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Abstract
Digital capabilities have become increasingly important in this digital age. Within a 
university setting, digital capability assessment is key to curriculum design and cur-
riculum mapping, given that digital capabilities not only can help students engage 
and communicate with others but also succeed at work. To the best of our knowl-
edge, however, no previous studies in the relevant literature have reported the assess-
ment of digital capabilities in courses across a university. It is extremely challenging 
to do so manually, as thousands of courses offered by the university would have to 
be checked. In this study, we therefore use machine learning classifiers to automati-
cally identify digital capabilities in courses based on real-world university course 
rubric data. Through text analysis of course rubrics produced by course academics, 
decision makers can identify the digital capabilities that are formally assessed in 
university courses. This, in turn, would enable them to design and map curriculums 
to develop the digital capabilities of staff and students. Comprehensive experimental 
results reveal that the machine learning models tested in this study can effectively 
identify digital capabilities. Among the prediction models included in our experi-
ments, the performance of support vector machines was the best, achieving accuracy 
and F-measure scores of 0.8535 and 0.8338, respectively.
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1 Introduction

Digital capabilities – recognised as key skills that students must possess to learn 
and work in an increasingly digital world – have received increasing research 
attention in recent years (Crosby et al., 2020; Wilson & Slade, 2020). To thrive 
at university studies, students must be equipped with the skills necessary to use 
various technologies appropriately and effectively in different spaces, places 
and situations (Elphick, 2018). Digital capabilities not only can help students to 
engage and communicate with others in personal life but also to succeed at their 
workplace later (Krasuska et al., 2020). For example, employers’ attention to the 
digital capabilities of their current and potential employees is rising, since almost 
every organisation is reliant on such capabilities in transitioning between the var-
ious maturity model levels (González-Rojas et al., 2016). The skills required to 
create documents, presentations and spreadsheets, and to communicate via email 
and social media, are crucial components of human capital because highly skilled 
users are better positioned to benefit from using the Internet (Zhong, 2011).

Given the above, it is crucial to include digital capabilities in courses offered 
by universities. One way to identify digital capabilities in university courses is 
through the assessment rubrics that course coordinators/academics produce 
(Pagani et al., 2016). Individual features of assessment rubrics comprise the most 
direct source of information available to quantify the range of digital capabili-
ties assessed across the student journey (Whetstone & Moulaison-Sandy, 2020). 
However, manual methods currently in place to quantify students’ attainment of 
digital capabilities, especially when thousands of courses need to be considered, 
are highly inadequate (Edwards & Fenwick, 2016). Building an automated pro-
cess for this purpose is thus essential.

In this study, we aim to identify digital capabilities in all courses offered by 
the University of Newcastle, Australia, using machine learning classifiers by ana-
lysing the course rubric data. Digital capabilities considered here include data, 
information and computer literacy. Based on the classification results, decision 
makers can design and map curriculums to develop the digital capabilities of both 
staff and students. By using findings from text analysis of course rubrics pro-
duced by course coordinators, decision makers would gain understanding about 
where and what digital capabilities are formally assessed in the courses.

However, manually processing and labelling all the data to be used for such 
an analysis would be difficult, since there are about 4,000 courses being offered 
across the University. In addition, experts would find it time-consuming to label 
all the samples from all the courses, given the massive data obtained from each 
of the courses. We therefore apply machine intelligence to analyse rubrics that 
contain criteria or performance descriptors related to digital capabilities, because 
using machine learning methods allows us to automatically process and label the 
data by building prediction models (Balyan et al., 2020). The prediction models 
built would help identify the digital capabilities in different courses and, in turn, 
reveal (a) formative tasks that address, but do not formally assess, digital capa-
bilities; (b) gaps in digital capability assessments in programs; and (c) models 
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of good practice in the assessment of digital capabilities across the university. 
Knowing these details will lead to better designed curriculums for today’s digi-
tal society and students equipped with key digital skills required for their future 
career development.

The remainder of this paper is organised as follows. In Section 2, we introduce 
the machine learning models used in this study in detail. These include two standard 
single classifiers—Artificial Neural Network (ANN) and Support Vector Machine 
(SVM); and two ensemble classifiers—Random Forest (RF) and eXtreme Gradient 
Boosting (XGBoost). Next, we present the experimental setup and report the results 
in Section 3. Finally, we draw conclusions in Section 4 and highlight some future 
research directions.

2  Methods

In this section, we first introduce the text pre-processing techniques that we used to 
pre-process the course rubrics, and then present the four widely used machine learn-
ing models. Of note, predicting digital capabilities based on course rubrics is inher-
ently difficult because of the complexity and ambiguity of natural language.

2.1  Text pre‑processing

Text pre-processing is an important step in automatically analysing a text dataset. 
It allows machine learning models to obtain structured information based on text 
data (Balyan et al., 2020). In this regard, the bag-of-words technique is widely used 
to encode text data such that it is ready for use by algorithms (Qader et al., 2019). 
Based on this technique, features can be extracted by mapping from textual data to 
real-valued vectors. To be more specific, given a text dataset, first, a list of unique 
words (vocabulary) is prepared from the dataset. Then, one-hot encoding is used to 
represent each sentence or document as a vector, using the values 1 and 0 to indicate 
that a word is present in, and absent from, the vocabulary, respectively (Brownlee, 
2017). Let us consider the sentence “Collection of data. Are the data used for the 
model well specified and collected?” – the unique words in this sentence are [collec-
tion, of, data, are, the, used, for, model, well, specified, and, collected].

The term frequency-inverse document frequency (TF-IDF) technique, which 
counts the number of times each word appears in a document, is an effective text 
representation method (Qaiser & Ali, 2018; Tang & Liao, 2021). Here, TF = (Num-
ber of times each unique word appears in a document)/(Number of terms in the doc-
ument) and IDF = log(N/n), where N is the number of documents and n is the num-
ber of documents in which the word has appeared. The TF-IDF value of a term is TF 
* IDF. An example of TF-IDF data pre-processing can be found in Fig. 1. Note that 
the figure only shows the top 20 words used as the feature length, but in our study, 
much larger values have been used (e.g. 500, 800, 1,000, 1,500 and 2,000) to search 
for the best number of features for the prediction models.
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2.2  Machine learning

Machine learning is among the most important areas of artificial intelligence that pro-
vides prediction models the ability to automatically learn and improve from experience 
without explicit programming (Bishop, 2006; Borges et al., 2020). Traditional machine 
learning classifiers include standard single and ensemble classifiers.

2.2.1  Standard classifiers

ANNs These have been widely used in many practical applications and are able to 
simulate the way the human brain analyses and processes information (Zhu et al., 
2019). Typically, ANNs have three types of layers – the input, the hidden and the 
output layers. Specifically, for the input layer, the number of neurons is the same as 
the number of input features, whereas the output layer is the output of the model, 
usually with only one neuron for binary classification. Neurons in the hidden layer 
lie in between the input and output layers and are interconnected with both. Those 
interconnected neurons are able to exchange messages with each other. The ANN is 
trained based on the tuning of weights between the neuron connections.

SVMs Introduced by Vapnik and Chervonenkis in the early 1960s (Burges, 1998), 
SVMs are based on statistical learning theory and structural risk minimisation the-
ory (Chiong et al., 2021). It is a supervised machine learning model. Given a dataset 
with n examples {(xi, yi)}ni=1 , the SVM aims to find a hyperplane in a high-dimen-
sional space to separate the samples (Land & Schaffer, 2020). The quadratic pro-
gramming of SVMs can be expressed as:

(1)
arg min

w,b,�i

1

2
wTw + C

n
∑

i=1

�i

s.t.

�

yi(w
T�(xi) + b) − 1 + �i ⩾ 0,

�i ⩾ 0

Fig. 1  An example of TF-IDF processing of feature extraction with the top 20 words used as the feature length
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where ξi is the i th slack variable, C is a penalty parameter, xi is the i th input vec-
tor, yi is the i th output value, ϕ(x) is a mapping function that maps x to the higher 
dimensional space, w and b are the weight vector and bias of linear function f(x) = 
wϕ(x) + b, respectively, and wT is the transpose of w.

2.2.2  Ensemble classifiers

RF The RF, a supervised learning algorithm, is an ensemble model of tree predic-
tors (Breiman, 2001) built on bootstrap samples. Its performance in addressing clas-
sification as well as regression problems has been promising (Gislason et al., 2006). 
First, the RF model resamples several training sets based on given data, each set 
consisting of the same number of samples. Then, it trains decision tree classifiers 
from the resampled training sets. The random selection of features increases model 
diversity, which is very helpful in alleviating overfitting issues when aggregating the 
classifiers for final prediction.

XGBoost This optimised distributed gradient boosting library is designed to be 
highly efficient, flexible and portable (Chen et  al., 2015). It provides parallel tree 
boosting (also known as gradient boosted decision tree and gradient boosting 
machine), which solves many data science problems rapidly and accurately. Simi-
larly to the RF, XGBoost is also able to mitigate the overfitting problem (Chen et al., 
2015). It applies a more regularised model formalisation using gradient boosting 
(Friedman, 2002) to improve its performance. In addition, it has useful properties 
for real-world applications, including the column block for parallel learning, cache-
aware access and blocks for out-of-core computation (Carmona et al., 2019).

3  Experiments and results

In this section, we compare the performance of different machine learning models, 
as regards digital capability identification, based on the University course rubric 
dataset.

3.1  Data organisation

Since we needed some labelled samples to train and validate the machine learn-
ing models, a senior learning designer from the Learning Design and Teaching 
Innovation team (specialists in the application of transformative educational tech-
nologies, and are a source of knowledge for learning spaces and their capabili-
ties from the University) manually labelled some of the collected samples. The 
original data was collected from course rubrics produced by course coordina-
tors between years 2018 to 2020. In total, 1,735 samples were manually labelled 
for training the machine learning models – 791 samples labelled as digital, and 
944 samples labelled as non-digital. Since the computer cannot directly read text 
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(unstructured data), we used the bag-of-words technique to extract features from 
the course rubric dataset (i.e. assignment name, criterion title and sentence body) 
and applied the TF-IDF method to represent features, thus obtaining a large num-
ber of features but sparse data. The methods we used to reduce the number of 
features included tokenising each document, converting all characters to lower-
case letters, removing punctuation and numbers, and trimming extra whitespace. 
However, even after these processes, the number of features exceeded 30,000, 
making it difficult to build a prediction model with efficiency using such a sparse, 
high-dimensional dataset. To reduce the number of features, we applied TF-IDF 
to extract key features (see Fig. 1). Instead of using the whole vocabulary (unique 
words) from the text, we selected only the most important features (the top N fea-
tures, where N was set to 500, 800, 1,000, 1,500 and 2,000 in our experiments).

The digital capability features targeted here include ‘Information Literacy’, 
‘Digital Literacy’, ‘Written Communication’, ‘Analysis’, and ‘Content’. The top 
features extracted from TF-IDF are considered to be closely related to these digi-
tal capabilities. As we can see from the example given in Fig.  1, features such 
as ‘analysis’, ‘appropriate’, ‘evidence’, ‘excellent’, ‘knowledge’, ‘referencing’, 
‘research’, ‘sources’, ‘statistical’ and ‘understanding’ would be considered as 
indicative of digital capability within a course rubric that the machine learning 
models might identify and capture. In Fig. 2, a word cloud of the course rubric 
data is presented. We randomly shuffled the dataset and performed 5-fold cross 
validation. That is, we divided the dataset into five groups (each of which had the 
same number of samples), following which we selected one group as the testing 
set and used the others as the training sets. Then, we trained the machine learning 
models using the training sets and evaluated them using the testing set. Eventu-
ally, we calculated the average of the five results. To evaluate the performance of 
the machine learning models effectively, each experiment was repeated 20 times 
and the final results reported were based on the averages from the 20 runs.

3.2  Evaluation metrics

We used the accuracy, precision, recall and F-measure (F1-score) as performance 
measures and calculated these using (2)-(5), respectively. Of note, the F1-score is 

Fig. 2  A word cloud of the 
course rubric data
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based on precision and recall and can be used to measure the overall performance 
of the digital capability identification models. The aim is to have higher values 
for the accuracy, precision, recall and F1-score.

where TP and TN are the true positives and true negatives, respectively, and FP and 
FN are the false positives and false negatives, respectively.

As we can see from (2)-(5), accuracy is intuitive in measuring the predic-
tion performance with a ratio of correctly predicted samples (TP+TN) to the 
total number of samples (TP+TN+ FP+FN). Precision is useful for determin-
ing the performance when the cost of FP is high. Recall calculates how many of 
the actual positives (TP+FP) the models capture through labelling them as TP. 
Recall can be used to select the best model when there is a high cost associated 
with FN. The F1-score is used as a balance between precision and recall.

3.3  Parameter settings

The grid search approach is commonly used for parameter tuning, to determine 
the optimal parameter values for a given model by exhaustively generating a list 
of candidates from a grid of parameter values (Fayed & Atiya, 2019; Chiong 
et al., 2021). Therefore, we applied this approach with 5-fold cross validation to 
determine the parameter settings for all the models. Specifically, for the ANN, we 
optimised the number of neurons in its hidden layer (parameter values consid-
ered: [100, 200, 300 and 400]) and the maximum number of iterations (parameter 
values considered: [500, 600, 700, 800 and 900]). For the SVM, we optimised the 
regularisation parameter (parameter values considered: [100, 200, 300 and 400]) 
and the variance in the Gaussian kernel (Chiong et al., 2022) (parameter values 
considered: [0.1, 0.325, 0.55, 0.775 and 1]). For the RF and XGBoost, we opti-
mised the number of estimators (parameter values considered: [100, 200, 300 and 
400]) and the maximum depth of the trees in each estimator (parameter values 
considered: [4, 5, 6 and 7]).

(2)Accuracy =
TP + TN

TP + TN + FP + FN
,

(3)Precision =
TP

TP + FP
,

(4)Recall =
TP

TP + FN
,

(5)F1 − score =
2 × Precision × Recall

Precision + Recall
,
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3.4  Results and discussion

Tables 1, 2, 3, 4, and 5 present the experimental results for all four models using the 
top 500, 800, 1,000, 1,500 and 2,000 features extracted from TF-IDF, respectively. 

Table 1  Experimental results 
for the ANN, SVM, RF, and 
XGBoost, based on the pre-
processed digital capability 
dataset using 500 extracted 
features (best results are 
highlighted in bold)

Algorithm Accuracy Precision Recall F1-score

ANN 0.8254 0.8073 0.8105 0.8080
SVM 0.8479 0.8490 0.8103 0.8284
RF 0.7803 0.8832 0.5949 0.7098
XGBoost 0.8275 0.8233 0.7908 0.8060

Table 2  Experimental results 
for the ANN, SVM, RF, and 
XGBoost, based on the pre-
processed digital capability 
dataset using 800 extracted 
features (best results are 
highlighted in bold)

Algorithm Accuracy Precision Recall F1-score

ANN 0.8127 0.7904 0.8016 0.7952
SVM 0.8533 0.8594 0.8108 0.8338
RF 0.7824 0.8944 0.5906 0.7101
XGBoost 0.8378 0.8342 0.8042 0.8179

Table 3  Experimental results 
for the ANN, SVM, RF, and 
XGBoost, based on the pre-
processed digital capability 
dataset using 1,000 extracted 
features (best results are 
highlighted in bold)

Algorithm Accuracy Precision Recall F1-score

ANN 0.8072 0.7839 0.7973 0.7896
SVM 0.8535 0.8614 0.8086 0.8334
RF 0.7845 0.9017 0.5902 0.7119
XGBoost 0.8390 0.8398 0.7999 0.8185

Table 4  Experimental results 
for the ANN, SVM, RF, and 
XGBoost, based on the pre-
processed digital capability 
dataset using 1,500 extracted 
features (best results are 
highlighted in bold)

Algorithm Accuracy Precision Recall F1-score

ANN 0.8134 0.7919 0.8024 0.7961
SVM 0.8511 0.8630 0.8006 0.8298
RF 0.7748 0.9022 0.5667 0.6944
XGBoost 0.8401 0.8432 0.7977 0.8190

Table 5  Experimental results 
for the ANN, SVM, RF, and 
XGBoost, based on the pre-
processed digital capability 
dataset using 2,000 extracted 
features (best results are 
highlighted in bold)

Algorithm Accuracy Precision Recall F1-score

ANN 0.8130 0.7904 0.8024 0.7955
SVM 0.8486 0.8640 0.7924 0.8257
RF 0.7669 0.8981 0.5495 0.6801
XGBoost 0.8328 0.8338 0.7908 0.8105
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In Table 1, we see that with 500 features extracted, the SVM performs the best in 
terms of accuracy and F1-score. The ANN and XGBoost have similar results, while 
the ANN has the best recall and the RF has the best precision. Table 2 shows that 
the SVM, now trained with 800 extracted features, again performs the best; this time 
not just in terms of accuracy and F1-score but also recall. Moreover, the ANN and 
XGBoost outperform the RF model in terms of accuracy and F1-score. Compared 
with the Table 1 models (trained with 500 features), the accuracy and F1-score of 
all models, other than the ANN, in Table  2 improved on using more features for 
training. As Table 3 shows, the RF model has the best precision whereas the SVM 
has the best accuracy, recall and F1-score when 1,000 features are in place. Table 3 
shows that on using more features to train the models, the values for accuracy and 
the F1-score of SVM, RF and XGBoost are higher compared with the correspond-
ing Table 2 values, indicating improved performance. Table 4 shows that the ANN 
has the best recall; SVM has the best accuracy and F1-score; RF has the best preci-
sion with 1,500 features used for training. Moreover, the values for accuracy and the 
F1-score of ANN and XGBoost are higher compared with the Table 3 values, which 
indicate further improvement in performance. Table  5 again shows that the ANN 
has the best recall; SVM has the best accuracy and F1-score; RF has the best preci-
sion. However, a comparison with the corresponding values in Table 4 shows that 
the performance of all the models in Table 5 has deteriorated in terms of accuracy 
and F1-score. Thus, Tables 1, 2, 3, 4, and 5 show that on including more features 
for training, the performance of machine learning models improves at first but then 
deteriorates on including too many features. Among all the models in all the tables, 
the SVM performs the best in terms of accuracy and F1-score.

In addition, to better visualise the results in Tables 1, 2, 3, 4, and 5, we present 
Figs. 3, 4, 5, 6 and 7, which graphically illustrate the accuracy, precision, recall and 

Fig. 3  Experimental results 
for the ANN, SVM, RF, and 
XGBoost with 500 extracted 
features

Fig. 4  Experimental results 
for the ANN, SVM, RF, and 
XGBoost with 800 extracted 
features

3945Education and Information Technologies (2023) 28:3937–3952



1 3

F1-score of the models. As the figures show, the SVM outperforms others in terms 
of accuracy and F1-score for all the cases with different features tested.

In summary, on using more features for training, the model performance increases 
at first and then decreases, which means including an appropriate number of features 
in the prediction models is important. The SVM performs better than the ANN, RF 
and XGBoost in terms of accuracy and F1-score on including varying numbers of 
extracted features. The ANN ranks first in terms of performance when 500 extracted 
features are used, whereas the SVM, RF and XGBoost have the best F1-score when 
800, 1,000 and 1,500 extracted features are used, respectively. Our experimental 
results confirmed that the prediction models can effectively identify digital capabili-
ties in courses across the University.

3.5  Statistical analysis

Although the results presented thus far indicated that the SVM performs the best 
for digital capability identification, it is unclear whether the differences between 

Fig. 5  Experimental results 
for the ANN, SVM, RF, and 
XGBoost with 1,000 extracted 
features

Fig. 6  Experimental results 
for the ANN, SVM, RF, and 
XGBoost with 1,500 extracted 
features

Fig. 7  Experimental results 
for the ANN, SVM, RF, and 
XGBoost with 2,000 extracted 
features
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the results obtained are statistically significant. To address this issue, we report the 
results of the statistical tests we conducted based on the Wilcoxon rank-sum test 
(Murakami, 2015) to verify the significance. We ran the tests 20 times.

Tables 6, 7, 8, 9 and 10 show the statistical test results based on the exper-
imental results from the 20 runs in terms of F1-score. In these tables, p-val-
ues greater than the significance level of 0.05 are highlighted in bold. From 
the tables, we can conclude that all results between two different models are 

Table 6  Statistical test results for the ANN, SVM, RF, and XGBoost, based on the pre-processed digital 
capability dataset using 500 extracted features (p-values less than 0.05 are highlighted in bold) in terms 
of F1-score

SVM RF XGBoost

ANN 6.9977×  10− 5 6.3018×  10− 8 0.7251
SVM 6.3018×  10− 8 4.4160×  10− 5

RF 6.3018×  10− 8 

Table 7  Statistical test results for the ANN, SVM, RF, and XGBoost, based on the pre-processed digital 
capability dataset using 800 extracted features (p-values less than 0.05 are highlighted in bold) in terms 
of F1-score

SVM RF XGBoost

ANN 1.5340×  10− 7 6.3018×  10− 8 1.7006×  10− 5 
SVM 6.3018×  10− 8 1.0639×  10− 3 
RF 6.3018×  10− 8 

Table 8  Statistical test results for the ANN, SVM, RF, and XGBoost, based on the pre-processed digital 
capability dataset using 1,000 extracted features (p-values less than 0.05 are highlighted in bold) in terms 
of F1-score

SVM RF XGBoost

ANN 2.7545×  10− 7 6.3018×  10− 8 2.4450×  10− 5 
SVM 6.3018×  10− 8 2.0444×  10− 5

RF 6.3018×  10− 8 

Table 9  Statistical test results for the ANN, SVM, RF, and XGBoost, based on the pre-processed digital 
capability dataset using 1,500 extracted features (p-values less than 0.05 are highlighted in bold) in terms 
of F1-score

SVM RF XGBoost

ANN 1.2856×  10− 6 6.3018×  10− 8 2.1678×  10− 5 
SVM 6.3018×  10− 8 0.0305
RF 6.3018×  10− 8 
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significantly different, except the pair of ANN and XGBoost with 500 features 
extracted for training.

In addition, we would like to ascertain whether the differences between the results 
obtained for the same model on using different numbers of features are statistically 
significant or not. Table 11 presents the results of the statistical tests on the experi-
mental results for the same model in terms of F1-score, based on the Wilcoxon rank-
sum test. From the table, several observations can be made:

(1) For the ANN, its model performance on including 500 extracted features 
exceeded the performance on including more features, in terms of F1-score.

(2) For the SVM, although the results showed that it has the best performance on 
including 800 extracted features for training, the differences between the results 
obtained for the models are not significant.

(3) For the RF, although the model that includes 1,000 extracted features has the 
best F1-score, the differences between the results obtained for this model and 
for the models using 500 and 800 extracted features are not significant.

(4) For the XGBoost, although its model based on 1,500 extracted features has the 
best F1-score, only the differences between the results for this model and the 
model using 500 extracted features are significant.

In summary, although each model of ANN, SVM, RF and XGBoost has the best 
F1-score using 500, 800, 1,000 and 1,500 extracted features, respectively, in future 
studies, it is sufficient to include 500 extracted features for the ANN, SVM and 
RF and 800 extracted features for XGBoost, considering the performance and effi-
ciency (with less features extracted, the training process can be faster). The results 

Table 10  Statistical test results for the ANN, SVM, RF, and XGBoost, based on the pre-processed digital 
capability dataset using 2,000 extracted features (p-values less than 0.05 are highlighted in bold) in terms 
of F1-score

SVM RF XGBoost

ANN 3.7358×  10− 6 6.3018×  10− 8 2.4450×  10− 5 
SVM 6.3018×  10− 8 1.2866×  10− 3 
RF 6.3018×  10− 8 

Table 11  Statistical test results 
for the ANN, SVM, RF, and 
XGBoost based on different 
extracted features in terms of 
F1-score (p-values less than 
0.05 are highlighted in bold)

 #Features means the number of features and ‘*’ stands for the best 
result for the model in a given column

#Features ANN SVM RF XGBoost

500 * 0.1762 0.7455 6.8303×  10− 3 
800 0.0173 * 0.7868 0.9138
1000 1.8661×  10− 3 0.8924 * 0.9784
1500 5.7959×  10− 3 0.4328 5.7959×  10− 3 *
2000 8.6940×  10− 3 0.1231 8.7721×  10− 5 0.0659
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confirmed that the SVM can significantly outperform the other models in terms of 
F1-score.

4  Conclusions

In this digital age, it is vital for university students to master certain digital 
knowledge. Identifying digital capabilities in university courses is thus an impor-
tant endeavour. However, since about 4,000 courses were offered across the Uni-
versity of Newcastle, Australia, a manual analysis of assessment rubrics was 
deemed infeasible, and machine learning was used instead. In this study, we ana-
lysed the performance of machine learning models for digital capability classifi-
cation based on real-world university course rubric data using various numbers of 
features extracted from the course rubrics. The experimental results showed that, 
when using more features for training, the model performance increases initially 
and then decreases, which means the inclusion of an appropriate number of fea-
tures in the prediction models is essential.

With the high prediction accuracy, the machine learning-based prediction 
models can be used to automatically identify courses with digital capabilities. 
This, in turn, would allow the University to gain a better understanding about 
where and what digital capabilities are formally assessed in the courses, and 
design and map curriculums to develop the digital capabilities of both students 
and staff. Based on the classification results, educators can develop proper strate-
gies – through curriculum design and mapping – to help equip students with the 
necessary skills for their future career development. Course coordinators could 
also identify what digital capabilities are missing in certain courses. Professional 
staff who need specific digital capacity training can be recommended to under-
take certain courses; students could also select the courses with the digital capa-
bilities of their interest. In addition, based on the prediction results, some related 
courses could be automatically recommended to the students based on their cur-
rent digital capabilities and related majors.

In future work, we plan to continue our collaboration with the Learning Design 
and Teaching Innovation team at the University of Newcastle, Australia, to fur-
ther develop this automated machine learning approach by tailoring it to their 
specific needs and requirements. Technically speaking, despite the SVM having 
the highest accuracy and F1-score, there is room for further improvement. One 
option is to explore the use of fuzzy weights (Fan et  al., 2020; 2022) to allevi-
ate the influence of noise data by evaluating the importance of different samples, 
considering the fact that most of the off-the-shelf machine learning-based mod-
els studied here do not have the capability to do so. In addition, although there 
were about 4,000 courses, only 1,735 samples were labelled in this study. We will 
attempt to label more data to further improve the performance of the prediction 
models, or explore clustering-based methods so that we do not need to rely on 
labelled data.

3949Education and Information Technologies (2023) 28:3937–3952



1 3

Acknowledgements Zongwen Fan would like to acknowledge financial support from the University of 
Newcastle, Australia.

Author contributions Zongwen Fan: Conceptualization, Methodology, Investigation, Formal analysis, 
Software, Validation, Writing - original draft. Raymond Chiong: Conceptualization, Methodology, Inves-
tigation, Supervision, Resources, Writing - review & editing.

This was a university project; Raymond Chiong was contacted by the university and initiated the idea 
of this work. Zongwen Fan was employed as a research assistant, carried out the experiments, and drafted 
the manuscript. Raymond Chiong provided guidance and edited the manuscript. Both authors read and 
approved the final manuscript.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions The authors 
would like to acknowledge support from Learning Design and Teaching Innovation team at the University 
of Newcastle, Australia. The first author’s research is also supported by the Scientific Research Funds of 
Huaqiao University (No. 21BS122).

Data availability All data included in this study is available from the first author and can also be found in 
the manuscript.

Code availability All code included in this study is available from the first author upon reasonable 
request.

Declarations 

Ethics approval This article does not contain any studies with human participants or animals performed 
by any of the authors.

Consent to participate Not applicable.

Consent for Publication Not applicable.

Competing interests The authors declare that they have no competing interests.

Conflict of interests The authors have no conflicts of interest to declare that are relevant to the content of 
this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

Balyan, R., McCarthy, K.S., & McNamara, D.S. (2020). Applying natural language processing and hier-
archical machine learning approaches to text difficulty classification. International Journal of Artifi-
cial Intelligence in Education, 30(3), 337–370.

Bishop, C.M. (2006). Pattern recognition and machine learning. New York: springer.

3950 Education and Information Technologies (2023) 28:3937–3952

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

Borges, A.F., Laurindo, F.J., Spínola, M. M., Gonçalves, R. F., & Mattos, C.A. (2020). The strategic use 
of artificial intelligence in the digital era: Systematic literature review and future research directions. 
International Journal of Information Management, p. 102225.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Brownlee, J. (2017). Deep learning for natural language processing: develop deep learning models for 

your natural language problems. Machine Learning Mastery.
Burges, C.J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and 

Knowledge Discovery, 2(2), 121–167.
Carmona, P., Climent, F., & Momparler, A. (2019). Predicting failure in the us banking sector: An 

extreme gradient boosting approach. International Review of Economics & Finance, 61, 304–323.
Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2015). Xgboost: extreme gradient boosting. R 

package version 0.4-2, pp. 1–4.
Chiong, R., Fan, Z., Hu, Z., & Chiong, F. (2021). Using an improved relative error support vector 

machine for body fat prediction. Computer Methods and Programs in Biomedicine, 198, 105,749.
Chiong, R., Wang, Z., Fan, Z., & Dhakal, S. (2022). A fuzzy-based ensemble model for improving mali-

cious web domain identification. Expert Systems with Applications, p. 117243. https:// doi. org/ 10. 
1016/j. eswa. 2022. 117243.

Crosby, A., Pham, K., Peterson, J.F., & Lee, T. (2020). Digital work practices: Affordances in design edu-
cation. International Journal of Art & Design Education, 39(1), 22–37.

Edwards, R., & Fenwick, T. (2016). Digital analytics in professional work and learning. Studies in Con-
tinuing Education, 38(2), 213–227.

Elphick, M. (2018). The impact of embedded ipad use on student perceptions of their digital capabilities. 
Education Sciences, 8(3), 102.

Fan, Z., Chiong, R., & Chiong, F. (2022). A fuzzy-weighted gaussian kernel-based machine learning 
approach for body fat prediction. Applied Intelligence, 52, 2359–2368.

Fan, Z., Chiong, R., Hu, Z., & Lin, Y. (2020). A fuzzy weighted relative error support vector machine for 
reverse prediction of concrete components. Computers & Structures, 230, 106,171.

Fayed, H.A., & Atiya, A.F. (2019). Speed up grid-search for parameter selection of support vector 
machines. Applied Soft Computing, 80, 202–210.

Friedman, J.H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 
367–378.

Gislason, P.O., Benediktsson, J.A., & Sveinsson, J.R. (2006). Random forests for land cover classifica-
tion. Pattern Recognition Letters, 27(4), 294–300.

González-Rojas, O., Correal, D., & Camargo, M. (2016). Ict capabilities for supporting collaborative 
work on business processes within the digital content industry. Computers in Industry, 80, 16–29.

Krasuska, M., Williams, R., Sheikh, A., Franklin, B.D., Heeney, C., Lane, W., Mozaffar, H., Mason, K., 
Eason, S., Hinder, S., & et al. (2020). Technological capabilities to assess digital excellence in hos-
pitals in high performing health care systems: International edelphi exercise. Journal of Medical 
Internet Research, 22(8), e17,022.

Land, W.H., & Schaffer, J.D. (2020). The support vector machine. In The art and science of machine 
intelligence (pp. 45–76). Springer.

Murakami, H. (2015). The power of the modified wilcoxon rank-sum test for the one-sided alternative. 
Statistics, 49(4), 781–794.

Pagani, L., Argentin, G., Gui, M., & Stanca, L. (2016). The impact of digital skills on educational out-
comes: Evidence from performance tests. Educational Studies, 42(2), 137–162.

Qader, W.A., Ameen, M.M., & Ahmed, B.I. (2019). An overview of bag of words; importance, imple-
mentation, applications, and challenges. In 2019 International Engineering Conference (IEC) (pp. 
200–204). IEEE.

Qaiser, S., & Ali, R. (2018). Text mining: use of TF-IDF to examine the relevance of words to docu-
ments. International Journal of Computer Applications, 181(1), 25–29.

Tang, M., & Liao, H. (2021). Multi-attribute large-scale group decision making with data mining and 
subgroup leaders: An application to the development of the circular economy. Technological Fore-
casting and Social Change, 167, 120,719.

Whetstone, D., & Moulaison-Sandy, H. (2020). Quantifying authorship: A comparison of authorship 
rubrics from five disciplines. Proceedings of the Association for Information Science and Technol-
ogy, 57(1), e277.

Wilson, C.B., & Slade, C. (2020). Developing digital capabilities of future students through consensus 
curriculum development. ETH Learning and Teaching Journal, 2(2), 292–295.

3951Education and Information Technologies (2023) 28:3937–3952

https://doi.org/10.1016/j.eswa.2022.117243
https://doi.org/10.1016/j.eswa.2022.117243


1 3

Zhong, Z.J. (2011). From access to usage: The divide of self-reported digital skills among adolescents. 
Computers & Education, 56(3), 736–746.

Zhu, E., Chen, Y., Ye, C., Li, X., & Liu, F. (2019). Ofs-nn: An effective phishing websites detection 
model based on optimal feature selection and neural network. IEEE Access, 7, 73,271–73,284.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

3952 Education and Information Technologies (2023) 28:3937–3952


	Identifying digital capabilities in university courses: An automated machine learning approach
	Abstract
	1 Introduction
	2 Methods
	2.1 Text pre-processing
	2.2 Machine learning
	2.2.1 Standard classifiers
	2.2.2 Ensemble classifiers


	3 Experiments and results
	3.1 Data organisation
	3.2 Evaluation metrics
	3.3 Parameter settings
	3.4 Results and discussion
	3.5 Statistical analysis

	4 Conclusions
	Acknowledgements 
	References


