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Abstract
Hands-on cybersecurity training allows students and professionals to practice vari-
ous tools and improve their technical skills. The training occurs in an interactive 
learning environment that enables completing sophisticated tasks in full-fledged 
operating systems, networks, and applications. During the training, the learn-
ing environment allows collecting data about trainees’ interactions with the envi-
ronment, such as their usage of command-line tools. These data contain patterns 
indicative of trainees’ learning processes, and revealing them allows to assess the 
trainees and provide feedback to help them learn. However, automated analysis 
of these data is challenging. The training tasks feature complex problem-solving, 
and many different solution approaches are possible. Moreover, the trainees gener-
ate vast amounts of interaction data. This paper explores a dataset from 18 cyber-
security training sessions using data mining and machine learning techniques. We 
employed pattern mining and clustering to analyze 8834 commands collected from 
113 trainees, revealing their typical behavior, mistakes, solution strategies, and dif-
ficult training stages. Pattern mining proved suitable in capturing timing information 
and tool usage frequency. Clustering underlined that many trainees often face the 
same issues, which can be addressed by targeted scaffolding. Our results show that 
data mining methods are suitable for analyzing cybersecurity training data. Edu-
cational researchers and practitioners can apply these methods in their contexts to 
assess trainees, support them, and improve the training design. Artifacts associated 
with this research are publicly available.
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1 Introduction

Cybersecurity professionals are needed across the globe to counter the ubiquitous 
cyber threats. To meet the increasing demand for cybersecurity experts ((ISC)2, 
2021), effective training is essential. Such training must include hands-on compo-
nents and provide practical experience in authentic settings. This includes using a 
variety of tools for cybersecurity operations, such as host configuration, hardening, 
and penetration testing.

Cybersecurity experts use tools with graphical user interfaces as well as com-
mand-line tools. Within the scope of our research, we focus on the latter, since com-
mand-line tools represent an important component of cybersecurity practice. Cyber 
attackers use them to perform sophisticated attacks, which cyber defenders need to 
understand to mitigate advanced threats. In addition, various command-line tools are 
used to configure computer systems securely.

1.1  Research problem statement

Our research focuses on supporting automated assessment in the context of hands-
on cybersecurity training. Here, we explain the motivation for our research, illus-
trate the problem with a simple example, justify why the problem is hard to address, 
and summarize the gaps in the current literature.

Why is student assessment necessary? Educational assessment is a crucial aspect of 
training (Lancaster et al., 2019). It enables teachers (instructors) to better understand 
the actions of their students (trainees). Specifically, in-depth assessment shows what 
each student did well, what could be improved, and whether the student progressed 
through the training as expected.

Based on insights from the assessment, teachers can adapt their class, provide 
students with feedback to support their learning, or evaluate their level of knowl-
edge. The assessment also shows potential issues in the training design, enabling to 
fix them and further improve the effectiveness of the training.

How can students be assessed? Like most applied computing skills, cybersecurity 
is usually practiced hands-on in computer-supported interactive learning environ-
ments. These are physical or virtual platforms that provide computer hosts with full-
fledged operating systems, networks, and applications for training.

Advanced interactive learning environments allow collecting data about the stu-
dents’ actions, such as their usage of command-line tools. These student interaction 
data authentically capture learning processes. Therefore, they can be transformed 
into educational insights and exploited for assessment.

As an example, consider the two command histories from cybersecurity train-
ing shown in Figs. 1 and 2. They belong to two students who attempted to crack a 
password to a ZIP archive using the fcrackzip utility in Linux. Each command 
is prefixed by the timestamp of its execution. Based on the analysis of these student 
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data, the instructor can see that each student needs help with a specific and different 
aspect of the training.

Why is assessment difficult? In-depth assessment of cybersecurity training is diffi-
cult for four main reasons.

1. The training is complex. The tasks require high-order problem solving and may 
have many different correct solutions. Therefore, the assessment is much more 
complex than assessing simple tasks such as memorizing facts.

2. Each student is unique. Every student has different previous knowledge, experi-
ence, motivation, and approach to learning. As a result, students adopt different 
strategies to solve the tasks. This is natural, but it further complicates the condi-
tions for automatically assessing hands-on tasks.

3. Students generate a lot of data. During the training, even a class that is relatively 
small (10–20 students) and time-constrained (1–2 hours) can generate hundreds 
of data records. As a result, manually processing these data becomes quickly 
infeasible.

4. The assessment process is not straightforward. It is unclear how to transform the 
raw data from training into educational insights useful for assessment. As the 

Fig. 1  The first student ran the 
cracking tool 24 times within 
an approximately 5-minute time 
frame, with various combina-
tions of arguments, often repeat-
ing the previous (incorrect) 
combinations. After that, the 
student stopped for 4 minutes, 
probably to find help, and 
executed a correct command

Fig. 2  The second student assumed that the tool had the .exe suffix of Windows OS executables, which 
does not apply to Linux OS. The student was apparently unfamiliar with Linux or the cracking tool but 
then instantly executed a correct command without any previous incorrect tries. We can assume that they 
received outside help
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examples in Figs. 1 and 2 demonstrated, even a relatively constrained assignment 
can generate various data for assessment.

The need for research Traditionally, educational researchers and practitioners 
assessed student data manually. However, due to the difficulties described above, a 
manual transformation of hands-on training data into educational insights is not via-
ble (Fournier-Viger, 2017; Romero & Ventura, 2020). It is highly time-consuming, 
ineffective, and error-prone.

Automated assessment is more scalable and accurate. Therefore, it can be fruit-
ful to leverage automated techniques, such as machine learning and data mining, 
for analyzing data from hands-on training (Palmer, 2019). These techniques should 
transform the data from their raw form to an understandable representation, such as 
an overview of highlights or a visualization.

However, the review of current literature (see Section 3 for details) identified sev-
eral gaps in state of the art in this area:

• As Weiss et al. (2016) argued, current automated assessment is often superficial, 
judging only the (in)correctness of the solution. Only a few papers, such as by 
Mirkovic et al. (2020), have explored an in-depth assessment of student learning.

• To the best of our knowledge, no published research attempted to compare and 
evaluate the applicability of two different data mining methods on cybersecurity 
training data. Student assessment in cybersecurity has been explored from other 
perspectives, such as using numerical scoring metrics (see Maennel et al. (2017) 
for an example).

• Data mining algorithms have been used for assessment in other domains, such as 
programming (Gao et al., 2021), but it is unclear how to generalize these previ-
ous results to the cybersecurity context.

1.2  Goals of this research paper

We seek to support automated assessment of students in hands-on training. In 
order to address the gaps in the literature, the assessment must satisfy the following 
criteria:

• enable an in-depth understanding of students’ actions,
• use methods that have not been researched in this context previously, and
• be evaluated on an authentic dataset from realistic training sessions.

The domain of data mining offers many methods for the automated extraction of 
insights from raw data (Fournier-Viger, 2017). Two methods that satisfy the criteria 
above and will be explored in this paper are pattern mining and clustering. Pattern 
mining techniques, such as association rule mining and sequential pattern mining, 
can reveal interesting relationships in datasets (Fournier-Viger, 2013b). Cluster-
ing, on the other hand, forms groups of data based on their similar characteristics 
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(Romero et al., 2010). Evaluating these two techniques represents an original contri-
bution to cybersecurity education and beyond.

Research questions Our research is framed by two research questions related to stu-
dent assessment in cybersecurity: What insights can we gather from command his-
tories using pattern mining (RQ1) and clustering (RQ2)? By insights, we mean the 
following educational findings to support assessment:

• trainees’ approaches and strategies to solving the training tasks,
• common mistakes, misconceptions, and tools problematic for trainees,
• distinct types of trainees based on their actions and behavior, and
• issues in the training design and execution.

Expected contributions of this research Answering the research questions will be 
valuable for various stakeholders.

• Cybersecurity instructors can use the researched methods in their classes to 
gain new insights for assessing their students. Specific assessment use cases are 
detailed in Sections 5.3 and 5.5.

• Researchers can build upon this work by evaluating other data mining methods 
on similar datasets. This will contribute to the body of knowledge on assessment 
in cybersecurity training.

• Developers of cybersecurity training platforms can integrate the researched 
methods of data collection and analysis into the interactive learning environ-
ments. This will support the goals of instructors and researchers.

Educational stakeholders from outside the cybersecurity domain can benefit from 
this research as well. Students of related computing disciplines, such as networking 
and operating systems administration, can generate similar data for assessment in 
hands-on classes. For students of other disciplines, the researched methods can be 
extended to process different data, such as clickstreams.

1.3  How to read this paper

Above, we defined three target groups who may be interested in this paper. Although 
we aim to address readers from a broad audience, we acknowledge that some sec-
tions of the paper are not relevant for everyone. Section  2 provides a brief back-
ground and therefore aims at researchers who seek to understand the theory of the 
used methods. Other readers who are satisfied with a more high-level understand-
ing may skip it. Section 3 reviews related studies, which is relevant for research-
ers and instructors interested in how the previous research results were applied to 
support teaching practice. Section 4 details the used methods for the data collection 
and analysis. It is aimed mainly at researchers and developers, since it also includes 
technical details about the training platforms and data collection. Section 5 presents 
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the findings and answers the research questions. Finally, Section 6 concludes, sum-
marizes our contributions, and proposes future work. These two sections are suitable 
for all readers.

2  Background and terminology of data mining

This section defines the key terms to familiarize the readers with basic data mining 
concepts. Data mining is a field of computing that deals with extracting knowledge 
from data. Its purpose is to enable understanding of the data, gather new insights 
from them, and support decision-making based on this understanding (Fournier-
Viger et al., 2017; Han et al., 2011). Out of the many data mining methods, we will 
focus on two of them: pattern mining (Section 2.2) and clustering (Section 2.3).

2.1  Educational data mining and learning analytics

Educational data mining (EDM) (Romero et al., 2010) and Learning analytics (LA) 
(Lang et al., 2017) are two inter-related research areas that aim to understand and 
improve teaching and learning. The research in these areas focuses, for example, on 
student behavior, learning processes, assessment, and interactive learning environ-
ments. To achieve their aims, EDM/LA researchers collect and analyze data from 
educational settings.

2.2  Pattern mining

Pattern mining automatically extracts previously hidden patterns in data. Its objec-
tive is to discover patterns that are easily interpretable by humans. We concentrate 
on two well-established pattern mining techniques: association rule mining (ARM) 
and sequential pattern mining (SPM) (Fournier-Viger, 2013b; Fournier-Viger et al., 
2017).

Association rule mining Association rules are patterns with the form of an if-then 
statement. A rule X → Y  says that if an item X occurs in a transaction (a set of 
items), then so does Y (Fournier-Viger et al., 2017; Han et al., 2011; Romero et al., 
2010). In our case, an item may be a command submitted by a student, and a trans-
action may be a whole set of commands of that student. An association rule mined 
from a set of students’ transactions may indicate that if a student used a command X, 
then they used a command Y.

For each association rule X → Y  , we are typically interested in two metrics: its 
support (relative occurrence among all the examined transactions) and confidence 
(relative occurrence among the transactions that contain X).

Algorithms for mining association rules consider only rules that satisfy the user-
defined thresholds for the minimal support and confidence, MinSup and MinConf. 
Since this process can extract a vast amount of rules, additional measures such as lift 

9236 Education and Information Technologies (2022) 27:9231–9262



1 3

are applied to filter out irrelevant rules (Fournier-Viger et al., 2017; Han et al., 2011; 
Romero et al., 2010).

Sequential pattern mining Sequential pattern is a frequently occurring subsequence 
in a given set of sequences (Fournier-Viger et al., 2017; Romero et al., 2010). For 
example, it can be a progression of certain commands that many students used. Con-
trary to ARM, SPM can analyze data in which the ordering of items is relevant.

Again, sequential patterns are mined based on a MinSup threshold. To find a 
manageable amount of patterns, it is recommended to use algorithms that mine 
closed sequential patterns (Fournier-Viger et al., 2017; Fournier-Viger et al., 2014; 
Fumarola et al., 2016).

2.3  Clustering

Clustering is the process of assigning data points into groups called clusters based 
on their similarity. Data in one group are similar to each other and dissimilar to 
data from other groups (Madhulatha, 2012). For example, in our context, we can 
group students based on the similarities in their command-line usage. Clustering is 
an unsupervised machine learning technique, so it does not use previously labeled 
data to assess new data. Instead, it organizes unlabeled data into “bundles”.

We focus on density-based clustering, which defines a cluster as an area with a 
high density of data points; low-density areas separate individual clusters. Unlike 
partitional clustering methods, such as the popular k-means clustering (Lloyd, 
1982), density-based approaches are better at recognizing arbitrarily shaped clusters 
and filtering noise or outliers. However, not all data points may end up in a cluster 
(Beyer et al., 1999; Aggarwal et al., 2001).

3  Related work

This section reviews the publications related to the analysis of educational data. It 
also explains how our research differs from state of the art.

3.1  Pattern mining in educational data

Association rule mining (ARM) or sequential pattern mining (SPM) has been 
employed to investigate various aspects of education. These include learner difficul-
ties, correlations between learning behaviors and performance, and teaching strat-
egies that lead to better learning (Romero and Ventura, 2020; Bienkowski et  al., 
2012).

García et al. (2010) applied ARM on data capturing students’ usage of a learn-
ing management system, discovering relationships between students’ activities and 
final grades. Instructors can use this information to adjust the course or identify 
struggling students early. Kobayashi (2014) also used ARM to uncover the errors 
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that frequently co-occurred at various proficiency levels when learning spoken Eng-
lish. The pattern mining revealed types of mistakes that distinguish lower-level and 
upper-level students.

Malekian et  al. (2020) applied SPM on data representing students’ actions and 
task submissions in an online learning environment. The researchers wanted to dis-
cover the behavior patterns that lead to successful or unsuccessful assessment out-
comes. Therefore, they split the sequences of actions into two categories depending 
on the outcome of the sequence’s final submission. The failed sequences contained 
mainly repeated assessment submissions and discussion forum views. In contrast, 
the passed sequences included multiple reviews of lecture materials. This informa-
tion can be used to modify the learning environment to discourage unproductive 
behavior.

Gao et al. (2021) mined sequential patterns from programming logs to identify 
struggling students. Timely recognizing these students is essential for promoting 
their learning. To establish ground truth, the researchers again split the logs of high- 
and low-performing students. Then, they mined patterns that either dominated in 
one group to discover its specifics, or occurred in both groups to reveal similarities. 
After that, they used the patterns as features in a classifier algorithm to predict stu-
dent performance.

3.2  Clustering of educational data

Vellido et  al. (2010) motivate the usage of clustering in educational contexts. 
In addition, they also provide a brief overview of literature where clustering was 
applied to solve educational problems. Next, Romero and Ventura (2010) and Dutt 
et al. (2017) performed literature reviews of EDM papers. Clustering has been used 
to provide feedback to instructors, detect undesirable or unusual student behavior, 
analyze and model student behavior, and group students by various characteristics, 
such as their learning approaches.

Yin et al. (2015) used the OPTICS algorithm to cluster students’ programming 
assignments, aiming to support autograding based on the type of solution. Student 
source code was represented as an abstract syntax tree, with the normalized tree edit 
distance as the similarity measure for clustering. The researchers discovered clus-
ters corresponding to distinct types of solutions (canonical, correct but longer code, 
complex solution, and so on).

McBroom et al. (2016) mined submission logs from an autograding system for 
program code. They clustered weekly submissions to find approaches to each assign-
ment while also analyzing the long-term behavior to learn how students develop. 
The researchers detected common behavioral patterns as early as in week three of 
the semester, and students’ behavior largely remained the same. Teachers can use 
the gained insight to intervene when a student belongs to the cluster with a higher 
risk of failure.

The goal of Piech et al. (2012) was to study how students learn to program. To 
do so, the researchers captured and clustered temporal traces of student interactions 
with a compiler. They applied a hidden Markov model to the temporal traces and 

9238 Education and Information Technologies (2022) 27:9231–9262



1 3

visualized it as a state machine for the cluster. The model then predicted student 
performance.

Emerson et al. (2020) explored novices’ misconceptions in block-based program-
ming. The researchers used logs of unsuccessful student attempts at programming 
assignments. The students’ programs were represented by three families of features: 
basic block features, counts of specific block sequences, and the number of interac-
tions with the system. The results revealed three clusters of students: exploratory, 
disorganized, and near-miss.

In their follow-up work, Wiggins et al. (2021) analyzed novices’ hint requests in 
block-based programming. When a student asked for a hint, the time elapsed from 
the assignment’s start and the percentage of code completion were recorded. Clus-
tering of this data revealed five different groups of students based on their hint-tak-
ing strategies. For example, those that asked for a hint early and had low code com-
pleteness probably needed a “push” to start. Instructors can use this information to 
target the students’ needs specific to the given group.

3.3  Using data for student assessment in cybersecurity

Maennel (2020) performed a thorough literature review of data sources that can 
serve as evidence of learning in cybersecurity exercises. These data sources include 
timing information, command-line data, counts of events, and input logs. Our paper 
investigates the applicability of command-line data in educational assessment. Such 
data are collected in multiple state-of-the-art learning environments for cybersecu-
rity training (Weiss et al., 2017; Andreolini et al., 2019; Labuschagne and Grobler, 
2017; Tian et al., 2018).

Weiss et al. demonstrated that command-line data from cybersecurity training are 
valuable for student assessment. They incorporated information about the students’ 
exact steps, rather than just a numerical score indicating success or failure. They 
analyzed the students’ work processes and the utilized command-line tools. Based 
on the command histories, they generated progress models of student approaches 
(Weiss et al., 2016; Weiss et al., 2017; Švábenský et al., 2022) and predicted their 
success (Vinlove et al., 2020).

Mirkovic et  al. (2020) collected and analyzed command-line input and output 
from participants in hands-on cybersecurity exercises. The analysis system auto-
matically compared the collected data with pre-defined exercise milestones and pro-
duced statistics about the participants’ progress. It helped identify difficult sections 
of the exercises and students needing assistance, providing useful information to 
instructors.

Abbott et  al. (2015) parsed a dataset of logs from cybersecurity training into 
meaningful blocks of activity and statistically analyzed them. McClain et al. (2015) 
further explored this dataset combined with questionnaires measuring the partici-
pants’ experience in cybersecurity. They discovered that more experienced partici-
pants used specialized and general-purpose tools, while the less experienced partici-
pants focused only on specialized cybersecurity tools.
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Finally, several works investigated the assessment of teams in sophisticated cyber 
defense exercises. Granåsen and Andersson (2016) collected network and system 
logs to study the performance of teams. Similar data sources were used by Henshel 
et al. (2016) to assess and predict team performance. Maennel et al. (2017) proposed 
a systematic approach: a methodology to employ exercise data for team assessment. 
In contrast, we focus on individual assessment during exercises in the scope of 
classroom teaching.

3.4  Summary of the related work

Pattern mining and clustering were applied in educational contexts with interesting 
results. They can reveal students’ misconceptions, approaches to solving the tasks, 
and behavioral patterns. These insights can improve educational assessment and 
feedback and target instruction to support students’ needs.

The novelty of our paper is exploring these methods in the context of cybersecu-
rity training. Previously, command-line data from cybersecurity training were ana-
lyzed using other methods, such as statistics, regular expression matching, and clas-
sifiers. We seek to discover insights gathered from cybersecurity training data using 
pattern mining and clustering, as well as demonstrate their usefulness for assess-
ment. Moreover, we aim to uncover in-depth insights, not only assess the correct-
ness of the student solution.

4  Research methods

This section explains the methods chosen to answer the research questions posed in 
Section 1.2. A visual overview of these methods is provided in Fig. 3. In previous 
projects (Tkáčik, 2020; Popovič, 2021), we prototyped the methods on smaller data-
sets, yielding initial results that we updated for this paper.

4.1  Cybersecurity training

Our research analyzes data from cybersecurity training. Specifically, we focus on 
offensive security skills training in a sandboxed network emulated within an inter-
active learning environment. The following text introduces essential aspects of the 
training to provide context for the research.

Interactive learning environment The virtual machines for the training were hosted 
in KYPO Cyber Range Platform (Masaryk University, 2021; Vykopal et al., 2021), 
which is a cloud-based infrastructure for emulating complex networks. For some 
training sessions, we alternatively used Cyber Sandbox Creator (Masaryk Univer-
sity, 2022a; Vykopal et al., 2021): a tool for creating lightweight virtual labs hosted 
locally on the trainees’ computers. This choice of the underlying infrastructure did 
not affect the training content, and the data collection was also equivalent.
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Both platforms are open-source (Vykopal et al., 2021), and cybersecurity instruc-
tors can freely deploy them for their purposes.

Training format The trainees worked with the interactive learning environment 
either remotely via a web browser or locally on their computers. Each trainee 
accessed their own isolated sandbox containing a virtual machine with Kali Linux 
(Offensive Security, 2022a): an operating system distribution tailored for penetra-
tion testing that provided the necessary tools. The trainees completed a sequence of 
assignments presented via a web interface. Almost all the assignments were solved 
using command-line tools, which are described below.

The participants were allowed to use any sources on the Internet. Moreover, the 
interactive learning environment offered optional hints, which the trainees could 
reveal to get help with the current task. The usage of hints and outside help was 
allowed since the trainees were not evaluated summatively (that is, the training was 
not a graded exam). Instead, we focused on formative assessment and helping the 
students explore new cybersecurity skills.

Training content Each trainee participated in exactly one of two types of training. 
Both trainings involved attacking an intentionally vulnerable virtual host using well-
known security tools, but the trainings slightly differed in their content. In Training 

Clustering

Pattern mining

Trainee 1

Trainee N

Command log 1

Command log N Bag of words
cluster ordering

Selected features
cluster ordering

Transaction
databases

Sequence
databases

Association
rules

Sequential
patterns

Bag of words
matrix

Matrix of
selected features

Visualization

Educational
insights

Fig. 3  The command logs collected from students act as input for pattern mining and clustering. The 
results are visualized and interpreted in Section 5
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A (72 participants), the following tools were crucial: nmap for network scanning, 
Metasploit for exploitation, john for password cracking, and ssh for remote con-
nection. Training B (41 participants) used nmap and ssh as well, but not Metas-
ploit or john. Instead, it featured fcrackzip for cracking passwords to ZIP files 
(see Figs. 1 and 2). None of the trainees was previously familiar with any of these 
two trainings.

Again, the training content is publicly available (Masaryk University, 2022b). 
Training A corresponds to the cybersecurity game Secret laboratory and its deriva-
tives, while Training B corresponds to the game Junior hacker training. Cybersecu-
rity instructors can freely deploy these games in their classes and recreate the condi-
tions for our research.

Training participants From August 2019 to February 2021, we hosted 18 cyber-
security training sessions for a total of 113 trainees. Each training session usually 
took two hours to complete, and most of them were held remotely due to COVID-19 
restrictions. The participants included:

• undergraduate and graduate students of computer science from various European 
universities,

• high school students attending the national cybersecurity competition, and
• cybersecurity professionals.

They all attended voluntarily because of their interest in cybersecurity 
and were not incentivized. Although the participants do not form a ran-
dom sample, we argue that it is practically infeasible to recruit a rand-
omized population for this type of research. Therefore, we instead worked 
with the representatives of the target group for this cybersecurity training. 

Ethical and privacy‑preserving measures for research Since we carried out research 
with human participants, we ensured that the trainees would not be harmed in any 
way. We minimized the extent of data collection to gather only the data necessary 
for the research. We also received a waiver from our institutional ethical board since 
we do not collect any personally identifiable information.

The participants provided informed consent to the collection and usage of their 
data for research purposes. The collected data were thoroughly anonymized not to 
reveal the trainee’s identity. As a result, it is impossible to track the trainee through-
out future training sessions.

4.2  Data collection

While the trainees solve the assignments, our infrastructure (Švábenský et  al., 
2021) automatically collects their submitted commands and the associated meta-
data. We gathered data from command-line tools in the Linux Bash terminal and 
Metasploit shell, which is software for penetration testing (Offensive Security, 
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2022b). These data, which are published (along with other training data) in an 
open-source article (Švábenský et al., 2021), serve as the input for pattern mining 
and clustering. We did not collect data from tools with a graphical user interface.

Data format The command history of each trainee is captured in a single JSON 
file. The file consists of dozens of log records (78 per trainee on average), such that 
each record represents a single command executed by the trainee. Figure 4 shows an 
example of such a log record.

Each log record has a fixed number of attributes. For our purposes, the most sig-
nificant are:

• timestamp, representing the time of the command’s execution in the ISO 8601 
format,

• cmd, which represents the full command (the tool and its arguments) submitted 
by the trainee, and

• cmd_type, the application used to execute the command: either “bash-com-
mand” for the tools executed within Linux Bash terminal, or “msf-command” for 
Metasploit shell.

Data properties We collected 8834 commands, which constitute the dataset for this 
research, over the period of 1.5 years. Although this sample is not massive in vol-
ume, it captures the trainees’ interactions deeply and over prolonged periods. There-
fore, it fulfills the prerequisites of the chosen data mining methods.

Hands-on cybersecurity training is usually held in a group of lower tens of partic-
ipants. Therefore, we consider the 8834 commands to be sufficient for evaluating the 
two data mining methods. On average, this dataset corresponds to 78 commands per 
trainee within the 1–2-hour time frame, which is appropriate for the chosen training 
format.

For this research paper, we focus on data processing after the training ends. Nev-
ertheless, the used methods are applicable during the training for real-time assess-
ment as well.

Fig. 4  A single log record from 
a command history of one 
trainee

9243Education and Information Technologies (2022) 27:9231–9262



1 3

4.3  Pattern mining

To enable mining patterns from the command-line data, our analysis scripts writ-
ten in Python automatically transformed the input data into the transaction and 
sequence databases described below. These databases are an internal representa-
tion of the input data, and they serve as the input for ARM and SPM algorithms, 
respectively. A key advantage of pattern mining is that the data preparation is the 
same for assessing any task from the training.

Transaction databases We parsed the dataset of commands to create two transaction 
databases used as input for ARM. The command transaction database represents 
each submitted command as a separate transaction, and its goal is to reveal different 
properties of command usage. Each transaction contains four items that represent 
the attributes of the command:

• tool, the name of the submitted command (e.g., nmap or ssh),
• args, the command-line arguments supplied to the tool,
• app, either Bash shell (Linux terminal) or Metasploit,
• gap, the time difference between the current and the following command.

For example, the command from Fig. 4 can become a single transaction {tool 
= nmap, args = --help, app = bash, gap = low}. To achieve bet-
ter interpretability, the gap attribute was automatically discretized (Romero et  al. 
(2010) ,p. 102): divided into categorical classes from the set {low, medium, high, 
undefined}, since the exact value in seconds is not too important. We followed the 
method previously published by McCall and Kölling (2019). First, the gap value in 
seconds was computed for each command. Then, gaps exceeding the arbitrary maxi-
mum of 20 minutes were discretized to “undefined”. This resolved the cases of long 
periods of trainee inactivity. The interval cut-off points for “low”, “medium”, and 
“high” categories were computed based on the mean gap from all gaps not exceed-
ing the maximum.

The second database, called the tool transaction database, contains transactions 
with only two attributes: tool and gap. We merged the consecutive uses of the 
same tool (regardless of the arguments) into a single transaction. The gap repre-
sents the time difference between the first use of a tool and the next use of a different 
tool; the values were discretized as before. The motivation for creating this database 
was to determine the difficulty of using different tools. If a tool is associated with 
long gaps, it may indicate that the trainees were unfamiliar with this tool and had 
difficulties using it.

Sequence databases Three sequence databases were created as input for SPM. All 
three had 113 sequences (corresponding to the number of trainees and the command 
log files), differing only in the contained items.

The first database, called command sequence database, consists of sequences of 
executed commands. Each item represents a single command, both the tool and its 
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arguments. For example, a sequence from this database can look like this: nmap 
--help, nmap 1.2.3.4, nmap -p 1000 1.2.3.4.

The second database, tool sequence database, contains sequences of tools only. 
Data from both Bash and Metasploit applications are included in the first two data-
bases. This allows discovering longer patterns, which more accurately reflect the 
trainees’ progress.

The third database, application sequence database, stores sequences of appli-
cations utilized by the trainees to execute commands. Its goal is to reveal a high-
level overview of alternating between applications. This database contains only two 
unique items: terminal, which includes all the commands executed in the Bash 
shell, and metasploit. Table 1 shows the number of transactions/sequences and 
unique items in each of our databases.

Association rule mining For ARM, we used Apyori (Mochizuki, 2019), the Python 
implementation of the Apriori algorithm. The MinSup threshold was manu-
ally tuned for each database since there is no simple method to determine it. The 
threshold was initially set to higher values and then gradually lowered to 0.01–0.04 
until we reached a sufficient number of patterns manageable for interpretation. 
This approach is suggested by Fournier-Viger (2013a) since finding suitable values 
depends on the data and specific use case.

The MinConf threshold is generally easier to set, because the database’s proper-
ties influence MinSup more heavily than MinConf (Fournier-Viger et al., 2012). 
Since we were interested in rules with higher confidence, we used higher MinConf 
thresholds of 0.5. In contrast, MinSup needed to be much lower to extract a suf-
ficient amount of rules. This was probably because our transaction databases con-
tained many unique items relative to the total amount of transactions. If there were 
fewer unique items, MinSup could have been increased.

Sequential pattern mining For SPM, we used an open-source data mining library 
SPMF (Fournier-Viger et al., 2016). It provides optimized and documented imple-
mentations of more than 190 data mining algorithms (Fournier-Viger, 2021b) often 
used as benchmarks in research papers (Fournier-Viger et  al., 2016). We selected 
CloFast (Fumarola et al., 2016), an efficient algorithm for mining closed sequential 
patterns. The MinSup threshold was experimentally set from 0.3 to 0.7.

Table 1  The number of 
transactions or sequences and 
unique items contained in 
each database (DB) for pattern 
mining, separated for both 
Training A and B

Database Transactions or 
sequences

Unique items

(Training A / B) (Training A / B)

Command transaction DB 5700 / 3134 1932 / 1092
Tool transaction DB 4167 / 2062 369 / 155
Command sequence DB 72 / 41 2076 / 1155
Tool sequence DB 72 / 41 365 / 151
Application sequence DB 72 / 41 2 / 1
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4.4  Clustering

A popular density-based algorithm is OPTICS (Ordering Points To Identify the 
Clustering Structure) (Ankerst et al., 1999), an improved extension of a widely-
used DBSCAN algorithm (Tang et al., 2016). For a data point to belong in a clus-
ter, it must have at least MinPts points within its radius.

The result of OPTICS clustering is a reachability plot. On the x-axis, it sorts 
all data points in the order of processing based on their similarity. Values on 
the y-axis represent the distance of a point from a previous one. Several similar 
points form a valley representing a cluster, while spikes represent noise or outli-
ers (Ankerst et al., 1999).

In our research, we first represented each command as a Python object with the 
following attributes: tool, arguments, application type, and timestamp, simplify-
ing the record in Fig.  4. Then, we used the commands in two different feature 
matrices that later act as an input for clustering.

Bag of words matrix Bag of words model is a standard technique for obtaining fea-
tures from text (Pelánek et al., 2018). Each text document is represented by a set of 
words it contains and their count. In our case, the “document” is a command his-
tory, and each tool is a “word”. We disregarded the command’s arguments since we 
would obtain too many unique features and impair the performance of the clustering 
algorithm.

Matrix of selected features While the bag of words model captures the used com-
mands, it does not consider other information available in the logs. Therefore, 
we selected five custom features to capture other insights into how the trainees 
progressed:

• bash-count, the number of submitted Bash commands. A small number 
may suggest that a trainee did not progress far in training. The high number 
may indicate using a trial and error approach.

• msf-count, the number of Metasploit commands a trainee used. Metasploit 
may be new for some trainees, and the high number of executed commands 
may indicate difficulties with this part of the training.

• avg-gap, the average delay between two commands. Large gaps between 
commands may suggest the trainee did not understand how to use a tool and 
possibly looked for the information online. Small delays may indicate brute-
force guessing.

• opt-changes, the number of times trainee used the same tool twice in a 
row but changed the options or arguments. A high count may show the train-
ee’s unfamiliarity with the tool or inability to use it.

• help-count, the number of times trainee displayed help information or 
manual page for any tool. It may also indicate the trainees’ unfamiliarity with 
the tool.
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All features were standardized, namely scaled by their maximum absolute value 
(scikit-learn developers, 2021). We also checked the Pearson correlation between 
features, as a high value may make them redundant. While there was a correlation of 
0.85 between bash-count and opt-changes, we preserved both because they 
capture different properties. All other features were correlated less (the absolute val-
ues ranged from 0.20 to 0.66).

Clustering analysis We chose the OPTICS algorithm to cluster our data. For calcu-
lating the distance between data points, we selected cosine similarity. This measure 
performs well on high-dimensional data and is often used to compute text similar-
ity (Shirkhorshidi et  al., 2015). For example, the command nmap -sn -PS22 
10.1.26.9 has the similarity of 0.6 with the command nmap --script=vuln 
10.1.26.9 and approx. 0.32 with the command nmap --help.

During the setup, OPTICS takes only one parameter MinPts: the minimum 
number of points required for cluster formation. Theory suggests setting the num-
ber to ln(n), where n is the number of points in the dataset (Birant and Kut, 2007). 
For our dataset, the recommended value should be close to ln(113) ≈ 5, which we 
selected.

5  Results and discussion

This section answers the two research questions (RQ) about insights gathered from 
pattern mining and clustering. We visualize and interpret the findings from specific 
training sessions and subsequently compare the two approaches.

5.1  RQ1: Pattern mining

We now describe and discuss the results revealed by ARM and SPM.

Transaction databases The command transaction database revealed 51 associa-
tion rules for Training A and 50 for Training B. Table 2 presents the selected rules 
marked as interesting by measures such as lift. The first row shows that in Training 
A, 64% of commands executed in Metasploit had small gaps (delay times). This can 
mean that using Metasploit involved a rapid sequence of simple commands, or that 
the trainees experimented with a trial and error approach. The high support of the 
rule (23%) can also indicate the overuse of Metasploit because it was needed only 
for one task in this training.

Generally, tools without arguments were associated with small gaps and often 
with Bash terminal commands. This most likely implies that tools without argu-
ments are easier and faster to use. On the other hand, if a tool had medium or large 
gaps, it was used in the Bash terminal as well. This is because Bash offers many 
tools with various difficulty levels, some of which offer a multitude of options.
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The tool transaction database provides further insight into the tool usage. Tools 
such as cd, ls, and cat, as well as Metasploit commands (use, set, show) were 
associated with small gaps. However, nmap was associated with large gaps in 72% 
of cases. This can indicate its difficulty of use or the long duration of the scan, which 
depends on the used arguments, as previously observed by Weiss et al. (2016).

Sequence databases The command sequence database in Training A revealed that 
trainees performed the Metasploit exploitation in various ways. Some steps were 
optional or performed in arbitrary order. When multiple approaches to a solution are 
possible, instructors can use this insight to show different examples in class, assess 
all the correct sequences as passed, or even discover novel solutions. Alternatively, 
when unsuitable subsequences are found, the trainees can be notified, corrected, or 
even penalized.

In Training B, SPM showed that most trainees established an SSH connection 
only on the second or third try. When students learn error-prone actions, instruc-
tors should leave room for trial and error and not penalize the students for repeated 
tries. On the other hand, about a third of the trainees excessively used the ls tool (as 
much as 17 times within a single sequence, interleaved by other tools). Instructors 
should discourage unproductive behavior and maybe offer hints to students when 
such sequences are observed.

The patterns from the tool sequence database show that in Training A, the par-
ticipants usually progressed as instructors expected. They started with an nmap scan 
and proceeded with the Metasploit exploitation. This is visualized in Fig. 5 using 
a Sankey diagram. Nodes represent the items of the discovered patterns. Edges 
between the nodes represent subsequences of the patterns. The thicker the edge, the 
higher the support of the pattern in which the subsequence occurs.

The canonical solution featured these steps in the following order:

• nmap <target> – scan the target IP address to discover available services;

Table 2  Association rules mined 
from command transaction 
database for Training A (rules 
Ax) and Training B (rules Bx)

 The antecedent and consequent of each rule are separated by “→”. 
Sup and Conf stand for support and confidence rounded to two deci-
mal places

# Rule Sup Conf

A1 APP=metasploit → GAP=low 0.23 0.64
A2 ARGS=[] → APP=terminal 0.20 0.66
A3 ARGS=[] → GAP=low 0.20 0.64
A4 ARGS=[] GAP=low → APP=terminal 0.15 0.74
A5 ARGS=[] APP=terminal → GAP=low 0.15 0.71
A6 GAP=medium → APP=terminal 0.12 0.64
A7 GAP=high → APP=terminal 0.11 0.69
B1 APP=terminal → GAP=low 0.64 0.64
B2 ARGS=[] → GAP=low 0.21 0.69
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• search <keyword> – find Metasploit exploits suitable for the discovered 
service based on the provided keyword;

• use <exploit> – select the correct exploit;
• show options – display parameters of the exploit that need to be set;
• set <option> – configure the exploit parameters (used three times to set 

three mandatory options);
• run or exploit – execute the exploit script.

Figure  5 shows that most trainees did not use search, which suggests they 
received a hint about which exploit to use. This hint was available in the training 
platform. Moreover, few of them used show to display the exploit options. Instead, 
they started configuring them immediately, which again suggests they received a 
hint about which parameters the exploit has and how to configure them. Since the 
training offered an option to take hints, these actions were legitimate in our context.

In Training B, the longest patterns feature sequences of ls and cd tools. This can 
indicate that the trainees struggled to find the files necessary to advance in the task. 
Again, instructors can provide hints to help the students who become stuck.

Finally, the application sequence database confirms our intuition that in Training 
A, the trainees did not often alternate between Bash and Metasploit. Instead, they 
used them in longer sequences. For example, the longest discovered pattern features 
7 Bash commands, then 8 Metasploit commands, and then 5 Bash commands. The 
support of this pattern is 0.71, meaning that 71% of trainees behaved this way.

In Training B, the sequence of 12 Bash commands has the support of 0.98, mean-
ing that all but one trainee executed at least 12 commands. If a trainee uses too few 
commands, it may indicate issues with the assignment, a surprisingly effective solu-
tion, outside help, or even cheating.

Fig. 5  A Sankey diagram of closed sequential patterns mined from the tool sequence database. The com-
mands search, use, show, and set were used in Metasploit; the others in Bash
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Limitations of pattern mining Setting the MinSup and MinConf parameters must 
often be done by trial and error, since there is no universal guide. Also, pattern min-
ing algorithms extracted relatively many patterns, many of which were trivial, for 
example, TOOL=cd→ APP=terminal.

Defining the importance of patterns can address this problem. For example, 
a pattern describing relationships between tools would be more important than 
the usage of the terminal (app) itself. Alternatively, additional postprocessing can 
remove trivial patterns to save the analyst’s time. A text-based file defining uninter-
esting patterns can be used to filter the patterns.

Finally, it can be difficult to interpret why certain patterns occur. Additional infor-
mation and context are needed to maximize the usefulness of extracted patterns.

Summary of RQ1 ARM and SPM are suitable for uncovering the following educa-
tional insights:

• Approaches to solving the tasks, namely typical associations of tools and their 
arguments (for ARM) or sequences of commands (for SPM).

• Mistakes and errors based on incorrectly used tools or unknown commands and 
sequences.

• Problematic tasks within the training, such as when a student attempts to use a 
tool several times in a row (for SPM).

• Novel solutions, such as when unexpected but correct tools appear in a rule or a 
sequence.

• Tools used at the beginning or toward the end of the task, based on whether the 
sequences often begin or end with a certain tool (for SPM).

• Frequency of tools’ usage, such as the commands utilized by most trainees or 
overuse of a tool, which is proportional to the rule’s or sequence’s support.

• Timing information, namely small or large gaps between two submissions of 
commands associated with certain tools (for ARM).

The results of pattern mining can be tabulated (see Table 2) or visualized in a San-
key diagram, such as the one in Fig. 5.

5.2  RQ2: Clustering

Now, we continue with the results of clustering the bag of words and selected fea-
tures matrices.

Bag of words cluster ordering When clustering the 72 trainees from Training A, 31 
trainees form Cluster 1, 14 trainees constitute Cluster 2, 5 trainees form Cluster 3, 
and 22 were designated as outliers. Cluster 2 is the most compact because of low 
reachability distance between the points. This implies that the trainees progressed 
strongly similarly.

When visualizing the most common combinations of tools and arguments (see 
Fig.  6), we discovered that Cluster 1 trainees used nmap and ssh with certain 
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arguments slightly more often. For example, they executed a correct nmap scan 
multiple times, maybe to assure themselves of the results.

Trainees from Clusters 1 and 3 also experimented much more with setting the 
Metasploit exploit options, and attempted to search for and use several different 
exploits. Cluster 2 trainees selected and configured the suitable exploit on fewer 
tries. A relatively low number of Metasploit commands and the lack of option vari-
ety suggest that Cluster 2 trainees did not struggle with Metasploit. Instructors can 
use this information to check in with Cluster 1 and 3 trainees and ask them whether 
they are stuck or need assistance.

Cluster 2 trainees used more Bash commands on average, and they used com-
mands for changing and listing directories (cd and ls) overwhelmingly more 
often. They probably had trouble locating the files crucial for the task. Based on this 
insight, instructors can again provide targeted help to trainees in this cluster.

For the 41 trainees in Training B, the clustering was not too fruitful. 13 trainees 
formed a cluster, while the remaining 28 were designated as outliers. The trainees 
in a cluster again used a lot of cd and ls tools, and experimented with scp and 
fcrackzip more often than the remaining trainees.

Fig. 6  Bubble plot showing the most common tool and argument combination for Cluster 1. The 
size of the bubble is correlated with the argument frequency. The color represents the median tool fre-
quency for the cluster
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Examining the trainees designated as outliers can also yield interesting results. 
One of the outliers did not use nmap for network scanning, but ike-scan and 
then zenmap. This shows that alternative tools are possible for solving the tasks, 
and outliers can still be successful in the training. It is worth noting that even small 
differences or deviations in a single task can be enough for the trainee to be consid-
ered an outlier. However, these cases have to be further investigated manually.

Finally, another outlier brute-forced the searching of argument combinations for 
john. Therefore, outliers can also be trainees behaving problematically.

Selected features cluster ordering Clustering of Training A data formed four clus-
ters: with 6, 9, 14, and 6 members, respectively. Cluster 1 had the largest count of 
Metasploit commands and the smallest average time gap between their submitted 
commands. These differences were also confirmed by pairwise t-tests statistically 
significant at p ≤ 0.01. Since only a few Metasploit commands were needed to reach 
the solution, this indicates a trial-and-error approach of trainees in this cluster. 
Moreover, these trainees did not display the manual pages or the tools’ usage help. 
Such unproductive behavior can be automatically recognized, along with notifying 
the instructors. On the other hand, Cluster 4 trainees displayed command help the 
most often, which can be suitable while learning.

Cluster 2 and Cluster 3 behaved in an almost opposite ways. The former used the 
most Bash commands with relatively small gaps, and the latter used the least Bash 
commands with the largest gaps. This suggests that Cluster 3 trainees did not pro-
gress far, perhaps due to lack of motivation or skill.

Two clusters emerged in Training B. The first had fewer submitted commands 
with larger gaps. The second submitted many commands with small gaps and 
changed the command arguments often. These trainees probably struggled to figure 
out the correct argument combination.

Overlaps with the bag of words clusters were minimal, suggesting that the results 
largely depend on the chosen features. Both approaches can provide useful insights; 
however, as in almost all machine learning approaches, it is difficult to select the 
best features.

Limitations of clustering The main limitation of clustering is that determining rel-
evant features is hard. In addition, the relatively small sample size was problem-
atic for the chosen clustering algorithm. Sometimes, only one cluster was formed, or 
only a few data points belonged to a cluster. Nevertheless, the format of the training 
implies that massive amounts of command histories cannot be collected.

Summary of RQ2 Clustering can reveal the following educational insights:

• Similarities and differences between trainees’ approaches to the training, for 
example, in typically used combinations of tools.

• Alternative solutions to training tasks based on examining outliers.
• Behavioral patterns, such as help-seeking or submitting many commands in a 

rapid succession.
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The results of clustering and the associated features can be easily visualized or tabu-
lated, which provides a straightforward overview (see, e.g., Fig. 6).

5.3  Comparison of the two approaches

We used two approaches, pattern mining and clustering, to analyze data from cyber-
security assignments completed via a command line. Table 3 summarizes the dif-
ferent situations that can occur during the training and are of interest to instruc-
tors. Then, Table 4 provides a grand overview of insights discoverable with the two 
approaches. Not all of them were demonstrated by our data, but they can be investi-
gated by future research.

These insights can also occur in combination. For example, a low frequency of 
command usage combined with large gaps probably suggests demotivation or lack 
of skill.

Table 3  The insights and situations that can arise during the training

Positive or neutral observations Negative observations

P1 The trainee is proficient N1 The trainee lacks skill
P2 The trainee is motivated N2 The trainee is demotivated
P3 The trainee progresses smoothly N3 The trainee experiences difficulties
P4 The trainee received allowed help N4 The trainee received prohibited help
P5 The trainee corrected a mistake N5 The trainee uses a trial-and-error approach
P6 The trainee discovered a novel solution
P7 The trainee is taking a break
P8 The tool executes quickly N8 The tool executes slowly
P9 The tool is easy to use N9 The tool is difficult to use

N10 The tool is used too little
N11 The tool is used too much

P12 The task features simple commands
N13 The task is not designed clearly

Table 4  The comparison of results of pattern mining (ARM, SPM) and clustering (C)

 The column Explanations refers to possible causes in Table 3

Method Insight category Result Explanations

ARM, C Solution approaches Typical combinations of tools task-dependent
SPM Solution approaches Typical sequences of tools task-dependent
all Tool use frequency Low rule support / use count P6, N1, N10

High rule support / use count N1, N5, N11, N13
ARM, C Timing information Low command delay P1, P4, P8, P9, P12, N4

High command delay P7, N1, N2, N3, N8
C Trainee similarities Common behavioral patterns task-dependent
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Similarities of pattern mining and clustering Both pattern mining and clustering can 
reveal trainees’ strategies utilized to solve the tasks. These include desirable solu-
tions, mistakes and errors, and novel approaches. They can also highlight statistical 
properties of the solutions, such as frequently used tools or their time gaps.

Methodically, the process of pattern mining and clustering is relatively straight-
forward. As long as the input data format and constraints are preserved, it is suffi-
cient to use existing implementations of these algorithms.

Insights from both pattern mining and clustering can be targeted at specific train-
ees. Instructors can provide suitable feedback to the whole cluster of students or all 
students whose logs matched a specific pattern. This way, instructors can help the 
struggling trainees if they exhibit signs typical for low-performing clusters or associ-
ated with undesirable patterns.

Differences of pattern mining and clustering Setting the initial parameters appears 
to be easier for the OPTICS clustering algorithm compared to ARM and SPM. 
OPTICS recommends setting MinPts approximately to the natural logarithm of the 
sample size. For pattern mining, the MinSup and MinConf parameters need to be 
set experimentally. Nevertheless, clustering requires a careful selection of features, 
which can include the collected data as well as properties derived from them.

Density-based clustering is more prone to small sample size. On the contrary, our 
dataset of thousands of commands was sufficient for pattern mining. In fact, most 
public datasets previously used for ARM contain thousands up to a million transac-
tions, and datasets for SPM start with as little as ten sequences up to ten thousand 
(Fournier-Viger, 2021a). (However, these datasets come from other domains, such as 
word corpora or clickstream data from websites.) As a result, educational research-
ers who have just begun to collect data may experience the cold start problem. Espe-
cially when using clustering, their early dataset will not be large enough to provide 
insights about the first few students.

Finally, the results of clustering are more easily interpretable. Pattern mining can 
yield a large number of trivial patterns. Nevertheless, interpreting the clustering 
results requires further investigation of the properties of the discovered clusters. Pat-
terns are readable directly.

5.4  Comparison with related work

Section 3 reviewed numerous approaches to student assessment and usage of pat-
tern mining and clustering to analyze educational data. We now compare our 
methods and results with those presented in related work in order to highlight our 
contributions.

One novel aspect of our research is the application domain of cybersecurity, since 
most of the related work focused on other areas, such as programming education 
(Gao et al., 2021; Yin et al., 2015; McBroom et al., 2016; Piech et al., 2012; Emer-
son et al., 2020; Wiggins et al., 2021). Educational researchers and practitioners in 
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cybersecurity and related domains, such as operating systems and networking, may 
benefit from the presented evaluation featuring authentic cybersecurity training data.

Several learning environments for cybersecurity allow logging command-line 
interactions (Švábenský et al., 2021; Mirkovic et al., 2020; Andreolini et al., 2019; 
Labuschagne and Grobler, 2017; Tian et  al., 2018), although this practice is still 
relatively rare. Nevertheless, even if interesting datasets are acquired, few methods 
have been explored for their automated analysis (see Section 3.4).

Student assessment in cybersecurity was specifically reviewed in Section  3.3. 
Based on inspecting the related work, we believe this is the first study evaluating the 
applicability of pattern mining and clustering algorithms on cybersecurity training 
data. Other works focused, for example, on generating progress models of students 
(Švábenský et al., 2022), predicting their success (Vinlove et al., 2020), or assess-
ing team performance (Granåsen & Andersson, 2016; Henshel et al., 2016; Maennel 
et al., 2017).

5.5  Educational implications

Our research demonstrated the automation of discovering educational insights. Pre-
viously, these insights had to be revealed manually by the instructor, which was 
time-consuming, or were even completely unavailable. In particular, the insights 
gained from pattern mining and clustering have the following implications for teach-
ers, educational researchers, and other stakeholders:

• Classroom-wide instruction – instructors can show the typical or rare solution 
approaches to the students and discuss them together. They can also explain the 
erroneous or novel solutions. If students are aware of examples of good or bad 
practices, they can follow or avoid them, respectively.

  For example, in our data, nmap was often associated with high time gaps. 
Instructors can revisit the explanation of this tool and stress how its argument 
combinations affect the scan duration.

• Targeted instruction – when a student exhibits patterns associated with errors 
or unproductive behavior, the instructor can intervene appropriately. This inter-
vention can include providing tailored hints, feedback, scaffolding, or suitably 
correcting the student. Identifying struggling students early and helping them is 
crucial for supporting their learning.

  For example, we discovered a cluster of trainees who adopted a trial-and-error 
approach when using Metasploit. If this happened during class, instructors could 
visit these students in real-time and provide suitable assistance. By identifying 
specific students belonging to the cluster, the instructor can save time by provid-
ing the same help to all students in that cluster.

• Marking/grading – knowing the common mistakes aids with both manual and 
automated grading. Instructors can create a grading rubric based on the observed 
errors and approaches. Moreover, an autograder can be set up to grade specific 
actions as passed or failed.
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  For example, the trainees who used a correct sequence of Metasploit com-
mands to configure all exploit steps can be awarded a point.

• Task design – based on summarizing the common approaches of students and 
discovering novel approaches to the solution, instructors can design more suit-
able tasks. This includes fixing unclear or problematic tasks.

  For example, we discovered that in Training B, participants excessively used 
the cd and ls tools to traverse the filesystem. The assignment can specify more 
clearly what type of file to look for and where. It can also feature hints.

• Machine learning – the patterns and their features (such as using a particular 
command or making a specific mistake) can act as input in other machine learn-
ing models for further analysis and student modeling.

  For example, the discovered patterns could be used to train a classifier to pre-
dict student success or failure.

• Curricular support – several policies and curricular guidelines in cybersecurity 
(CC2020 Task Force, 2020; Joint Task Force on Cybersecurity Education, 2017; 
Parrish et al., 2018) prescribe what skills should be taught and assessed. How-
ever, the information about how to perform this assessment is left to the educa-
tors. Our paper demonstrates a possible solution for assessing hands-on exercises 
in cybersecurity, which other educators can adopt or adapt.

6  Conclusion

Automated student assessment in cybersecurity is becoming more and more rele-
vant. Finding better ways to analyze data from cybersecurity training is needed to 
support more effective hands-on training. Yet, this research area is still in its early 
stages.

To contribute to the body of knowledge on student assessment, we investigated 
automated methods for analyzing log data from authentic educational contexts. We 
mined 8834 commands from several-hours-long training sessions with small groups 
of computing students. Then, we discussed the observations relevant for instructors 
and researchers in cybersecurity and beyond.

Our results include the prototype implementation, evaluation, and comparison of 
two data mining approaches within specific cybersecurity training, as well as general 
insights and lessons learned. Answering our two research questions revealed that:

1. Pattern mining is suitable for revealing solution approaches of students, their 
misconceptions, and difficult training tasks.

2. Clustering highlights similarities and differences between approaches of students, 
grouping them based on their behavioral patterns.

Other educators can use these insights to improve cybersecurity training in their 
context or adapt them to training in other domains. Pattern mining and clustering are 
suitable for any problem-solving assignments that yield interaction data. Instructors 
can exploit these data to identify and redesign problematic sections of the training, 
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reveal new solutions to the tasks, and provide targeted instruction and feedback to 
trainees.

6.1  Practical contributions and supplementary materials

In addition to educational implications described in Section 5.5, we share numerous 
artifacts with the community of instructors, researchers, and developers. These arti-
facts enable replicating our study setup and advancing the research in cybersecurity 
education. Moreover, the tools are applicable for hands-on security classes. These 
artifacts are open-source and include:

• Cybersecurity training content (Masaryk University, 2022b), which can be 
deployed in either of our learning environments: KYPO Cyber Range Platform 
(Masaryk University, 2021) and Cyber Sandbox Creator (Masaryk University, 
2022a). Cybersecurity instructors can freely use them to host cybersecurity train-
ing sessions (Vykopal et al., 2021).

• Logging infrastructure (Švábenský et  al., 2021), which enables researchers to 
collect command-line data like for this paper.

• The analyzed dataset, which has been published with records from other train-
ings (Švábenský et al., 2021). Since each record is a command submitted by a 
person, accumulating these data is a challenge on its own. Therefore, such data-
sets are rare and may help other researchers.

• The created software that applies pattern mining and clustering on the data. It 
includes a Python implementation of extracting and visualizing the patterns and 
clusters. This implementation can serve as a starting point for the developers 
of learning environments when integrating the researched methods (Švábenský 
et al., 2022).

• Visualizations and the full results (Švábenský et al., 2022).

6.2  Future work

This research offers many possibilities for extension. In pattern mining, transaction 
databases can include time-related information, such as the duration of running a 
command. This would distinguish a difficult task from a command that took a long 
time to execute. Sequential databases can include timestamps to describe time gaps 
between sequences in a pattern. Additionally, the dataset can be expanded with 
information about other actions of trainees, such as asking for a hint. As a result, we 
would discover sequences that preceded help-seeking. Finally, we can consider the 
whole command history of a student as a single transaction to generate new types of 
insights.

Enhancements are possible for clustering as well. One is the clustering of time 
series: each training would be represented as time series of commands encoded 
as vectors. The other option is to use different algorithms, such as hierarchical 
clustering.
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Yet another extension is to incorporate live data mining during an ongoing train-
ing. Online algorithms can provide relevant insights to instructors in real-time. Their 
results could also be used as a basis for a recommender system that would provide 
hints for stuck trainees. If a trainee needs help, the system could recommend a hint 
that helped another trainee from the same cluster.
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