
Vol.:(0123456789)

Education and Information Technologies (2023) 28:10183–10208
https://doi.org/10.1007/s10639-023-11577-z

1 3

A conceptual model of what programming affords
secondary school courses in mathematics and technology

Niklas Humble1

Received: 28 February 2022 / Accepted: 5 January 2023 / Published online: 24 January 2023
© The Author(s) 2023

Abstract
Due to increased need of professionals on the future labour market with competence
in programming, many countries have integrated programming in kindergarten to
grade 12 (K-12) education. In 2017, programming was integrated in Swedish pri-
mary and secondary school curriculum and the courses of Mathematics and Tech-
nology. Research has highlighted challenges in integrating programming and other
new technologies, and the need for better teacher support. The aim of the study was
to examine what programming affords secondary school courses in Mathematics and
Technology according to teachers that use programming in these two courses. The
study was conducted with a qualitative approach and collected data through inter-
views with 19 teachers that use programming in secondary school courses of Math-
ematics and/or Technology. Thematic analysis with inductive-deductive approach
was used to analyse the collected data. Theory of Affordances was used to identify
themes of interests in the collected material and group these into categories. Ten
programming affordances are identified in this study: 1) flexibility, 2) creativity, 3)
efficiency, 4) visualisation, 5) fun, 6) curiosity, 7) play, 8) holistic views, 9) fearless-
ness, and 10) interdisciplinary collaborations. Through discussion and comparison
with previous research, these programming affordances are found to relate to three
aspects of teaching and learning in secondary school Mathematics and Technology:
A) support course content and learning, B) facilitate engagement and motivation,
and C) foster developmental skills. The study concludes with a suggestion for a con-
ceptual model on what programming can afford school courses in Mathematics and
Technology, based on the findings of the study. Findings can be used by teachers,
policymakers and other stakeholders in the integration and design of programming
in secondary education.

Keywords Programming · K-12 education · Teacher perspective · Affordances ·
Constraints

 * Niklas Humble
 niklas.humble@miun.se

1 Department of Computer and System Science, Mid Sweden University, Akademigatan 1 -
Building Q, 831 40 Östersund, Sweden

http://orcid.org/0000-0002-5791-4765
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-023-11577-z&domain=pdf

10184 Education and Information Technologies (2023) 28:10183–10208

1 3

1 Introduction

Reports show a need for professionals with programming competence on future
labour market due to increased automation of jobs (Smit et al., 2020). As a
response, many countries have integrated programming in kindergarten to grade
12 (K-12) education (Nouri et al., 2020; Tran, 2018). Two possible approaches
for integrating programming in K-12 education are: in existing curriculum or as
its own subject (Nouri et al., 2020). Sweden and Finland are two examples of
countries that have integrated programming in existing curriculum (Pörn et al.,
2021; Heintz et al., 2017); while UK has integrated programming through the
subject of Computing (Royal Society, 2017). Both approaches have received simi-
lar criticism, stating that there is insufficient support for the teachers and their
professional development (Pörn et al., 2021; Royal Society, 2017). As of 2017,
programming is part of the Swedish primary and secondary school curriculum
and the two courses of Mathematics and Technology (Heintz et al., 2017).

Previous research on integrating new technologies in educational setting show
that there is a need for examples of good use for the integration to be successful
(Viberg et al., 2020; Lindberg et al., 2017). Since the integration of programming
technologies are still being conducted in many countries’ K-12 education, where
Sweden is one of them, the need for research that study the use, possibilities and
challenges of programming is still crucial. Previous research show that teachers
need guidance for the use and integration of programming in K-12 education, this
includes support for teaching programming and using programming as a tool for
teaching and learning in other courses (Humble, 2022; Humble et al., 2020; Pörn
et al., 2021; Szabo et al., 2019; Humble et al., 2019; Webb et al., 2017; Royal
Society, 2017). In Sweden, these courses are mainly the two courses of Math-
ematics and Technology. A study by Murai and Muramatsu (2020) show promis-
ing results for teacher professional development in programming where teachers
can receive support from fellow K-12 teachers. The objective for this study was to
provide guidance for teachers and other stakeholders in the ongoing integration of
programming in K-12 education, through examples of programming use in Swed-
ish secondary school courses of Mathematics and Technology.

Previous research has studied the use and integration of programming in K-12
setting. However, the focus is often on programming in relation to Computa-
tional Thinking (CT) and how these can be used to develop 21st century skills
among students (Tikva & Tambouris, 2021). But there are other possible theo-
ries and frameworks that could be applied to better understand the possibilities
and constraints of programming in educational contexts. One theory that seems
especially well suited for investigating possibilities and constraints of program-
ming to support teaching and learning in other subjects, such as Mathematics and
Technology, is Affordances. Despite this, Affordances has not received the same
attention as CT in previous research on programming in K-12 education, which
is a gap that this study is addressing. The theory of Affordances highlight what
actions are made (or perceived as) possible through the utilisation of an artefact
(Bower & Sturman, 2015) and what actions are constraint (Norman, 2013, p.125).

10185

1 3

Education and Information Technologies (2023) 28:10183–10208

Besides the more common concepts of ‘perceived affordances’ and ‘constraints’
in the theory, Norman (1999) argues that the most important part is the concep-
tual model. The conceptual model offers a useful and simplified explanation of
how something works, which all other parts should be consistent with (Norman,
2013, p.25; 1999). This study concludes with a conceptual model of what pro-
gramming can afford secondary school courses in Mathematics and Technology.
To the author’s knowledge, a conceptual model based in the theory of Affor-
dances of what programming can afford K-12 education has not been presented in
previous research.

This study focuses on the perceptions by Swedish secondary school teachers
to develop an understanding of how programming can be used for teaching and
learning in the courses of Mathematics and Technology. Data have been collected
through interviews with 19 teachers that are experienced users of programming in
secondary school courses of Mathematics and/or Technology. Data are therefore
limited and findings should not be understood as representative for teachers’ per-
ceptions in general. However, with the qualitative approach used in this study, the
objective was not to develop a generalisable understanding of teachers’ perceptions,
but rather to provide guidance for teachers and other stakeholders. This is provided
through the investigation of how teachers, that are experienced users of program-
ming, use and perceive programming for teaching and learning in secondary school
courses of Mathematics and Technology.

The aim of the study was to examine what programming affords secondary school
courses in Mathematics and Technology according to teachers that use programming
in these two courses. The study was guided by the following research questions:

RQ1) What are the teachers perceived affordances of programming for secondary
school courses in Mathematics and Technology?
RQ2) What are teachers perceived constraints of programming for secondary
school courses in Mathematics and Technology?

2 Theoretical framework

The theory of Affordances was coined by Gibson and has its roots in ecological psy-
chology with an empiricist approach to action and perception (Chong & Proctor,
2020). Since Gibson, affordances have been applied in several fields of research and
deviated from the original definition (Chong & Proctor, 2020). One of these fields
are information and communication technology (ICT) in education (Hammond,
2010). The application of, and related research to, affordances for ICT in education
is presented in Sect. 3 Related work. In this section, descriptions of the foundational
concepts of affordances, perceived affordances, constraints, and conceptual models
are provided.

Affordances are what the environment provides the animal, including substances,
objects, surfaces, places, medium, and other animals (Gibson, 1977). According
to Bower and Sturman (2015), Gibson’s definition entail that an affordance of the
environment exists when there is an animal there to utilise it through actions. With

10186 Education and Information Technologies (2023) 28:10183–10208

1 3

that, affordances are neither good nor bad but simply entails what the environment
provides for the animal (Gibson & Carmichael, 1966, p.285). For example, an affor-
dance of a mailbox is to mail letters, and this is true weather a person recognises this
or not (Bower & Sturman, 2015). The properties of affordances can have multiple
meanings, which stem from the different functions that an object can serve for the
animal; for example, a book can serve as both a doorstop, an information repository,
and hold down papers when the wind blows (Heft, 2001, p.131).

With Norman’s (1999) development of perceived affordances, a designer per-
spective is introduced to the theory. Perceived affordances differ from affordances
according to Norman (2013, p.19) because affordances are all the interactions that
are possible (perceivable or not) between environment and people; while perceived
affordances are about signalling what course of actions are possible (Norman, 2013,
p.19). Perceived affordances are often signifiers and as such they must be perceiv-
able, else they lose their function (Norman, 2013, p.19). The reason people under-
stand how to operate novel objects or devices is because the required information
is part of the design or appearance as clues (Norman, 1999). According to Norman
(1999), this understanding consists of three dimensions: conceptual models, con-
straints, and perceived affordances.

Constraints limits the actions perceived as possible with a known or novel objects
and can therefore provide clues for the proper action to take (Norman, 2013, p.125).
Constraints consists of four classes: logical, semantic, cultural, and physical (Nor-
man, 2013, p.125). A logical constraint is for example the logical assumption that
if there are a left and a right light and a left and a right light switch, the left light
switch should control the left light (Norman, 2013, p.130). This is not determined
by any cultural or physical principles, rather, there is a logical relationship between
the objects and how these should affect each other (Norman, 2013, p.130). A seman-
tic constraint is for example that the meaningful place to sit on a motorcycle is fac-
ing forward, behind the windshield (Norman, 2013, p.129). This is based on knowl-
edge about the world and the situation, the windshield protects the face of the rider.
But as the world and technologies develops, semantic (and cultural) constraints may
change (Norman, 2013, p.129).

A cultural constraint is for example that red is the colour of a break light or that
you should not look directly at another passenger in an elevator (Norman, 2013,
p.129). These rules or allowable actions are based in our culture and differ between
cultures and are likely to change over time (Norman, 2013, p.128–129). A physical
constraint is for example that a small hole cannot fit a large peg (Norman, 2013,
p.125). Physical constraints may seem the most obvious constraint, but they can still
be difficult to interpret. Consider a cylindrical battery where both ends are nearly
identical, a more effective physical constraint would be to design the battery so that
its shape can only fit in one direction (Norman, 2013, p.125–126).

Conceptual models provide a simplified and useful explanation for how something
works (Norman, 2013, p.25). For example, icons, folders, and files displayed on a com-
puter screen creates the conceptual model of folders and documents inside the computer
(Norman, 2013, p.25). These are representations to make the computer easier to use,
but there are no “real” documents and folders in the computer (Norman, 2013, p.25).

10187

1 3

Education and Information Technologies (2023) 28:10183–10208

According to Norman (1999), the underlying conceptual model is the most important
part of design, and it is crucial that everything else is consistent with it.

3 Related work

To address high drop-out rates and failure in introductory programming courses, pre-
vious research has pointed out that not enough emphasis is put on problem-solving
strategies (Malik & Coldwell-Neilson, 2017). Focus has been on surface knowledge
of programming in the form of syntax, semantics, and concepts, when it should
instead be on deep learning (Malik & Coldwell-Neilson, 2017). Previous research
that investigates novice programmers’ problem-solving skills through debugging has
further concluded that debugging requires deeper understanding than simply how to
write code (Beege et al., 2021; Liu et al., 2017). Studies that investigate game ele-
ments and gamification in programming courses have found that the approach can
have a positive effect on students’ motivation (Fotaris et al., 2016; Pilkington, 2018).
Previous research on modelling games in K-12 science education has highlighted
the importance of representing phenomenon in many ways as part of game design
(Krinks et al., 2019). This is important since moving between different representa-
tions can engage and deepen students’ conceptual understanding (Krinks et al., 2019).

Previous research has investigated differences between block programming and tex-
tual programming in K-12 education, regarding learning outcomes and program com-
prehension (Krishnamurthi & Fisler, 2019). A well-known example of block program-
ming is Scratch, which was developed with the idea of low floor. Low floor in Scratch
indicates that it should be easy to get started and that syntactic mistakes should be
limited by using compatible blocks that represent programming code (Fagerlund et al.,
2021; Maloney et al., 2010; Scaradozzi et al., 2019; Toma, 2021). Although graphi-
cal elements of block programming have affordances, programming is still a com-
plex cognitive practice (Fagerlund et al., 2021). Previous research has used Scratch
for project-based integration of programming in multiple courses of K-12 education
with positive results (Sáez-López et al., 2016). Previous research has also examined
the impact on learning textual programming in K-12 education by applying visuali-
sation techniques (Mladenović et al., 2021). The study concluded that visualisation
could boost programming understanding, but that students should actively engage with
visualisation and not be passive participants (Mladenović et al., 2021).

Previous research has identified some affordances for block programming over tex-
tual programming. One example is that students show greater interests and are more
likely to understand if-/else-expressions with block programming, than with textual
programming (Krishnamurthi & Fisler, 2019; Weintrop & Wilensky, 2017). However,
studies have also found constraints with block programming, such as K-12 students’
misconceptions about loops, Booleans and variables (Krishnamurthi & Fisler, 2019;
Grover & Basu, 2017). Previous research also show that students perceive the learn-
ing experience as more professional and effective for improving programming skills,
when engaging with textual programming (Weintrop & Wilensky, 2017). Knowing that
a programming tool is authentic and used in professional setting can be inspiring for
students (Garneli et al., 2015; Maggiore et al., 2011).

10188 Education and Information Technologies (2023) 28:10183–10208

1 3

In a study on affordances of BBC’s micro:bit, it is concluded that the tangible ele-
ment is key to support understanding, stimulate interest and act as motivator in class-
rooms (Sentance et al., 2017). According to the study, micro:bit encourages creativity
and helps students connect the relevance of programming to computer science and the
real world by creating digital products (Sentance et al., 2017). Tangible programming
further has the potential of making programming more attractive for K-12 students
since affordances of the tangible objects, controlled by programming, are less ambigu-
ous than objects in virtual environments (Papavlasopoulou et al., 2017). However, stu-
dents that are older and more experienced with computers tend to find graphical envi-
ronments attractive as well (Papavlasopoulou et al., 2017).

In a study on affordances of block programming tools with virtual and tangible ele-
ments aimed for younger children, the authors conclude that all tools contain potentially
problematic assumptions on the relationships between play and children’s engagement
and motivation (Clarke-Midura et al., 2019). For example, some children can be moti-
vated by the idea of a coding playground, while others may find it difficult to code on
their own (Clarke-Midura et al., 2019). Previous research has argued that interacting
and tinkering with programming code offers unique affordances for K-12 students to
engage in inquiry (Wagh et al., 2017). Interacting with code gives students opportunity
to access rules, variables, and structures of scientific phenomenon, and the possibili-
ties of breaking down phenomenon, look inside and make structures transparent (Wagh
et al., 2017; Resnick et al., 2000).

Previous research that has investigated how Swedish kindergarten to grade 9 teach-
ers interpret the integration of programming in the course of Mathematics found 4 dif-
ferent relationships between programming and Mathematics: 1) programming but not
connected to mathematics, 2) programming in the context of mathematics, 3) doing
efficient calculations with programming as a tool, and 4) exploring mathematics with
programming as a tool (Kilhamn et al., 2021). In a study that investigated how Swedish
teachers in grade 1 to 9 prepared for the implementation of programming in the Math-
ematics and Technology courses it is concluded that the teachers did not feel prepared
for the implementation of programming (Vinnervik, 2022). It is further highlighted
that there is risk for inequality among schools regarding access to support, professional
development, IT infrastructure, and active leadership in the digital transformation (Vin-
nervik, 2022). Similar results were highlighted in a study that investigated Swedish
secondary school teachers’ perceptions on integrating programming in Mathematics
and Technology courses and of different programming tools (Humble et al., 2020). The
study concluded that programming is perceived by many of the teachers as fun but that
there is a lack of time and directives for the integration, which the teachers perceived as
challenging (Humble et al., 2020).

4 Method

According to Maxwell (2008), a common interest in qualitative studies is on par-
ticipants’ sensemaking or understanding of a phenomenon, and how their behav-
iours are affected by this understanding. This study was conducted with a qualitative
approach to examine secondary school teachers’ understanding of programming use

10189

1 3

Education and Information Technologies (2023) 28:10183–10208

and how this influence teaching and learning activities. Further, qualitative research
should illuminate participants’ understandings of their subjective actions, social
contexts, and meanings (Fossey et al., 2002). This study illuminates teachers’ sub-
jective understandings of affordances and constraints in using programming for sec-
ondary school courses in Mathematics and Technology.

4.1 Data collection

Data were collected through semi-structured interviews with 19 teachers that teach
secondary school courses in Mathematics and/or Technology in grades 7–9 (student
ages 13–15) (Table 1). A drawback with semi-structured interviews is that they usually
do not encompass a sample large enough to draw general conclusions (Adams, 2015).
However, semi-structured interviews allow for a deep understanding of individual
thoughts through open-ended and probing questions (Adams, 2015). Given the aim
of the study, the goal is not to draw general conclusions of teachers’ perceptions, but
rather to examine how certain teachers, with specified experiences and interests, per-
ceive the studied topic. With this background and a purposive sampling (Etikan et al.,
2016; Campbell et al., 2020), the method was deemed appropriate for data collection.

The first step of data collection was to invite potential participants. This was done
through invitation posts on social media and in an online forum of a teacher pro-
fessional developments course on fundamental programming in the mid-Sweden
region. Additionally, about 700 principals, administrators, and teachers in 64 munic-
ipalities in Sweden were contacted through email. The invitation contained a short
presentation of the researcher and intended study. Invitations were submitted early
in spring 2021. This resulted in 25 teachers registered their interest to participate.

The second step was to select participants. A short survey was sent to the poten-
tial participants, asking them to submit additional information about their work-
place, experience in teaching and programming, and preference for conducting the
interview. 20 teachers were selected with the criteria of teaching secondary school
courses in Mathematics and/or Technology in grade 7–9 and be experienced in using
programming for the courses in Mathematics and/or Technology. 1 teacher did not
answer the invitation and was withdrawn from the study.

Third step was to interview the 19 teachers, which were conducted with video
conference tools (Zoom or Teams), based on teacher preference. Each interview
lasted between 24 and 50 min (with an average of about 36 min) and was recorded
with consent from the teachers. Interviews were divided in two parts: 1) a structured
introduction where teachers were asked to repeat information about themselves and
their teacher background, 2) a semi-structured part where teachers were asked open-
ended questions about programming in their courses (Appendix). Interviews were
based on the same questions, but these were not asked in the same order or asked in
the exact same way. Questions were used to guide and stimulate conversation rather
than to regulate it. Interviews were conducted during the spring semester of 2021.

Participants were located all over Sweden, in schools and urban areas of different
sizes. Age of the participants ranges from 27 to 63, years teaching ranges from 3 to

10190 Education and Information Technologies (2023) 28:10183–10208

1 3

Ta
bl

e
1

 P
ar

tic
ip

at
in

g
te

ac
he

rs

So
ut

h
SW

E
M

id
 S

W
E

N
or

th
 S

W
E

A
ge

 2
0–

30
A

ge
 3

0–
40

A
ge

 4
0–

50
A

ge
 5

0–
60

A
ge

 6
0 +

Te

ac
hi

ng
 (y

ea
rs

)
Pr

og
ra

m
-

m
in

g
(y

ea
rs

)

Pr
og

ra
m

m
in

g
in

 M
at

he
m

at
-

ic
s

Pr
og

ra
m

m
in

g
in

 T
ec

hn
ol

og
y

T1
X

X
29

8–
9

X
X

T2
X

X
5

3
X

X
T3

X
X

15
3

X
T4

X
X

12
4

X
T5

X
X

12
1

X
T6

X
X

4
1

X
T7

X
X

27
2

X
T8

X
X

40
30

X
T9

X
X

6
3–

4
X

X
T1

0
X

X
12

5
X

T1
1

X
X

4
4

X
X

T1
2

X
X

3
3

X
T1

3
X

X
9–

10
3

X
X

T1
4

X
X

19
1

X
X

T1
5

X
X

26
5

X
X

T1
6

X
X

22
2

X
T1

7
X

X
33

4
X

T1
8

X
X

11
3

X
X

T1
9

X
X

7
3

X
X

10191

1 3

Education and Information Technologies (2023) 28:10183–10208

40, and years integrating programming in education range from 1 to 30. All partici-
pating teachers teach secondary school students (grades 7–9). 4 of the teachers only
use programming in the secondary school course of Mathematics, 6 of the teachers
only use programming in the secondary school course of Technology, and 9 of the
teachers use programming in both courses (Table 1).

4.2 Data analysis

Thematic analysis was used to identify themes of shared or collective experiences
and meanings in the collected data (Braun & Clarke, 2012). A mixture of inductive
and deductive coding was used in three steps for analysis. First step, a data-driven
inductive coding approach (Boyatzis, 1998) was used to identify themes in each
interview that highlight important aspects of the conversation. Important aspects
were considered topics that the conversation returned to, was emphasized by the
teacher, or related to the aim and research questions of the study. First step was con-
ducted directly after each interview and identified themes were collected in a text
document.

Second and third step, a theory-driven deductive coding approach (Boyatzis,
1998) was used to identify themes of interests and group these in bigger themes, cat-
egories. Deductive coding in the second and third step was guided by the theoretical
framework of Affordances, especially the concepts of ‘perceived affordances’ and
‘constraints’ (Norman, 1999, 2013). In the second step, themes identified in the first
step were reviewed based on relevance for the theoretical framework and included
or discarded. Included themes were moved to a spreadsheet and grouped in bigger
themes (categories) formulated as ‘main perceived affordances’. In the third step,
each interview was analysed again in search for additional themes relating to the
theoretical framework. Newfound themes could either support or rephrase existing
categories or form new categories.

Categories, and included affordances and constraints, were also compared and
discussed in relation to previous research. This could be considered a fourth step
of analysis. In this step, three aspects of teaching and learning in secondary school
courses of Mathematics and Technology were identified, to which the categories
related to. Together these aspects, categories, and related affordances and constraints
form a potential conceptual model for what programming can afford secondary
school courses in Mathematics and Technology. Findings related to the first, second
and third step of analysis are presented in the results and analysis-section. Findings
related to the fourth step are presented and discussed in the discussion-section. The
conceptual model is presented in the conclusion-section.

4.3 Trustworthiness

To establish trust, the study has been conducted in accordance with trustworthiness
and associated criteria for credibility, transferability, dependability, and confirm-
ability (Schwandt et al., 2007). According to Bryman (2016, p.383–384), trustwor-
thiness was developed as a more applicable alternative for judging and evaluating

10192 Education and Information Technologies (2023) 28:10183–10208

1 3

qualitative research, compared to the more common validity and reliability in quantita-
tive research. To ensure credibility, the study includes interviews with 19 teachers that
teach secondary school courses in Mathematics and Technology, from all over Swe-
den, and are experienced users of programming. To facilitate transferability, details
have been provided about context for the study, participants, data collection, and the
interview guide. To ensure dependability and confirmability, detailed description of
data analysis is provided and extracts from interviews are presented in the results and
analysis-section to exemplify and support identified themes and categories.

5 Results and analysis

In this section, themes that were identified in the analysis and relates to the study’s
aim and research questions are presented. The aim of the study was to examine
what programming affords secondary school courses in Mathematics and Technol-
ogy according to teachers that use programming in these two courses. The research
questions to address were: 1) What are the teachers perceived affordances of pro-
gramming for secondary school courses in Mathematics and Technology? 2) What
are teachers perceived constraints of programming for secondary school courses in
Mathematics and Technology? Through the analysis, 10 categories, or main per-
ceived affordances, have been identified, which contain themes of both affordances
and constraints.

The 10 categories, which are also used as sub-headings below, are: 1) flexibility,
2) creativity, 3) efficiency, 4) visualisation, 5) fun, 6) curiosity, 7) play, 8) holistic
views, 9) fearlessness, and 10) interdisciplinary collaborations. Extracts from the
interviews are presented in the sub-headings to exemplify and support the identi-
fied themes. Extracts have been translated from Swedish to English and are to some
extent rephrased for readability. However, the underlying meanings of the extracts
have not been changed.

5.1 Programming affords flexibility

A teacher that uses programming in the Mathematics course explains that program-
ming makes it possible to be more flexible in teaching and learning activities. With
programming, mathematical concepts can be used in other contexts and from dif-
ferent perspectives to support and reinforce important practices. Such as being pre-
cise and doing step by step calculation. Another teacher explains the difference in
teaching mathematics since programming was integrated and highlight the flexibil-
ity that it brings. Having yet another tool (programming) to work with, has allowed
for slowing down the course and give students more time to process information
and thoroughly understand it. However, this also means that fewer components can
be part of the course, which can be viewed as a constraint for using programming.
(Quote 1)

10193

1 3

Education and Information Technologies (2023) 28:10183–10208

”I feel that the biggest difference for me, as a Mathematics teacher, […] is
that you slow down and give students time to process information and under-
stand. And there we’ve gotten another tool [programming] to work with. So,
we probably do fewer [mathematics] components but we do them more thor-
oughly instead.”
Quote 1. Teacher about differences in teaching mathematics since integrating
programming

An identified constraint in the collected material is that block programming does
not support flexibility to the same extent as textual programming. Teachers explain
that this is because block programming, as used in Scratch or code.org, gives the
user predefined blocks of code which limits what can be done. While textual pro-
gramming, such as Python, give users flexibility to modify code in whatever way
they like. This is perceived as important, especially in the Mathematics course. A
teacher that uses programming in both the Mathematics course and the Technology
course explains that textual programming is preferred because it is easier and faster
to build solutions yourself, but that it could be useful for students to also work with
block programming (Quote 2).

”I think that block programming can be a good thing. But I think that it’s faster
and easier to work with text [textual programming] since it’s easier to, what
should I say, customise and build it yourself. […] For the students, I think it’s
good to work with both.”
Quote 2. Teacher about textual programming being easier and faster than
block programming

5.2 Programming affords creativity

An identified perceived affordance in interviews is that programming can afford
creativity. One teacher explains that there is no single correct way of writing code
and that it is the same in mathematics. Programming could therefore be used to fos-
ter creativity and support students to view mathematical problems in multiple ways.
(Quote 3)

”In programming, there is not one way to code a program, and it’s the same
thing in mathematics. You shouldn’t limit yourself and say: [explanation of
change factor method], that is always the best. […] [If] you still solve the prob-
lem in a sensible way with mathematical methods and arrives at the correct
conclusion. And I would say the same thing about programming, let them [the
students] be creative […] and solve problems in different ways.”
Quote 3. Teacher about creativity in programming and mathematics

Foster creativity in mathematics with support by programming is not only a ques-
tion of solving mathematical problems in different ways, but also a question of not
limiting yourself to one programming tool, according to a teacher. Even though tex-
tual programming is perceived as more flexible, it can be viewed as overwhelming

10194 Education and Information Technologies (2023) 28:10183–10208

1 3

and thereby constrain creativity. Therefore, it could be more appropriate to start with
block programming. (Quote 4)

“You shouldn’t limit yourself to one way of solving programming assign-
ments and not to one specific programming language, yet another connection
to mathematics […] You shouldn’t say that now it’s only Python. Because I’ve
heard from many other teachers […] that it feels overwhelming to start with a
textual programming language and I can understand that. In that case, I think
you should focus on the basics in programming instead.”
Quote 4. Teacher about textual programming as overwhelming and not limit-
ing yourself to one programming language

5.3 Programming affords efficiency

Teachers explain in interviews that programming makes it possible, especially in
mathematics, to solve problems that otherwise would be difficult or nearly impos-
sible. A teacher explains that if students get to see the power programming brings
to mathematics in efficiency for problem-solving, they will want to use it. A teacher
that uses programming in both the Mathematics course and the Technology course
explain that programming can be used to reinforce and support important practices
that might be perceived as dull or routine. In the Mathematics course, the teacher
explain that students got to develop a program to conduct left-side and right-side
checks of equations. By doing this, more students now check their equations, which
makes both the students’ and the teacher’s work more efficient. (Quote 5)

”We made a program that can check the solutions’ right and left side. […] And
in this way, I got more than half of the students to actually start to routinely
check their equations. While otherwise it’s only a few that does it, even though
I keep nagging about it. This should be done with pen and paper […] I believe
that because I got more to check their equations with a program, I have man-
ged to repeat the practice until it stuck.”
Quote 5. Teacher about using programming to reinforce mathematical prac-
tices

An identified perceived constraint in the collected material is that textual pro-
gramming does not afford efficiency for all students. For students with writing diffi-
culties, the Mathematics course and the Technology course can be a place in school
where performance is not as affected by these difficulties. By introducing textual
programming in these courses, spelling and accuracy becomes more important. A
teacher that uses programming in the Mathematics course explains that many stu-
dents struggle with textual programming because of this (Quote 6).

”I have a lot of problems regarding students with writing difficulties. Because
spelling is such a fundamental part of this [textual programming], and there is no
spelling check. The smallest mistake gives an error to the whole program.”
Quote 6. Teacher about the challenges of spelling in textual programming

10195

1 3

Education and Information Technologies (2023) 28:10183–10208

5.4 Programming affords visualisation

Teachers explain in the interviews that programming can support the understanding
of complex and abstract knowledge in the Mathematics course and the Technology
course through visualisation. A teacher explains that programming suits the Technol-
ogy course very well, since it can be used to visualise how things work in real life. For
example, automation and large constructions. Teachers further explain that program-
ming can be used to visualise geometry in mathematics with block programming in
Scratch or textual programming in Python (by importing Turtle library). One teacher
explains that programming can be used to make probability theory in mathematics less
abstract by programming visualisation of dice-rolling (Quote 7).

”In probability theory, very efficient, because it’s difficult to concretise. Weirdly
enough, programming becomes a tool for concretising problem solving. Let us
say that I would like to roll dice a thousand times, I wouldn’t do that during a
lesson because it would take too much time, but with programming I can create a
program and press a button.”
Quote 7. Teacher about using programming to visualise probability theory

An identified constraint is that programming, or certain programming tools, are per-
ceived as difficult by students and therefore limits visualisation. A teacher that uses
programming in the Mathematics course explains that many students perceive textual
programming in Python as more difficult than block programming. Therefore, they
sometimes start with building the structure of the program in Scratch, before moving
over to Python. However, Scratch has some perceived constraints, compared to Python,
regarding visualisation of geometry. For example, it is not as intuitive to reset a pro-
gram and return to origin, which can cause problems for students (Quote 8).

”When you’re going to draw something [on the screen], it’s easier to reset, to get
back to origin. That’s usually what they [students] have the biggest difficulties
with, they write something, they get it wrong, and they forget that they must reset
the program. Because then they do their corrections, but the program starts from
the wrong place, and so forth. That’s a bit easier to do in Python than in Scratch.”
Quote 8. Teacher about constraints for geometry in Scratch compared to Python

5.5 Programming affords fun

It is expressed in interviews that programming is perceived as fun and exciting by
both students and teachers. A teacher explains that the opportunity to explore new
ways of teaching mathematics is what makes it fun. Even though integrating and
learning programming requires extra work, the teacher express that this is the case
for all new tools and approaches to teaching. A teacher that uses programming in
both the Mathematics course and the Technology course explains that programming
in the Technology course is always going to be more fun for students. In the Tech-
nology course, programming makes something happen and it becomes more tangi-
ble. The teacher further explains that both girls and boys find programming fun in
the Technology course. (Quote 9)

10196 Education and Information Technologies (2023) 28:10183–10208

1 3

”Programming is always more fun in Technology, because you program for
something to happen, something tangible. […] and there is definitely no differ-
ence in gender. Girls find this at least as fun as the boys do. Programming in
Mathematics is not as, it’s not the same feeling of Wow.”
Quote 9. Teacher about programming in the Technology course as more fun
for both girls and boys

As mentioned above, the tangible nature of the Technology course affords more
fun with programming than in the Mathematics course. This can be considered a
constraint for programming in the Mathematics course, which typically does not
have the same tangible elements. Another teacher also states that students are not as
enthusiastic about programming in the Mathematics course as they are in the Tech-
nology course. But this could also be because students find textual programming in
Python boring (Quote 10).

”In Mathematics on the other hand, there they [students] sigh more. […]
Because, as they said: Yes, but it’s so boring to sit here and write. And it’s
Python that they are writing in.”
Quote 10. Teacher about textual programming being perceived as boring in
the Mathematics course

5.6 Programming affords curiosity

Students’ curiosity for programming is expressed in interviews to also spark inter-
ests for the courses of Mathematics and Technology. A teacher expresses that pro-
gramming has elevated mathematical knowledge of both teacher and students, and
that curiosity for programming can be used to reach students that previously were
difficult to reach. Teachers mention that certain programming techniques and tools
are better at sparking curiosity for the Mathematics course and the Technology
course. Tangible programming with micro:bit and visualisation with Turtle library
in Python are mentioned as examples. A teacher that uses programming in both the
Mathematics course and the Technology course explain that the Turtle library in
Python can be used to spark curiosity for programming among fellow teachers that
have a negative attitude towards programming. With the Turtle library, they can use
their knowledge in mathematics to program. (Quote 11)

”We have started to get some colleagues aboard now. We noticed that Tur-
tle [library in Python] and to draw figures, colleagues were on board for that
rather quickly. Because it’s quite easy for them to learn since they get quite far
with their knowledge in mathematics. So, it’s easier to get colleagues on board,
and not only students, and also colleagues that have a more negative attitude
and don’t want to learn.”
Quote 11. Teacher about Turtle library in Python to get teachers and students
on board with programming

An identified constraint in the collected material is that there are negative pre-
conceptions about programming, and who programming is for, that could hinder

10197

1 3

Education and Information Technologies (2023) 28:10183–10208

curiosity. A teacher that uses programming in the Technology course explain that
important objectives are to rid programming of perceptions of mysticism and preju-
dice that it is only for computer geeks. To reach this objective, all students need to
experience that they can program something. (Quote 12)

”My objective is to rid this about computer geeks, that it is only computer
geeks that program. I want to show that you can program without being a com-
puter geek and that this is not some kind of hocus-pocus. And that’s why […]
I have progression so that all will be able to do something, that there are differ-
ent levels [of programming].”
Quote 12. Teacher about preconceptions of programming and programmers

5.7 Programming affords play

An identified perceived affordance in interviews is that programming affords play
and that this can be used to make both programming and mathematics more playful.
One teacher explains that programming is used to get students in a playful mindset
before introducing mathematics (Quote 13).

”The first lessons are of course playful. We learn print and input [commands in
Python] and then we can play with stuff such as, what are you going to eat dur-
ing the weekend? And then they write. The computer can answer, I hope that
you get pancakes, or whatever. Only that kind of playful stuff. Then we can
start to introduce mathematics.”
Quote 13. Teacher about programming as a playful introduction to mathematics

An identified constraint in the collected material is that some programming tools
are perceived as just for play or used as an escape from course content. One teacher
explains that there are differences between how students play with textual program-
ming in Python and block programming at code.org. According to the teacher, stu-
dents that are fascinated by Python likes the structure and becomes happy in another
way than those who prefer block programming. While those who prefer block pro-
gramming, view it more as a playground and escape from mathematics. (Quote 14)

”I see that it divides the students in two camps. Those who likes Python are
those who are really fascinated about using the structure […] and to really get
it to work, to write code and program. I see that there are many that becomes
happy in a different way. It’s not a playground. Because there are those that,
can’t we do some block programming instead? And they view it more as play.”
Quote 14. Teacher about the differences of play in textual and block programming

5.8 Programming affords holistic views

In interviews, teachers explain that programming can be used to situate the Math-
ematics course and the Technology course in a bigger picture. That is, not only as

10198 Education and Information Technologies (2023) 28:10183–10208

1 3

school courses but also knowledge relevant in the real world. One teacher that uses
programming in both the Mathematics course and the Technology course explains
that programming with micro:bit is used to draw connections between technologies
and students’ everyday life. For example, mobile phones and how they work. It is
further mentioned during interviews that students sometimes perceive the Mathe-
matics course as composited of different parts that have nothing or little to do with
each other. One teacher explain that the practice of reuse in programming can affect
students’ perception of Mathematics as a more coherent course (Quote 15).

”It can be a difficulty in Mathematics when you work chapter by chapter […]
that you don’t see that the different chapters are related. Because sometimes it
feels like the students have this thought that, now we are done with geometry
[…]. So, you see more of these connections and not only between different
areas of mathematics, but also between mathematics and programming.”
Quote 15. Teacher about making the Mathematics course more coherent with
programming

An identified constraint in the collected material is that some types of program-
ming tools could be less relevant for the holistic views that programming can afford.
A teacher that uses programming in the Technology course explains that because
programming is a relevant skill for future labour market and digitalised society,
it could be a disservice by teachers to focus too much on block programming. In
future labour market and higher grades, textual programming is what students need
because it affords complex problem-solving. (Quote 16)

”But it can feel like a disservice towards them [students] to focus too much on
block programming, because when they reach grade 10-12 and study some-
thing technical, or later on the labour market, they might look at you funny.
No, block programming, we don’t do that here. […] In the future it’s going to
be textual programming that they learn. Because with that they can do more
complicated, or I mean, complex things.”
Quote 16. Teacher about textual programming being more important for stu-
dents to learn than block programming

5.9 Programming affords fearlessness

An identified perceived affordance in interviews is that programming could afford
less fear of errors among students. One teacher expresses that students are often
afraid of making errors in mathematics and get a sense of panic when something is
wrong. The teacher further explains that error handling is part of the programming
practice and that it would be preferable if a similar mindset could be applied in the
Mathematics course. (Quote 17)

”when you get that Error […] you get this, you know, sense of panic that
something is wrong. You get that sense quite often in mathematics unfortu-
nately, and you want to get rid of that to be able to solve a problem. […] So
that you are not afraid of getting an Error […] that is something that I would

10199

1 3

Education and Information Technologies (2023) 28:10183–10208

like to see influence [mathematics], because you often see programmers view
it in that way. […] now it really is a culture that you should not make Errors in
mathematics, but that happens all the time and that’s how you learn”
Quote 17. Teacher about fear of making errors in mathematics

An identified constraint in the collected material is that programming does not auto-
matically foster fearlessness. One teacher explains that students’ practice of Error han-
dling or troubleshooting in programming does not automatically influence their practice
in mathematics. However, the practice can be drawn upon to support students that likes
programming but have difficulties in the Mathematics course. (Quote 18)

”I believe that I can use that, those [students] that are at risk of failing Math-
ematics but likes Python and troubleshooting […] They [students] do not trou-
bleshoot in the same way in mathematics, but I believe that I can use it to get a
similar feeling.”
Quote 18. Teacher about using programming practice of troubleshooting to
support students in the Mathematics course

5.10 Programming affords interdisciplinary collaborations

An identified perceived affordance in interviews is that programming can afford
interdisciplinary collaborations. A teacher that uses programming in both the Math-
ematics course and the Technology course explain that Mathematics is generally a
course that is more difficult than others to achieve interdisciplinary collaborations.
However, with programming it is possible to collaborate with the courses in Tech-
nology, English, Swedish and Social science. To have something like programming
that can link the different courses together can create a greater incentive for students
to learn and develop. (Quote 19)

”I also believe that it is a much greater incentive for the students if they know
that what they do in Technology is also important for Mathematics. […] It’s
quite difficult to connect Mathematics interdisciplinary sometimes. […] gen-
erally it is a course that is more difficult than others to get the lesson plans to
work [with other courses]. But English work very well with programming, and
also Swedish if you do it the right way. […] It’s all about what approach you
have, and I hope that we will be able to do more of this in the future.”
Quote 19. Teacher about interdisciplinary collaborations through programming

An identified constraint in the collected material is that some programming tools
are perceived as childish by the students, although they might work well for interdis-
ciplinary collaborations. A teacher that uses programming in the Technology course
explains that an opportunity with block programming in Scratch is that it is easy to
get other courses on board for collaborations. However, it can also be perceived as
too easy and childish by the students. (Quote 20)

”Well, let’s say opportunities, Scratch for example, it is to get other courses on
board. Because you can use Scratch to do blocks, to do mathematical calcula-

10200 Education and Information Technologies (2023) 28:10183–10208

1 3

tions, or to ask questions about Swedish lakes, or whatever it might be. If you
can get other courses involved, then it is a boost you know. […] The students
feel that this is, those who gets it that is, they think this is too easy you know.
You can often perceive that this is a bit too childish.”
Quote 20. Teacher about Scratch for interdisciplinary collaborations

6 Discussion

The key take-aways from previous research are briefly summarised here. To address
failure and high dropout rates in programming education, more focus should be on
problem-solving strategies and not only on syntax and semantics (Malik & Cold-
well-Neilson, 2017). Problem-solving through debugging is a complex practice
that requires more knowledge than how to write code (Beege et al., 2021; Liu et al.,
2017). Game elements and gamification can have positive effects on student moti-
vation in programming courses (Fotaris et al., 2016; Pilkington, 2018). Students
conceptual understanding of a phenomenon can be enhanced by multiple represen-
tations (Krinks et al., 2019). Previous research on the integration of programming
in Swedish primary and secondary school courses of Mathematics and Technology
have highlighted different potential relationships between programming and course
content (Kilhamn et al., 2021). It has further been highlighted that teachers did not
feel sufficiently prepared for the integration (Vinnervik, 2022) and that programming
is often perceived as fun by teachers but that there is a lack of time and directives for
the integration that can be challenging (Humble, 2022; Humble et al., 2020).

In the comparison of block programming tools to textual programming tools, pre-
vious research show affordances and constraints regarding both. Block programming
can support students with visualisation and understanding (Fagerlund et al., 2021;
Maloney et al., 2010; Scaradozzi et al., 2019; Toma, 2021). While textual program-
ming tools provide a more professional learning experience, which can be inspir-
ing for students (Weintrop & Wilensky, 2017; Garneli et al., 2015; Maggiore et al.,
2011). Tangible programming tools, more hands-on approach and focus on creat-
ing physical objects, can be attractive for students since it becomes less ambiguous
than objects in a virtual environment (Sentance et al., 2017; Papavlasopoulou et al.,
2017). Tinkering with code can be an opportunity for students to engage in inquiry,
learn about rules, variables, and structures, and to break down phenomenon in man-
ageable parts (Wagh et al., 2017; Resnick et al., 2000). However, coding on your
own does not motivate all students, some require more guidance (Clarke-Midura
et al., 2019).

6.1 Comparing results to previous research

Previous research highlights the importance of addressing deep learning in teaching
and learning activities (Malik & Coldwell-Neilson, 2017). Malik and Coldwell-Neil-
son (2017) emphasise problem-solving strategies and not only syntax and semantics

10201

1 3

Education and Information Technologies (2023) 28:10183–10208

when learning programming. Similarly, teachers in this study highlight ways in
which programming can support course content and learning in secondary school
courses of Mathematics and Technology. This relationship between programming
and course content was also highlighted in the study by Kilhamn et al. (2021), where
programming was used in the Mathematics course for exploring and conducting cal-
culations efficiently. In the study presented here, programming as support for course
content in Mathematics and Technology were especially addressed in the perceived
affordances of flexibility, creativity, efficiency, and visualisation. Programming
affords flexibility in that course related concepts can be used and examined in differ-
ent ways. The importance of representing a phenomenon in multiple ways to deepen
students’ conceptual understanding is stressed by Krinks et al. (2019). Teachers in
this study used programming to provide visualisation and make course content less
abstract, for example geometry and probability theory. Previous research also shows
that visualisation techniques in programming can boost understanding, if used mind-
fully by the teacher to engage students (Mladenović et al., 2021).

Teachers in this study highlighted creativity in programming as a way of support-
ing course content and learning, for example that there is no single right approach to
solve a problem. Teachers highlighted perceived flexibility of textual programming
as an opportunity. But it was also mentioned that textual programming can be per-
ceived as overwhelming and could therefore limit creativity. This can be related to
findings in previous research, which have highlighted that teachers did not feel suffi-
ciently prepared for the integration of programming in course content and perceived
a lack of time and directives for the integration (Humble, 2022; Humble et al., 2020;
Vinnervik, 2022). Block programming and Scratch is mentioned in both this study
and previous research as a good approach for drawing on complex cognitive prac-
tice in programming, while still limit syntactic challenges (Fagerlund et al., 2021;
Maloney et al., 2010). Challenges of syntactics in textual programming is mentioned
in relation to programming affordance of efficiency in this study. It is also men-
tioned that once students understand the power programming can bring to a subject,
they will want to use it. Which can be related to previous research, where students
who work with textual programming view their experience as more professional and
effective (Weintrop & Wilensky, 2017).

Teachers in the study highlight that programming can be used for engagement
and motivation in the classrooms. This is addressed related to perceived affordances
of fun, curiosity, and play. That programming is perceived as fun by teachers has
also been addressed in related research (Humble, 2022; Humble et al., 2020). Previ-
ous research also shows that game element and gamification in programming have
positive effects on students’ motivation (Fotaris et al., 2016; Pilkington, 2018). Sim-
ilarly, it is pointed out in this study that introducing programming should be playful
and fun. It is also expressed that block programming can be too playful, and there-
fore used as an escape from course content. Previous research show that there can
be problematic assumptions on the relationship between play and children’s motiva-
tion and engagement when engaging with block programming tools (Clarke-Midura
et al., 2019).

Previous research has highlighted the opportunity of tangible programming
for facilitating understanding, interest, and motivation in classrooms, and making

10202 Education and Information Technologies (2023) 28:10183–10208

1 3

programming more attractive for K-12 students (Sentance et al., 2017; Papavlaso-
poulou et al., 2017). It is mentioned in this study, that programming tends to be
more fun for students in the Technology course than in the Mathematics course for
the same reason. Course content in Technology is more tangible and students, both
girls and boys, find the act of making something happen fun. It is further mentioned
that curiosity for programming can be used to spark interest for courses and reach
students that previously where difficult to reach. Which can be related to the explo-
ration of mathematics with programming as a tool in the study by Kilhamn et al.
(2021). Previous research has indicated that block programming tends to afford
more interest and basic understanding for programming than textual programming
(Krishnamurthi & Fisler, 2019; Weintrop & Wilensky, 2017). Teachers in this study
also highlighted tangible programming and textual programming libraries for visu-
alisation as good approaches for sparking curiosity.

An interesting finding in this study was that teachers used programming to afford
developmental skills, which stretched beyond course content and student motivation.
This was mainly addressed related to perceived affordances of holistic views, fear-
lessness, and interdisciplinary collaborations. Previous research has pointed out the
opportunity of using programming for engaging in inquiry, breaking down scientific
phenomenon, and to make underlying structures and rules transparent (Wagh et al.,
2017; Resnick et al., 2000). This can be related to the holistic views identified in
this study, teachers express that programming practice of reuse can afford the Math-
ematics course to be perceived as more coherent by the students. Programming is
used by teachers to connect courses to the outside world, which is also highlighted
as an opportunity in previous research (Sentance et al., 2017). Both teachers in this
study and previous research suggest that textual programming could have an oppor-
tunity over block programming in this regard, since textual programming is often
perceived as authentic and professional (Weintrop & Wilensky, 2017; Garneli et al.,
2015; Maggiore et al., 2011).

Debugging is a common practice in programming, which require deep under-
standing that goes beyond knowing how to write code (Beege et al., 2021; Liu et al.,
2017). Teachers in this study describe that programming debugging, error handling
and troubleshooting can afford less fear of making errors. That is, not to view errors
as a failure, but as something to correct and learn from. It is also pointed out that
programming practices associated with fearlessness does not necessarily influence
all students and transfer to other knowledge domains. Some students need teacher’s
support in making the connection. Teachers further expressed that programming
can be used for interdisciplinary collaboration, which was perceived as an opportu-
nity especially for the Mathematics course. Teachers perceived that the Mathemat-
ics course is often difficult to include in collaborations with other courses. Previ-
ous research has shown positive results for project-based learning across multiple
courses in K-12 education using block programming in Scratch (Sáez-López et al.,
2016). Teachers in this study recognised the opportunity of getting other courses
involved with programming by using Scratch. But some also highlighted the risk of
block programming becoming too easy and perceived as childish by students.

10203

1 3

Education and Information Technologies (2023) 28:10183–10208

6.2 Expected and unexpected findings

By discussing and comparing identified perceived affordances and related con-
straints with previous research, three aspects of teaching and learning emerge: A)
support course content and learning, B) facilitate student engagement and motiva-
tion, and C) foster developmental skills. Compared to previous research, A and B
are well established and should not be considered as unexpected findings. C, how-
ever, has not been addressed in previous research to the same extent as A and B to
the author’s knowledge. C is further considered an interesting and unexpected find-
ing since it, unlike A and B, address affordances that stretch beyond the professional
domains of teachers in the study. Programming affordances related to foster devel-
opment skills (aspect C) has the potential of influencing students in ways that affect
their learning in other courses where programming is not addressed. These findings
can be used by teachers and other stakeholders as inspiration and examples for pro-
gramming use in ongoing integration of programming in K-12 education.

7 Conclusion

This study has identified ten (main) perceived affordances, and related constraints,
with programming for secondary school courses in Mathematics and Technology.
By discussing and comparing these to previous research, three aspects of teach-
ing and learning were found: A) support course content and learning, B) facilitate
engagement and motivation, and C) foster developmental skills. These aspects and
perceived affordances form a potential conceptual model of what programming can
afford secondary school Mathematics and Technology (Fig. 1).

Fig. 1 Summary of findings A. Support course content and learning
1) Flexibility
2) Crea�vity
3) Efficiency
4) Visualisa�on

B. Facilitate student engagement and mo�va�on
5) Fun
6) Curiosity
7) Play

C. Foster developmental skills
8) Holis�c views
9) Fearlessness
10) Interdisciplinary collabora�ons

10204 Education and Information Technologies (2023) 28:10183–10208

1 3

This conceptual model address which aspects of secondary school Mathemat-
ics and Technology programming can support, facilitate, and foster, and through
which programming affordances this can be achieved. A conceptual model, based
on teacher experiences, for what programming can afford K-12 Mathematics and
Technology has, to the author’s knowledge, not been presented in previous research.
Findings presented in this study can be viewed as inspiration for programming use
in secondary school courses of Mathematics and Technology, and be used by teach-
ers, policymakers and other stakeholders in the integration and design of program-
ming activities for K-12 education.

8 Limitations and future research

Findings presented in this study should not be used for generalisation of teachers’
perceptions of programming. The study is based on limited data and participants
were selected based on their interest and experience in using programming for
secondary school courses in Mathematics and Technology. Therefore, participants
do not represent the ‘typical’ teacher. Findings should instead be viewed as sug-
gestions for what programming can be used for in K-12 education. A next step of
research that would be interesting, is a wider collection of data with multiple data
sources for examining potential additional programming affordances. This could
be conducted with additional interviews, surveys, and classroom observations.

Appendix: Interview guide

Introduction

1) What is your name?
2) Where do you work?
3) (If you are comfortable disclosing) how old are you?
4) What is your educational background?
5) How long have you worked as a teacher?
6) In what courses and grades do you use programming?
7) How long have you been using programming in your teaching and learning activi-

ties?

Main interview

• How do you use programming in mathematics/technology?
• What tools/programming languages do you use?
• Do you perceive any opportunities or obstacles with these tools/programming

languages?

10205

1 3

Education and Information Technologies (2023) 28:10183–10208

• Would you consider programming to be an integrated or isolated part of math-
ematics/technology?

• Does programming afford anything to your teaching or the students learning?
• Are there any specific parts of mathematics/technology content where you use

programming?
• Are there any specific parts of mathematics/technology content where you con-

sider programming appropriate?
• Are there any specific parts of mathematics/technology content where you con-

sider programming not appropriate?
• Are there any differences and/or similarities in how you use programming in

mathematics and technology?
• Are there any differences and similarities in how you use programming with dif-

ferent grades/students?
• Have you learned anything by using programming in mathematics/technology?
• Is there anything with programming that you consider especially good or bad for

mathematics/technology?
• Do you have any programming recommendations for other teachers?

Authors’ contributions Not applicable.

Funding Open access funding provided by Mid Sweden University.

Data availability Not public to protect study participants.

Code availability Not applicable.

Declarations

Declarations of interest None.

Conflicts of interest The author declare that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Adams, W. C. (2015). Conducting semi-structured interviews. In: Newcomer, K. E., Hatry, H. P., Wholey,
J. S. (Ed.). Handbook of practical program evaluation, 4, 492–505.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

10206 Education and Information Technologies (2023) 28:10183–10208

1 3

Beege, M., Schneider, S., Nebel, S., Zimm, J., Windisch, S., & Rey, G. D. (2021). Learning program-
ming from erroneous worked-examples. Which type of error is beneficial for learning? Learning
and Instruction, 75, 101497. https:// doi. org/ 10. 1016/j. learn instr uc. 2021. 101497

Bower, M., & Sturman, D. (2015). What are the educational affordances of wearable technologies? Com-
puters & Education, 88, 343–353. https:// doi. org/ 10. 1016/j. compe du. 2015. 07. 013

Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code development.
Sage Publications.

Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter,
D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol. 2.
Research designs: Quantitative, qualitative, neuropsychological, and biological (pp. 57–71). Amer-
ican Psychological Association.

Bryman, A. (2016). Social research methods. Oxford University Press.
Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., ... & Walker, K. (2020).

Purposive sampling: complex or simple? Research case examples. Journal of Research in Nursing,
25(8), 652-661. https:// doi. org/ 10. 1177/ 2F174 49871 20927 206

Chong, I., & Proctor, R. W. (2020). On the evolution of a radical concept: Affordances according to
Gibson and their subsequent use and development. Perspectives on Psychological Science, 15(1),
117–132. https:// doi. org/ 10. 1177/ 2F174 56916 19868 207

Clarke-Midura, J., Lee, V. R., Shumway, J. F., & Hamilton, M. M. (2019). The building blocks of cod-
ing: A comparison of early childhood coding toys. Information and Learning Sciences, 120(7/8),
505–518. https:// doi. org/ 10. 1108/ ILS- 06- 2019- 0059

Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purpo-
sive sampling. American journal of theoretical and applied statistics, 5(1), 1–4. https:// doi. org/ 10.
11648/j. ajtas. 20160 501. 11

Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2021). Computational thinking in programming
with scratch in primary schools: A systematic review. Computer Applications in Engineering Edu-
cation, 29(1), 12–28. https:// doi. org/ 10. 1002/ cae. 22255

Fossey, E., Harvey, C., McDermott, F., & Davidson, L. (2002). Understanding and evaluating qualitative
research. Australian & New Zealand Journal of Psychiatry, 36(6), 717–732. https:// doi. org/ 10. 1046/
2Fj. 1440- 1614. 2002. 01100.x

Fotaris, P., Mastoras, T., Leinfellner, R., & Rosunally, Y. (2016). Climbing up the leaderboard: An empir-
ical study of applying gamification techniques to a computer programming class. Electronic Journal
of e-Learning, 14(2), 94–110.

Garneli, V., Giannakos, M. N., & Chorianopoulos, K. (2015). Computing education in K-12 schools: A
review of the literature. In 2015 IEEE Global Engineering Education Conference (EDUCON) (pp.
543–551). IEEE.

Gibson, J. J. (1977). The theory of affordances. Hilldale, USA, 1(2), 67–82.
Gibson, J. J., & Carmichael, L. (1966). The senses considered as perceptual systems (Vol. 2, No. 1, pp.

44–73). Houghton Mifflin.
Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based programming:

Examining misconceptions of loops, variables, and boolean logic. In Proceedings of the 2017 ACM
SIGCSE technical symposium on computer science education (pp. 267–272).

Hammond, M. (2010). What is an affordance and can it help us understand the use of ICT in educa-
tion? Education and Information Technologies, 15(3), 205–217. https:// doi. org/ 10. 1007/
s10639- 009- 9106-z

Heft, H. (2001). Ecological psychology in context: James Gibson, Roger Barker, and the legacy of Wil-
liam James’s radical empiricism. Psychology Press.

Heintz, F., Mannila, L., Nordén, L. Å., Parnes, P., & Regnell, B. (2017, November). Introducing program-
ming and digital competence in Swedish K-9 education. In International Conference on Informatics
in Schools: Situation, Evolution, and Perspectives (pp. 117–128). Springer.

Humble, N. (2022). Teacher observations of programming affordances for K-12 mathematics and tech-
nology. Education and Information Technologies, 27(4), 4887–4904. https:// doi. org/ 10. 1007/
s10639- 021- 10811-w

Humble, N., Mozelius, P., & Sällvin, L. (2020). Remaking and reinforcing mathematics and technology
with programming – Teacher perceptions of challenges, opportunities and tools in K-12 settings.
The International Journal of Information and Learning Technology, 37(5), 309–321. https:// doi. org/
10. 1108/ IJILT- 02- 2020- 0021

https://doi.org/10.1016/j.learninstruc.2021.101497
https://doi.org/10.1016/j.compedu.2015.07.013
https://doi.org/10.1177/2F1744987120927206
https://doi.org/10.1177/2F1745691619868207
https://doi.org/10.1108/ILS-06-2019-0059
https://doi.org/10.11648/j.ajtas.20160501.11
https://doi.org/10.11648/j.ajtas.20160501.11
https://doi.org/10.1002/cae.22255
https://doi.org/10.1046/2Fj.1440-1614.2002.01100.x
https://doi.org/10.1046/2Fj.1440-1614.2002.01100.x
https://doi.org/10.1007/s10639-009-9106-z
https://doi.org/10.1007/s10639-009-9106-z
https://doi.org/10.1007/s10639-021-10811-w
https://doi.org/10.1007/s10639-021-10811-w
https://doi.org/10.1108/IJILT-02-2020-0021
https://doi.org/10.1108/IJILT-02-2020-0021

10207

1 3

Education and Information Technologies (2023) 28:10183–10208

Humble, N., Mozelius, P., & Sällvin, L. (2019). Teacher challenges and choice of programming tools
for teaching k-12 technology and mathematics. In International Conference on Education and New
Developments (END 2019), Porto, Portugal, 22–24 June, 2019 (Vol. 1, pp. 431–435). inScience
Press.

Kilhamn, C., Rolandsson, L., & Bråting, K. (2021). Programmering i svensk skolmatematik: Program-
ming in Swedish school mathematics. LUMAT: International Journal on Math, Science and Tech-
nology Education, 9(1), 283–312. https:// doi. org/ 10. 31129/ LUMAT.9. 2. 1457

Krinks, K. D., Sengupta, P., & Clark, D. B. (2019). Modeling games in the K-12 science classroom.
International Journal of Gaming and Computer-Mediated Simulations (IJGCMS), 11(1), 31–50.
https:// doi. org/ 10. 4018/ IJGCMS. 20190 10103

Krishnamurthi, S., & Fisler, K. (2019). Programming paradigms and beyond. In: S. A. Fincher & A. V.
Robins (Eds.), The Cambridge Handbook of Computing Education Research, (pp. 377–413). Cam-
bridge University Press.

Lindberg, O. J., Olofsson, A. D., & Fransson, G. (2017). Same but different? An examination of Swedish
upper secondary school teachers’ and students’ views and use of ICT in education. The International
Journal of Information and Learning Technology. https:// doi. org/ 10. 1108/ IJILT- 09- 2016- 0043

Liu, Z., Zhi, R., Hicks, A., & Barnes, T. (2017). Understanding problem solving behavior of 6–8 graders
in a debugging game. Computer Science Education, 27(1), 1–29. https:// doi. org/ 10. 1080/ 08993 408.
2017. 13086 51

Maggiore, G., Torsello, A., Sartoretto, F., & Cortesi, A. (2011). Engaging high school students in com-
puter science via challenging applications. In Proceedings of the 2011 conference on Information
technology education (pp. 43–48).

Malik, S. I., & Coldwell-Neilson, J. (2017). A model for teaching an introductory programming course
using ADRI. Education and Information Technologies, 22(3), 1089–1120. https:// doi. org/ 10. 1007/
s10639- 016- 9474-0

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming
language and environment. ACM Transactions on Computing Education (TOCE), 10(4), 1–15.
https:// doi. org/ 10. 1145/ 18683 58. 18683 63

Maxwell, J. A. (2008). Designing a qualitative study. The SAGE Handbook of Applied Social Research
Methods, 2, 214–253.

Mladenović, M., Žanko, Ž, & Aglić Čuvić, M. (2021). The impact of using program visualization tech-
niques on learning basic programming concepts at the K–12 level. Computer Applications in Engi-
neering Education, 29(1), 145–159. https:// doi. org/ 10. 1002/ cae. 22315

Murai, Y., & Muramatsu, H. (2020). Application of creative learning principles within blended teacher
professional development on integration of computer programming education into elementary and
middle school classrooms. Information and Learning Sciences, 121(7/8), 665–675. https:// doi. org/
10. 1108/ ILS- 04- 2020- 0122

Norman, D. A. (1999). Affordance, conventions, and design. Interactions, 6(3), 38–43. https:// doi. org/ 10.
1145/ 301153. 301168

Norman, D. (2013). The design of everyday things: Revised and (expanded). The MIT Press.
Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital

competence and 21st century skills when learning programming in K-9. Education Inquiry, 11(1),
1–17. https:// doi. org/ 10. 1080/ 20004 508. 2019. 16278 44

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2017). Reviewing the affordances of tangible
programming languages: Implications for design and practice. In 2017 IEEE Global Engineering
Education Conference (EDUCON) (pp. 1811–1816). IEEE.

Pilkington, C. (2018). A playful approach to fostering motivation in a distance education computer pro-
gramming course: Behaviour change and student perceptions. The International Review of Research
in Open and Distributed Learning, 19(3). https:// doi. org/ 10. 19173/ irrodl. v19i3. 3664

Pörn, R., Hemmi, K., & Kallio-Kujala, P. (2021). Inspiring or confusing–a study of Finnish 1–6 teachers’
relation to teaching programming. LUMAT: International Journal on Math, Science and Technology
Education, 9(1), 366–396. https:// doi. org/ 10. 31129/ LUMAT.9. 1. 1355

Resnick, M., Berg, R., & Eisenberg, M. (2000). Beyond black boxes: Bringing transparency and aesthet-
ics back to scientific investigation. The Journal of the Learning Sciences, 9(1), 7–30. https:// doi. org/
10. 1207/ s1532 7809j ls0901_3

Royal Society. (2017). After the reboot: Computing education in UK schools. Policy Report.

https://doi.org/10.31129/LUMAT.9.2.1457
https://doi.org/10.4018/IJGCMS.2019010103
https://doi.org/10.1108/IJILT-09-2016-0043
https://doi.org/10.1080/08993408.2017.1308651
https://doi.org/10.1080/08993408.2017.1308651
https://doi.org/10.1007/s10639-016-9474-0
https://doi.org/10.1007/s10639-016-9474-0
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1002/cae.22315
https://doi.org/10.1108/ILS-04-2020-0122
https://doi.org/10.1108/ILS-04-2020-0122
https://doi.org/10.1145/301153.301168
https://doi.org/10.1145/301153.301168
https://doi.org/10.1080/20004508.2019.1627844
https://doi.org/10.19173/irrodl.v19i3.3664
https://doi.org/10.31129/LUMAT.9.1.1355
https://doi.org/10.1207/s15327809jls0901_3
https://doi.org/10.1207/s15327809jls0901_3

10208 Education and Information Technologies (2023) 28:10183–10208

1 3

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages
integrated across the curriculum in elementary school: A two year case study using “Scratch” in
five schools. Computers & Education, 97, 129–141. https:// doi. org/ 10. 1016/j. compe du. 2016. 03. 003

Scaradozzi, D., Screpanti, L., Cesaretti, L., Storti, M., & Mazzieri, E. (2019). Implementation and assess-
ment methodologies of teachers’ training courses for STEM activities. Technology, Knowledge and
Learning, 24(2), 247–268. https:// doi. org/ 10. 1007/ s10758- 018- 9356-1

Schwandt, T. A., Lincoln, Y. S., & Guba, E. G. (2007). Judging interpretations: But is it rigorous? Trust-
worthiness and authenticity in naturalistic evaluation. New Directions for Evaluation, 2007(114),
11–25. https:// doi. org/ 10. 1002/ ev. 223

Sentance, S., Waite, J., Hodges, S., MacLeod, E., & Yeomans, L. (2017). Creating Cool Stuff" Pupils’
Experience of the BBC micro: bit. In Proceedings of the 2017 ACM SIGCSE technical symposium
on computer science education (pp. 531–536).

Smit, S., Tacke, T., Lund, S., Manyika, J., & Thiel, L. (2020). The future of work in Europe. McKinsey
Global Institute.

Szabo, C., Sheard, J., Luxton-Reilly, A., Becker, B. A., & Ott, L. (2019). Fifteen years of introductory
programming in schools: a global overview of K-12 initiatives. In Proceedings of the 19th Koli Call-
ing International Conference on Computing Education Research (pp. 1–9). https:// doi. org/ 10. 1145/
33645 10. 33645 13

Tikva, C., & Tambouris, E. (2021). Mapping computational thinking through programming in K-12 edu-
cation: A conceptual model based on a systematic literature Review. Computers & Education, 162,
104083. https:// doi. org/ 10. 1016/j. compe du. 2020. 104083

Toma, R. B. (2021). Measuring acceptance of block-based coding environments. Technology, Knowledge
and Learning, 1–11. https:// doi. org/ 10. 1007/ s10758- 021- 09562-x

Tran, Y. (2018). Computer programming effects in elementary: Perceptions and career aspirations
in STEM. Technology, Knowledge and Learning, 23(2), 273–299. https:// doi. org/ 10. 1007/
s10758- 018- 9358-z

Viberg, O., Grönlund, Å., & Andersson, A. (2020). Integrating digital technology in mathematics educa-
tion: a Swedish case study. Interactive Learning Environments, 1–12. https:// doi. org/ 10. 1080/ 10494
820. 2020. 17708 01

Vinnervik, P. (2022). Implementing programming in school mathematics and technology: Teachers’
intrinsic and extrinsic challenges. International Journal of Technology and Design Education, 32,
213–242. https:// doi. org/ 10. 1007/ s10798- 020- 09602-0

Wagh, A., Cook-Whitt, K., & Wilensky, U. (2017). Bridging inquiry-based science and constructionism:
Exploring the alignment between students tinkering with code of computational models and goals of
inquiry. Journal of Research in Science Teaching, 54(5), 615–641. https:// doi. org/ 10. 1002/ tea. 21379

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., & Sysło, M. M. (2017). Com-
puter science in K-12 school curricula of the 2lst century: Why, what and when? Education and
Information Technologies, 22(2), 445–468. https:// doi. org/ 10. 1007/ s10639- 016- 9493-x

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high
school computer science classrooms. ACM Transactions on Computing Education (TOCE), 18(1),
1–25. https:// doi. org/ 10. 1145/ 30897 99

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1016/j.compedu.2016.03.003
https://doi.org/10.1007/s10758-018-9356-1
https://doi.org/10.1002/ev.223
https://doi.org/10.1145/3364510.3364513
https://doi.org/10.1145/3364510.3364513
https://doi.org/10.1016/j.compedu.2020.104083
https://doi.org/10.1007/s10758-021-09562-x
https://doi.org/10.1007/s10758-018-9358-z
https://doi.org/10.1007/s10758-018-9358-z
https://doi.org/10.1080/10494820.2020.1770801
https://doi.org/10.1080/10494820.2020.1770801
https://doi.org/10.1007/s10798-020-09602-0
https://doi.org/10.1002/tea.21379
https://doi.org/10.1007/s10639-016-9493-x
https://doi.org/10.1145/3089799

	A conceptual model of what programming affords secondary school courses in mathematics and technology
	Abstract
	1 Introduction
	2 Theoretical framework
	3 Related work
	4 Method
	4.1 Data collection
	4.2 Data analysis
	4.3 Trustworthiness

	5 Results and analysis
	5.1 Programming affords flexibility
	5.2 Programming affords creativity
	5.3 Programming affords efficiency
	5.4 Programming affords visualisation
	5.5 Programming affords fun
	5.6 Programming affords curiosity
	5.7 Programming affords play
	5.8 Programming affords holistic views
	5.9 Programming affords fearlessness
	5.10 Programming affords interdisciplinary collaborations

	6 Discussion
	6.1 Comparing results to previous research
	6.2 Expected and unexpected findings

	7 Conclusion
	8 Limitations and future research
	Appendix: Interview guide
	References

