
Vol.:(0123456789)

Education and Information Technologies
https://doi.org/10.1007/s10639-023-12317-z

1 3

Evaluating support systems and interface efficiency in Hour
of Code’s Minecraft Adventurer

Pavlos Toukiloglou1 · Stelios Xinogalos1

Received: 31 March 2023 / Accepted: 27 October 2023
© The Author(s) 2023

Abstract
Hour of Code is a widely recognized global event that aims to introduce program-
ming to novice users and integrate computer science into education. This paper
presents an analysis of the effectiveness of the support system and user interface
of Minecraft Adventurer, a serious game designed for the Hour of Code global
event. Although previous studies have primarily focused on the educational bene-
fits of Hour of Code games, there has been limited research on their support meth-
ods. Therefore, this paper aims to address this gap with an empirical study of the
experience of 104 students who played the game for one hour. Student progress was
tracked by an administering teacher and after the game session, a questionnaire was
administered to collect data on the participant’s perceptions of the support system,
interface efficiency, and overall experience with Hour of Code. The results of the
study reveal significant problems with the aforementioned systems, which apply not
only to Minecraft Adventurer but also to several other similar serious games. Addi-
tionally, the findings showed a correlation between the utilization of the support sys-
tem and student performance, indicating that student’s comprehension of the sup-
port system significantly influences their learning outcomes. This paper concludes
by providing potential solutions to address the identified insufficiencies, offering
valuable insights for future researchers and game developers on the design and eval-
uation of serious games for educational purposes.

Keywords Hour of Code · Serious games · Programming · Support · User interface

 * Stelios Xinogalos
 stelios@uom.edu.gr

 Pavlos Toukiloglou
 toukiloglou@uom.edu.gr

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

http://orcid.org/0000-0002-9148-7779
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-023-12317-z&domain=pdf

 Education and Information Technologies

1 3

1 Introduction

The Hour of Code (HoC) is a global event that aims to promote computer sci-
ence education by introducing millions of students to the world of coding and
programming. It takes place annually and is organized by Code. org, a non-profit
organization dedicated to improving access to computer science education. The
HoC is designed to be an easy and enjoyable way for students of all ages and skill
levels to learn the fundamentals of coding. Activities are conducted in over 160
(Code.Org 2021 Annual Report, n.d.) countries and typically involve completing
online tutorials or challenges that teach coding concepts and programming lan-
guages, such as Scratch, HTML, and Python. The HoC (Hour of Code Activities,
n.d.) website provides a diverse range of resources, tutorials, and activities that
can be used to teach programming. These activities are engaging and interactive,
using games, animations, and simulations to make the programming concepts
more relatable and understandable to students. Additionally, in order to capture
students’ interest and keep them engaged, many activities are based on popular
commercial games or movie themes.

The majority of HoC games have a common design and code base, which
results in easier development and maintenance. As a consequence, users who are
familiar with one game can easily adapt to similar designs, reducing the learning
curve for each new game. Most of the HoC games include a block-based pro-
gramming environment that is aimed to be simple and intuitive to novice pro-
grammers. The code is presented visually and programs are constructed by drag-
ging and dropping blocks that represent various commands. These blocks are
usually color-coded and snap together to help users create syntactically correct
code. The similarity in design continues to support systems and user interface
(UI) which also means that possible insufficiencies are shared with the rest of
the games. The support system is an essential element of a serious game (SG) as
it provides assistance and guidance when users encounter difficulties or errors.
In HoC games support systems take many forms such as tutorials, step-by-step
instructions, hints and tips, error messages, and feedback on completed tasks.

User Experience (UX) plays a crucial role in the development of SGs as it sig-
nificantly influences the acceptability of digital games (Moizer et al., 2019). UX
according to The International Standard on Ergonomics of Human System Interac-
tion is defined as “a person’s perceptions and responses that result from the use or
anticipated use of a product, system, or service” (DIS, 2009). The research in UX
evaluation for SGs (Martinez et al., 2022; Abdellatif et al., 2018) reveals that UI is a
key characteristic and an important factor of user learning. UI refers to the in-game
methods of interaction between the users and the SG. The UI implementation in
terms of accessibility, usability, and comprehensibility is associated with the success
of SGs (Lanyi et al., 2012; Mikovec et al., 2009). Therefore, UI design guidelines
have been devised by researchers and organizations that include best practices and
principles for developers (Johnson, 2020; Apple, 2022). Given that support methods
are implemented through the UI, the design choices of HoC UI elements will be
examined to determine their relation with student performance.

http://code.org

1 3

Education and Information Technologies

This study aims to investigate the implementation of the support system and user
interface in the HoC game Minecraft Adventurer. We argue that the effectiveness
of these systems directly affects the user’s learning efficiency and performance.
Minecraft Adventurer shares similar support systems and UI features with many
other HoC games. At the time of writing, eleven games with identical characteristics
in terms of support systems and UI design with the aforementioned title can be found
in HoC and are presented in Table 1. It is worth noting that this support approach is
employed in many other SGs about programming (Tynker, n.d.; Roboblocky, n.d.),
besides the HoC games. Therefore, the findings of this study have implications
beyond the HoC and can contribute to the broader field of SG for education.

More specifically, the study will explore the following research questions:

RQ1: How do novice users perceive the support systems and UI of the HoC game
Minecraft Adventurer?
RQ2: To what extent do the design of the support system and UI of the HoC
game Minecraft Adventurer affect game performance?
RQ3: How can the support system and UI featured in HoC games be improved in
terms of learning efficiency?

The subsequent sections of this paper are organized as follows: Section 2 provides a thor-
ough depiction of the Minecraft Adventures game, followed by a review of the current state of
the art in the field in Section 3. In Section 4, we elaborate on the study methodology used in
this research, which leads to the presentation of the findings in Section 5. Section 6 includes a
detailed discussion of the results obtained along with the limitations of the research.

2 Minecraft Adventurer

All the HoC games follow a design approach that is heavily visual in nature, both
during the solution construction and result display phases. Visual environments can
increase engagement in novice users as they demonstrate skills and strategies in a

Table 1 Hour of Code games with similar support systems and UI design with Minecraft Adventurer

Game Link

Minecraft Designer https:// studio. code. org/s/ minec raft/ lesso ns/1/ levels/1
Minecraft Hero’s journey https:// studio. code. org/s/ hero/ lesso ns/1/ levels/1
Minecraft Voyage Aquatic https:// studio. code. org/s/ aquat ic/ lesso ns/1/ levels/1
Frozen - Anna and Elsa https:// studio. code. org/s/ frozen/ lesso ns/1/ levels/1
Star Wars - Building a galaxy https:// studio. code. org/s/ starw arsbl ocks/ lesso ns/1/ levels/1
Artist https:// studio. code. org/s/ artist/ lesso ns/1/ levels/1
Flappy code https:// studio. code. org/ flappy/1
Dance party https:// studio. code. org/s/ dance- 2019/ lesso ns/1/ levels/1
Disney Infinity play lab https:// studio. code. org/s/ infin ity/ lesso ns/1/ levels/1
Angry Birds https:// studio. code. org/ hoc/1
Outbreak simulator https:// studio. code. org/s/ outbr eak/ lesso ns/1/ levels/1

https://studio.code.org/s/minecraft/lessons/1/levels/1
https://studio.code.org/s/hero/lessons/1/levels/1
https://studio.code.org/s/aquatic/lessons/1/levels/1
https://studio.code.org/s/frozen/lessons/1/levels/1
https://studio.code.org/s/starwarsblocks/lessons/1/levels/1
https://studio.code.org/s/artist/lessons/1/levels/1
https://studio.code.org/flappy/1
https://studio.code.org/s/dance-2019/lessons/1/levels/1
https://studio.code.org/s/infinity/lessons/1/levels/1
https://studio.code.org/hoc/1
https://studio.code.org/s/outbreak/lessons/1/levels/1

 Education and Information Technologies

1 3

familiar or easily understood context. As the title of the game implies, it is based
on the commercial game Minecraft and themed accordingly in terms of graphics,
music, enemies, and available actions. Minecraft is a popular sandbox video game
(Minecraft Player Count & Stats, 2023 that allows players to build and explore vir-
tual worlds made of blocks. It is known for its open-ended gameplay and creative
building elements, which allow players to create and manipulate their own virtual
world. Minecraft Adventurer introduces students to basic programming concepts by
allowing them to navigate, mine, craft, manipulate, and explore in a 2D world using
block-based coding. In block-based programming, code instructions are represented
with visual blocks rather than text as in traditional programming languages. This
method of coding offers a more intuitive and user-friendly way for novice program-
mers to learn and create basic programs.

The game interface includes a game world representation, an instruction panel,
and a right-side area with a “toolbox” and “workspace” (Fig. 1). Students at the start
of the game select an avatar and their programs control the avatar’s actions within
the world. The game world consists of various objects such as trees, rocks, animals,
etc., forming puzzles students need to solve by completing the level’s objectives.
Programs are created by assembling in sequence blocks listed in the toolbox. Each
block is dragged and dropped in the workspace area and needs to be connected
with the rest of the program to function. The toolbox includes commands for move-
ment control or avatar actions such as placing or destroying objects. Additionally,
the toolbox contains blocks for iteration and conditional statements that are adapted
to facilitate the puzzle requirements. A horizontal line with 14 nodes is placed in
the upper part of the screen displaying the progress of the player (Fig. 1d). Each
node represents a level of the game and it is painted with different colors depending
on the solution state. Specifically, the dark green color signifies puzzles that have
been successfully solved with an optimal solution in terms of the number of blocks
employed, the light green color represents puzzles with non-optimal solutions and

Fig. 1 The Minecraft Adventurer interface. a The game world, b The video support, c The block com-
mands, d The progress indicator, e The tips support, f The block counter, and (g) The programming
workspace

1 3

Education and Information Technologies

white indicates puzzles that have yet to be solved. Moreover, it should be noted that
despite the presence of 14 nodes, the actual number of puzzles amounts to 13. This
distinction arises from the fact that the final level serves as a free level, allowing
players unrestricted utilization of the block commands, thereby deviating from the
conventional puzzle-solving context.

The game’s design allows students to relate their programs with the actions tak-
ing place in the game world by observing the step-by-step command execution.
During the coding phase, the game provides users with tips based on the selected
instruction mode. Additionally, after submitting a solution, a pop-up window dis-
plays the corresponding JavaScript code (Fig. 2). This feature allows students to
familiarize themselves with the actual code generated and gain a better understand-
ing of the programming concepts being taught. Depending on the solution’s effi-
ciency, the game prompts users to either proceed to the next level or attempt to solve
the problem again using fewer blocks. Minecraft adventures incorporate story and
narrative elements to engage students. The scenario recounts the hero’s adventures
to gather the necessary resources in order to build a house. The game also includes
audio elements with background music and occasional effects to emphasize events.
Throughout the course of the adventure, players encounter puzzles that require the
application of specific programming structures, which are presented for each level
in Table 2. The instructional approach of the game focuses on a structured presenta-
tion of programming concepts, with the sequence being the initial and fundamental
structure taught. The iteration follows as a solution to large sequential programs and

Fig. 2 A successful level com-
pletion. The total lines of code
and a snippet of javascript are
displayed

 Education and Information Technologies

1 3

nested loops for more complex problems. The condition domain is presented in the
final stages and is integrated with the previously taught concepts to address more
challenging programming puzzles.

3 Related work

A recent systematic review of the HoC (Yauney et al., 2021) has revealed that the
reported research had limitations regarding the provided details on participants and
results. While a considerable amount of research has been published on HoC, only a
small portion of it is based on experiments, particularly in K-12 schools. Addition-
ally, the research is dispersed across multiple sources, and there have been no efforts
to synthesize it. Yauney et al. (2021) suggest that research into the impact of HoC
on student interest in computer science and perceptions of the field is essential. Such
research could provide evidence of HoC’s value and areas for improvement.

GhasemAghaei et al. (2016) conducted an analysis of the HoC Minecraft game
utilizing affective walkthrough and affective heuristic evaluation techniques.
Although the overall assessment was positive, one of the areas that have been iden-
tified for improvement was the support system. It was suggested to add hints for
informing the user when a shorter solution than that submitted by him/her is fea-
sible. Researchers examined the HoC support improvement through autogenerated
hints. Buwalda et al. (2018) developed a heuristics-based approach for providing
next-step hints in HoCs puzzles. They demonstrated that their hints can effectively
simulate the corresponding expert’s level without utilizing large quantities of student
data. Piech et al. (2015) explored the use of historical student data to autonomously
generate hints for the HoC games. The paper suggests that an effective hint gen-
eration model should have as a basis of prediction the way an expert teacher would
encourage a student to make forward progress.

The HoC activities are characterized by their static and linear nature, providing a
uniform sequence of tasks to all students, regardless of their prior skills and learning
speed. As a result, there has been considerable research aimed at enhancing the pro-
vided support. One such approach is presented by Effenberger (Effenberger, 2019;
Effenberger & Pelánek, 2018), which involves an adaptive method that personal-
izes game tasks based on student performance evaluation. The system evaluates a
student’s past performance and recommends activities of appropriate difficulty lev-
els to optimize their learning experience. Basawapatna et al. (2019) propose a new

Table 2 Programming structure taught per level

Program-
ming
structure

Puzzle level

1 2 3 4 5 6 7 8 9 10 11 12 13

Sequence X X X X X X X X X X X X X
Iteration X X X X X X X X X
Condition X X

1 3

Education and Information Technologies

approach to HoC tutorials based on a differentiated instruction strategy guided by
the Zones of Proximal Flow (ZPF) framework. The ZPF tutorials offer a navigation
structure that allows users to choose appropriate detail based on their self-assessed
state of flow. The authors conclude that their ZPF tutorial outperformed the tutorial
in HoC style in terms of student retention and motivation.

The aforementioned research establishes that a significant number of researchers
hold the view that the method of support for HoC necessitates enhancement. Our
study presents substantiating evidence for this assertion through an analysis of ques-
tionnaire data and students’ in-game performance.

4 Study methodology

4.1 Study design

The study aimed to investigate the effects of support systems in the HoC serious
game Minecraft Adventurer. Additionally, the study investigates the interface effi-
ciency of the serious game in communicating the intended information to its users.
The game theme and difficulty setting target an audience that is familiar with
Minecraft and novice in programming. The research was based on a quasi-exper-
imental design with a single group of students from two elementary schools. The
game did not provide a mode where the support methods could be disabled thus it
was not possible to create a control group of students for the experiment. All the
support system elements were seamlessly integrated into the UI and gameplay, pre-
cluding the possibility of avoidance or disregard even under the hypothetical cir-
cumstance where students were specifically instructed to do so.

Upon completion of the game, students answer an anonymous questionnaire that
collects information on students’ perceptions of the game’s support system, inter-
face efficiency, and their overall experience with the HoC event. Given the relatively
young age of the students, particular care was exercised to ensure that the question-
naire remained straightforward and without excessive technical terminology. Con-
sequently, the questionnaire was intentionally designed to use simple language and
was completed in a short period of time.

4.2 Procedure

The study was carried out in the context of a computer science course during the
yearly HoC event in December 2022. Before the experiment, students were briefed
about the event and the benefits of learning programming and analytical thinking. A
demonstration was performed to show the students how to program in a block-based
environment and to present the main elements of the game. No instructions on the
specific features of the support system or a detailed explanation of all the provided
interface components were given.

The HoC session was conducted in the school computer lab for 45 minutes. Dur-
ing this period, students were instructed to rely solely on the game’s support system.

 Education and Information Technologies

1 3

Each was sitting alone at a workstation and was not allowed to talk or interact with
the rest of the class. The session was administered by a teacher who was not author-
ized to guide or advise on puzzle solutions but only to assist in case of a technical
problem. Students were informed that both their performance and their responses
to the subsequent questionnaire would be anonymously registered and the collected
data would be processed for the purpose of study. Furthermore, they were granted
the option to discontinue the procedure at their discretion.

After the end of a game session, students anonymously answered an online ques-
tionnaire that consisted of 4 sections. Although the questionnaire was anonymous,
students registered their class and school data. Moreover, the questionnaire form had
an automatic timestamp, registering the time of response submission. Upon com-
pletion of the questionnaire, the administrative teacher registered the game results
for each student in a spreadsheet along with their respective class and timestamp.
Specifically, the teacher collected the total number of puzzles solved and the num-
ber of puzzles solved with more lines of code than allowed/proposed. Combining
the teacher’s results spreadsheet sequence, the timestamp data, and class information
within the questionnaire dataset, it was feasible to correlate student performance and
their respective responses while keeping the data anonymous.

4.3 Participants

The focus of the game on supporting novices in learning the basic concepts of pro-
gramming and its design to appeal to younger ages made primary school students
the ideal participants for the study. The inclusion criteria for the participants of
the study were: (1) being an elementary school student, (2) being a novice in pro-
gramming, and (3) following the Greek school curriculum in computer science at
the time of the study. The exclusion criteria were: (1) having prior experience with
programming, (2) having previously played Minecraft Adventurer or similar HoC
games. The participants were recruited from two schools located in the same geo-
graphical area and socioeconomic status. The sample consisted of 104 participants
(42.3% female and 57.7% male students) with an age range of 10 to 12 years old.

4.4 Data collection

The study data was obtained anonymously from two sources as already mentioned.
The first data source was a questionnaire, as shown in Table 3. The second data
source referred to metrics collected by the administrative teacher manually in a
spreadsheet and contained the results of each game level in terms of solution effi-
ciency. An example of that data is shown in Table 4 where each column represents
a different student. The first two lines store the total number of levels solved and the
number of levels solved inefficiently, whereas the third line calculates the efficient
solutions. According to the game rules, an inefficient solution is defined as a solu-
tion that completes the level objective with a greater number of blocks than optimal.
In most cases, it referred to solutions that required the use of an iteration structure
and students used a sequential one instead. Finally, questionnaires included a free

1 3

Education and Information Technologies

comment section where students provided feedback on a free form about their expe-
rience with the game, programming, and HoC.

We employed Cronbach’s alpha as a method to assess the reliability of the ques-
tionnaire items and evaluate the internal consistency among them. Three items
(questions 4, 5, and 11) were excluded because they did not measure student opin-
ions related to support systems and game characteristics, in addition to their use of
different scale items. The computed Cronbach’s alpha coefficient resulted in a value
of α = 0.67, which is considered an acceptable level of reliability. This result sug-
gests that the questionnaire retains a sufficient degree of internal consistency, mak-
ing it a reliable tool for data collection in the context of our research objectives.

Table 3 The student questionnaire (Q1-Q3 and Q6-Q10 have the same responses)

ID Question

Q1 How helpful were the text instructions in solving the puzzles?
a) Not at all
b) A little
c) Moderately
d) Very Much
e) Extremely

Q2 How helpful were the video presentations in solving the puzzles?
Q3 How helpful was the display of the number of blocks for the best solution in the workspace?
Q4 What instruction mode did you use most frequently?

a) Less
b) More
c) I did not know that such an option existed

Q5 What was your reaction when you were prompted that it is possible to complete the level
with fewer lines of code?

a) I pressed “continue” and moved on to the next level
b) I pressed “try again” and tried to solve it with fewer blocks
c) I did not understand or read the message. I ignored it and pressed “continue”

Q6 Did you like the game theme?
Q7 Did you like the game graphics?
Q8 Did you like the music?
Q9 Did you like the programming puzzles?
Q10 Did you like the block-based programming style?
Q11 Would you like to try another Hour of Code game?

a) Yes
b) No

Table 4 An example of student progress table

Student ID 1 2 3 4 5 6 7 8 9 10 11 12

Total levels solved 12 12 11 11 9 9 11 12 9 9 11 11
Inefficient solutions 5 4 4 6 6 6 6 7 3 4 7 4
Efficient solutions 7 8 7 5 3 3 5 5 6 5 4 7

 Education and Information Technologies

1 3

5 Data analysis and results

Table 5 presents the descriptive statistics of the questionnaire on the student
responses according to the question IDs introduced in Table 3. The first section
of the questionnaire refers to questions about the effectiveness of the support sys-
tem and the methods used to display and propagate information to students. The
results of the question (Q1), “How helpful were the text instructions in solving the
puzzles?” indicate that most students found the text instructions to be moderately
helpful (20.19%). However, a significant portion of students found them either not
helpful (21.15%) or only a little helpful (25%). Only 18.27% considered them very
helpful, and 15.38% considered them extremely helpful. The text instructions were
located above the workspace and provided tips on solving the puzzle and using com-
mands (Fig. 1e). The second question (Q2) was focused on evaluating the efficiency
of the video presentations offered to students in levels 1, 5, and 9. The video pres-
entations were designed to introduce new concepts and were placed in the lower left
corner of the screen for optional re-watch after being closed, as shown in Fig. 1b.
The results indicated that the majority of students found the video presentations to
be either unhelpful (70.19%) or only a little helpful (8.65%). The third question (Q3)
was focused on evaluating the helpfulness of the block counter that is placed above
the workspace, as shown in Fig. 1f. The counter displays the number of blocks for
the best solution in the current puzzle and the number of blocks for the ongoing
solution. It is designed to serve as an indicator for students to assess their solution
progress. The results show that 31.73% of students found the block counter to be
unhelpful or only a little helpful (26.92%). On the other hand, 20.19% of students
found the block counter to be extremely helpful, while 11.54% found it moderately
helpful and 9.62% found it very helpful.

The fourth question (Q4) aimed to determine the usage of the scaffolded hint
functionality. The game provides text instructions that are scaffolded in two or three
levels depending on the complexity of the puzzle. If the student is struggling to solve

Table 5 Questionnaire descriptive statistics

1 Student responses (frequency/percentage)

ID A1 B1 C1 D1 E1

Q1 22 (21.15%) 26 (25%) 21 (20.19%) 19 (18.27%) 16 (15.38%)
Q2 73 (70.19%) 9 (8.65%) 10 (9.62%) 4 (3.85%) 8 (7.69%)
Q3 33 (31.73%) 28 (26.92%) 12 (11.54%) 10 (9.62%) 21 (20.19%)
Q4 32 (30.77%) 17 (16.35%) 55 (52.88%) – –
Q5 80 (76.92%) 16 (15.38%) 8 (7.69%) – –
Q6 7 (6.73%) 7 (6.73%) 25 (24.04%) 14 (13.46%) 51 (49.04%)
Q7 12 (11.54%) 20 (19.23%) 22 (21.15%) 21 (20.19%) 29 (27.88%)
Q8 30 (28.85%) 20 (19.23%) 20 (19.23%) 11 (10.58%) 23 (30.77%)
Q9 15 (14.42%) 20 (19.23%) 24 (23.08%) 13 (12.50%) 32 (30.77%)
Q10 10 (9.62%) 19 (18.27%) 26 (25.00%) 15 (14.42%) 34 (32.69%)
Q11 74 (71.15%) 30 (28.85%) – – –

1 3

Education and Information Technologies

a puzzle, they can request more specific instructions by pressing an icon next to the
text instructions, as shown in Fig. 1e. Each level of hints reveals more information
about the strategy needed to progress the solution and suggests the use of specific
command blocks. The results showed that the majority of students (52.88%) were
unaware of the existence of this feature. A significant portion of students (30.77%)
used the first level of hints, which is the default option. Only 16.35% of students
discovered the option and used the second or third level of hints. The fifth question
(Q5) of the questionnaire assessed the usefulness of the level completion informa-
tion report. The game displays the total number of submitted code lines and prompts
the students to retry their solution if it is not optimal by providing a message as
shown in Fig. 2. The results showed that the majority of students either proceeded to
the next level without retrying (76.92%) or did not understand or ignored the mes-
sage (7.69%). Only a small proportion of students, 15.38%, chose to retry their solu-
tion with fewer blocks after viewing the prompt.

The second section of the questionnaire refers to the game characteristics. The
sixth question (Q6) assessed students’ reactions to the game theme. A majority of
the students expressed their enjoyment of the theme, indicating they found it appeal-
ing (extremely 49.04%, very much 13.46%). On the other hand, one-third of the
students found it indifferent or did not like it, (moderately 24.04%, little 6.73%,
and not at all 6.73%). The seventh question (Q7) evaluated students’ views on the
game’s graphics. Results indicated a mixed reaction, with half of the students appre-
ciating and finding appealing the 2D perspective and pixel-art sprites (very much
20.19%, extremely 27.88%). Meanwhile, the remaining students expressed a less
positive view about the graphics (moderately 21.15%, A little 19.23%, and Not at all
11.54%). Similarly, the results of the eighth question (Q8) about the musical aspect
of the game, elicited mixed responses from the participants. Approximately half
of the students reported a positive attitude towards the game’s music, with 10.58%
stating that they liked it very much and 30.77% stating that they liked it extremely.
However, the remaining participants showed a less favorable reaction (moderately
19.23%, a little 19.23%, and not at all 28.85%). The last question (Q9) of the sec-
ond section of the questionnaire aimed to estimate the students’ perspective on the
programming puzzles presented in the game. The game designed a range of puzzles
that leveraged the elements of Minecraft, such as trees, rocks, and animals, to cre-
ate engaging learning scenarios. A significant proportion of students reported that
they enjoyed this aspect of the game (Very Much 12.50%, Extremely 30.77%) while
the rest held a moderate to a lesser favorable response (Moderately 23.08%, A little
19.23%, Not at all 14.42%).

The last section of the questionnaire involves estimating the game’s impact on
the students. The game utilized a block-based interface to display commands and
develop mini-programs. The tenth question (Q10) queried the students’ enjoy-
ment of programming in this type of environment. The majority of the respondents
indicated positive feelings towards the experience (Extremely 32.69%, Very Much
14.42%) with the remaining expressing a moderate opinion or dislike (Moderately
25.00%, A little 18.27%, Not at all 9.62%). The last question (Q11) evaluated the
students’ willingness to participate in another Hour of Code game based on their

 Education and Information Technologies

1 3

experience with Minecraft adventures. Most of the participants (71.15%) reported a
positive response (28.85% negative).

As previously indicated, in the course of the experiment, the supervising teacher
manually recorded the progress of the students in a spreadsheet. This resulted in
the creation of a table that anonymously stored the total number of completed puz-
zles and the number of inefficient solutions in terms of the number of blocks used.
This collection of data allows the analysis of the student’s performance in relation
to the support efficiency of the game. Table 6 and Figure 3 display the distribution
and descriptive statistics of the maximum level reached. The quantification of stu-
dent performance is achieved through a weighted percentage computation of efficient
solutions, as shown in Eq. (1). The total number of efficient solutions for each student
is determined by subtracting the inefficiently completed levels from the reached level.
The result is weighted based on the maximum level of the game which is thirteen.

(1)Performance =
Completed levels − Inefficient solutions

13
× 100

Table 6 The descriptive statistics of the collected data (N = 104)

Minimum Maximum Mean Std. Deviation

Puzzles completed 5 12 9.09 1.57
Insufficient solutions 0 9 4.36 1.96
Correct solutions 1 9 4.73 1.56
Performance 7.69 69.23 35.47 13.06

Fig. 3 The distribution of completed levels

1 3

Education and Information Technologies

To investigate the impact of game support systems on student performance, a
series of correlation tests were conducted. The responses of each student to ques-
tions Q1 to Q5 in the questionnaire were ranked ordered into numerical values where
lower values indicate less effectiveness in received support. For instance, responses
such as “I did not know that such an option existed” were ranked 1, whereas “A lit-
tle” responses were assigned a rank of 2, and so forth. The Kolmogorov-Smirnov
test was conducted to examine the normality of the data on the question (Q1-Q5)
variables. Results concluded (p = 0.00 < .01) that data were not normally distributed
in all variables. Therefore, the non-parametric test of Spearman’s rank correlation
was computed to assess the relationship between student performance and question-
naire results. The results indicate significant positive correlations (p < .01) between
performance and all the questions except Q2 (p = .241 > .01) as shown in Table 7.

6 Discussion

HoCs Minecraft Adventurer is a SG and in this context, students are expected to
engage in the learning process by applying their newly acquired knowledge, skills,
and strategies to solve programming puzzles. To facilitate this process, it is impera-
tive that the game provides effective and efficient support mechanisms that are easily
understood and adequately presented. The results of the questionnaire reveal that a
substantial portion of students did not find the support methods of HoC Minecraft
Adventurer effective. We argue that many design choices involving the delivering
techniques and UI need to reshape and adapt to student actions. This section will
explore the possible reasons for failed support and suggest improvements and alter-
native methods for future implementations of HoC and similar SGs.

The Q1 findings show that the majority of students found the text instructions to
be moderately or less helpful. Although text instructions are commonly used in text
programming environments, this approach is less preferable on SGs. The exposi-
tory text is often perceived as “dry and boring” by students reducing its learning
efficiency (Ginns et al., 2013). Research has shown that interactive, visual, and

Table 7 Spearman’s test results for correlation between performance and questionnaire responses

ID Question rs n p Correlation
strength with
Performance

Q1 How helpful were the text instructions in solving the puz-
zles?

.674 104 .000 Positive Strong

Q2 How helpful were the video presentations in solving the
puzzles?

−.116 104 .241 Not correlated

Q3 How helpful was the display of the number of blocks for
the best solution in the workspace?

.574 104 .000 Positive Moderate

Q4 What instruction mode did you use most frequently? .592 104 .000 Positive Moderate
Q5 What was your reaction when you were prompted that it is

possible to complete the level with fewer lines of code?
.272 104 .005 Positive Weak

 Education and Information Technologies

1 3

hands-on methods, such as working examples, can be more effective in promoting
learning (Toukiloglou & Xinogalos, 2022). During the programming phase, students
need to think critically, experiment, and apply what has been learned from previous
problems. HoC relies on static predetermined tips to support students throughout the
game, regardless of their progress, past mistakes, and knowledge level. On the con-
trary, static text can be replaced with adaptive support, which provides help that is
tailored to the student’s knowledge level. Adaptive tips and adaptive working exam-
ples have been shown to be more effective than static text as they provide feedback
according to player learning models (Toukiloglou & Xinogalos, 2023).

Additionally, placement, content, and delivery of text instructions are critical
elements of instructional design that can impact their effectiveness on the learning
experience of the player. Well-designed text instructions can enhance learning and
performance, while poorly designed instructions can hinder progress and even cause
frustration (White, 2014). During the puzzle-solving process, the student’s attention
is primarily focused on the game world where the puzzle is presented, and the work-
space where the program is constructed. The screen real estate of text tips is small
compared to the other game elements and can make them easily overlooked. Follow-
ing the widely accepted System Usability Scale (SUS) requirements, it seems that
more attention should be paid on ensuring that the various functions of the game,
including the text tips in our case, are well integrated (Bangor et al., 2008). Moreo-
ver, the color of the text in the tips is white on a gray background (Fig. 1e) which
makes it blend in instead of standing out with a vivid visual representation. As noted
by Petri et al. (2016), the text font and colors must be well blended and consistent,
while the fonts both in terms of their style and size must be easy to read. This obser-
vation can be combined with the results of Q4 which concluded that most of the
students did not use, understand, or know about the scaffolding tip strategy. The tip
icon is small in size and the number of available tips indicator can be easily missed.
This results in a significant part of the support method being omitted and violates
the widely accepted Nielsen’s usability heuristic regarding the visibility of system
status (Nielsen, 1994). Moreover, the number of available tips, content, and order of
appearance can be improved. The game combines instructions for the puzzle solu-
tion with story elements in the same sentence which can be misleading as it does not
always translate into actionable strategies. Instead, the game should provide a simple
and natural dialogue that does not contain information that is not relevant, while
it should be “easy to discriminate action alternatives” (Nielsen, 1994; p.3). Pro-
viding guidance and affordance, as well as clear and relevant feedback are consid-
ered important features for games in terms of their pedagogical usability (Sanchez,
2011). The scaffolding tips provided may also not be in line with the increasing dif-
ficulty of the puzzles, leading to confusion and frustration. A solution to this issue
could be to provide fewer tips for the easier puzzles, and more in-depth, layered tips
for the more challenging puzzles.

Another method of support of the game is the video presentation where usu-
ally a new programming concept or mechanic is introduced. Although HoC videos
can be characterized as entertaining and informative, most of the students found
them not helpful. This was probably due to the fact that the video’s main purpose
was to inspire and engage students rather than help them solve a puzzle. Adding

1 3

Education and Information Technologies

entertaining video clips to a multimedia lesson can distract the learner, reducing
their ability to engage in deeper cognitive processing and build meaningful learning
outcomes (Mayer et al., 2020). Therefore, the instructional video should prioritize
building knowledge rather than promoting excitement. The current form of videos
in HoC might be a missed opportunity to enhance the learning experience since
students in online courses benefit from visually seeing instructors on-screen (Belt
& Lowenthal, 2021). We suggest changing the content and utilizing it as a support
method to present a working example or as a tool to promote the story. Another
factor that might have contributed to the negative results is the practicality of the
video presentation in a school computer lab environment. Videos can be less effec-
tive in a group setting where each student needs personal headphones to listen to the
audio without disrupting other classmates. This requirement was not fulfilled during
the experiment and decreased the efficacy of the video as a support method. Like-
wise, the absence of personal headphones resulted in a diminished positive impact
of music as a game element and a less favorable response in the answers for Q8.
The group setting hindered the personal experience with music, leading to difficulty
in concentration and negatively affecting the overall experience. As a consequence,
most of the students turned off or drastically reduced the sound resulting in a loss of
immersion in this aspect of the game. Additionally, the shared sound disrupted stu-
dents who preferred to concentrate in silence.

The Hour of Code (HoC) games are created to be self-sufficient and allow stu-
dents to learn coding independently, without teacher supervision. This claim is
advertised on the official website where it states that anyone can try a one-hour tuto-
rial that is designed for all ages (Hour of Code Activities, n.d.). During our experi-
ment, students were left to discover the various support systems and game mechan-
ics on their own. However, we found that many of the game’s UI elements were
unnoticed or poorly understood by the students, as previously observed in Q1 and
Q4 regarding the text instructions. This is also evident in Q3 where students were
divided on the helpfulness of the number of blocks indicator. Although the indica-
tor can guide students toward the correct solution by showing the number of blocks
required, students may not be aware of its existence or purpose. The game did not
provide any information on the purpose of the indicator. Without proper presenta-
tion, students may not know how to use this indicator effectively to improve their
programming skills. The size, placement, or design of the indicator could also
impact its usability and effectiveness.

The results of Q5 showed that a mere 15% of students attempted to rewrite
their solution when prompted to do so in order to complete the level with fewer
lines of code. Several factors can contribute to the reasons for that behavior such
as boredom, lack of understanding that it is an option, and failure to read the
message. Another possible explanation is that a non-optimal solution is non-man-
datory for the game to continue. This aspect has some severe implications, as it
is possible for students to continue solving puzzles without utilizing proper pro-
gramming structures. For instance, instead of using the iteration block, students
may submit a sequential solution with equal results but insufficient code qual-
ity. As a consequence, students may progress to the next game level without a
proper understanding of essential programming structures, since the game did not

 Education and Information Technologies

1 3

prevent them from doing so. The data collected by the teacher administrating the
session concluded that most students submitted less efficient solutions (Table 6).
This implies that students’ focus shifted from code learning to level advancement.
This game mechanic resulted in students progressing without a proper under-
standing of essential structures. We argue the need to make efficient solutions
mandatory or clearly indicate insufficient programs to promote proper learning.

The selection of Minecraft as the theme for the SG was supported by the fact
that it is a hugely popular game, especially with younger audiences (Minecraft
Player Count and Stats, 2023). As such, most of the students in our study were
already familiar with the game world and lore, which is reflected in the over-
whelmingly positive results of Q6. By using Minecraft as the game theme, stu-
dents were able to better understand the rules that govern the game world and
follow the storyline. This allowed the game to skip detailed tutorials since users
intuitively knew how to interact with game objects such as trees can be chopped
to create wood palettes, rocks can be mined to craft iron tools, walking on water
or lava is dangerous, etc. However, 13.4% of students who did not like the game
theme were likely unfamiliar with Minecraft or simply did not like the setting.
Using a commercial game as the basis for a serious game carries some risks as
it may result in conflicting design goals and lead to compromised learning out-
comes. Commercial games are not typically designed with pedagogical objectives
in mind which can make it difficult to repurpose them for educational purposes
(Reyes-de-Cózar et al., 2022). Nonetheless, as the current study data suggest in
the case of Minecraft Adventurer, with careful consideration and modification
commercial games can serve as a valuable foundation for the development of
effective SGs. However, the game should include support systems for users who
are not familiar with the franchise, which could be made skippable to allow users
to choose according to their preferences.

The student’s opinions on the game graphics (Q7) were evenly split. While the
game accurately represents the Minecraft world and its iconic block shapes and tex-
tures, it differs from the original game as it is presented in a top-down 2D format
rather than an open-world 3D format. The HoC Minecraft Adventurer game runs on
a webpage and uses Javascript, making it accessible to a wide range of computers
with low specifications. The game’s design aims to promote the HoC movement,
even in countries with limited resources. Regardless, the most popular commercial
games typically have 3D graphics and higher hardware requirements (Wikipedia,
2023), which makes HoC Minecraft look outdated in comparison. To address this,
it could be beneficial to offer two versions of the game, one in 3D and another in
2D, to allow players to choose the version that best suits their system although this
would increase cost production.

The HoC Minecraft Adventurer game comprises 13 puzzles that are intended to
be solved within a single class session. These puzzles are specifically designed to
teach essential programming structures, such as sequence, iteration, and conditions,
which are typically incorporated in introductory programming SGs. However, the
game’s approach of fitting all three structures into one class session results in a steep
learning curve for novice students. Difficulty increases disproportionately as the
game progresses and students do not have adequate time and experience to process

1 3

Education and Information Technologies

the knowledge related to the new programming structures. The mixed results on Q9
about the student opinion on programming puzzles are possibly due to this reason,
although each individual puzzle as a standalone construct is well designed. Students
that struggle to continue the game, especially after level 9 (Figure 3), have a negative
first contact with programming, which is the opposite effect of what HoC intends.
We suggest a decrease in the number of educational objectives, such as the condi-
tion, to allow more time spent on others and give students enough time to grasp the
new knowledge. Another solution is to increase the number of puzzles and split the
HoC experience into two or more sessions.

Results from Q10 indicate that the majority of students favor the block-based
environment. This programming style has proven effective for teaching program-
ming to beginners as it is designed to target this group (AbdulSamad & Romli,
2022). The block-based programming languages typically include visual represen-
tations of code which can help learners better understand programming concepts.
They allow users to avoid the syntax errors that commonly occur when writing code
in text form and focus more on logical thinking. In recent years, the extensive adop-
tion of this style led to its inclusion in most programming environments, includ-
ing SGs. As a result, many students are already familiar with this programming
style, which reduces the period of adjustment required when interacting with a new
application.

According to the results displayed in Fig. 3 and Table 6, students encountered
difficulties in terms of puzzle completion and knowledge acquisition. The Mean suc-
cess rate in students that is calculated by the percentage of correct submissions over
the total number of completed puzzles is very low (Mean = 53.06, SD = 17.87, N
= 104). This indicates that almost half of the submitted solutions were inefficient
and students were moving to the next level without fully understanding the program-
ming concepts the game was designed to teach them. Additionally, the mean of com-
pleted puzzles (Mean = 9.09, SD = 1.57, N = 104) indicates that most of the students
did not reach the final levels of the game or gave up when the puzzles became too
complex. Students that did not fully understand the programming structures nor-
mally should have a hard time completing levels that require a deep understanding
of the structures and how to combine them. Also, the maximum level reached was
12 out of 13, which means that for this group of novice students, an hour (45′) of
code was not enough time to complete the game. Those results are direct evidence of
the problems described above for the support system of the game.

The correlation analysis (Table 7) reveals a meaningful relationship between
students’ utilization of the support system and their overall performance scores.
Particularly, a strong positive correlation was observed between performance and
text instructions (Q1), suggesting that students who engaged with the instructions
submitted more efficient puzzle solutions. Conversely, the impact of video presen-
tations (Q2) on performance was found to be negligible, as most students did not
watch them or the content did not contribute significantly to the puzzle outcome.
The number of blocks for the best solution indicator showed a moderate positive
correlation with performance, implying that most of the students who understood
its purpose incorporated the information into their solutions. Similarly, a mod-
erate positive correlation emerged between performance and instruction mode,

 Education and Information Technologies

1 3

revealing that students who effectively utilized more than one level of help, ben-
efited from it to a moderate extent. Finally, the message prompting students that
a better solution is possible after their initial submission demonstrated a weak
correlation with performance. Even though some students comprehended the
message and attempted to improve their solutions, it did not consistently result
in better scores for their subsequent attempts. Overall, the results highlight the
importance of effective support system usage in enhancing students’ puzzle-solv-
ing capabilities. If more students understood and utilized the support systems in
the manner intended by the designers, the performance would have been notably
improved.

Lastly, the observations made earlier are supported by the comments provided
by the students. In the questionnaire, a section was included to allow students to
freely express their thoughts and experiences during the HoC session. The com-
ments provided by the students are presented in Table 8, and they are primarily
written in informal language.

In spite of the mixed results regarding the support systems and UI deficien-
cies, the game has been found to be effective in engaging students, as evidenced
by the results of Q11. Over two-thirds of the students expressed their willingness
to try another HoC game. Furthermore, there are currently three additional HoC
Minecraft-themed games, as well as other games with similar designs, available
for students to explore and enhance their programming skills.

7 Limitations

It is important to note that, due to the nature of the study, the sample may not be
representative of the population of all elementary school students who are nov-
ices in programming. Therefore, the results of the study should be interpreted
with caution, and generalization to other populations should be done with care.
Another limitation of the study was the absence of headphones, which compelled
students to lower or turn off the sound to avoid disrupting their classmates in the
computer lab. This restriction may have influenced the results of Q9, as noted in

Table 8 The most frequently reported student comments

Student comment

It was very hard after level 5
I got stuck at level 8
It was a nice experience
I liked the game a lot and it made me like Minecraft even more
It was a nice game but I wish it had better graphics
I did not like that in some solutions I had to create very long programs
I found the puzzles difficult but I managed to progress through the levels
I liked the game. However the difficulty increases rapidly and I didn’t have any help
The game was good but most of the puzzles were too hard to solve

1 3

Education and Information Technologies

the discussion section. Lastly, one of the limitations of this study is that detailed
data on the performance of individual students at each level of the game was not
collected. Instead, only the total number of inefficient solutions and the final level
reached per student were recorded due to the challenges of managing the class
with only one administrator. As a result, it was not possible to identify the spe-
cific levels at which students faced the most challenges, which could have ena-
bled more targeted efforts to improve support for those areas.

8 Conclusion

The present study investigated the effectiveness of the support systems and UI
of the SG Minecraft Adventurer, which serves as a typical example of a HoC
game for learning programming. Both qualitative and quantitative methods were
employed to assess the impact of the game’s design on the learning outcomes
of the users. The findings of this study indicate that a considerable proportion
of the students did not find the support methods and UI of the HoC Minecraft
Adventurer to be effective (RQ1). The correlation analysis conducted to exam-
ine the relationship between student performance and the utilization of support
systems revealed that the support system and UI implementation affect student
game performance (RQ2). Specifically, students who either did not use the sup-
port system or employed it incorrectly due to a lack of comprehension exhibited
a reduction in their performance in solving the puzzles, consequently diminishing
effectiveness in learning outcomes. Furthermore, the study recommends various
improvements to the UI and support mechanisms (RQ3). Those modifications can
be applied not only to the eleven compatible HoC games but also to other SGs
that follow similar design choices. As HoC games are widely used by millions of
students and teachers worldwide, we hope that these suggestions will be consid-
ered to enhance an already successful learning platform.

Funding Open access funding provided by HEAL-Link Greece.

Data availability The authors declare that the data supporting the findings of this study are available
within the article.

Declarations

Conflict of interest None.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Education and Information Technologies

1 3

References

Abdellatif, A. J., McCollum, B., & McMullan, P. (2018). Serious games: Quality characteristics eval-
uation framework and case study. In 2018 IEEE Integrated STEM Education Conference (ISEC)
(pp. 112–119). IEEE.

AbdulSamad, U., & Romli, R. (2022). A comparison of block-based programming platforms for learn-
ing programming and creating simple application. In F. Saeed, F. Mohammed, & F. Ghaleb
(Eds.), Advances on Intelligent Informatics and Computing (Vol. 127, pp. 630–640). Springer
International Publishing. https:// doi. org/ 10. 1007/ 978-3- 030- 98741-1_ 52

Apple. (2022). Human Interface Guidelines. Apple Developer. Retrieved March 29, 2023 from https://
devel oper. apple. com/ design/ human- inter face- guide lines/

Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the system usability
scale. Intl. Journal of Human–Computer Interaction, 24(6), 574–594.

Basawapatna, A., Repenning, A., & Savignano, M. (2019). The zones of proximal flow tutorial:
Designing computational thinking Cliffhangers. Proceedings of the 50th ACM Technical Sympo-
sium on Computer Science Education, 428–434. https:// doi. org/ 10. 1145/ 32873 24. 32873 61

Belt, E. S., & Lowenthal, P. R. (2021). Video use in online and blended courses: A qualitative synthe-
sis. Distance Education, 42(3), 410–440. https:// doi. org/ 10. 1080/ 01587 919. 2021. 19548 82

Buwalda, M., Jeuring, J., & Naus, N. (2018). Use expert knowledge instead of data: Generating hints
for hour of code exercises. Proceedings of the Fifth Annual ACM Conference on Learning at
Scale, 1–4. https:// doi. org/ 10. 1145/ 32316 44. 32316 90

Code.org 2021 Annual Report. (n.d.). Code.org. Retrieved March 29, 2023 from https:// code. org/
about/ 2021

DIS, I. (2009). 9241–210: 2010. Ergonomics of human system interaction-Part 210: Human-centred
design for interactive systems. International Standardization Organization (ISO).

Effenberger, T. (2019). Towards adaptive hour of code. In S. Isotani, E. Millán, A. Ogan, P. Hastings,
B. McLaren, & R. Luckin (Eds.), Artificial Intelligence in Education (pp. 339–343). Springer
International Publishing. https:// doi. org/ 10. 1007/ 978-3- 030- 23207-8_ 62

Effenberger, T., & Pelánek, R. (2018). Towards making block-based programming activities adaptive.
Proceedings of the Fifth Annual ACM Conference on Learning at Scale, 1–4. https:// doi. org/ 10.
1145/ 32316 44. 32316 70

GhasemAghaei, R., Arya, A., & Biddle, R. (2016). Evaluating software for affective education: A case
study of the affective walkthrough. In C. Stephanidis (Ed.), HCI international 2016 – Posters’
extended abstracts (Vol. 618, pp. 226–231). Springer International Publishing. https:// doi. org/ 10.
1007/ 978-3- 319- 40542-1_ 36

Ginns, P., Martin, A. J., & Marsh, H. W. (2013). Designing instructional text in a conversational style:
A Meta-analysis. Educational Psychology Review, 25(4), 445–472. https:// doi. org/ 10. 1007/
s10648- 013- 9228-0

Hour of Code Activities (n.d.). Hour of Code. Retrieved March 29, 2023 from https:// houro fcode.
com/ gr/ gb/ learn

Johnson, J. (2020). Designing with the mind in mind: Simple guide to understanding user Interface
design guidelines (3rd ed.). Morgan Kaufmann.

Lanyi, S., Brown, J., Standen, P., et al. (2012). Results of user interface evaluation of serious games
for students with intellectual disability. Acta Polytechnica Hungarica, 9, 225–245.

Martinez, K., Menéndez-Menéndez, M. I., & Bustillo, A. (2022). A new measure for serious games
evaluation: Gaming educational balanced (GEB) model. Applied Sciences, 12(22), 11757.

Mayer, R. E., Fiorella, L., & Stull, A. (2020). Five ways to increase the effectiveness of instructional
video. Educational Technology Research and Development, 68(3), 837–852. https:// doi. org/ 10.
1007/ s11423- 020- 09749-6

Mikovec, Z., Salvik, P. and Zara, J., (2009). Cultural heritage, user interfaces and serious games at
CTU prague. 15th International Conference on Virtual Systems and Multimedia, pp. 211–116.

Minecraft Player Count and Stats (2023). Video Game Statistics. Retrieved March 29 from https://
video games stats. com/ minec raft- stati stics- facts/

Moizer, J., Lean, J., Dell’Aquila, E., Walsh, P., Keary, A. A., O’Byrne, D., ... & Sica, L. S. (2019).
An approach to evaluating the user experience of serious games. Computers & Education, 136,
141–151.

https://doi.org/10.1007/978-3-030-98741-1_52
https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/
https://doi.org/10.1145/3287324.3287361
https://doi.org/10.1080/01587919.2021.1954882
https://doi.org/10.1145/3231644.3231690
https://code.org/about/2021
https://code.org/about/2021
https://doi.org/10.1007/978-3-030-23207-8_62
https://doi.org/10.1145/3231644.3231670
https://doi.org/10.1145/3231644.3231670
https://doi.org/10.1007/978-3-319-40542-1_36
https://doi.org/10.1007/978-3-319-40542-1_36
https://doi.org/10.1007/s10648-013-9228-0
https://doi.org/10.1007/s10648-013-9228-0
https://hourofcode.com/gr/gb/learn
https://hourofcode.com/gr/gb/learn
https://doi.org/10.1007/s11423-020-09749-6
https://doi.org/10.1007/s11423-020-09749-6
https://videogamesstats.com/minecraft-statistics-facts/
https://videogamesstats.com/minecraft-statistics-facts/

1 3

Education and Information Technologies

Nielsen, J. (1994). Enhancing the explanatory power of usability heuristics. In Proceedings of the
SIGCHI conference on Human Factors in Computing Systems (pp. 152–158).

Petri, G., von Wangenheim, C., & Borgatto, A. (2016). MEEGA+: An evolution of a model for the evalu-
ation of educational games. Brazilian Institute for Digital Convergence. Technical Report, 3, 1–40.

Piech, C., Sahami, M., Huang, J., & Guibas, L. (2015). Autonomously Generating Hints by Inferring
Problem Solving Policies. Proceedings of the Second (2015) ACM Conference on Learning @
Scale, 195–204. https:// doi. org/ 10. 1145/ 27246 60. 27246 68

Reyes-de-Cózar, S., Ramírez-Moreno, C., & Barroso-Tristán, J. M. (2022). A qualitative analysis of the
educational value of commercial video games. Education Sciences, 12(9), 584. https:// doi. org/ 10.
3390/ educs ci120 90584

Roboblocky (n.d.). Roboblocky: The ultimate coding platform for kids. Retrieved August 9, 2023, from
https:// robob locky. com/

Sanchez, E. (2011). Key criteria for game design. A framework. In N. Baldissin, S. Bettiol, S. Magrin, &
F. Nonino (Eds.), Business game-based learning in management education (pp. 79–95)

Toukiloglou, P., & Xinogalos, S. (2022). Ingame worked examples support as an alternative to textual
instructions in serious games about programming. Journal of Educational Computing Research,
60(7), 1615–1636.

Toukiloglou, P., & Xinogalos, S. (2023). Adaptive support with working examples in serious games about
programming. Journal of Educational Computing Research, 61(4), 766–789.

Tynker (n.d.). Coding for kids, kids online coding classes & games. Retrieved August 9, 2023, from
https:// www. tynker. com/

White, M. M. (2014). Learn to play: Designing tutorials for video games. CRC Press.
Wikipedia. (2023). List of best-selling video games. In Wikipedia, The Free Encyclopedia. Retrieved

March 19, 2023, from https:// en. wikip edia. org/w/ index. php? title= List_ of_ best- selli ng_ video_
games & oldid= 10128 64980

Yauney, J., Bartholomew, S. R., & Rich, P. (2021). A systematic review of “Hour of Code” research.
Computer Science Education, 1–33. https:// doi. org/ 10. 1080/ 08993 408. 2021. 20223 62

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1145/2724660.2724668
https://doi.org/10.3390/educsci12090584
https://doi.org/10.3390/educsci12090584
https://roboblocky.com/
https://www.tynker.com/
https://en.wikipedia.org/w/index.php?title=List_of_best-selling_video_games&oldid=1012864980
https://en.wikipedia.org/w/index.php?title=List_of_best-selling_video_games&oldid=1012864980
https://doi.org/10.1080/08993408.2021.2022362

	Evaluating support systems and interface efficiency in Hour of Code’s Minecraft Adventurer
	Abstract
	1 Introduction
	2 Minecraft Adventurer
	3 Related work
	4 Study methodology
	4.1 Study design
	4.2 Procedure
	4.3 Participants
	4.4 Data collection

	5 Data analysis and results
	6 Discussion
	7 Limitations
	8 Conclusion
	References

