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Abstract
The study of robotics has become a popular course among many educational pro-
grams, especially as a technical elective. A significant part of this course involves 
having the students learn how to program the movement of a robotic arm by con-
trolling the velocity of its individual joint motors, a topic referred to as joint pro-
gramming. They must learn how to develop algorithms to move the end effector of 
the arm by controlling the instantaneous velocity or some similar aspect, of each 
joint motor. To support this learning activity, physical or virtual robotic arms are 
typically employed. Visual observation of the movement of the arm provides feed-
back to the correctness of the student’s joint programming algorithms. A problem 
arises with supporting the student in learning how to move the robotic arm with 
precise velocity along some path, a subtopic of joint programming referred to as 
differential movements. To develop this knowledge, the student must produce and 
test differential movement algorithms and have the capability to verify its correct-
ness. Regardless of the type of arm used, physical or virtual, the human eye cannot 
notice the difference between a correct or incorrect movement of the end effector as 
this will involve noticing small differences in velocities. This study found that by 
simulating the process of spray painting on a virtual canvas, the correctness of a dif-
ferential movement algorithm may be accessed by observing the resulting paint on 
the canvas as opposed to observing the movement of the arm. A model of a set of 
spray-painting equipment and a canvas was added to an existing virtual robotic arm 
educational tool and used in an Introduction to Robotics class offered at Florida Gulf 
Coast University in Spring 2019 and Spring 2020. The class offered in Spring 2019 
used the virtual arm but without the spray-painting feature while the class offered in 
Spring 2020 used the new spray-painting feature that was added to the virtual arm. 
Exam results show that 59.4% of the students that used the new feature scored at 
least an 85% on the corresponding differential movements exam question compared 
to only 5.6% of the class that did not use the added spray-painting feature. The dif-
ferential movement exam question simply asked the student to produce a differential 
movements algorithm to move the arm with a specified velocity alone a straight line.
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1  Introduction

Introduction to Robotics is a common introductory robotics course generally cover-
ing the fundamental theory of robotics including robot kinematics, dynamics, dif-
ferential movements, trajectory planning and basic computer vision algorithms com-
monly used in the field of robotics. This class mostly covers the study of controlling 
large heavy industrial articulated arms. Joint programming is the task of writing a 
program to directly control the robot’s joint motors as opposed to simply telling the 
robot’s controller where to move the arm. Ultimately, all robotic movements are per-
formed by controlling the desired instantaneous acceleration, velocity or position 
of each joint motor. Joint programming involves all aspects of robotics covered in 
this class. Differential movements is a type of joint programming that moves the 
end-effector with precise velocity and has applications such as painting, welding, 
plasma cutting, and many others. Even though this class is very diverse and covers 
many different topics, differential movements, sometimes called velocity control, is 
covered in this class by over 50% of the instructors surveyed (Esposito, 2017). It 
involves an understanding of the relationship between the instantaneous velocity of 
each joint and that of the end-effector. The learning objective associated with dif-
ferential movements, like joint programming, is to have the student learn how to cre-
ate an algorithm that performs these movements. Before presenting the problem and 
solution statements, a more detailed explanation of differential movements and how 
the algorithm must compute them is presented.

1.1 � A brief introduction to differential movements

Differential movement is a type of motion control where the velocity of the end-
effector is precisely controlled. It uses a closed-loop feedback system where feed-
back information from the joints sensors are used to close the control loop in order 
to achieve accurate tracking. It is used in applications such as painting, welding, 
plasma cutting, and other applications where the velocity must be controlled pre-
cisely. In contrast, a trajectory is a smooth movement from one point to the next. 
The controller uses an open-loop control system to produce a polynomial for each 
joint that tells the instantaneous acceleration, velocity, or position for each joint. 
However, the path polynomial is generated by providing a set of constraints such as 
initial and final position, velocity and acceleration, for example. Then, a polynomial 
with a sufficiently high order is derived that can satisfy all the constraints. The poly-
nomial may not follow a constant speed since it is only designed to satisfy a small 
set of constraints. Differential movements on the other hand is like driving a car in 
that the controller observes the current velocity as feedback and applies new inputs 
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as to maintain the correct desired velocity. Keep in mind that velocity consists of 
speed and direction.

The arm’s Jacobean matrix plays an important role in the derivation of the dif-
ferential movements. The Jacobean matrix relates the rate of change of each joint to 
that of the end-effector. Since the joint velocities given the desired velocity of the 
end-effector are of interest, the inverse of the Jacobean needs to be computed. The 
Jacobian can be computed mathematically by determining the partial derivatives of 
the movement in every dimension of the end-effector relative to the movement of 
each joint. This Jacobian represents the movements of the end-effector relative to 
the world coordinate frame. Another form of the Jacobian can be computed using an 
algorithm with no need to compute any partial derivatives. It represents the move-
ments of the end-effector relative to itself. Alternatively, the inverse kinematic equa-
tions can be differentiated and used in place of the Jacobian matrix. These equations 
will contain terms for the derivative of terms found in the rotational part of the for-
ward kinematic equation matrix which will also need to be computed.

1.2 � Problem statement

Traditionally, universities tend to use real industrial robotic arms for this course. A 
survey of instructors for the Intro to Robotics course (Esposito, 2017) showed that 
81.5% of the instructors indicated they use some type of hardware-based laboratory 
component. Today, commercially available industrial arms come with a control-
ler that performs this joint programming, which, in fact, constitutes an obstacle in 
teaching. Students will need to bypass the arm’s included controller to gain direct 
access to the joint motors in order to perform any type of joint programming includ-
ing differential movements. This is not desirable or possible as most modern robotic 
arm controllers include many safety features that, if overridden, void all warran-
tees and expose the educational institution to any liability resulting from accidents 
associated with the controller not being actively in control of the arm. It is unlikely 
any educational institution will allow such an activity. Furthermore, the use of large 
physical arms has many setbacks. They are expensive to purchase, require signifi-
cant dedicated lab space, require technical expertise to maintain, and can be danger-
ous even with all its safety features. In fact, the survey of robotics course instructors 
(Esposito, 2017), shows that there are 34 different commercially available platforms 
that the participants indicated they use, none of which are the large articulated 
industrial arms that the class focuses on.

A second option is to use small light weight toy or educational arms; however, 
they generally do not offer variable speed motors or a way for the user to control 
the movement of each joint motor by specifying its instantaneous velocity. These 
smaller arms also do not have the dynamics of a large and heavy industrial arm mak-
ing the implementation of differential movement algorithms trivial. A third option is 
to use a virtual arm simulator. This option works well for some aspects of the course 
but may not simulate the individual joint motors. That is, the robot model may not 
have the capability to move the arm by controlling the instantaneous velocities of 
the individual joint motors making it less effective in learning joint programming.
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Regardless of the technology used, a challenge results when validating the cor-
rectness of a differential movement algorithm. The precision of the velocity control 
that is expected using differential movements cannot be observed with the naked 
eye. Therefore, to observe the correctness of the motion, one will need to perform 
some task that leaves a trace of the path such as painting, welding or performing 
some task that will leave evidence of correct or incorrect velocity control. There 
are no known virtual arms that contain these capabilities that a student can use to 
develop differential movements algorithms.

1.3 � Solution statement

One solution is to have a physical arm actually paint, weld or perform some real 
task. This solution has the drawback that it requires expensive materials to be con-
sumed, equipment to be purchased, an environment to support the activity, and 
expertise in setting up the experiment and managing safety. A second solution is to 
use a virtual arm however there is no known educational virtual arm that exists that 
models the types of activities that require correct differential movements.

The solution presented in this paper consists of adding a model to an existing 
virtual robotic arm educational tool to simulate painting on a virtual canvas. The 
software tool presented here provides an opportunity for the student to perform joint 
programming in order to implement their differential movement algorithms using 
a virtual arm. That is, to properly control the arm, the student will need to provide 
the correct instantaneous joint velocity for each joint for every instance in time. The 
virtual arm will spray paint onto a virtual canvas leaving evidence of the correct-
ness of the velocity control. The differential movement virtual arm software tool 
is an addition to an existing educational robotics virtual arm software tool that is 
described by Gonzalez & Zalewski (2017). Before presenting the solution in detail, 
some previous work is presented with comments to its effectiveness in teaching dif-
ferential movements.

1.4 � Previous work

This tool is specifically designed to support teaching and learning essential concepts 
in an introductory robotics course. The Introduction to Robotics textbook, (Niku, 
2011), was used to guild the development of this tool. The topics the tool supports 
are based on the topics covered in this textbook and include forward and inverse 
kinematics, the Denavit and Hartenberg (DH) parameter and frame placement con-
vention, differential movements, trajectory planning including joint-level program-
ming, and robotic vision. This material represents the fundamental theory behind 
controlling a robotic arm and it’s the theory that is used in creating the controller for 
a robotic system. Using a system’s controller to program its various robotic compo-
nents is not part of this course and is actually a much simpler task to learn.

Our previous work on various parts of this tool (Gonzalez et al. 2015b; Gonzalez & 
Zalewski, 2016a, b), involve offering a way for the student to perform robotics activi-
ties without the need of an actual robotic arm. There exist a number of general-purpose 
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robotic simulators both free and commercially available (GAZEBO Robot Simulation 
Software (n.d.); Robologix Logic Design (n.d.); Webots 7 (n.d.); Robotics Developer 
Studio (n.d.)). These tools are used for professional robotics research and related work 
as well as for educational purposes. The problem with using these general tools for 
teaching an introductory robotics course is that, first, there is a relatively steep learn-
ing curve needed to get sufficiently familiar with the tool before the student can use 
them for learning robotics. Our tool is specifically designed to allow a student who has 
never used the tool before to input the specifications of the robotic arm and get to the 
point where the student can move the links of the robot and adjust the viewing posi-
tion within a few minutes. Second, actual robots are programmed using an included 
environment that uses a custom scripting language that performs all the inverse kin-
ematics, trajectory planning, and joint programming required for the robot. While 
this is how real robots are programmed, it does not lend itself to learning introductory 
robotics since the logic in these preexisting software components is precisely what the 
student needs to learn how to create. This tool differs from these existing robotic simu-
lation tools in that it is specifically designed to teach this specific course and therefore 
has a much smaller learning curve and does not do the work itself but rather supports 
the student while they do the work.

In the last decade, there have been in increase in robotic educational tools (Arocena 
et al., 2022; Santos, et al., 2019). Many are simulators design specifically for education 
however most are aimed at K-12 education and are inappropriate for university students. 
For example, Zhan et al. (2022) presents IRobotQ3D where student build the robot first 
then program the steps that will make it move. This tool combines a physical robot using 
the Lego Mindstorms kit and the IRobotQ3D simulator. Zhong et al. (2020) show that 
using the physical and virtual combination generally helps learning robot design but no 
significant difference was found in learning robot programming. The design of the robot is 
not with its D-H parameters but rather by adding wheels and other parts. The programming 
is not joint programming but rather a Scratch like language (Zhong et al., 2020; Maloney 
et al., 2010) that, while beneficial to learning standard procedural programming in a K-12 
setting, it is not conductive for a university level course and not related to joint program-
ming. Tijani et al. (2020), and Cheluszka (2019) present some possibilities of using inex-
pensive small educational robot kits in education however the programming component is 
aimed at the K-12 or technician and does not allow for joint programming. Nutakki et al. 
(2016) present a small robotic arm that can be controlled remotely via a web server. The 
web server has a camera that the student can see while they move the arm. While this 
allows for remote learning, the arm is a small toy arm with no dynamics and the web server 
does not allow for joint programming. Any remote lab setup where the arm is remotely 
controlled via the Internet will present a challenge for learning differential movements. The 
feedback loop needed to maintain precisely controlled velocity needs to update much faster 
than can be achieved through a web interface that is in the loop.

Peter Corke (2022) has developed a library of MATLAB functions (MATLAB 
Tool box for Robotics) and has made it freely available. This library is very popu-
lar but requires the student to write programs in MATLAB. There is no integrated 
development environment (IDE) associated with the library, so the level of pro-
gramming is more extensive, and the investment of time needed to learn MAT-
LAB, create the complete program and setup the virtual arm is much greater than 



11428	 Education and Information Technologies (2023) 28:11423–11446

1 3

using the tool presented here. This level of programming is not always feasible 
especially at institutions that do not have a software intensive program such as the 
Systems Engineering Program at Texas A&M International University, or in pro-
grams where this course is offered only as an elective. As an elective course that 
is not part of a robotics concentration, students are less likely to invest the time 
needed to appreciate the library from Peter Corke.

Another characteristic of Corke’s toolbox is that the philosophy of learning 
is different than the learning philosophy used to design the tool presented here. 
Tijani (2016), describes how.

Corke’s MATLAB toolbox can be used to allow the student to perform basic 
robotics activities. For example, they use the fkine() function to have the tool 
compute the forward kinematic equations of the arm provided. The jtraj() and 
ctraj() functions compute the joint and Cartesian space trajectory path. Our phi-
losophy, however, is that a tool that performs these activities for the student is not 
as effective as a tool that supports the student in performing these activities. For 
example, our tool does not perform either of these functions but rather provides 
a programming platform where the student can program the arm, thus, requir-
ing them to successfully perform the inverse kinematics and compute the trajec-
tory plan. The end result is that the student must perform these activities, such as 
derive the inverse kinematic equations and compute a trajectory plan and use it in 
programming the arm. The tool does not perform these tasks for the student but 
rather only provides the programming platform that includes the virtual arm. The 
tool presented does provide some MATLAB functionality to support the student. 
For example, it can compute the inverse of a matrix needed in computing polyno-
mial trajectories.

In fact, tools that preform the learning activities themselves rather than support 
the student in performing them are very common. For example, Sergeyev et  al. 
(2017) describe a robotic simulation software called RobotRun that is free and open 
source that student can use however this tool simulates the arm’s controller as well. 
The intention is that students learn to program the arm using its controller. This is 
not the focus of this course or the tool presented here. In another example, Gonzalez 
et al. (2015a) describes a simulator for mobile robots, where the tool performs the 
motion planning. The user only enters some parameters that impact the way the tool 
performs these activities. The authors do claim the tool is to be used by the instruc-
tor in class and not to support the student directly. Manseur (2016) present a pack-
age of three tools, one of which, Inverse Kinematics Computations (IKC), computes 
numerical solutions to the inverse kinematic equations. The same tool allows the use 
of a virtual arm by providing it with a set of DH parameters much the same way it is 
done in the tool presented here. It also includes a symbolic processor for multiplying 
the individual transformation matrices to derive a set of forward kinematic equa-
tions. These are very helpful to the students however It does not appear that the tool 
allows the student to perform joint programming. In comparison the tool presented 
in this paper allows the student to program the robot’s joints individually to achieve 
the desired movements and provides an integrated development environment (IDE) 
supporting the programming environment.
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All of these tools are useful for students that will focus their education towards 
robotics and will eventually need to work with very complex arms where these 
activities may be too difficult to do without such tools, however, in an introductory 
robotics course, the author believes it is better to provide a simple arm where the 
students can perform these activities themselves.

There is another group of software tools that are more aimed at supporting the 
student to learn. Robinette and Manseur (2001) present a tool that renders the arm 
given its D-H parameters. It is a web-based tool that one needs to interface via a 
TCP/IP socket connection. Once the arm is rendered the user can move the eye and 
see the 3D arm from different views. The presented tool also accepts its arm model 
by allowing the user to enter its D-H parameters and renders the kinematically cor-
rect arm using 3D graphics (Gonzalez & Zalewski, 2017). It also allows the user to 
move the eye and view the arm from different angles. Sanguino Mateo and Andujar 
Marquez (2010) present a tool that supports learning concepts related to forward and 
inverse kinematic equations and specifically deals with joint and Cartesian work-
spaces. The tool produces a reachability plot in a 3D Cartesian workspace by vary-
ing the theta angles. The presented tool supports learning forward and inverse kin-
ematic equations by rendering the arm and allowing the user to move the virtual 
arm’s joints individually using sliders. Cakir and Butun (2007) present a tool that 
supports learning forward and inverse kinematic equations using quaternion alge-
bra. Quaternion numbers are like complex numbers but work in four dimensions. 
The tool present in this paper does not support the use of quaternion algebra. Their 
tool does have some animated movement they refer to as trajectory planning but the 
user is not at all involved in the design of the trajectories only to specify the type of 
movement the tool is to use. The tool is not designed to support learning trajectory 
planning but rather is used as a way to support quaternion algebraic equations. In 
contrast to the presented tool, all of these tools support forward and inverse kin-
ematic equations and the relationship between Cartesian and joint workspaces. They 
do not provide any support for learning joint-level programming or even trajectory 
planning. From the software point of view, all of the fundamental mathematical con-
cepts including forward and inverse kinematic equations, transformation matrices, 
and the math involved in path planning are to support the ultimate goal of joint-level 
programming yet there is no known tool that directly supports this activity.

Differential movements used in moving the arm with a precise velocity is consid-
ered a type of joint level programming. Consider learning how to program using the 
Java programming language and not having access to a Java compiler. Many institu-
tions use real robotic arms for this course however, using an actual industrial robotic 
arm will not allow student to execute joint-level programs either since, for safety 
reasons as explained earlier in this paper, their manufacturers do not allow direct 
access to its joint motors.

Many institutions also use small light weight arms to support this class. These 
arms can be printed on 3D printers or purchased for a small fee. Indri et al. (2013) 
use standard LEGO Mindstorm Kits while Schluse et al. (2020) use a virtual robot-
ics lab that uses virtual reality to present a variety of robotics systems. This approach 
does not appear to be a robotic simulator that allows the student to program the 
movement of the arm.
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Depending on the number of joints these arms may have, they may have suffi-
ciently complex kinematics to make it appropriate for learning some areas of robot-
ics however, because of their light weight, they do not have any significant dynam-
ics. Without significant dynamics, differential movements become trivial and these 
arms not suited for learning this topic.

Another robotic platform that is commonly used for education are commercial 
robotic arms. These are real physical arms that may be larger and heavier than the 
small, lightweight arms presented above. These larger arms have a mass that allows 
a student to need to consider its dynamics. While these are good platforms for edu-
cation they are large, expensive, require a dedicated lab space, expertise to set them 
up and maintain them, and may be dangerous. Additionally, they are not designed 
for education and generally do not allow the student to bypass the controller and gain 
direct access and control of its individual joint motors, a needed access to perform 
joint programming. One industrial arm, the Franka Emika robot (Haddadin et  al., 
2022) does allow for joint programming in an educational setting. It allows direct 
control over its joint motors while the controller still provides safety by observing 
the arm’s movements and overriding control when it gets into a dangerous situation. 
However, besides the relatively high cost, physical arms do not lend themselves to 
allow for remote or online education. In addition, to support differential movements, 
a physical activity will need to be added to this arm to record evidence of correct 
velocity control.

1.5 � Paper layout

The rest of the paper is organized as follows. Section  2 describes the solution in 
detail. It starts by presenting the design of the spray-paint model, followed by the 
student’s experience using this tool. Then the paper shows some potential educa-
tional activities that may be used with this tool followed by some sample canvas 
images produced with varying degree of differential movement correctness. In Sec-
tion 3 the results of the assessments and their meaning are presented and in Sec-
tion 4 concluding remarks are presented.

2 � Details of the solution

The feature that allows for the differential movement activity to be performed is the 
addition of a spray paint application to an existing virtual arm simulation software. 
Gonzalez and Zalewski (2017) describe the simulator they created that allows for 
joint programming activities. Joint level programming is required to implement the 
program that performs the differential movements. The spray-painting feature was 
selected over other applications such as welding or plasma cutting since it lends 
itself best for graphical output due to its painted canvas. The spray paint feature 
includes the painting canvas, the paint gun, and the addition of a set of user func-
tions added to the joint programming language. The end-effector in this setup is 
the paint gun. To produce a painted canvas that shows evidence of correct velocity 
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control, the student must move the arm with precise velocities and distance from the 
canvas. The differential movements must be correct. The painting model needs to be 
very accurate in order to capture even the smallest deviation in gun velocity or dis-
tance from the canvas. This model is described next.

2.1 � Design of the paint gun and canvas software

The simulation models the spray-painting activity by depositing virtual paint onto 
the canvas as the arm moves. Every time the clock ticks, the location of the end-
effector over the canvas is used to determine which pixels on the canvas gets paint 
and how much paint.

The canvas is implemented using a two-dimensional array of pixels where each 
pixel is implemented as a structure with three bytes, one for each color, red, green 
and blue. White is the color when all three color components have their largest value 
of 255. Black is the color for all three values of 0. The canvas starts white so all 
three bytes in every pixel has the value of 255. As paint is deposited, the values of 
the green and blue are reduced leaving a light red. As the green and blue colors are 
reduced the resulting pixel color get darker red. Once the green and blue are both 0, 
the color is pure red. At this point depositing more paint is accomplished by reduc-
ing the red, the only color left. This makes the pixel color darker red towards black. 
As the red gets reduced the pixel gets darker and closer to black with the ultimate 
color of black when all three color components are zero. Black spots on the canvas 
generally indicate the arm stopped and while the gun was left painting.

How much paint each pixel gets is determined by using a convolution mask. 
When the clock ticks and the paint gun is on, the mask is placed on the canvas 
directly under the paint gun. Only the pixels under the mask gets paint. The paint 
flow is multiplied by the value in the mask to determine the amount of paint to add 
to the pixel below the corresponding component in the mask. Therefore, since the 
center of the mask has the highest values, the pixel under the center of the mask will 
get more paint. The pixels under the edges of the mask get less paint. The size of the 
mask is a user defined parameter. The mask is created by superimposing a polyno-
mial centered over the mask.

When the spray paint gun deposits paint on a perpendicular surface, paint distri-
bution will follow a curve with the highest point being at the center and dropping 
towards the edges, see Fig. 1a. This curve was modeled with a 3rd order polynomial 
going from the edge to the center. The complete curve is made by concatenating two 
such curves, one in reverse, see (b). The polynomial has to satisfy 4 constraints. The 
curve must be flat at both ends to have a continuous transition at the ends. Its second 
derivative must be zero at both ends. The polynomial must also go from zero at the 
edge to a height of d at the tall end. This gives two more constraints.

The following is the 3rd order polynomial that was used to model the spray paint 
deposit along with its derivative.

f (t) = a0 + a1t + a2t
2 + a3t

3
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The constraints are:

1.	 The curve must be flat at the left edge, f � (0) = 0.
2.	 The curve must be flat at the top or right edge, f �

(

tf
)

= 0.
3.	 The curve must be zero at its left edge, f (0) = 0.
4.	 The curve must be d at the top or right edge, f (tf ) = b.

The constraints give four equations that are used to solve for the four unknowns. 
Note, height b is an input parameter. The resulting polynomial is then simplified and 
parameterize to go from 0 at its lower end to 1 at its higher end. That is, instead of t 
going from 0 to tf  it goes from 0 to 1. The resulting polynomial is:

where

And b is an input parameter representing the height of the curve. See Fig. 2.
The mask was then created by shifting the curve in Fig. 2 above to the left by one 

unit then concatenating the mirror image of the curve to the right to form the curve 
in Fig. 1b also above.

Then, to compute the values of the pixels in the convolution mask, an algorithm 
was developed that visits each pixel in the mask. For each pixel, the distance from 
that pixel to the center of the mask in proportion to the total distance from the edge 
of the mask to the center is computed. This gives a number between 0 and 1. Then 
the paint polynomial gives the value to insert into that pixel using this distance. 
Finally, the mask is normalized by dividing every pixel in the mask by the sum of 
the values in all of the pixels such that the sum of all the pixels in the mask is one. 
Then to compute the amount of paint that gets deposited on to the canvas, each pixel 

f
�

(t) = a1 + 2a2t + 3a3t
2

f (t) = (3t2 − 2t3)b

t ∈ (0, 1)

Fig. 1   a The paint deposited on a perpendicular surface follows a curve with its highest point directly 
under the paint nozzle tip and decreasing outwards. b the curve used to model the paint deposited made 
by an equation and its mirror image
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in the mask is multiplied by the total amount of paint being deposited, then that 
value is added to the amount of paint already in the pixel on the canvas.

2.2 � Student experience

This section describes the experience the students gain from using this feature of 
the tool. Creating any type of joint programming program, including differential 
movements, involved writing a program in the Matrix/C programming language 
that was created for this educational robotics software. This new language consists 
of the basic “C” programming language with some MATLAB matrix instructions 
included. Esposito (2017) conducted a survey among instructors of the Introduction 
to Robotics course and found that the programming language used in the class is 
62% MATLAB and 52% “C”. Gonzalez and Zalewski (2017) provide further details 
on this language.

The student starts by selecting an arm. The default arm works best for this activ-
ity however the student may create any arm they desire. The default arm is a simple 
two degree of freedom (DOF) with two revolute joint, (2R), planar arm that moves 
on the X–Y plane. Once the student selects or accepts the default arm, they then 
need to set up the canvas and the spray gun. From the main menu, they open the 
spray paint tab. There they select the canvas size, its position in the X–Y plane and 
its offset from the plane. The canvas is always perpendicular to the Z axis. Then the 
student must select the paint gun nozzle shape and size. The paint that is sprayed 
onto the canvas is confined to a rectangular region centered at the location of the 
gun. Within this region a second order polynomial determines the amount of paint to 
deposit on each pixel. This results in a very realistic looking paint application. The 
student selects the nozzle size which corresponds to the size of the region that gets 
paint. Then the student selects the paint flow. This is the amount of paint that flows 
out of the nozzle in a unit time period. The student must regulate the paint flow to 
correspond to the velocity that the arm moves the paint gun across the canvas.

Once the canvas and paint gun are setup, the student is ready to begin program-
ming the arm to paint. The students will use the joint level programming feature, 

Fig. 2   The curve 
f (t) = (3t2 − 2t3)b with 
t ∈ (0, 1) used to form the mask
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created by Gonzalez and Zalewski (2017) to write and execute their differential 
movement program. From the joint level program that they implement, they can turn 
on and off the paint spraying gun as the hand moves. The student must move the 
hand to an edge of the canvas. Then it must begin a straight constant velocity move-
ment on top of the canvas towards the other edge. They turn on the sprayer as the 
movement starts and turns it off when the hand reaches the other side of the canvas. 
Then they must move the hand to the next row below and repeat the process adding 
paint below the previous row. They repeat until they complete painting the canvas. 
To achieve a uniform coat of paint, the hand must move straight across the can-
vas with a constant velocity. This is best achieved using differential movements. At 
the end of the program they can observe the painted canvas and see any imperfec-
tions such as paint streaks or gaps where too much or too little paint was applied. 
They can see alternating lines of dark and light paint where the paint flow and gap 
between the rows was not correct. They can look for uneven paint coverage where 
the student did not properly apply their differential movement theory which resulted 
in poor hand velocity control. They can see curved lines of darker or lighter paint 
where the hand did not move in a straight line. Like a real spray paint application, 
this feature produces realistic painting results that can be visually observed. Finally, 
the student can cut and paste their canvas into their project report to submit to the 
instructor. Sample canvas painted using this tool are presented later in this paper.

2.2.1 � Setting up the Arm, Canvas, and Spray Gun

Before the student can begin, the arm must first be created by entering information 
into the window shown in Fig. 3. For spray painting the default arm works well and 
the user may skip this step. The arm is entered by inputting its Denavit and Harten-
berg (DH) parameters. These are in units that the student will decide such as mil-
limeters or inches. The DH parameters is a set of 4 numbers per joint that specify 
the kinematic characteristics of an arm and are called theta, d, a, and alpha. With 
these numbers the motions of any realistic robotic arm can be represented. While 
the arm is rendered using stick figures, the arm is kinematically correct to a real 
physical arm with that set of DH parameters. Dynamic parameters can be entered as 
well. These include the range of motion and the maximum acceleration each joint 
can have. The students can also enter information such as if the joint is prismatic 
or revolute, a relation between an increasing angle or distance and the direction of 
movement on the arm, whether the joint is controllable or mechanically linked, and 
its home value.

Fig. 3   The arm creation tab. The user specifies the arm they wish to use in this window
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Once the student creates the arm or decides to use the default arm, the paint 
equipment must be set up. The student can visit the Spray Paint window shown in 
Fig. 4. In this window the student needs to specify the dimensions of the canvas and 
its location as well as the nozzle specifications.

The student can enter the size of the canvas and press the “Add” button. At this 
time a box representing the canvas is added to the rendered arm shown on the left 
side of the screen in Fig. 4. The student can then move the canvas in any direction 
and change its size using the sliders while visually seeing the canvas size and loca-
tion update.

Next the paint gun can also be set up if the default is not desired. The student can 
select the paint nozzle shape and size using the lower half of the spray paint window. 
Each dimension of the paint area can be selected to be small, medium or large. The 
nozzle can be tall and narrow, short and fat, or square with a large, medium, or small 
size. The paint flow is also set in this screen. The flow is the amount of paint that 
gets added to the canvas in each simulation clock tick.

2.2.2 � Setting up the canvas rendering

The canvas is rendered in the rendering screen with the arm superimposed as in 
Fig. 5. Rendering the canvas in three dimensions (3D) requires that the location of 
each pixel in the canvas be transformed to the three dimensional coordinate system 
used to render the arm. This require multiplying the location of every pixel by a 4 X 
4 transformation matrix to compute its location in the 3D image. Since this is a very 
slow process, only a low-resolution image can be rendered. To allow the student to 
see the canvas in its full resolution, a separate popup window is used to render the 
canvas in two dimensions (2D). See Fig. 6. The canvas is still rendered in the 3D 

Fig. 4   The spray paint setup 
window
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Fig. 5   The pendent window. This window has the manual control of the arm and of the simulation

Fig. 6   a The rendering of the canvas in the 3D image of the arm. b The rendering of the canvas in the 2D 
popup
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image, Fig. 6a but at a much lower resolution and is used only to see the relative 
position of the arm over the canvas. The popup rendering, Fig. 6b does not show the 
arm superimposed but does show the canvas in its full resolution.

2.2.3 � Programming the arm to paint

Once the arm, canvas, and spray-painting gun are created and set up, the student 
can begin to create the joint control program. Joint programming is accomplished 
by writing programs in a language created for this tool. This language includes a 
subset of the “C” language commands with an added native type, matrix. It includes 
some MATLAB commands to facilitate matrix processing. The new native data type 
called “matrix” allows the programmer to perform direct mathematical operations 
on matrices much like what can be done with native types such as “int” and “dou-
ble.” For example, using linear algebra, the program in Fig. 7a computes the solu-
tion of the simultaneous equations shown in Fig. 7b.

Because differential movement is a feedback based joint control method, the joint 
control program needs to be event driven. This includes the use of callback func-
tions. The simulation engine of the tool uses a periodic interrupt to run the simula-
tion of the arm. The simulation updates the arm’s dynamics once every clock cycle. 
The simulation engine has a list of callback functions that it must call at the end of 
every clock cycle. The student programmer must submit the name of their callback 
function to the timer interrupt service so it can get called at every clock cycle. They 
can do this by calling a system function and passing it the name of their callback 

Fig. 7   Example of a program written in the Matrix/C language designed for this tool. a The program 
computes the solutions to three simultaneous equations. b the simultaneous equations with the solution
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function. This callback function is called every clock cycle after the simulation 
updates the arm’s dynamics.

In this function the programmer can call other system functions that provide 
it with the dynamic data of the arm such as the current position and velocity of 
the end-effector. Using this data, the programmer can implement their differential 
movement theory and compute a new velocity for each joint. The simulation engine 
will then use this new set of input velocities in its next clock cycle. In this method 
the student programmer can implement the feedback loop needed for the differential 
movement control.

In addition to programming the differential movement, the student must also pro-
gram the arm to move from side to side painting row by row. The arm can be moved 
from side to side using the differential movement theory as it paints the canvas. 
Then, to move to the arm to the next row, the arm must move down a short distance 
with the paint gun off. Then it can proceed to move in the opposite direction to paint 
the next row. The complete program will include not only the differential movement 
theory but also the code to orchestrate the compete painting on the canvas.

Once the program is complete, the student can view and inspect the high-resolu-
tion two-dimensional canvas rendering for imperfections. Like a real painting robot, 
the canvas will show the result of the spray-painting program. For example, areas of 
darker and lighter paint may indicate the arm did not move with constant velocity, 
which is most likely due to the differential movement code not being correct.

2.3 � Educational activities

When programming a joint trajectory using joint programming, the student writes a 
program that computes the velocity of each joint for the duration of the trajectory. 
Following an open-loop model, when the program executes, the velocity polynomi-
als computed are given to the arm’s controller all at once. At that time, the program 
ends and the virtual arm performs the movements. The arm actually moves after the 
program executes. The trajectory planning theory is about the computation of these 
velocity polynomial. However, the joint programming that is needed for implement-
ing the differential movement theory, require that the program continuously execute 
in a feedback loop. Following a closed-loop, event driven model, the program must 
monitor the actual movement and correct for deviation in real time while the arm 
moves. This is needed for maintaining constant velocity while moving in an accurate 
trajectory. Table 1 summarizes the two types of educational activities.

The joint programming software was modified to allow for this type of feedback. 
A service was added to allow a student to submit a callback function to the simula-
tion engine. This callback function is then called at every clock cycle. When the 
student’s joint program reaches the end, instead of terminating execution it goes 
into a sleep state. The callback function is executed every clock tick. In the callback 
function, the student must compute the Jacobian matrix, apply the proper differential 
movement theory and compute a new instantaneous velocity for each joint. This is 
a great exercise for, not only practicing their differential movements theory, but also 
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for learning how to produce event-driven, real-time control programs using feedback 
loops with callback functions.

For example, one of the activities the student needs to perform is to determine 
the best speed for the arm. Since the program must be event driven, at each clock 
cycle, the program must compute the Jacobian matrix and use it to compute the next 
input velocity for each joint. This velocity will be used until the next clock cycle. 
The Jacobian matrix is a function of the arm’s current position. Therefore, as the 
arm moves, the Jacobian matrix become less accurate. The accuracy of the input 
velocity is dependent on the accuracy of the Jacobian matrix used. Moving too fast 
will cause the arm to move farther in a given clock cycle. This causes the velocity of 
the joint towards the end of the cycle to be based on a less accurate Jacobian matrix 
data. This may result in the arm deviating from its desired path and produce painted 
rows that are not straight. Figure 8 shows a trace of the end-effector as it moves with 
three different speeds. One can see the deviation between rows the faster the arm 
moves. On the other hand, moving too slow results in straighter lines but will take a 
long time to paint and may deposit too much paint on the canvas.

Being able to see that resulting painted canvas is the best way for the student to 
design the optimal speed as well as other parameters. The student has three other 
variables to control as well, the paint gun nozzle shape, the paint flow and the gap 
between the lines. The student is able to see the impact of their design parameters on 

Table 1   Two types of educational activities, trajectory planning and differential movements

Name Trajectory planning Differential movements

Movement goal Move to a location smoothly to reduce 
energy and wear

Move with constant velocity

Application Moving material, moving end effector to 
work location

Painting, welding, plasma cutting

Mathematical model Velocity polynomials Jacobean matrices
Programming model Open-loop, sequential processing of instruc-

tions
Closed-loop, event driven, callback 

function called periodically
Feedback Loop Not used Control performed in feedback loop

Fig. 8   The path of the end-effector using three different speeds, a a speed of 1 unit per second. b a speed 
of 5 units per second and c a speed of 10 units per second
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the resulting paint that is applied to the canvas. The following section shows some 
sample canvas paintings produced by the software with varying parameters.

2.4 � Painted canvas samples

The simulation models the spray pointing gun by depositing virtual paint onto the 
canvas as the arm moves. The canvas then shows the result of the movements of 
the arm. The following are sample canvas paintings for different program param-
eters such as the speed of the arm moving across the canvas and the size of the 
gap between the painted rows as well as the parameters of the painting gun such as 
the nozzle size and paint flow. All are in units of the arm. The arm used has a total 
length with the arm stretched out of 70 units. Figure 9 shows three canvas paintings 
using a flow of 7 units and a gap size of 1 unit and varying the nozzle size. The large 
gap size allows the rows to be clearly shown.

The following two painted canvases shown in Fig. 10 were produce using a gap 
size of 0.5 units, a large height and small width nozzle and varying the paint flow 
between 7 and 14 units of paint. Note the paint rows are still visible.

In Fig. 11 the nozzle gap size was reduced to 0.25 units. A large height and small 
width nozzle were used while varying the paint flow between 7 and 14 units of paint. 
Note in Fig. 11a the canvas is starting to look nice. In (b) too much paint is being 
deposited.

In Fig. 12 the nozzle size and gap size are fixed with a medium height and width 
nozzle and a gap size of 0.25 units. In Fig. 12a the arm moves slow with a speed 
of 1 unit/second while in Fig. 12b the arm moves 5 times faster with a speed of 5 

Fig. 9   Three nozzle sizes using a flow of 7 units of paint and a gap of one unit between rows. a Using a 
large height and a large width. b Using a large height and a small width. c Using small height and a large 
width

Fig. 10   Two paint flow quantities using a gap size if 0.5 units, a nozzle with a large height and small 
width. a Uses a flow of 7 units of paint. b Used a flow of 14 units of paint
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units/second. Note the paint is lighter because moving five times faster results in one 
fifth of the paint being deposited. Then in Fig. 12c the paint flow was doubled to 14 
units of paint. The canvas did not get sufficient paint however 14 units of paint is the 
maximum flow. The student will need to provide a second coat of paint or slow the 
speed of the gun. Additionally, in Fig. 12c the rows are not straight indicating the 
arm is moving too fast.

Finally, a student may ask why trajectory planning theory cannot be used instead 
of differential movement theory which is more complex and requires the use of real-
time control using a feedback loop. The most convincing answer is to try it and see. 
Figure 13 shows the canvas painted using trajectory planning. Note the arm does not 
maintain straight rows or constant speed.

These images show the feedback the students get from their algorithm and design. 
The software offers a realistic method of learning by allowing the student to design 
their parameters and algorithm following a model based on an actual application. 
Does this improve learning? The following section shows how well the software tool 
was at improving learning differential movements.

Fig. 11   Two paint flow quantities using a gap size if 0.25 units, a nozzle with a large height and small 
width. a Uses a flow of 7 units of paint. b Used a flow of 14 units of paint

Fig. 12   The flow and paint gun movement speed vary while the nozzle uses a medium height and width 
and the gap is 0.25 units. a Uses a flow of 7 units of paint and a speed of 1 unit/second. b Uses a flow of 
7 units of paint and a speed of 5 units/second. c Uses a flow of 14 units of paint and a speed of 5 units/
second

Fig. 13   The canvas painted 
using trajectory planning theory 
as opposed to differential move-
ment theory
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3 � Results

Two courses are used for comparison. One course was offered in the Spring 2019 
where the feature was not used since it had yet been developed. The other course 
was offered in the Spring 2020 where the feature was used for the first time.

The assessment data presented in Tables 2 and 3 is based on question number 
three of exam two which asked the students to write a function that computes 
the instantaneous velocity for each joint given the desired speed and direction. 
They were asked to use the differential movement theory they learned in class. 
They were to assume they had access to a function that computes the Jacobian 
matrix. Both courses used the same question only with different numbers. Before 
the exam the students were also assigned a homework, which asked them to use 
the new feature of the software tool and write a program to move the arm with a 
paint gun and paint on a canvas as shown in Fig. 9 through Fig. 12 above. They 
were asked to adjust their algorithm and code until the arm was able to produce a 
nice-looking canvas. I 2020 the students were all given a copy of the tool to use 
on their own computer. In 2019 the students did not have access to the tool’s new 
feature and so they were only asked to compute the Jacobean matrix.

Before the painting homework assignment, the students were previously asked 
to use the tool’s joint programming feature to write code to move the arm using 

Table 2   Spring 2020 data where the new feature was used. The data is separated into two groups, those 
that mastered the differential movement concepts and those that did not. The threshold was a grade on 
the relevant exam question of at least 70%. This table shows the data for the students that used the new 
feature

Spring 2020
grade on exam 
question

Number of stu-
dents in group

Average score on 
exam question (%)

Average score on 
whole exam (%)

Average score on the 
relevant homework 
(%)

< 70% 13 12.8 68.6 51.5
≥ 70% 19 98.6 88.6 86.0
Total/Ave 32 63.8 80.5 72.0

Table 3   Spring 2019 data where the new feature was not available. The data is separated into two 
groups, those that mastered the differential movement concepts and those that did not. The threshold was 
a grade on the relevant exam question of at least 70%. This table shows the data for the students that did 
not use the new feature

Spring 2019
Performance on 
exam question

Number of stu-
dents in group

Average score on 
exam question (%)

Average score on 
whole exam (%)

Average score on the 
relevant homework 
(%)

< 70% 14 17.1 58.0 78.6
≥ 70% 4 78.0 83.8 100
Total/Ave 18 32.2 63.7 83.0
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trajectory planning. Therefore, by the time they were asked to complete the dif-
ferential movement homework, they were familiar with the Matrix/C unique lan-
guage that is part of the tool.

The characteristics of the environment is important to understanding the assess-
ment data. This course is offered once per year as a restrictive elective. The stu-
dent must take 4 restrictive electives from a list of about 8 courses. They can also 
take some selected math or business courses in its place. Most students are seniors 
and taking their second course in a two-course capstone sequence at the time they 
take this Introduction to Robotics course. In the capstone course they are to work in 
teams and produce a software product for an external sponsor. This provides a chal-
lenge as the students tend to get very busy completing their large capstone project 
in the semester they typically take the Introduction to Robotics class. The students 
are also taking other courses that have a project component leaving them to become 
very busy.

In addition, during the Spring of 2020, Florida Gulf Coast University, had a sud-
den switch from offering classes face to face to full remote due to Covid-19. Unfor-
tunately, the homework assignment involved in the assessment as well as the exam 
were issued and due during this course delivery change. It is believed that this had 
an impact on the student’s participation in the homework assignment and perhaps 
even in the overall exam performance. Each student received a copy of the software 
tool. They were able to develop their programs on their own personal computers.

The data in Tables 2 and 3 shows several conclusions.

1.	 Related to the exam, in the 2019 course, students did not use the presented feature 
and earned a weighted average of 32.2% on the differential movements question 
compared to a weighted average of 63.8% in the same question in the Spring of 
2020 when they used the feature. This represents a 98% increase in the student 
grade. Since the differential movement exam question was 15% of the total grade 
in 2020 and only 10% in 2019, the students performed better and the question 
had more weight in 2020. This raised the average grade for the whole exam in 
the 2020 class although that class still performed slightly better overall than the 
2019 class.

2.	 In the 2020 course, 59.4% of the students, 19 of 32 total, demonstrated that they 
can produce an algorithm to perform the differential movements of an arm com-
pared to only 22.2%, 4 of 18 total, of the students who mastered the concepts in 
the 2019 class. The threshold to determine if a student mastered the concepts 
is 70%, where a student who performs at or higher than 70% should be able to 
implement a differential movement algorithm in practice albeit with some addi-
tional learning. If that threshold were to be increased to 85% instead, then 59.4%, 
19 of 32, of the students would have mastered the concepts in 2020 compared to 
5.6%, only 1 of 18, in 2019.

3.	 There is a correlation between the students who completed the homework using 
the software tool and their exam grade for the specific question compared to those 
who did not use the tool. Table 2 shows the average grade on the homework was 
86.0% for the students that performed well on the exam question comparted to 
only 51.5% for those that did not in the Spring of 2020. This data shows that the 
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students who completed the homework went on to do well on the exam question 
in comparison to those that did not complete the homework. A poor grade on the 
homework is generally due to the student not completing the work. The course’s 
grading policy is based on effort. That is, the students are given points based on 
the percent the project is complete even if it is not correct but shows good effort.

These conclusions are consistent with what is known about the impact software 
tools have on supporting students in learning how to create algorithms and develop 
programming skills. Computer programming homework almost exclusively always 
uses software that compiles and executes the student’s programs under development. 
It is well known that students benefit from the use of such software in developing 
their programming and algorithm development skills. Differential movements the-
ory is used to develop velocity control algorithms. Therefore, learning this theory 
benefits from the use of a system that the students can use to develop, execute and 
verify their code in much the same way as learning how to develop algorithms and 
computer programs using a compiler.

4 � Conclusions

When learning how to control the movements of a robotic arm with precise veloci-
ties using differential movement theory, the student needs to implement test algo-
rithms on an arm such that they can observe program correctness. The robotic arm 
needs to leave some type of trace that shows evidence of algorithm correctness since 
correctness cannot be verified by simply observing the movement of the arm with 
the naked eye. Using a physical arm with equipment to paint, weld or some other 
similar task is needed to record the precise movements of the arm but that has many 
drawbacks including the expense of the equipment, needing dedicated shop space 
and the risk involved with such activities. The use of a virtual arm with a model for 
an application that can be used to verity algorithm correctness solves these problems 
however there are no known virtual robotics arms that support this type of learning 
activity. The presented solution is to add a virtual spray-painting application to an 
existing virtual robotic arm simulator. The correctness of a differential movement 
algorithm can be observed by examining the resulting canvas after the arm applies 
virtual paint. This paper then presents some of the details in designing the spray-
painting model along with some educational activities that can be used with the pre-
sented solution.

Data shows that students that used the virtual spray-painting arm to implement 
a program to perform a painting operation based on differential movements, per-
formed better on the exam question pertaining to differential movements. The data 
shows that, 59.4% of the students that used the virtual spray-painting arm earned at 
least a grade of 85% on the relevant exam question which indicates they were able to 
produce software to move an arm using differential movements. In comparison only 
22.2% of the student that did not use the tool earned a grade of at least 70% and only 
5.6% earned a grade of at least 85%. The exam question simply asked the student to 
create a differential movement algorithm.
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Future work includes giving the canvas the capability to have a curved shape to 
model painting a car or some curved surface. A more long-term goal is to add a fea-
ture to the virtual arm to support learning robot dynamics. In this scenario the joints 
of the arm will require different amounts of power depending on the position, veloc-
ity and acceleration of the arm as well as the load at the end-effector.
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