π
PL2
f ,h .

As the payoffs of coalition members and non-members are the same under both learning
scenarios, for both states of the world, we get �2 � 0 and hence E(U PL ) � E(UNL ).
(iii) If γl ≈ 1/N then nl � N and nPL � nh , as shown above in the proof of Lemma 2.
From Propositions 1 and 3:

�3 � E(U PL ) − E(UFL )

� pnhu(π
PL1
c,l ) + p(N − nh)u(π

PL1
f ,l ) + (1 − p)nhu(π

PL1
c,h ) + (1 − p)(N − nh)u(π

PL1
f ,h )

−
[
pnlu(π

FL
c,l ) + p(N − nl )u(π

FL
f ,l ) + (1 − p)nhu(π

FL
c,h ) + (1 − p)(N − nh)u(π

FL
f ,h)

]

where:

π
PL1
c,l � π0 + 1 − γl N < π FL

c,l � π0 − γl (N − nl ) � π0, π
PL1
f ,l � π0 + 1 − γl N < π FL

f ,l � π0 + 1

π
PL1
c,h � π FL

c,h � π0 − γh(N − nh), π
PL1
f ,h � π FL

f ,h � π0 + 1 − γh(N − nh)

As π
PL1
c,h � π FL

c,h and π
PL1
f ,h � π FL

f ,h , �3 can be simplified to:

�3 � p
[
nhu(π

PL1
c,l ) − nlu(π

FL
c,l )

]
+ p

[
(N − nh)u(π

PL1
f ,l ) − (N − nl )u(π

FL
f ,l )

]
.
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Using nl � N we get:

�3 � p
[
nh

(
u(π PL1

c,l ) − u(π PL1
f ,l )

)
+ N

(
u(π PL1

f ,l ) − u(π FL
c,l )

)]
.

The sign of �3 is negative as π
PL1
c,l � π

PL1
f ,l and π

PL1
f ,l − π FL

c,l � 1 − γl N < 0.

This proves that E(UFL ) > E(U PL ).
(iv) If γh≈1 then nh � 2 and nPL � nl , as shown above in the proof of Lemma 2. From
Propositions 1 and 3:

�4 � E
(
U PL

)
− E

(
UFL

)

� pnlu
(
π
PL2
c,l

)
+ p(N − nl )u

(
π
PL2
f ,l

)
+ (1 − p)nlu

(
π
PL2
c,h

)
+ (1 − p)(N − nl )u

(
π
PL2
f ,h

)

−
[
pnlu

(
π FL
c,l

)
+ p(N − nl )u

(
π FL
f ,l

)
+ (1 − p)nhu

(
π FL
c,h

)
+ (1 − p)(N − nh)u

(
π FL
f ,h

)]

where:

π
PL2
c,l � π0 − γl (N − nl ) � π FL

c,l , π
PL2
c,l � π0 + 1 − γl (N − nl ) � π FL

f ,l ,

π
PL2
c,h � π0 − γh(N − nl ) > π FL

c,h � π0 − γh(N − nh),

π
PL2
f ,h � π0 + 1 − γh(N − nl ) > π FL

f ,h � π0 + 1 − γh(N − nh).

As π
PL2
c,h � π FL

c,h and π
PL2
f ,h � π FL

f ,h , �4 can be simplified to:

�4 � (1 − p)
[
nlu

(
π

PL2
c,h

)
− nhu

(
π FL
c,h

)]
+ (1 − p)

[
(N − nl )u

(
π

PL2
f ,h

)
− (N − nh)u

(
π FL

f ,h

)]

Thus, sign(�4) � sign
{

�4
1−p

}
.

Let us rewrite �4
1−p :

nh[u
(
π FL

f ,h

)
− u

(
π FL
c,h

)
] + nl [u

(
π

PL2
c,h

)
− u

(
π

PL2
f ,h

)
] + N [u

(
π

PL2
f ,h

)
− u

(
π FL

f ,h

)
]

The 1st and the 3rd square brackets are positive and the second is negative.
Comparing π FL

f ,h and π
PL2
c,h we get:

π FL
f ,h − π

PL2
c,h � 1 − γh(nl − nh).

As γh ≈ 1, π FL
f ,h − π

PL2
c,h ≈ 1 − (nl − nh).

The sign of this expression is negative as nl − nh ≥ 2.
Thus: π FL

c,h < π FL
f ,h < π

PL2
c,h < π

PL2
f ,h .

Consequently:

|u
(
π

PL2
c,h

)
− u

(
π

PL2
f ,h

)
|< |u

(
π

PL2
f ,h

)
− u

(
π FL

f ,h

)
|.

Hence, �4 > 0, that is, E(U PL ) > E(UFL ).

Appendix A2: Choice of Parameter Values

CRRA

1. We use CRRA utility function and payoff function:

u(πi ) � 1

1 − ρ
π
1−ρ
i ;πi � Bγh(N − 1) + xi − γ X

γh(N − 1)
where B > 1.
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For the results in Sect. 4 we have used B�1.1; however to ensure results are robust
we have done simulations also for B�1.5. These results are presented in “Appendix B”
available to readers on request to the authors.

2. We choose coefficient of relative risk aversion ρ �0.0, 0.05, 0.5, 0.99, 2.50, 5.0, 10.0,
20.0.

3. The other key parameters are N, p, γ l , γ h. We describe the choice of these for the full
simulations then briefly say what we do for the simple simulation.

4. We choose 4 random variables: z1,…,z4 lying strictly between 0 and 1.
5. We will work with the median ¯̄γ : 2 ¯̄γ � γl + γh . This allows us to choose p indepen-

dently of γ l , γ h, so we set as p �0.0001+ z1·0.9998.
6. We want to ensure that it is possible to have 2 < nh < ¯̄n − 1 < ¯̄n + 1 < nl < N .
7. This first of all requires that N is greater than 7; and we set an upper limit for N �100.

So we set NN �7.0+ z2·93; N � I(NN).
8. Next we set ¯̄ξ ≡ 1/ ¯̄γ . To allow for 2 < nh < ¯̄n − 1 < ¯̄n + 1 < nl < N we set ¯̄ξ to lie in

range [4, N −3]; so ¯̄ξ � 4 + z3(N − 7). Then we have ¯̄γ � 1/ ¯̄ξ , ¯̄n � I ( ¯̄ξ ).
9. Finally we choose γ l , γ h, ensuring the possibility that 2 < nh < ¯̄n−1 < ¯̄n+1 < nl < N

and that ¯̄γ : 2 ¯̄γ � γl + γh . We choose the smaller of two intervals: (1/N , ¯̄γ ), ¯̄γ , 1).

(i) If ¯̄γ < 0.5(1 + 1/N ) choose:

ξh � ( ¯̄ξ − 2.0) + z4( ¯̄ξ − 3); γh � 1/ξh ; γl � 2 ¯̄γ − γh ; ns � [γs], s � l, h

(ii) If ¯̄γ ≥ 0.5(1 + 1/N ):

ξl � ( ¯̄ξ + 2) + z4(N − ¯̄ξ − 2);

γl � 1/ξl ; γh � 2 ¯̄γ − γl ; ns � [γs], s � l, h.

10. For simple simulations we choose N �20; p �0.1, 0.5, 0.9; z3 �0.1, 0.5, 0.9; z4 �
0.1, 0.5, 0.9; z3 determines where the median of γ s lies in the relevant range, while z4
determines the spread of values of γ s around that median.

CARA

λ is the coefficient of absolute risk aversion; for any given level of payoff π it is related to
the coefficient of relative risk aversion by the formula: λ � ρ/π . For π we have chosen the
average value of the payoff in the FL scenario: π̄ � pπ̄l + (1 − p)π̄h where π̄s is average
payoff (averaged over signatories and non-signatories) in state of the world s, given by:
π̄s � π0 − (N − ns)γs + (N − ns)/N , where π0 � Bγh(N − 1). We use parameter values
p �0.5 (both states of the world are equally likely); and 1/γh � 0.5(N + 1)− 0.25(N − 1),
1/γl � 0.5(N + 1) + 0.25(N − 1), consistent with our use of the median value of 1/γs being
the midpoint (N +1)/2 and 1/γs , s� l,h lying in the mid-points of the subsequent sub-ranges.
By taking values of N in a wide range between 25 and 100 we have shown that π̄ does not
vary significantly with N but does vary with B according to the following approximation:
c̄ � 3.0 + 4 · (B − 1.1)/1.1. We have used this to calculate the values of λ in Table 5 in the
main text.
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