Education and Information Technologies
https://doi.org/10.1007/510639-023-12349-5

®

Check for
updates

Investigating the usability of a new framework for creating,
working and teaching artificial neural networks using
augmented reality (AR) and virtual reality (VR) tools

Roland Kiraly' - Sandor Kiraly' - Martin Palotai'

Received: 18 April 2023 / Accepted: 7 November 2023
© The Author(s) 2023

Abstract

Deep learning is a very popular topic in computer sciences courses despite the fact
that it is often challenging for beginners to take their first step due to the complexity
of understanding and applying Artificial Neural Networks (ANN). Thus, the need
to both understand and use neural networks is appearing at an ever-increasing rate
across all computer science courses. Our objectives in this project were to create a
framework for creating and training neural networks for solving different problems
real-life problems and for research and education, as well as to investigate the usabil-
ity of our framework. To provide an easy to use framework, this research recruited
five instructors who have taught ANNs at two universities. We asked thirty-one stu-
dents who have previously studied neural networks to fill out an online survey about
what were "the major difficulties in learning NNs" and the "key requirements in a
Visual Learning Tool including the most desired features of a visualization tool for
explaining NNs" they would have used during the course. We also conducted an
observational study to investigate how our students would use this system to learn
about ANNSs. The visual presentation of ANNs created in our framework can be rep-
resented in an Augmented Reality (AR) and Virtual Reality (VR) environment thus
allowing us to use a virtual space to display and manage networks. An evaluation of
the effect of the AR/VR experience through a formative test and survey showed that
the majority of students had a positive response to the engaging and interactive fea-
tures of our framework (RKNet).

Keywords Artificial Neural Network - Augmented Reality - Virtual Reality -
Education - Visualization

Extended author information available on the last page of the article

Published online: 11 December 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-023-12349-5&domain=pdf

Education and Information Technologies

1 Introduction

Recently, Machine Learning and one of its subfields, Neural Networks (NN), have
become increasingly popular due to their widespread use and success in various appli-
cations. NNs can assist humans in improving many industrial and professional pro-
cesses, as well as enhance daily life (Sarker, 2021; Xiang et al., 2018; Tulbure et al.,
2022; Kumar et al., 2022; Xin et al., 2021). Thus, in scientific research, including medi-
cal and biology-based use (Sarvamangala & Kulkarni, 2022; Tang et al., 2019) food
science (Ma et al., 2022; Gorbachev et al., 2022), and research related to the spread of
viruses (Wieczorek et al., 2020; Gao & Caines, 2022), the need to use neural networks
is appearing at an ever-increasing rate. This success of NN applications has generated a
huge amount of interest from practitioners and students, inspiring many to learn about
this technology.

At first sight, constructing an NN for solving a problem is easy: we need to specify
a structure and a loss function to optimize, before further optimizing it using gradient
descent (Legaard et al., 2021; Behler, 2015). This means that the network feeds forward
with just matrix multiplication and pointwise activations, before the network backprop-
agates using the multivariate chain rule when the update of the weights accordingly
must be performed. When applying the theory to difficult problems, it turns out that
understanding how deep learning works is very different from actually applying it suc-
cessfully. There are plenty of pitfalls to watch out for before getting a neural network
that does exactly what we want. For example, it is essential to optimize its structure to
prevent over or underfitting, to get the network to converge (to a high-quality local min-
ima) to make sure we have the right loss function, to do data augmentation correctly,
etc. Moreover, in a complex NN, there are several network layers each with a differ-
ent structure and underlying mathematical operations (Lopez et al., 2022; Taye, 2023).
Thus, students need to develop a mental model of not only how each layer operates, but
also how to choose different layers that can work together to transform data. Therefore,
learning about neural networks presents a significant challenge due to the complex rela-
tionship between basic mathematical operations and their overall integration within the
network. In addition, the majority of neural networks run in virtual space, i.e. they are
not visible to the human eye. Although for successful implementation it would often be
necessary to make the "part of the virtual world where the neural networks run" avail-
able to the students in real-time and space, our tool provides such a user interface, thus
making them literally "touchable" for their use.

The need to visualize artificial neural networks for computer scientists who need to
construct neural networks to solve difficult problems and to control the working of their
constructed NNs is evident (Shahroudnejad, 2021; Li et al., 2020). Thus, there is nowa-
days a strong interest in integrating VR in everyday working life (Babi¢ & Mestrovic,
2019; Bock & Schreiber, 2019).

1.1 Objectives

One of our objectives in this project was to create a framework for creating and
training neural networks for solving different problems of real life and for research

@ Springer

Education and Information Technologies

and education. In this paper, we focus on the investigation of the usability of our
framework in education.

We sought answers to the following questions: (a) what are the major difficul-
ties in learning NNs? (b) What are the key requirements in a Visual Learning Tool
including the most desired features of a visualization tool for explaining NNs? (c)
How usable is the created system?

Our system can work as a distributed system since it can use the available com-
puters as resources. This is made possible by the distributed operation of the Erlang
programming language', which allows us to run on several machines — even on sev-
eral threads on one machine or process — thus enabling us to create nodes that com-
municate without using shared memory. (Naturally, here the elements of the neural
network communication should be considered as network communication, and the
node is the one running the Erlang process).

The framework also gives the opportunity for the individual nodes we start to
perform a task specified with the help of a lambda function and to share their results
with other members of the network. The neurons are capable of placing data to or
from a distributed database reading out data.

Accordingly, we have developed a model and, based on the model, a prototype
device that is suitable for the above tasks, i.e. it can show the structure of neural net-
works and make them controllable even for users who do not have sufficient knowl-
edge of computer science and the disciplines that use it.

1.2 Research contribution
In this work, we contribute:

e Our system (RKNet) that contains an interactive visualization tool designed for
both experts and non-experts to learn and analyse NN’s structure, and monitor
the working of NNs.

Novel NN generator implemented in VR and AR environment.

RKNet that provides the possibility of high error tolerance for the development
of distributed systems, for messaging without shared memory between the nodes
of a distributed system and provides many options that make the creation of neu-
ral networks simple.

Although framework was not created for educational purposes it is a behaviour-
based system where we can practically create empty networks and then add func-
tionality to them (with Lambda expressions that can be implemented as a higher-
order, lazy evaluation function).

Although the creation of the network is a programmer’s task, its use, visual con-
trol and monitoring require only user skills.

! https://www.erlang.org/

@ Springer

https://www.erlang.org/

Education and Information Technologies

2 Method
2.1 Literature review

An increasing amount of research utilizes interactive visualizations to eluci-
date the operational mechanisms of neural networks. Harley’s visualisation tool
focuses on demonstrating the high-level model structure and connections between
layers of Convolutional Neural Networks (CNN), Karpathy’s extended ConvNetJS
tool allows us to formulate and solve Neural Networks in Javascript (Karpathy
2016). TensorFlow Playground (Smilkov et al., 2017) and GAN Lab (Kahng
et al., 2019) can help students to learn about dense neural networks and gen-
erative adversarial networks (GANs) respectively. Wang et al. (2021) presented
the CNN Explainer, an interactive visualization tool designed for non-experts to
learn and examine convolutional neural networks (CNNs), a foundational deep
learning model architecture. Apart from the aforementioned tools, there are sev-
eral others designed for non-experts (Olah 2014; Smilkov et al., 2017; Norton &
Qi 2017) but most of them are developed to help NN experts analyse their mod-
els and predictions (Bilal et al. 2018; Garcia et al. 2018; Harley, 2015; Hohman
et al., 2019; Kahng et al., 2018; Liu et al., 2017a, b). Mohamed et al. (2022) pre-
sented a review of visualisation-as-explanation techniques for convolutional neu-
ral networks and their evaluation. Zhang et al. (2021) evaluated the visualization
performance of CNN models using driver model. 3D visualization of deep learn-
ing algorithms were developed for both experts and non-experts with an interac-
tive user interface that allows interactive exploration on different levels of detail
(Bock & Schreiber, 2019; Jin et al., 2020; Schreiber & Bock, 2019).

Meissler et al. (2019) examined how CNNs can be visualized in Virtual Reality
and developed a software prototype based on the Unity platform and STEAMVR.
Their deep learning networks are defined using Keras (Chollet et al., 2015) which
are used as a high-level layer on top of Tensorflow (Abadi et al., 2015).

Queck et al. (2022) designed and implemented an ANN visualization in virtual
reality (VR) specifically targeted at machine learning users. Their approach was
especially well-suited for teaching and for individuals who are new to machine
learning or lack expertise but wish to gain an understanding of the overall work-
ings of neural networks. The common feature of the aforementioned tools is that
they are visual systems, created for educational purposes and do not have their
own framework behind them.

Although different frameworks have been developed to enhance experts’ work
constructing NNs to solve difficult problems in real life, such as TensorFlow,
Keras, PyTorch, Theano, Deeplearning4j or Microsoft CNTK they do not contain
visual tools that can help users in analysing the constructed NNs by checking the
state of a neuron or a layer. Although none of them uses virtual reality (VR) and
augmented reality (AR) AR does permit the superimposition of digital content on
top of the real-world environment through the use of a smartphone, tablet or vir-
tual reality (VR) headset (Carmigniani et al. 2011). AR presents an opportunity
to deliver a ‘virtual’ object-based learning activity. The dominant feature of VR

@ Springer

Education and Information Technologies

is the ability to promote a higher level of immersion than other media. Immersive
VR puts the user in an environment that takes after the real world and feels to
some extent like it, with the person having a sense of self localization (Psotka
1995).

VR with head-mounted displays has proven itself as a learning medium in the
engineering field (Abulrub et al. 2011). Indeed, there is evidence that a virtual learn-
ing environment can achieve better learning outcomes than traditional teaching
(Alhalabi, 2016).

Our framework can be widely used to construct NNs to solve problems in real
life. It can also be parameterized easily and the created NNs can be visually pre-
sented in an AR and VR environment. Moreover, the interaction can also take place
in this environment. Using AR and VR tools, the created NNs can be shown in a
virtual environment and the control, programming and management of the networks
become available here. By using the framework for educational purposes, students
without fundamental or relatively low-level programming knowledge can construct
different NN to solve problems and can also examine the working of NNs.

2.2 The structure of the system

Since one of the goals of creating our framework was the process of creating, pro-
gramming and testing NNs, as well as the process of creating NN, to simplify their
programming and testing, as well as to create NN that are suitable for solving real-
life problems easily, we first created the subsystem in the Erlang language. In this
subsystem, the configuration settings can be used to define the number of neurons
in the NN and their connections, before starting them using a command issued on a
graphical interface. The neurons in the network can be parameterized with Lambda
expressions. (Neural Network Framework.)

Figure 1 shows the structure of our framework. Currently, it shows a very sim-
ple NN (Neural Network I). The central item of a NN, created by our framework,
is the node, called SNeuron. (S1, S2,..., S5 in Fig. 1). One SNeuron contains two
neurons (neuron pairs). One of them is responsible for communication and the other
for performing the currently imposed task. SNeurons can perform tasks specified by
Lambda functions, and share their results with other neuron pairs in the network.
A single SNeuron can communicate with other SNeurons if they share the same
password stored in a common cookie file on the host computer whilst being con-
nected to a network. This mode of operation is described in the Erlang language and
each SNeuron is an Erlang process, allowing our system to function as a distributed
system.

SNeurons are able to cooperate and directly exchange data with other SNeu-
rons defined in their configuration. Furthermore, they are also able to place data in
a distributed database or read data from it. Based on a pre-set frequency or in an
impromptu manner, the SNeurons in the network can learn the data collected by the
other SNeurons by reading them from the database. That is, they use each other’s
data and learn based on the experiences of the others.

@ Springer

Education and Information Technologies

Fig. 1 Block diagram of the
frame work. Source: created by User shell
the authors

Neural network 1...

Laravel based REST API

ra

VR client

The system monitors and presents graphically the neural network as an edge-
tagged directed graph through database snapshots in pseudo real time. The
graphic display module and its extensions make our framework suitable for using
the virtual environment. The part of the module responsible for communication
was implemented on a web server using a Laravel-based REST (Representational
State Transfer) AP1 (Application Program Interface).

This SQL-based (Structural Query Language) database makes it possible to
visualize the neural network in real time for the virtual environment. The func-
tions of the SNeuron are:

e [t can communicate with the rest of the network — with other neurons;

e [t can read data from the distributed database and can write data there;

e It can register itself in the database of the system in order to provide data to
the connected interfaces.

The database thus provides an accurate and up-to-date status of the network,
which can return the connections and the current tasks of the neurons in real
time. Every time there is a change, the database is updated, which triggers an
event in the viewer, making the network quasi-animated on the visual interfaces.

@ Springer

Education and Information Technologies

In this way, we can actually query a snapshot of the network, which is suitable for
its visual display and control

The neural network provides a significant part of the system, but not its full func-
tionality. A very important element of the entire framework is the Ul (User Inter-
face) that provides the control, as well as the API that implements the communica-
tion among the subsystems.

2.3 Rendering

When we create a network with its neurons (SNodes) in the system, we enter the
number of neurons in the neural network. They are initially equal and have no task.
We need to define which neurons can communicate with each other. As an extra
function, we can group neurons by way of specifying their group ID, which can be
used to refer to them later.

The VR system runs under the Unity Engine, which can display neural networks
in the virtual environment. This subsystem also provides the opportunity to gener-
ate learning networks, which are only useful for educational purposes and cannot
solve complex problems. It automatically colours, and also provides the possibility
to introduce individual templates. For the efficient use of the framework in multi-
ple contexts and externally, we have implemented a template system, which enables
a relative positioning system to place the displayed networks in the visible middle
thanks to the possible dimensions of the data received from the system. In virtual
reality, individual nodes can be grasped, touched, rotated and their functions man-
aged. We can examine the functions of running neurons by holding them in our
hands. In VR, there are two ways of interacting with the environment, one is our
hands, and the other is a laser pointer device that allows us to simply grab distant
nodes and then pull them closer to us. This helps to manage and display larger net-
works to the user.

To illustrate the model, we created a mobile and Unity-based interface that can
be used through VR glasses for managing and illustrating the neural network. Fig-
ure 2 shows a randomly generated NN without functionality to represent how we
can choose a node and check its state.

2.4 Timing and visualization

The working of the neural network in the system is very fast, especially if we use
Lambda functions defined with simple functions. Although in the case of complex
calculations, it is very useful, for visual display it is not feasible, since it cannot be
followed with the eyes and in the VR or AR GUI only the final result is visible. To
solve this problem, we have enabled the neural network to slow down its operation
during the creation of the network and during its working as well. It is possible to
specify the speed of network creation, as well as the time elapsing between send-
ing messages for each network element group type. In addition to specifying the
speed, it is also possible to select certain processes in the network that should not
be executed automatically, but upon external intervention, as for example, in virtual

@ Springer

Education and Information Technologies

Fig.2 Neural Network Visualization VR in RKNet. Now, neurons have functionality. Source: screenshot
from the video. https://www.youtube.com/watch?v=zoD0oWan7u8

reality with a click or a VR movement. The VR software of the system sends a mes-
sage to the REST API such as grabbing one of the neurons or touching it through a
corresponding endpoint if a command is issued in VR. The REST API then calls a
function in the Erlang module through a purpose-written function, instructing the
neural network to proceed or to send a message. This function also enables an inter-
active illustration for the user.

2.5 Defining NNs for the visualization interface of RKNet

When we create a NN with its neurons in the system, we specify the neurons in the
neural network and the communication types they must use. We also specify with
whom they will communicate in the NN. This can be one or more neurons or the
console from which we start the NN. It may also be another node or the rest of the
system. We also have to define the neighbours of each node, i.e. neuron, to whom
a message must be sent in connection with an event taking place in a network. We
can also specify, for example, what starting value an input neuron should start with,
i.e. what it should send to the neurons of the hidden layer. In the example below, we
defined a neural network representing a perceptron.

In the example, see Fig. 10 in the Appendix, the neural network is given in a list.
Each list element is defined in an ordered n-tuple, where the elements of the tuple
describe the properties of the neuron.

{ilnl, input, [{hInl, {0.1, 0.4}}]}

ilnl is the name of the neuron, i.e. the internal identifier of the system. The
input atom tells us that this element is an input neuron. The third element in the

@ Springer

https://www.youtube.com/watch?v=zoD0oWan7u8

Education and Information Technologies

tuple is also a list that specifies the neighbour numbers of the neuron. It will send
a message to them, if we instruct it to do so, in the Lambda function describing
its function. This function can be defined by using the console of the framework.
In the list describing the neighbourhood, since this is an input neuron, we can
specify the ID of the neighbours, as well as the initial values that must be sent to
each neighbour at the start and the value of the weight for each. An initial input
value does not need to be specified for the neurons of the hidden layer, as they
send a message based on what is described in their Lambda function. (It is also
possible to specify a weight here, but in this example, we defined the weights
assigned to the edges for the input.) The situation is the same in the case of the
output layer, but here we can specify that the result is written to the console for
verification and testing purposes. This can happen if, for example, we do not want
to calculate its error with a cost function, but want to check the result produced
by the output neuron at the output, as in the case of the above output neuron:

outl, output, [console].

Figure 3 shows a simple perceptron model including the input values of the
NN, Fig. 4 represents its visualization with the output value.

Without defining the lambda functions, that describe the functioning of the
neurons the NN does nothing. Therefore, our Erlang list (see Fig. 10) requires
adding the Lambda functions. Figure 11 in the Appendix shows the completed
Erlang list with the name of the Lambda functions applied in the definition of the
NN.

Knowing the implementations of the Lambda functions or watching the video,
it can be seen how the NN works. The three input neurons send (0.4, 0.5, 0.2) val-
ues to the hidden neuron, which multiplies them with the weights (0.4, 0.2. 0.6),
the sum of the resulting three values and send to the output neuron. This neuron
displays the true value to the output if the given value is more the 0.5, otherwise
it is false. The lambda functions can be defined both in the Erlang list or outside
the list. Figure 12 in the Appendix shows the Lambda function that defines the
behaviour of the output neuron.

In this case, the function of the output neuron waits for a message. If the con-
tent of the message is the input, Value pair, the function adds its current value
(State) to the one received in the message. If this value is greater than 0.5, the
result will be frue, otherwise false. Then, at each step, it saves its own state for
the system database (from which, for example, the VR interface can query it), and
then calls itself with the new state. If it receives a stop message, it stops, that is, it
does not call itself again.

We can specify the neurons of the hidden and input layers in the same way
as its Lambda functions and we can assign them to the appropriate group in the
definition of the NN. Functions are defined at the start of the neural network and
must be given to all neurons of that type by specifying the name label, as we can
see it in Fig. 11.

At the start of the network, the system will start the input_neuron function in
the case of the input neurons in the input layer, and naturally, the hidden_neuron

@ Springer

Education and Information Technologies

Fig.3 A simple perceptron model. Source: made by the authors

|

Fig.4 The visualization in AR of the previous perceptron model. Screenshot from the video. Source:
https://youtu.be/ghI-OezDAFE

function in the case of the hidden layer and the output_neuron function in the
case of the output. After that, we just have to start the network either from the
console or from the REST API endpoints and its operation can be monitored on
one of the visual interfaces.

By defining more complex and complicated Lambda functions, neurons can
overcome more difficult tasks, thus the created NNs in the system can work as a
complex, highly error-tolerant distributed system, whose functions are defined in
the Lambda functions of each individual neuron.

In the next example, we define a simple NN to study its working including
backpropagation. Figure 13 in the Appendix shows the Erlang list with the name
of the Lambda functions.

@ Springer

https://youtu.be/ghI-OezDAFE

Education and Information Technologies

Forward.propagation

Calculation

0.12*1 + 0,22 # 2=0.56

0.56

RelLu Mmax(0,0.56)

Fig.5 Investigation of the operational of a Neural Network in. (In the calculation of the MSE value, we
used 0.5 instead of 1 to ease the calculation of the derivative.) Screenshot of the video. Source: https://
youtu.be/Ak-j9_RD-Rk

After the implementation of the functions of the layers and starting the NN, we
can study the working of the NN through the VR output screen. Figure 5 repre-
sents a screenshot of the video.

3 Formative research to identify the learning challenges faced
by the students

Before designing the educational part of our visualization tool, we recruited 5
instructors (5 female) who have taught NNs at two universities. We interviewed
them one-on-one in a conference room (2/5) and via video-conferencing soft-
ware (3/5); each interview lasted about 25 minutes. Through these interviews, we
learned that instructors currently use simple illustrations with simple examples to
explain NN concepts and give URLs of demonstration videos about the working
of NNs.

We asked our BSc and MSc students who have previously studied neural
networks to fill out an online survey. We received 31 responses (4 female, 27
male). Among them, 26 were BSc. students and 5 were MSc. students. We asked
participants what were ‘“the major difficulties in learning NNs” and the “key
requirements in a Visual Learning Tool including the most desired features of a
visualization tool for explaining NNs” they would have used during the course.

@ Springer

https://youtu.be/Ak-j9_RD-Rk
https://youtu.be/Ak-j9_RD-Rk

Education and Information Technologies

Major difficulties in learning NNs

The process for training NN [28
Backpropagation [26
Connection of math & structure IS 26
Math behind neurons and layers [N 15
Layer and weight dimensions [6

NN Structure M 3

Fig.6 Survey results from 31 students who have already learned about NNs. Major difficulties encoun-
tered during learning

Key Requirementsin a Visual Learning Tool

Algorithm animation [N o1
Use aworking NN mode! [o1
Explain computations in neurons [N 17
Change hyperparameters [N 6
Explain backpropagation [[NNNEGEGEGEGENENN 6
Creating a user's own model _ 12

Fig.7 Survey results from 31 students who have already learned about NNs. Key requirements in a Vis-
ual Learning Tool for NNs

Participants were allowed to choose from a range of options (see Figs. 14 and
15). The aggregated results of this survey are shown in Fig. 6 and 7. (We used
Microsoft Excel for data analysis.)

During the development of the AR/VR subsystem, we tried to follow the result
of this survey to fulfil the requirements. After completing the current version of
the system, we constructed NNs previously seen with varying activation functions

@ Springer

Education and Information Technologies

and learning rates, as well as additional simple NN with two hidden layers and
two output neurons, each using different activation functions and learning rates.

4 Results

We conducted an observational study to investigate how our students would use this
system to learn about NNs, and also to test the usability of the system. We recruited
21 student participants from our university (3 female, 18 male). Four students were
MSc. and the others were BSc. students. All participants were interested in learning
NNs, and none of them had known RKNet before. Participants self-reported their
level of knowledge on non-neural network machine learning techniques (see Figs. 16
and 17). We also provided a feature checklist, which outlined the main features of
our tool and asked them to try the first NN with different activation functions and
learning rates, then the second one. During the study, participants were asked to
think aloud and share their computer screen with us; they were encouraged to ask
questions when necessary. The exit questionnaire included a series of 7-point Likert-
scale questions about the utility and usefulness of different views in RKNet (Fig. 8
and 9). All average Likert ratings were above 6 except for the rating of “interactive
calculation views”. From the high ratings and our observations, participants found
our tool easy to use and understand, retained a high engagement level during their
session, and eventually gained a better understanding of NN concepts.

Usability evaluation

Helped me to learn

Easy to understand

Enjoyable to use T

Easy to use

[uny
N
w
=y
(O3}
a
~

Fig. 8 Average ratings from 21 participants regarding the usability and usefulness of RKNet. Participants
thought RKNet was enjoyable, easy to use and helped them learn about ANs

@ Springer

Education and Information Technologies

Usefulness of features

Interactive calculation views m
performance [T

Interactions |

overview Y

Fig.9 Average ratings from 21 participants regarding the usability and usefulness of RKNet. Usefulness,
especially animations were rated favourably

Another useful feature of RKNet that participants mentioned was the interactions,
which received the highest rating in the exit questionnaire (Fig. 8). We found that
interactions helped to increase participants’ engagement level (e.g., spending more
time and effort) and made RKNet more enjoyable to use.

The main student objection was that hyperparameters cannot be varied in AR.

5 Conclusions and future work

RKNET is a framework with which we can create Neural Networks in the Erlang
programming language to solve various tasks. Network operation is monitored in a
virtual environment. We also made the VR tool suitable for non-experts as it allows
an easy and accessible introduction to NNs. We plan to provide the option of chang-
ing hyperparameters interactively in VR view. The system is a prototype, so we are
constantly developing it, and we add new functions to the system based on needs.

In addition to VR, we also targeted the AR environment. Here, the aesthetic
placement of the network in real space caused problems, but we will solve this
soon with the help of plane detection. So AR will also become an available option
(although currently, it is only available in the test phase, as we focused on VR).

We plan to create a higher level of interaction, where all elements and func-
tions of the network can be created even from the VR environment. We also aim
to supplement the framework with a web-based education system. Later, we plan
to release RKNet as an open-source software.

@ Springer

Education and Information Technologies

Appendix for codes and data

Fig. 10 The definition of a per-
ceptron model in an Erlang list

network_model() ->

[

{iln1, input, [{hln1, {0.1, ©.4}}]1},
{iln2, input, [{hlnl, {0.5, ©.2}}1},
{iln3, input, [{hln1, {0.2, ©.6}}]1},
{h1ln1, hidden, [{outl}]},

{outl, output, [{console}]}

1.

[

1.

network_model() ->

{iln1, input, [{hlnl, {©.1, ©.4}}], input_neuron},
{iln2, input, [{hlnl, {0.5, ©.2}}], input_neuron},
{iln3, input, [{hlnl, {0.2, ©.6}}], input_neuron},
{h1lnl, hidden, [{outl}], hidden_neuron},

{outl, output, [{console}], output_neuron}

Fig. 11 The definition of a perceptron model in an Erlang list including the Lambda functions

receive

end.

output_neuron({Name, ActValue}) ->

{input, Vvalue} ->

stop -> stop;

_ -> output_neuron({Name, ActValue})

[valuel),

State = ActValue + Value,

if
State >= 0.5 ->
mconsole(true);
true -> mconsole(false)
end,

save_neuron_state(Name, State),

output_neuron({Name, State});

Fig. 12 The definition of a perceptron model in an Erlang list including the lambda functions

@ Springer

Education and Information Technologies

neuro
[
{x1,
{x2,
{h3,
{ha,
{05,
].

ns_back_prop() ->

input, [{h3, 1, ©.12}, {h4, 1, ©.22}], bp_input],
input, [{h3, 2, ©.21}, {h4, 2, 0.6}], bp_input},

hidden, [{o5, ©.14}], bp_hidden},
hidden, [{0o5, ©.15}], bp_hidden},

output, [{x1, x2, h3, h4}], bp_output]

Fig. 13 The definition of an NN (without biases) by an Erlang list

Students:
Gender(Male/Female)

MSc (M) or BSc(B)

The process for training NN
(Yes or No)

Backpropagation (Yes or No)
Connection of math & structure
(Yes or No)

Math behind neurons and
layers

Layer and weight dimensions
(Yes or No)

NN Structure (Yes or No)

® 2~
F<SIAIN]
@ 2w
EILES
® T
@2 o
@ 2 o
@ ©

Y
Y

<
< =<
=< =<
< z
=< =<

Y

Y

N
N

Fig. 14 Data source of “Major difficulties in learning NNs”

Students:

Gender(Male/Female)

MSc (M) or BSc(B)

Algorithm animation

Use a working NN model

Explain computations in neurons
Change hyperparameters
Explain backpropagation
Creating a user's own model

i
o
=
jy
i
N
[
W
[
I
[
«
[
o

2

z<z<z<w®wzoe
<~<zzzzw®zny

1
M
B
Y
Y
Y
Y
N
N

zZ<<z=<zz27Ty
<<zz<<®zw
<~<<zz<=<gzm,
ZzZz<<<zZ®Tan
< <zZzzZz<<®Zq
Z<<=<zZ=<®WZy
<z <zZz2<<®Zg
zz<<<<w®mzg
zz<<=<<z23Z2
<~<zz<z<zz2
zZ<<<=<=<wgzg
z<<zz<wg
z<<<zzwzg
<zz<<<w

zz<<=<=<z2z2p

19 20 21 22 23 24 25 26 27 28 29 30 31

M
B

N
N

Fig. 15 Data source of "Key Requirements in a Visual Learning Tool”

Students:
Gender(Male/Female)
MSc (M) or BSc(B)
Easy to use

Easy to understand
Enjoyable to use
Helped me to learn

<ZZZZZCD§$

YYNNYYYYYYYY
NNNNYNYNYNNY

N NNNNYN
N N N Y

N

z<zz<zwzpy
PN

<<zz<<wzN
3

zz<<<zwzy
S

o
zZz<<<zwzw

zzz<<<wzN

<<zZzz=<<w®wzN
ol

Zz<<<<®mzNn
ZzZz<<zZzz®wZN
zz<z<<®wZN

o
<<zzz<wTN
z<z<zzwzy
<<zz<<®mzw

et

123456 7 89101112 13 14 15 16 17 18 19 20 21
MMMMF MMMFMM F
B BBBMBBMBBB MBB B BB B B B B

6 6

DN O
D NN O
[&) N I e))]
[e) <) I e))]
DN OO
DN O
[&) N I e) o)}
(o) N)]
[o) N
[&) NI e) o)}

Fig. 16 Data source of "Usability evaluation”

@ Springer

NN o N

DN O

MMMMMMMMM

a o O
DN O
NN OO
DN OO
[) NI«))]
[) N e) o)}
[e) <) I e)]
[) NI e) o)}

O 0N

Education and Information Technologies

Students: 123456 7 8 9101112 13 14 15 16 17 18 19 20 21
Gender(Male/Female) MMMMF MMMFMMF MMMMMMMMM
MSc (M) or BSc(B) BBBBMBBMBBB MBBB BB B B B B
Overview 6 76 7677676 6 6 7 6657776 6
Interactions 777676776 7656 776 76 6 6 7
Performance 6 76 6 766 75 76 766 766 6 6 6 6
Interactive calculation views 6 56 6 56656 6 56 6 7576 76 56

Fig. 17 Data source of “Usefulness of Features”

Funding Open access funding provided by Eszterhazy Karoly Catholic University.

Data availability The author confirms that all data generated or analysed during this study are included
in this published article. Furthermore, primary and secondary sources and data supporting the findings of
this study were all publicly available at the time of submission.

Declarations
Conflict of interest We have no conflict of interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen
ses/by/4.0/.

References

Abadi, M. et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software
available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/. Accessed 20 Oct
2022.

Abulrub, A. G., Attridge, A. N., & Williams, M. A. (2011). Virtual Reality in engineering education: The
future for creative learning. IEEE Global Engineering Education Conference (EDUCON), 2011,
751-757. https://doi.org/10.1109/EDUCON.2011.5773223

Alhalabi, W. (2016). Virtual reality systems enhance students’ achievements in engineering education.
Behaviour & Information Technology 35, 11 (July 2016), 919-925. https://doi.org/10.1080/01449
29X.2016.1212931

Babi¢, K., and Mestrovi¢, A. (2019). Visualizations of the training process of neural networks. 42nd Interna-
tional Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, Croatia, 2019, pp. 1619-1623. https://doi.org/10.23919/MIPRO.2019.8757142

Behler, J. (2015). Constructing high-dimensional neural network potentials: A tutorial review. Wiley
Online Library. https://doi.org/10.1002/qua.24890

Bilal, A., Jourabloo, A., Ye, M., Liu, X. and L. Ren (2018). Do Convolutional Neural Networks Learn
Class Hierarchy? IEEE Transactions on Visualization and Computer Graphics, 24(1):152-162, Jan.
2018. https://doi.org/10.1109/TVCG.2017.2744683

Bock, M. and Schreiber, A. (2019). Visualization of neural networks in virtual reality using UNREAL
ENGINE. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://tensorflow.org
https://www.tensorflow.org/
https://doi.org/10.1109/EDUCON.2011.5773223
https://doi.org/10.1080/0144929X.2016.1212931
https://doi.org/10.1080/0144929X.2016.1212931
https://doi.org/10.23919/MIPRO.2019.8757142
https://doi.org/10.1002/qua.24890
https://doi.org/10.1109/TVCG.2017.2744683

Education and Information Technologies

Technology, ser. VRST ’18. New York, NY, USA: ACM, 2018, pp. 132:1-132:2. [Online]. Avail-
able at: https://doi.org/10.1145/3281505.3281605. Accessed 25 Oct 2022

Carmigniani, J., et al. (2011). Augmented reality technologies, systems and applications. Multimedia
Tools and Applications, 51(1), 341-377. https://doi.org/10.1007/s11042-010-0660-6

Chollet F. et al (2015). Keras. https://keras.io. Accessed 20 Oct 2022.

Gao, S., Caines, P.E. (2022). Transmission Neural Networks: From Virus Spread Models to Neural Net-
works. IEEE (Version: August 5, 2022). https://doi.org/10.48550/arXiv.2208.03616

Garcia, R., Telea, A. C., da Silva, B. C., Torresen, J., & Dihl Comba, J. L. (2018). A task-and-technique
centered survey on visual analytics for deep learning model engineering. Computers & Graphics,
77, 30-49. https://doi.org/10.1016/j.cag.2018.09.018

Gorbachev, V., et al. (2022). Artificial Neural Networks for Predicting Food Antiradical Potential. Appl.
Sci. 2022, 12(12), 6290. https://doi.org/10.3390/app12126290

Harley, A. (2015). An interactive node-link visualization of convolutional neural networks. Springer,
Cham. https://doi.org/10.1007/978-3-319-27857-5_77

Hohman, F., Kahng, M., Pienta, R. and D. H. Chau (2019). Visual Analytics in Deep Learning: An Inter-
rogative Survey for the Next Frontiers. IEEE Transactions on Visualization and Computer Graphics,
25(8):2674-2693, Aug. 2019. https://doi.org/10.1109/TVCG.2018.2843369

Jin, M. et al. (2020). An Enhanced Convolutional Neural Network in Side-Channel Attacks and Its Visu-
alization. https://doi.org/10.48550/arXiv.2009.08898

Kahng, M., Andrews, P. Y., Kalro, A. and Chau, D. H. (2018). ActiVis: Visual Exploration of Industry-
Scale Deep Neural Network Models. IEEE Transactions on Visualization and Computer Graphics,
24(1):88-97, Jan. 2018. https://doi.org/10.1109/TVCG.2017.2744718

Kahng, M., Thorat N., Chau D. H., Viegas, F. B. and Wattenberg M. (2019). GAN Lab: Understanding
Complex Deep Generative Models using Interactive Visual Experimentation. IEEE Transactions on
Visualization and Computer Graphics, 25(1):310-320, Jan. 2019. https://doi.org/10.1109/TVCG.
2018.2864500

Karpathy, A. (2016). ConvNet]S MNIST demo. Available at: https://cs.stanford.edu/people/karpathy/
convnetjs/demo/mnist.html Accessed 29 Oct 2022.

Kumar, D. J., Bhunia, P, Adhikary, S.D, Bej, B. (2022). Optimization of Effluents Using Artificial
Neural Network and Support Vector Regression in Detergent Industrial Wastewater Treatment,
Cleaner Chemical Engineering. Volume 3, 2022, 100039, ISSN 2772-7823. https://doi.org/10.
1016/j.clce.2022.100039

Legaard, C. M., et al. (2021). Constructing neural network-based models for simulating dynamical
systems. ACM Computing Surveys, 55(11), 1-34. https://arxiv.org/pdf/2111.01495.pdf, https://
doi.org/10.1145/3567591. Accessed 20 Oct 2022.

Li, M., Zhao, Z., and Scheidegger, C. (2020). Visualizing Neural Networks with the Grand Tour.
https://doi.org/10.23915/distill.00025

Liu, M. et al. (2017a). Towards Better Analysis of Deep Convolutional Neural Networks in IEEE
Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 91-100, Jan.
2017. https://doi.org/10.1109/TVCG.2016.2598831

Liu, S., et al. (2017b). Visualizing High-Dimensional Data: Advances in the Past Decade. IEEE
Transactions on Visualization and Computer Graphics, 23(3):1249-1268, Mar. 2017. https://doi.
org/10.1109/TVCG.2016.2640960

Lépez, O.A., Lopez, A., Crossa, J. (2022). Fundamentals of Artificial Neural Networks and Deep
Learning. In: Multivariate Statistical Machine Learning Methods for Genomic Prediction.
Springer, Cham. https://doi.org/10.1007/978-3-030-89010-0_10

Meissler, N., Wohlan, A., Hochgeschwender, N. (2019). Using Visualization of Convolutional Neural
Networks in Virtual Reality for Machine Learning Newcomers. IEEE International Conference
on Artificial Intelligence and Virtual Reality (AIVR), San Diego, CA, USA, 2019, pp. 152-1526.
https://doi.org/10.1109/AIVR46125.2019.0003 1

Mohamed, E., Sirlantzis, K., Howells, G. (2022). A review of visualisation-as-explanation techniques
for convolutional neural networks and their evaluation. Displays, Volume 73, 2022, 102239,
ISSN 0141-9382. https://doi.org/10.1016/j.displa.2022.102239

Norton, A. P. and Qi, Y. (2017). Adversarial-Playground: A visualization suite showing how adver-
sarial examples fool deep learning. In 2017 IEEE Symposium on Visualization for Cyber Security

@ Springer

https://doi.org/10.1145/3281505.3281605
https://doi.org/10.1007/s11042-010-0660-6
https://keras.io
https://doi.org/10.48550/arXiv.2208.03616
https://doi.org/10.1016/j.cag.2018.09.018
https://doi.org/10.3390/app12126290
https://doi.org/10.1007/978-3-319-27857-5_77
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.48550/arXiv.2009.08898
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2018.2864500
https://doi.org/10.1109/TVCG.2018.2864500
https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
https://doi.org/10.1016/j.clce.2022.100039
https://doi.org/10.1016/j.clce.2022.100039
https://arxiv.org/pdf/2111.01495.pdf
https://doi.org/10.1145/3567591
https://doi.org/10.1145/3567591
https://doi.org/10.23915/distill.00025
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1007/978-3-030-89010-0_10
https://doi.org/10.1109/AIVR46125.2019.00031
https://doi.org/10.1016/j.displa.2022.102239

Education and Information Technologies

(VizSec), pp. 1-4. IEEE, Phoenix, AZ, USA, Oct. 2017. https://doi.org/10.48550/arXiv.1708.
00807

Olah, C. (2014). Neural Networks, Manifolds, and Topology. Available at: https://colah.github.io/
posts/2014-03-NN-Manifolds-Topology/. Accessed 20 Nov 2022.

Ma, P. et al. (2022). Neural network in food analytics, Critical Reviews in Food Science and Nutrition.
Taylor and Francis Online. https://doi.org/10.1080/10408398.2022.2139217

Psotka, J. (1995). Immersive training systems: Virtual reality and education and training. Instruc-
tional Science, vol. 23, no. 5-6, pp. 405-431, Nov. 1995

Queck, D., Wohlan, A., Schreiber, A. (2022). Neural Network Visualization in Virtual Reality: A Use
Case Analysis and Implementation. In: Yamamoto, S., Mori, H. (eds) Human Interface and the
Management of Information: Visual and Information Design. HCII 2022. Lecture Notes in Com-
puter Science, vol 13305. Springer, Cham. https://doi.org/10.1007/978-3-031-06424-1_28

Sarker, I.LH. (2021). Deep Cybersecurity: A Comprehensive Overview from Neural Network
and Deep Learning Perspective. SN COMPUT. SCI. 2, 154 (2021). https://doi.org/10.1007/
842979-021-00535-6

Sarvamangala, D. R., & Kulkarni, R. V. (2022). Convolutional neural networks in medical image
understanding: a survey. Evol. Intel., 15, 1-22. https://doi.org/10.1007/s12065-020-00540-3

Schreiber A. and Bock, M. (2019). Visualization and exploration of deep learning networks in 3d and
virtual reality. In HCI International 2019 - Posters, C. Stephanidis, Ed. Cham: Springer Interna-
tional Publishing, 2019, pp. 206-211. https://doi.org/10.1007/978-3-030-23528-4_29

Shahroudnejad, A. (2021). A Survey on Understanding, Visualizations, and Explanation of Deep Neu-
ral Networks. https://arxiv.org/abs/2102.01792. Accessed 20 Dec 2022.

Smilkov, D., Carter, S., Sculley, D., Viegas, F. B. and Wattenberg, M. (2017). Direct- ~ Manipula-
tion Visualization of Deep Networks. arXiv:1708.03788, Aug. 2017. https://arxiv.org/abs/1708.
03788. Accessed 20 Oct 2022.

Tang, J, et al. (2019). Bridging Biological and Artificial Neural Networks with Emerging Neuromor-
phic Devices: Fundamentals, Progress, and Challenges. First published: 24 September 2019.
https://doi.org/10.1002/adma.201902761

Taye, M. M. (2023). Theoretical Understanding of Convolutional Neural Network: Concepts, Architec-
tures, Applications, Future Directions. Computation, 2023(11), 52. https://doi.org/10.3390/compu
tation11030052

Tulbure, A., Tulbure, A., & Dulf, E. (2022). A review on modern defect detection models using DCNNs
— Deep convolutional neural networks. Journal of Advanced Research, 35(2022), 33-48. https://doi.
org/10.1016/j.jare.2021.03.015

Wang, Z. J. et al. (2021). CNN Explainer: Learning Convolutional Neural Networks with Interactive
Visualization. in IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp.
1396-1406, Feb. 2021. https://doi.org/10.1109/TVCG.2020.3030418

Wieczorek, M., Sitka, J., & Wozniak, M. (2020). Neural network powered COVID-19 spread forecasting
model, Chaos. Solitons & Fractals, 140(2020), 110203, ISSN 0960-0779. https://doi.org/10.1016/j.
chaos.2020.110203

Xiang, L., Qian, D., & Jian-Qiao, S. (2018). Remaining useful life estimation in prognostics using deep
convolution neural networks. Reliability Engineering & System Safety, 172(2018), 1-11. https://doi.
org/10.1016/j.ress.2017.11.021

Xin, S. et al. (2021). ATNN: Adversarial Two-Tower Neural Network for New Item’s Popularity Predic-
tion in E-commerce. IEEE 37th International Conference on Data Engineering (ICDE), Chania,
Greece, 2021, pp. 2499-2510. https://doi.org/10.1109/ICDE51399.2021.00282.

Zhang, C., Okafuji, Y., and Wada, T. (2021). Evaluation of visualization performance of CNN models
using driver model. 2021 IEEE/SICE International Symposium on System Integration (SII), Iwaki,
Fukushima, Japan, 2021, pp. 739-744. https://doi.org/10.1109/IEEECONF49454.2021.9382776

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.48550/arXiv.1708.00807
https://doi.org/10.48550/arXiv.1708.00807
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://doi.org/10.1080/10408398.2022.2139217
https://doi.org/10.1007/978-3-031-06424-1_28
https://doi.org/10.1007/s42979-021-00535-6
https://doi.org/10.1007/s42979-021-00535-6
https://doi.org/10.1007/s12065-020-00540-3
https://doi.org/10.1007/978-3-030-23528-4_29
https://arxiv.org/abs/2102.01792
https://arxiv.org/abs/1708.03788
https://arxiv.org/abs/1708.03788
https://doi.org/10.1002/adma.201902761
https://doi.org/10.3390/computation11030052
https://doi.org/10.3390/computation11030052
https://doi.org/10.1016/j.jare.2021.03.015
https://doi.org/10.1016/j.jare.2021.03.015
https://doi.org/10.1109/TVCG.2020.3030418
https://doi.org/10.1016/j.chaos.2020.110203
https://doi.org/10.1016/j.chaos.2020.110203
https://doi.org/10.1016/j.ress.2017.11.021
https://doi.org/10.1016/j.ress.2017.11.021
https://doi.org/10.1109/ICDE51399.2021.00282
https://doi.org/10.1109/IEEECONF49454.2021.9382776

Education and Information Technologies

Authors and Affiliations

Roland Kiraly' - Sandor Kiraly' - Martin Palotai'

P< Roland Kiraly
kiraly.roland @uni-eszterhazy.hu

P4 Sandor Kiraly
kiraly.sandor @uni-eszterhazy.hu

P< Martin Palotai
palotaimartinm @gmail.com

Department of Information Technology, Eszterhdazy Karoly Catholic University, Eger, Hungary

@ Springer

	Investigating the usability of a new framework for creating, working and teaching artificial neural networks using augmented reality (AR) and virtual reality (VR) tools
	Abstract
	1 Introduction
	1.1 Objectives
	1.2 Research contribution

	2 Method
	2.1 Literature review
	2.2 The structure of the system
	2.3 Rendering
	2.4 Timing and visualization
	2.5 Defining NNs for the visualization interface of RKNet

	3 Formative research to identify the learning challenges faced by the students
	4 Results
	5 Conclusions and future work
	Appendix for codes and data
	References

