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Abstract
Computational thinking (CT) skills of pre-service teachers have been explored 
extensively, but the effectiveness of CT training has yielded mixed results in previ-
ous studies. Thus, it is necessary to identify patterns in the relationships between 
predictors of CT and CT skills to further support CT development. This study devel-
oped an online CT training environment as well as compared and contrasted the pre-
dictive capacity of four supervised machine learning algorithms in classifying the 
CT skills of pre-service teachers using log data and survey data. First, the results 
show that Decision Tree outperformed K-Nearest Neighbors, Logistic Regression, 
and Naive Bayes in predicting pre-service teachers’ CT skills. Second, the par-
ticipants’ time spent on CT training, prior CT skills, and perceptions of difficulty 
regarding the learning content were the top three important predictors in this model.

Keywords  Computational Thinking · Machine Learning · Classifier · Educational 
Data Mining · Pre-service Teachers · K-Nearest Neighbors · Logistic Regression · 
Naive Bayes · Decision Tree

1  Introduction

There is an acute need to develop students’ computational thinking (CT) in K-12 
education, as CT is deemed to be an essential skill for students to succeed in 
the digital age (Wing, 2006). Many nations have begun to place emphasis on the 

 *	 Maria Cutumisu 
	 cutumisu@ualberta.ca

	 Hao‑Yue Jin 
	 hjin2@ualberta.ca

1	 Centre for Research in Applied Measurement and Evaluation, Department of Educational 
Psychology, Faculty of Education, University of Alberta, 6‑102 Education Centre North, 
Edmonton T6G 2G5, Canada

http://orcid.org/0000-0003-2475-9647
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-023-11642-7&domain=pdf


11448	 Education and Information Technologies (2023) 28:11447–11467

1 3

development of CT skills and have committed to including CT training in K-12 
curricula (Bocconi et al., 2016). One way to support students’ access to CT is to 
facilitate teachers’ understanding of CT and to help teachers integrate CT con-
cepts into school curricula (Jaipal-Jamani & Angeli, 2017). Thus, several pro-
fessional development (PD) programs aim to equip in-service and pre-service 
teachers with CT skills (Jaipal-Jamani & Angeli, 2017) or CT-related pedagogies 
(Kong et al., 2020). Nevertheless, PD programs have not always been successful 
in improving teachers’ CT skills. For example, Bower et al. (2017) indicated that 
teachers did not develop an awareness of CT concepts and perspectives after a 
one-week workshop introducing key ideas of CT. Identifying at-risk learners at 
an early stage and providing them with immediate support could be an effective 
way to ensure that every learner achieves a high level of CT skills after training.

Previous studies have explored several influential factors leading to CT train-
ing effectiveness. First, training time is considered to be crucial in improving 
learners’ CT skills. Qu and Fok (2021) found that the more time the learners 
spent on robotics training, the more they developed their skills. Second, learn-
ers’ prior knowledge can impact their CT skills after the intervention (Hooshyar 
et al., 2021; Kwon et al., 2021). A study that integrated problem-based learning 
in an elementary classroom to improve students’ CT skills and attitudes revealed 
that the high prior-knowledge group outperformed the low prior-knowledge group 
on both CT skills and attitudes (Kwon et al., 2021). Third, learners’ dispositions, 
such as self-efficacy and perceptions of difficulty, were also found to be important 
factors in CT education (Lee & Lee, 2021; Malmi et al., 2020).

Recently, researchers have applied data mining techniques in educational contexts 
to predict learning performance (Chen et al., 2021; Lu et al., 2021). Several studies 
paid particular attention to the prediction of academic achievement. For example, 
Riestra-González et  al. (2021) analyzed log files from learning management sys-
tems using machine learning algorithms (e.g., decision trees) to predict students’ 
final grades. Lemay and Doleck (2020) predicted students’ assignment completion 
in massive open online courses (MOOCs) based on video viewing behaviors using 
several machine-learning models, including logistic regression, naive Bayes, and 
decision trees. Moreover, previous studies used machine learning algorithms mainly 
aimed to build a digital environment (e.g., a recommendation system) to develop CT 
or evaluate CT (e.g., via text mining; Arastoopour Irgens et al., 2020; Lin & Chen, 
2020). Little attention has been paid to predicting learners’ CT skills and investigat-
ing influencing factors in a CT training activity using machine learning approaches.

Therefore, this study aims to apply several machine learning algorithms to pre-
dict pre-service teachers’ CT skills after an online CT training activity using fea-
tures from both psychological measurement and log data of user-computer inter-
actions (i.e., prior knowledge, learning behaviors, and perceptions of the learning 
content). The following research questions guide this research:
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1.	 To what extent can pre-service teachers’ CT skills be predicted using machine 
learning algorithms based on their prior knowledge, learning behaviors, and per-
ceptions of the learning content?

2.	 What are the most influential predictors of pre-service teachers’ CT skills?

2 � Literature review

2.1 � CT education for pre‑service teachers

In the past few years, several CT studies have focused on pre-service teachers. 
Researchers examined the effects of programming activities on pre-service teachers’ 
CT skills. For example, Jaipal-Jamani and Angeli (2017) developed a robotics course 
that required pre-service teachers to build and program three robotic models and the 
participants were asked to complete a total of four assessment programming tasks. 
By analyzing the completion of the programming tasks, the researchers found that 
the pre-service teachers’ CT skills improved significantly after the robotics interven-
tion. Mouza et al. (2017) investigated how to enable pre-service teachers to imple-
ment CT concepts in their courses. In a 15-week course, 21 pre-service teachers 
were trained using educational technologies (e.g., Scratch) and CT-supported con-
cepts such as abstraction, problem decomposition, and algorithmic thinking. They 
also had opportunities to design and implement courses in their classrooms based on 
the newly acquired instructional tools and pedagogies. A pre-test and a post-test of 
CT concepts, computing tools, and practice were administered to these participants. 
The results suggested that this training course positively impacted pre-service teach-
ers’ CT concepts, tools, and practice. Similarly, Butler and Leahy (2021) introduced 
CT concepts and engaged pre-service teachers in CT practice with computational 
tools (e.g., Scratch) in constructionist learning environments and they found that 
pre-service teachers could connect constructionist principles with CT in meaning-
ful ways. These pre-service teachers developed a deeper understanding of CT and of 
ways to embed CT into their practice after taking this course.

As summarized above, researchers have already noticed the significance of pre-
paring pre-service teachers for CT education in the past five years, but most of them 
focused on deepening teachers’ knowledge about CT concepts, CT practice, and 
CT-relevant pedagogies and transforming teachers’ perceptions of CT education 
using in-person training. However, there is a need to deliver CT training to teachers 
remotely due to the constraints brought to the forefront by the Covid-19 pandemic. 
Despite this, research about online CT training for teachers is still sparse. Limited 
research has been conducted to identify the key factors affecting CT training pro-
grams. Therefore, it is necessary to develop an online CT training activity for pre-
service teachers and evaluate the critical elements of such an activity.
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2.2 � CT and machine learning

Over the past several years, researchers have applied machine learning in the 
research and educational practices of CT for different purposes, such as developing 
CT training platforms. For example, Lin and Chen (2020) designed an augmented 
reality system for programming with deep learning recommendations, finding that 
the university students who used this system achieved better learning outcomes. 
More recently, Hooshyar et al. (2021) created an adaptive digital game for CT devel-
opment based on the Naive Bayes algorithm. After conducting a teaching experi-
ment with 79 primary-school students, they found that this educational game sig-
nificantly improved students’ CT concepts and skills. Additionally, machine learning 
techniques have been applied to monitor and predict students’ CT learning. For 
instance, Akram et al. (2020) trained five supervised learning algorithms (e.g., sim-
ple linear regression, ridge regression, lasso regression, support vector regression, 
and Gaussian process regression) to predict five CT skills of 69 middle-school stu-
dents based on their program snapshots. The best-performing algorithm was Gauss-
ian process regression, yielding the least prediction errors and the best overall per-
formance (mean squared error = 1.71; adjusted R2 = 0.94). Figueiredo et al. (2019) 
presented a system based on multiple feed-forward neural networks to predict the 
pass or failure final grade of 85 college students in a programming course. The 
model achieved a satisfying prediction performance (e.g., an accuracy of 94.12%). 
Some applications of machine learning have evaluated students’ CT skills based on 
textual data. Arastoopour Irgens et al. (2020) used natural language processing tech-
niques (n-gram and topic modeling algorithms) to extract the CT concept reflections 
of 41 students from 1,766 responses to open-ended questions. The inter-rater reli-
ability between raters and algorithms yielded rho values less than 0.05. Ke et  al. 
(2020) combined a support vector machine (SVM) model with natural language 
processing techniques to analyze the intervention transcripts of autistic children and 
obtained an accuracy of 0.761. The approach could link children’s certain verbal 
utterances with predefined CT concepts. An automatic scoring system designed by 
Li et al. (2018) could transform students’ programming submissions into a distance 
matrix based on TF-IDF and Cosine similarity. Then, a hierarchical clustering algo-
rithm was used  to score new submissions, yielding a 75.42% prediction accuracy. 
Finally, Min et al. (2019) developed an educational game to draw inferences about 
the CT skills of 182 middle-school students based on deep learning algorithms.

The related literature reveals that most researchers have applied machine learn-
ing algorithms in developing CT training platforms (e.g., adaptive CT educational 
games) or assessing CT skills (e.g., analyzing projects and text), whereas limited 
research has focused on predicting learners’ CT skills using variables derived from 
prior knowledge, intervention, and perceptions of difficulty of the learning content. 
To fill this gap, there is a need to develop prediction models of CT skills in an edu-
cational context.
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2.3 � Learning performance and machine learning classifiers

Machine learning algorithms can be employed in educational contexts to predict 
learning performance using variables or features extracted from the data, including 
interaction data in e-learning platforms, learning behaviors in the classroom, and 
background information in large-scale assessments. Supervised machine learning 
techniques can solve two types of prediction problems: classification (i.e., the out-
come variable is categorical) and regression (i.e., the outcome variable is continu-
ous). The application of machine learning techniques in predicting learning achieve-
ment has gained significant ground in recent years with the development of learning 
in digital environments, such as MOOCs and learning management systems (LMSs).

In studies focused on the prediction of academic performance, researchers paid 
particular attention to identifying low-achievement or at-risk students, as shown in 
Table 1.

For example, Chui et  al. (2020) proposed a reduced training vector-based sup-
port vector machine (SVM) model to predict whether students will fail a course. 
They evaluated the performance of 32,593 university students in seven courses. The 
proposed model achieved an accuracy of 92.2% and was able to predict 91.3% of 
at-risk students. In addition to the modification of the existing algorithms, research-
ers compared different frequently used machine learning techniques to identify the 
model with the best performance. Adnan et al. (2021) compared several machine-
learning models, including random forest (RF), SVM, and decision tree (DT) on 
their accuracy and recall of detecting at-risk university students. The Open Univer-
sity Learning Analytics (OULA) data set was used to evaluate model performance. 
Predictors included students’ demographics, Virtual Learning Environment interac-
tion, assessments, course registration, and courses offered. In this study, random for-
est achieved the highest overall accuracy and recall. Riestra-González et al. (2021) 
applied Naive Bayes (NB), logistic regression, multi-layer perceptron (MLP), SVM, 
and DT to classify at-risk students using their interaction with the learning manage-
ment system. The findings suggested that MLP obtained the best performance, with 

Table 1   Studies employing machine learning algorithms to predict at-risk students

* Algorithms used, √ the algorithm with the highest accuracy, LR logistic regression, NB naive Bayes, 
SVM support vector machine, DT decision tree, RF random forest, KNN K-nearest neighbors, MLP multi-
layer perceptron, NN neural network, GLMNET generalized linear model with elastic net

Citation LR NB SVM DT RF KNN MLP NN GLMNET

Marbouti et al., 2016 * √ * * * *
Chen et al., 2021 * √ * * * *
Chui et al., 2020 *
Adnan et al., 2021 * * √
Riestra-González et al., 2021 * * * * √
Z. Yang et al., 2020 *
Bertolini et al., 2021 * * * √
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an overall accuracy of 80.1% when 10% of the course had been delivered, and 90.1% 
when half of it had been delivered. Z. Yang et al. (2020) used RF classification mod-
els for the early prediction of at-risk students in a physics classroom. Demographic 
information, home average, class attendance, test scores, and a pre-test score were 
included as predictors in this model. The model yielded an overall accuracy of 80%. 
However, the RF algorithm could only predict 37% of the at-risk students. Bertolini 
et  al. (2021) applied LR, SVM, RF, and the generalized linear model with elastic 
net (GLMNET) to predict university students’ academic performance in a Science 
course. The findings showed that GLMNET achieved a significantly higher accuracy 
compared with other algorithms, whereas LR achieved the poorest prediction.

According to the studies mentioned above, researchers used various machine 
learning algorithms to predict learning performance and obtained different optimal 
models. Additionally, few studies have combined self-reported survey data and log 
data to predict learning performance. Thus, the current study compares four machine 
learning classifiers to predict pre-service teachers’ CT skills using learners’ prior 
knowledge, learning behaviors (i.e., training time), and perceptions of the learning 
content.

3 � Method

3.1 � Participants and procedure

Participants were 93 pre-service teachers (38 males, 48 females, 5 non-binary, and 2 
not reported) from the Faculty’s Research Participation Pool program. The consent 
form and surveys were administered using the Qualtrics online platform and were 
distributed through the SONA system according to the ethics protocol Pro00112720. 
The participants completed the online consent form and pre-survey for an average of 
20.3 min and a median of 14.0 min. One week after the pre-survey, they completed 
the intervention and the post-survey for an average of 41.5 min to prevent fatigue. 
This delay was also added to temporally space out testing and allow any potential 
learning from the pre-survey to solidify.

3.2 � Online CT training

During the CT intervention, introduction sentences were displayed on the screen 
guiding the participants to work on the code training tasks: “In this section, we will 
let you know whether you get the answer right or wrong. You will also be able to 
read the explanation for the answers.”

Next, students were provided with four code training tasks (see Fig. 1) consist-
ing of multiple-choice, sorting, and ranking items. After completing each task, 
participants were asked to briefly explain their responses. Participants received 
instant feedback when they submitted their answers during the CT training. Then, 
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Fig. 1   Screenshot of the CT training

Fig. 2   Screenshot of the feedback and explanations during the CT training 
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participants had opportunities to read the explanations of the task provided by the 
researchers (see Fig. 2). The time spent on the training tasks and the time spent on 
reading the explanations were both recorded. When the participants finished the 
CT training, they could choose to rest before continuing to complete the post-survey.

3.3 � Data collection tools

Computational thinking skill assessment  The CT assessment used in this study was 
adapted from the Callysto Computational Thinking test (CCTt, Adams et al., 2019; 
Cutumisu et al., 2021). The original assessment takes approximately 45 min to com-
plete. One worked example and four multiple-choice spatial CT items that measured 
CT skills were selected for this study.

Perceptions of the CT training  At the end of the intervention, participants were 
asked “From 0 to 10, how do you think you did in the training session?” and “From 
0 to 10, how difficult did you find this training session?” to measure their self-effi-
cacy and perception of CT training difficulty, respectively.

Demographic information  This form was designed to collect the following infor-
mation from the participants: gender, age, grade level, program, and programming 
experience.

3.4 � Measures

3.4.1 � Outcome variable

In this study, participants whose post-CT skill scores fell one standard deviation 
below the mean were identified as low-CT pre-service teachers (“1”), whereas the 
rest of the participants were identified as high-CT pre-service teachers (“0”). Thus, 
there were 15 low-CT pre-service teachers in the total sample of 93 participants.

3.4.2 � Feature selection

Table 2 shows the features derived from the data collected from the Qualtrics plat-
form. In this study, a Spearman correlation analysis of all the features with the 
post CT skills scores was conducted because the variables in the data set were not 
normally distributed. Only the features that were significantly correlated with the 
post CT skills were then selected. Thus, as shown in Table 3, only 7 features were 
included in the data analysis.
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3.5 � Data analysis plan

3.5.1 � Balancing the data set

There were 15 low-CT pre-service teachers in the total sample of 93 participants. 
Thus, the original data set was imbalanced, which could bias the machine learning 
classifiers towards learning to always predict the majority class. To overcome this 
problem, the synthetic minority oversampling technique (SMOTE) was applied to 
balance the training data set. This approach selects a minority class data point ‘a’ at 
random and locates its closest minority class neighbors. Then, a synthetic data point 
is generated by randomly selecting one of the nearest k neighbors ‘b’ and connect-
ing it to the original data point ‘a’ to form a line segment.

3.5.2 � Machine learning models

This research used four machine learning algorithms: logistic regression, naive 
Bayes, k-nearest neighbor, and decision tree.

Logistic Regression (LR)  Logistic regression is a supervised learning algorithm com-
monly used in educational settings (e.g., Braunstein et al., 2008; Eckles & Stradley, 
2012). It is a probabilistic model, calculating the probability of a categorical vari-
able (e.g., letter grade, pass/no-pass) from a number of predictor variables. In the 
training phase, the coefficients are estimated based on the training data. Forward-
selection logistic regression was employed in this study because it is commonly 
used in educational settings.

Naive Bayes (NB)  Naive Bayes is also a probabilistic model like logistic regression. 
It calculates a conditional probability distribution over the output of a function based 
on applying Bayes’ theorem with the (naive) assumption of independence between 
the predictive variables (Russell & Norvig, 1995). Although this assumption is often 
violated (e.g., correct answers and explanations reading time are not independent), 

Table 3   The descriptive analysis and Spearman correlation results of the included variables

*p < 0.05, **p < 0.01, ***p < 0.001

Feature Correlation p M (SD)

Prior knowledge Prior CT skills .427***  < 0.001 0.62 (0.26)
Learning behaviors Training time .469***  < 0.001 1322.79 (979.35)

Explanation reading time .364***  < 0.001 47.71 (43.42)
Number of correct answers .289** 0.005 1.19 (1.17)
Number of read explanations .290* 0.005 2.37 (1.37)

Perceptions of the 
learning content

Self-efficacy .302** 0.003 3.18 (3.18)

Perceptions of difficulty -.300** 0.003 6.35 (3.34)
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the algorithm yields good results in practice, being widely used in several applica-
tions (e.g., natural language processing tasks).

K‑Nearest Neighbor (KNN)  The K-Nearest Neighbor algorithm is a non-linear, non-
parametric, instance-based classifier that can be used for both regression and clas-
sification tasks. KNN classifies an object (e.g., a student) using a majority vote of its 
K nearest neighbors (Friedman et al., 1977). It calculates the distance between the 
objects using a similarity metric of the data instances. Here, the five-nearest neigh-
bors algorithm was used to identify low-CT pre-service teachers. The Euclidean dis-
tance metric between two instances was calculated to find the nearest neighbors.

Decision Tree (DT)  Like KNN, the decision tree is a versatile non-linear, non-
parametric supervised learning algorithm that can be used for both regression 
and classification prediction tasks. In each step, DT partitions the data based 
on one variable (e.g., training time) until all data in each node have only one 
category label (e.g., low or high) or all variables have been used. Partitioning is 
done by defining a score function that calculates the purity of all possible nodes 
and selects the variable that generates the purest nodes. The prediction of the 
class of an instance in a classification tree is obtained by traversing the tree until 
that instance reaches a leaf and taking the majority vote of the classes of all the 
instances landing at that leaf.

3.5.3 � Model evaluation

Using a validation-set model evaluation approach, the data set was randomly split 
into a training set (80%) and a test set (20%) with the createDataPartition function 
in R that aims to balance the class distribution within the splits. Then, the model was 
trained on the balanced training set (using leave-one-out cross-validation to choose 
the best model) and evaluated on both the training set (in-sample or training error) 
and the test set (test error). Several performance criteria were employed: accuracy 
(Eq. 1), precision (Eq. 2), recall (Eq. 3), specificity (Eq. 4), and F1-score (Eq. 5). 
Accuracy was used to calculate the total number of cases correctly classified. Preci-
sion was used to calculate the ratio of correctly detected low-CT participants to the 
total predicted low-CT pre-service teachers. Recall was used to calculate the ratio of 
correctly detected low-CT participants to the total number of actual low-CT pre-ser-
vice teachers. Specificity was used to calculate the ratio of correctly detected high-
CT participants to the total number of actual high-CT pre-service teachers. F1-score 
combines the precision and recall of a classifier into a single metric by taking their 
harmonic mean and it is used to assess the performance of a classifier when the data 
is not balanced because it provides a fairer measure of performance than precision 
or recall in this case.

Additionally, receiver operating characteristics (ROC) curves and area under the 
ROC curve (AUC) were also used as criteria to evaluate the model performance. 
The ROC curve shows the relationship between the true positive rate (TPR) and the 
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false-positive rate (FPR). It also reflects the relationship between sensitivity and speci-
ficity (i.e., when the sensitivity rises, specificity declines and vice versa). If the curve is 
closer to the top left corner of the graph, then the algorithm shows high accuracy. Oth-
erwise, the curve approaches the diagonal, which shows a performance accuracy that is 
no better than guessing. Values of AUC exceeding 0.9 indicate excellent results; values 
between 0.8–0.9 are considered good; values between 0.7–0.8 are considered fair; and 
values smaller than 0.6 are considered poor.

4 � Results

4.1 � CT performance prediction

The first research question aims to explore the extent to which pre-service teach-
ers’ CT skills can be predicted using machine learning classifiers. The results of 
testing four algorithms using the selected features are reported in Table 4. The 

(1)Accuracy =
True Positives + True Negatives

Total number of cases

(2)Precision =
True Positives

True Positives + False Positives

(3)Recall =
True Positives

True Positives + False Negatives

(4)Specificity =
True Negatives

True Negatives + False Positives

(5)F1 − score = 2 ∗
Precision ∗ Recall

Precision + Recall

Table 4   The model performance of the four classifiers

Model Prediction Error Accuracy Specificity Precision Recall F1-Score

NB Test error 0.722 0.733 0.333 0.667 0.444
Train error 0.897 1.000 1.000 0.794 0.885

LR Test error 0.778 0.800 0.400 0.667 0.500
Train error 0.849 0.889 0.879 0.810 0.843

KNN Test error 0.889 0.867 0.600 1.000 0.750
Train error 0.818 0.937 0.917 0.698 0.793

DT Test error 0.889 0.867 0.600 1.000 0.750
Train error 0.897 0.921 0.917 0.873 0.894
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test error represents the performance obtained after training the model on the 
balanced data  set and testing it on a random  holdout set taken from the origi-
nal imbalanced data set. The train error represents the in-sample error (training 
and testing the model on the balanced data set). The cross-validation procedure 
yielded an optimal k value for KNN of 5 and an optimal cp value for DT of 
0.06. All algorithms (LR, NB, KNN, and DT) achieved high accuracy scores 
ranging from 0.722 to 0.889. Among these four algorithms, the best model for 
overall accuracy and F1-score was Decision Tree (DT), which correctly identi-
fied 88.9% of the pre-service teachers’ CT skills. As for predicting high-CT pre-
service teachers, the DT yielded the highest accuracy because it could correctly 
identify 86.7% of high-CT participants in all actual high-CT cases. This model 
is also the best in predicting the low-CT class, which is important for the early 
detection of struggling learners. According to its recall value, DT could cor-
rectly detect all low-CT participants in the test set. 

As shown in Fig. 3, all ROC curves are situated in the top left corner because 
all prediction models produced fairly accurate results. Figure 3 also displays the 
AUC values for all four classifiers, showing that the DT has the highest AUC 
value, followed by LR and KNN. The NB model has the lowest AUC value, sug-
gesting the poorest prediction of pre-service teachers’ CT skills. Thus, overall, 
the DT model performed best based on the above criteria in identifying both 
low-CT and high-CT pre-service teachers.

Fig. 3   The ROC curves of the four classifiers. Note. The diagonal solid line represents the chance classi-
fier and it has an AUC value of 0.5
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4.2 � Influential factors of CT performance

The second research question aims to identify the most influential factors affecting 
pre-service teachers’ CT skills. Figure 4 shows the final decision tree. Oval nodes 
indicate class segmentation variables. The information included on the dashed line 
shows the segmentation score of the sample from the variable tested in the previous 
node. For example, for the root node (time_train), the main sample is divided into 
two sub-samples, one on the left with the instances with training time over 763 s 
(12.7  min), and one on the right with the instances with the training time below 
763 s. The value in the rectangle indicates the percentage of cases of the subsample 
included in the previous node progressing through that branch. Thus, when the par-
ticipant’s training time is less than approximately 13 min and the perception of the 
training difficulty exceeds 7.5, the participant is more likely to be classified as a low-
CT pre-service teacher. In addition, a participant is more likely to be classified as a 
low-CT learner if the participant’s pre-CT skills score is less than 0.38, even though 
the learner’s training time exceeds 13 min. In contrast, if a participant’s training time 
exceeds 13 min and the pre-CT skills score is above 0.38, the participant is more 
likely to be assigned a high-CT class. Moreover, a participant could be classified as 
a high-CT pre-service teacher if the participant’s perception of training difficulty is 
below 7.5, regardless of the actual training time.

As shown in Table 5, the top three important features affecting pre-service teach-
ers’ CT skills are training time,  pre-CT skills score, and perceptions of training 

Fig. 4   The graphical representation of the decision tree. Note. time_train: time spent on the learning 
tasks, excluding the time spent on reading explanations; difficulty: the perceptions of CT training diffi-
culty; CT_pre_mean: pre-scores of CT skills
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difficulty. Findings suggest that the participants with low pre-CT skills scores are 
more likely to be classified as low-CT pre-service teachers. Additionally, spending 
less time on CT training as well as perceiving the training tasks as being difficult 
leads to a low-CT skill classification. However, contrary to our expectation, the time 
spent reading explanations and the number of times the participant chose to read 
explanations seemed to be less important in the DT model, which indicates that 
reading explanations may affect pre-service teachers’ CT skills to a lesser extent.

5 � Discussion

The main objective of this research was to compare and find the best prediction 
model among four different machine learning classifiers in an online CT training 
environment and to identify the most important factors affecting pre-service teach-
ers’ CT skills. After comparing different models based on accuracy, specificity, 
recall, precision, and F1-score, the best model for predicting low-CT pre-service 
teachers was Decision Tree (DT). Moreover, the top three influencing factors in this 
DT model were training time, prior CT skills, and perceptions of difficulty.

5.1 � CT performance prediction

One objective of this study was to investigate whether machine learning algorithms 
could accurately identify at-risk learners in the proposed online CT activity. Com-
pared to studies using a small data set, the F1-score of DT in our research is accepta-
ble. For instance, Urkude and Gupta (2019) used students’ contextual data to predict 
whether students will graduate or not. They obtained an F1-score for DT of 0.655 
for a sample size of 100. The F1-score for DT increased to 0.750 when the data set 
size increased to 300 records.

Of the two probabilistic classifiers (i.e., LR and NB), LR slightly outperformed 
NB in terms of all evaluation metrics in this data set. Other researchers found that 
LR worked better than NB in their classification tasks (Aborisade & Anwar, 2018). 
However, Pundlik (2016) pointed out that the accuracy of NB is often better than 
that of LR when the training size is small. For example, Marbouti et al. (2016) used 

Table 5   The feature importance 
of the DT model

Features Values

Training time 100.00
 Prior CT skills 61.56
Perceptions of difficulty 48.39
Explanation reading time 7.60
Number of correct answers 7.18
Number of read explanations 2.85
Self-efficacy 0.00
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both LR and NB to predict at-risk university students. They trained their models on 
a data set of 780 students and found that NB outperformed LR with an accuracy of 
86.2% in identifying students who failed to pass the course.

Of the two non-probabilistic classifiers (i.e., KNN and DT), DT generally out-
performed KNN, which is consistent with previous studies (e.g., Pathak & Pathak, 
2020; Wiyono & Abidin, 2019). For instance, Wiyono and Abidin (2019) applied 
KNN and DT to predict whether students were active or not as determined based on 
their performance. The results showed that DT yielded an accuracy of 93%, whereas 
KNN yielded an accuracy of 92%. One potential reason might be that the log data 
generated in the learning platform usually included mixed or nonlinear predictor 
relationships and DT has an advantage when working with nonlinear data (Rizvi 
et al., 2019).

Based on the present findings, the DT model is able to identify low-CT pre-ser-
vice teachers well. Its high specificity indicates that very few actual high-CT partici-
pants were predicted incorrectly. Its high recall indicates that the DT model identi-
fies low-CT learners well. Overall, the F1-score indicates a good overall DT model.

5.2 � Influential factors of CT performance

In terms of factors affecting CT skills, we had anticipated that the explanation read-
ing time and number of explanations viewed would be important factors in the pre-
diction model because the given explanations were a critical part of our training 
activity. However, the results suggested that training time, prior CT skills, and per-
ceptions of difficulty were more predictive of the response variable.

5.2.1 � Training time

The time spent completing the training tasks seems to be important, because learners 
who choose to spend more time in the training session might be more engaged in the 
learning process. Many studies have emphasized the positive relationship between 
engagement and learning performance (e.g., Pi et  al., 2021; Qureshi et  al., 2021). 
Learners were likely more engaged when solving the items of the training session 
than when reading explanations. This is supported by the higher average time spent 
on the training tasks (approximately 20 min) compared to the lower average time 
spent on reading explanations (47.7  s). However, in this CT training activity, the 
given explanations were the only materials that could help participants learn about 
programming concepts. Perhaps other teaching strategies (e.g., self-explanation or 
think alouds) could be applied in the online CT training activity to improve learners’ 
engagement.

5.2.2 � Prior CT knowledge

This finding could be partly explained by the fact that prior knowledge levels can 
impact learning behaviors (Kitsantas, 2013; Yang & Quadir, 2018). Yang et  al. 
(2018) conducted a study about self-regulated learning and prior knowledge. They 
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found that learners with higher or lower levels of prior knowledge behaved differ-
ently during the performance phase. Specifically, learners with more prior knowl-
edge tend to solve more complex problems, while learners with less prior knowl-
edge tend to solve simpler problems. Also, learners with less  prior knowledge 
tend to apply multiple problem-solving strategies (e.g., self-reflection strategies), 
while learners with more prior knowledge tend to correct mistakes by only check-
ing answers. In the present study, participants could only get access to the correct 
answers and to the explanations of the answers. Providing more support or scaffold-
ing for pre-service teachers with lower initial CT skills could be a useful direction 
for future research.

5.2.3 � Perceptions of difficulty

Perception of difficulty is another crucial factor influencing participants’ CT per-
formance. Participants who felt that the learning content was difficult were more 
likely to achieve low CT performance. Previous studies have identified the relation-
ship between learning difficulty and learning performance. For example, Hung et al. 
(2013) designed a digital educational game with different difficulty levels. They 
found that students using learning materials of moderate difficulty achieved a sig-
nificantly higher learning performance than those using learning materials of higher 
difficulty. In addition, Cheng et al. (2021) found that there was a positive correla-
tion between the perceived difficulty level of online courses and students’ prefer-
ence of teacher-led strategies, indicating that online learning materials that are too 
difficult might lead to a decrease in self-directed learning. Adjusting difficulty levels 
of learning content for learners with different perceptions of difficulty might be a 
solution for improving learning performance.

5.3 � Limitations and future work

One limitation of this research is the short duration of the training session (around 
one hour). This could have influenced the model performance and several key fea-
tures. For example, the number of explanations viewed and the time spent on read-
ing explanations are likely to be more important factors  if the intervention dura-
tion were longer (e.g., an entire semester). Another limitation is that the SMOTE 
approach used to balance the data  set could have caused overfitting and skewness 
in the class distribution. The Tomek Links technique used for undersampling could 
be an alternative approach for large sample sizes (Zeng et al., 2016). Also, there is 
room for improvement in classification accuracy. Future research can consider using 
ensemble methods to increase the model performance.

In future research, it might be possible to devise teaching strategies to facili-
tate pre-service teachers’ engagement in completing learning tasks and reading the 
explanations provided. For example, using self-explanation strategies could help 
learners reflect on their solutions and correct their answers, becoming aware of their 
weaknesses.
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6 � Conclusion

Four machine learning algorithms were compared and contrasted to predict pre-ser-
vice teachers’ CT skills after an online CT training activity. The decision tree model 
achieved the highest prediction performance. For online learning activities with 
fewer than 100 participants and fewer than 20% low-performance learners among 
these participants, it might be possible to use DT to identify low achievers with high 
accuracy. Another contribution of this work is the identification of the key features 
employed in an online CT learning activity. This study shows that although train-
ing activities contribute to CT performance, prior knowledge is an important factor 
that can facilitate learners’ CT skills. Thus, this study suggests that, before or at the 
beginning of the CT training activities, the instructor could initiate warm-up activi-
ties to help learners (especially those with lower prior knowledge levels) acquire or 
retrieve knowledge and skills that will better prepare them for upcoming challenges. 
Then, throughout the CT activities, several learning strategies (e.g., think alouds or 
self-explanation) can be integrated into the learning environments to engage learners 
in CT learning. In addition, this study makes it possible to predict at-risk learners at 
an early stage of learning, which allows instructors to offer classes, help, additional 
resources, or other assistance tailored to these learners.
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