
Vol.:(0123456789)

https://doi.org/10.1007/s10639-021-10570-8

1 3

Visual tools for teaching machine learning in K‑12: 
A ten‑year systematic mapping

Christiane Gresse von Wangenheim1  · Jean C. R. Hauck1  · 
Fernando S. Pacheco2  · Matheus F. Bertonceli Bueno1

Received: 6 November 2020 / Accepted: 27 April 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2021

Abstract
Teaching Machine Learning in school helps students to be better prepared for a 
society rapidly changing due to the impact of Artificial Intelligence. This requires 
age-appropriate tools that allow students to develop a comprehensive understand-
ing of Machine Learning in order to become creators of smart solutions. Following 
the trend of visual languages for introducing algorithms and programming in K-12, 
we present a ten-year systematic mapping of emerging visual tools that support the 
teaching of Machine Learning at this educational stage and analyze the tools con-
cerning their educational characteristics, support for the development of ML models 
as well as their deployment and how the tools have been developed and evaluated. 
As a result, we encountered 16 tools targeting students mostly as part of short dura-
tion extracurricular activities. Tools mainly support the interactive development of 
ML models for image recognition tasks using supervised learning covering basic 
steps of the ML process. Being integrated into popular block-based programming 
languages (primarily Scratch and App Inventor), they also support the deployment 
of the created ML models as part of games or mobile applications. Findings indicate 
that the tools can effectively leverage students’ understanding of Machine Learning, 
however, further studies regarding the design of the tools concerning educational 
aspects are required to better guide their effective adoption in schools and their 
enhancement to support the learning process more comprehensively.
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1 Introduction

Machine Learning (ML) is implemented into many devices and services that are 
part of our everyday life, for example, recommendation services, healthcare diag-
nosis, or autonomous vehicles. Thus, to prepare citizens, including young people, 
to become responsible and conscientious users and creators of intelligent solu-
tions, it is important to popularize a basic understanding of ML technologies 
(Kandlhofer et al., 2016; Touretzky et al., 2019a; Wong et al., 2020). Due to the 
growth of Artificial Intelligence (including Machine Learning), for many coun-
tries it has also become a major strategy to promote competitiveness, requiring 
more people to seek a career in AI (Forbes, 2019; Hiner, 2017).

Yet, teaching fundamental AI (including ML) concepts and techniques has 
traditionally been done only in higher education (Torrey, 2012). And, although 
computing education is increasingly being included in K-12 worldwide, these 
programs rarely cover AI content at this educational stage (Hubwieser, 2015), 
although studies have shown that children are able to learn ML concepts from a 
relatively young age (Hitron et al., 2019). The exposure to this kind of complex 
knowledge has even the potential to enhance children’s everyday skills, better 
equipping them to deal with the social, economic, and ethical issues that are aris-
ing from the use of ML (Kahn et al., 2020). Furthermore, AI literacy may encour-
age more students to consider careers in this area and provide solid preparation 
for higher education and their future profession.,

According to AI4K12 (Touretzky et al., 2019a), AI education should cover five 
big ideas in K-12, including Machine Learning that provides systems the abil-
ity to automatically learn and improve from experience without being explicitly 
programmed (Touretzky et al., 2019a; Wollowski et al., 2016). This includes an 
understanding of basic ML concepts, such as learning algorithms and fundamen-
tals of neural networks as well as the limitations and ethical concerns related 
to ML. And, for students to become not just consumers of AI, but creators of 
intelligent solutions, this also requires teaching the application of these con-
cepts, e.g., by developing image recognition models, since students who experi-
ence in a hands-on manner the possibilities, strengths, and weaknesses of ML 
are more likely to obtain a deeper understanding (Kahn et al., 2018; Kandlhofer 
et  al.,  2016; Touretzky et  al.,  2019b). Therefore, primarily active learning that 
emphasizes doing and direct experience by the student is important, as it helps 
to make ML transparent, enabling students to build correct mental models, and 
encouraging them to develop their own ML applications aiming at an engaging 
education (Wong et al., 2020).

Yet, the development of ML-enabled applications in real-world settings is 
non-trivial and the development process differs from that of traditional software 
(Lwakatare et  al.,  2019). Developing an ML model involves several tasks from 
acquiring a (labeled) set of examples, selecting an appropriate learning algorithm 
and its parameters, training the model, and evaluating the model’s performance 
(Lwakatare et al., 2019; Ramos et al., 2020). It requires an understanding of com-
plex algorithms and working processes, as well as a constantly increasing zoo of 
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architectures, frameworks, etc., which makes choosing a suitable one a difficult 
task for novices (Gillies, 2016; Gutosk, 2017; Sulmont et  al.,  2019) as well as 
requiring the user to have a certain level of programming skills (Xie et al., 2019). 
As a consequence, students typically face several difficulties when starting to 
learn ML, making the process of building ML models inaccessible to many peo-
ple (Ramos et al., 2020; Sankaran et al., 2018; Tamilselvam et al., 2019).

Typically, ML models are developed using text-based programming lan-
guages that require coding, which entails an understanding of the programming 
concepts and its syntax (McCracken et al., 2001). Therefore, to popularize ML, 
it is desirable to reduce the cognitive effort so the user can focus on the logic 
to solve the problem at hand (Knuth & Pardo, 1980). For this purpose, vis-
ual languages have been introduced that let users create programs by simply 
drag-and-drop a visual element on a canvas and subsequently connecting that 
element with other elements rather than by specifying them textually (Idrees 
et  al.,  2018; Weintrop & Wilensky, 2017). Such visual representations can 
take diverse forms, including block-based or flow-based languages (Burnett & 
Baker, 1994; Pasternak et  al.,  2017). Visual languages can improve learnabil-
ity for novices by helping them to prevent errors, favor recognition over recall, 
and provide domain-specific limited instruction sets reducing the cognitive 
load (Çakiroğlu et al. 2018). These advantages have led to widespread adoption 
within introductory programming contexts across different educational stages 
(Bau et  al.,  2017). Especially in K-12, block-based programming languages 
such as Scratch, SNAP!, Blockly, and App Inventor are widely used for teach-
ing algorithms and programming concepts (Weintrop, 2019).

Following this success, visual tools are also being proposed for teaching ML. 
These tools typically include a component for the development of an ML model and 
a deployment component (Rodríguez-García et  al.,  2020). The ML development 
component supports collecting and labeling data, building a model using available 
ML algorithms (learning), evaluating the performance of the model with test data, 
and exporting the model to a programming platform. On the other hand, the deploy-
ment component is needed to develop an application using the ML model created by 
the ML development component to allow students to create usable intelligent solu-
tions to make computing education engaging.

Yet, so far there are no systematic overviews on visual tools for teaching ML in 
K-12 and their characteristics. Rodríguez-García et al. (2020) present a comparison 
of a few tools, whereas Hauck et al. (2019) focus only on tools to develop Internet 
of Things and AI-based business ideas. Other reviews on visual languages in K-12 
focus on teaching computational thinking, not covering ML (Hubwieser et al., 2015; 
Kraleva et  al.,  2019; Noone & Mooney, 2018; Weintrop & Wilensky, 2017). 
Reviews on teaching ML in K-12, such as Marques et al. (2020) provide an overview 
of existing educational units, without analyzing in detail the adopted tools, and Long 
and Magerko (2020) focus on the definition of AI/ML literacy. On the other hand, 
reviews on ML tools in general, such as by Dudley and Kristensson (2018) analyze 
only the user interface design of interactive ML tools. Therefore, we present in this 
article the results of a systematic mapping study on visual tools for teaching ML in 
K-12 of the last decade (2010–2020). The results of this study can help instructional 
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designers and educators to choose the most appropriate tool as well as researchers to 
guide the evolution and improvement of these tools.

2  Machine learning education in K‑12

Although there have been some AI teaching initiatives in K-12 already in the 1970s 
(Kahn, 1977; Papert & Solomon, 1971), and involving ML in the 1990s (Bemley, 
1999), only recently it has become a trend again (Marques et al., 2020). In this con-
text, the AI for K-12 Working Group (AI4K12) aims at developing guidelines for 
teaching K-12 students about Artificial Intelligence. To frame these guidelines, “big 
ideas” in AI that every student should know are defined, including perception, repre-
sentation & reasoning, learning, natural interaction, and societal impact (Touretzky 
et al., 2019a). Thus, while AI is “the science and engineering of making intelligent 
machines that have the ability to achieve goals as humans do”, Machine Learning 
(ML) is a subfield of AI dealing with the field of study that gives computers the abil-
ity to learn without being explicitly programmed (Mitchell, 1997). ML algorithms 
build a mathematical model based on sample data, denoted as “training data”, to 
make predictions or decisions without being explicitly programmed to perform the 
task. ML can be applied for a wide range of application domains and tasks, includ-
ing image recognition, object detection, and segmentation, motion and pose recogni-
tion, as well as text, sound and speech recognition, sentiment analysis, among others 
(Blott et al., 2019).

Regarding Machine Learning, the primary goal in K-12 education is to promote 
students’ understanding of how ML works and its limitations, ethical concerns, and 
societal impacts. Therefore, ML concepts to be covered in K-12 education should 
include (Touretzky et al., 2019a):

• What is learning and approaches to ML (e.g., regression algorithms, instance-
based algorithms, support vector machines, decision tree algorithms, Bayesian 
algorithms, clustering algorithms, artificial neural network algorithms) as well as 
types of learning algorithms (i.e., supervised, unsupervised, reinforcement learn-
ing).
• Fundamentals, types of neural networks, including also Deep Learning, a sub-
set of neural networks that makes computational multi-layer neural networks fea-
sible, including, e.g., convolutional neural networks (CNNs), as well as types of 
neural network architectures and how learning is influenced.
• Limitations, concerns, and impact of machine learning.

To achieve the learning of ML competencies on an application level, this requires 
students to learn how to develop ML applications for them to become creators of 
intelligent solutions (Kahn et al., 2018; Kandlhofer et al., 2016; Long & Magerko, 
2020; Sulmont et al., 2019; Touretzky et al., 2019b). Building such a custom ML 
application in a human-centric manner is an iterative process that requires students 
to execute a sequence of steps as presented in Table  1 (Amazon, 2019; Amershi 
et al., 2019; Mathewson, 2019; Watanabe et al., 2019).
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Yet, as machine learning is a complex knowledge area, students may have difficul-
ties with the first steps when learning ML (Sulmont et al., 2019). And, as K-12 stu-
dents often do not have any prior computing experiences, it is important to carefully 
define the sequence of learning goals to be achieved. Thus, an effective way to learn 
ML should begin with lower-level competencies first, then progressing upwards. On 
the other hand, it is also important to not remain on lower levels, as this may hinder the 
development of creative competencies requiring open-ended and ill-defined learning 
activities. Therefore, the “Use-Modify-Create" cycle (Lee & Chen, 2015; Lytle, 2019) 
commonly used for the progression of learning computing concepts and practices, can 
also be adopted for ML education. Following this cycle, students ease into ML topics 

Table 1  Human-centric ML process

Phase Description

Requirements analysis During this stage, the main objective of the model and its target fea-
tures are specified. This also includes the characterization of the 
inputs and expected outputs, specifying the problem. This may 
also involve design thinking approaches to define the objectives 
with existing needs and problems

Data management During data collection, available datasets are identified and/or data 
is collected. This may include the selection of available datasets 
(e.g., ImageNet), as well as specialized ones for transfer learning. 
The data is prepared by validating, cleaning, and preprocessing 
the data. Data sets may be labeled for supervised learning. The 
data set is typically split into a training set to train the model, a 
validation set to select the best candidate from all models, and 
a test set to perform an unbiased performance evaluation of the 
chosen model on unseen data

Feature engineering Using domain knowledge of the data, features are created including 
feature transformation, feature generation, selecting features from 
large pools of features among others

Model learning Then a model is built or more typically chosen from well-known 
models that have been proven effective in comparable problems 
or domains by feeding the features/data to the learning algorithm. 
Defining network architectures involves setting fine-grained 
details such as activation functions and the types of layers as 
well as the overall architecture of the network. Defining training 
routines involves setting the learning rate schedules, the learning 
rules, the loss function, regularization techniques, and hyperpa-
rameter optimization to improve performance

Model evaluation The quality of the model is evaluated to test the model providing a 
better approximation of how the model will perform in the real 
world, e.g., by analyzing the correspondence between the results 
of the model and human opinion. The evaluation of ML models is 
not trivial, and many methods can be applied for model evaluation 
with various metrics such as accuracy, precision, recall, F1, mean 
absolute error, among others, which appropriateness depends on 
the specific task

Model deployment and monitoring During the production/deployment phase, the model is deployed 
into a production environment to create a usable system and apply 
it to new incoming events in real-time
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by first “using" and analyzing a given ML artifact, then “remixing/modifying" an exist-
ing one, until eventually “creating" new ones. This progression incorporates a smooth 
transition from reusing a predefined artifact to learner-generated creative construction. 
This is important to go beyond coding or using ML applications following predefined 
tutorials, as these will not provide enough opportunity for a deeper understanding and 
creativity (Bellettini, 2014). Furthermore, adopting a “computational action” strategy 
(Tissenbaum et al., 2019), which allows students to learn ML concepts while creating 
meaningful artifacts that have a direct impact on their lives and their communities, is 
crucial to give learners the opportunity to be creative and express themselves through 
the application of ML (Kahn et al., 2020).

In order to support such learning by creating ML models, age-appropriated tools 
are required that should have a low floor and high ceiling to make it easy for novices 
to get started and possible to work on increasingly sophisticated projects (Resnick & 
Silverman, 2005). In addition, they should support and suggest a wide range of dif-
ferent ML models, e. g, ranging from the recognition of pet images to music under-
standing to allow students to work on projects motivated by their interests and pas-
sions (Resnick & Silverman, 2005).

3  Definition and execution of the systematic review

In order to provide an overview of the state of the art on visual tools for the develop-
ment of custom ML applications in the context of K-12 education, we performed a 
systematic mapping study following the procedure defined by Petersen et al. (2008).

3.1  Definition of the review protocol

The objective of this study is to answer the research question: What visual tools 
exist for teaching ML in K-12 through the development of custom ML models? The 
goal of this work is to characterize and compare these tools, to provide an overview 
to guide their systematic selection as well as to identify potential gaps and opportu-
nities for future research. Therefore, we analyze the following questions:

AQ1. What visual tools for teaching ML exist?
AQ2. What are their educational characteristics?
AQ3. What are their characteristics concerning the ML platform?
AQ4. What are their characteristics concerning the deployment platform?
AQ5. How have the tools been developed and evaluated?
Inclusion and exclusion criteria. We consider only English-language publications 

that present a visual tool for the development of ML models, not including generic 
visual programming languages or tools for other domains. Due to the emergent nature 
of the topic of the review and the rapid evolution of ML recently, we focus on tools 
from the last decade (2010–2020). We focus on tools that allow to create custom ML 
models, excluding tools for demonstration purposes. We also exclude any approach 
focusing only on the visualization of ML models or aiming at the complete automation 
of their development. Furthermore, we only include tools that have been developed 
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or used for educational purposes in K-12. Consequently, we exclude any ML tool tar-
geted exclusively for professional or adult end-users. We consider only articles that 
present substantial information allowing the extraction of relevant information regard-
ing the analysis questions. Therefore, abstract-only or one-page articles are excluded.

Sources. We searched the main digital databases and libraries in the field of com-
puting, including ACM Digital Library, ERIC, IEEE Xplore Digital Library, Sci-
enceDirect, Scopus, Web of Science, and Wiley with access via the Capes Portal.1 
We also searched on Google to find tools that have not been published in scientific 
libraries, as it is considered acceptable as an additional source aiming at the mini-
mization of the risk of omission especially regarding tools that may not yet have 
been published via the scientific databases (Piasecki et  al.,  2018). In order to fur-
ther minimize the risk of omission, we also included literature found via backward 
and forward snowballing (Wohlin, 2014). Secondary literature has been consulted to 
complete the information on the encountered tools.

Definition of the search string. Based on the research question, several informal 
searches were performed to calibrate the search string, identifying relevant search 
terms (Table 2). We also included synonyms to minimize the risk of omitting rel-
evant works. We did not include terms related to education as this in test searches 
returned mostly articles related to the application of ML techniques for learning ana-
lytics or personalized learning, rather than being related to teaching ML concepts. In 
order to minimize the risk of omission, we searched for the search terms not only in 
the titles but in the abstracts of the publications.

3.2  Execution of the search

The search was executed in February 2021 by the authors. The initial search 
retrieved a total of 1,974 artifacts on the scientific bases and 484,000 artifacts on 
Google (Table 3). Due to the large number of results of some searches, we restricted 
the analysis to the 300 most relevant ones. We quickly analyzed the search results 
based on their title and abstract. Irrelevant and duplicate papers returned by multiple 
searches were removed. This stage left us with 56 potentially relevant artifacts. Dur-
ing the second stage of selection, we analyzed the full text applying the inclusion 
and exclusion criteria to identify relevant ones.

Focusing specifically on ML, we excluded any tool providing general support for 
teaching AI such as Logo (Kahn, 1977). Aiming at support for the development of 
custom ML models, we also excluded tools for demonstration and visualization only, 
such as Tensorflow Playground (Smilkov et al., 2017), TensorBoard (Wongsuphasawat 
et al., 2018), and DeepGraph (Hu et al., 2018). We also excluded environments that 
support well-defined and controlled exercises, such as code.org’s AI for Oceans activ-
ity,2 Zhorai (Lin et al., 2020), PopBots (Williams et al., 2019), or Conversational AI 

1 A web portal providing access to scientific knowledge worldwide, managed by the Brazilian Ministry 
on Education for authorized institutions, including universities, government agencies and private compa-
nies (www. perio dicos. capes. gov. br).
2 https:// code. org/ oceans
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Table 2  Search string for each source

Source Search string

ACM Digital Library [Abstract: "visual programming"] OR [Abstract: "block-based program-
ming"] OR [Abstract: "gui tool"] OR [Abstract: toolkit]] AND [[All: 
"machine learning"] OR [All: "neural network"]] AND [Publication 
Date: (01/01/2010 TO 12/31/2020)]

ERIC ((abstract:“visual programming” OR abstract:“block-based programming” 
OR abstract:“gui tool” OR abstract:“toolkit”) AND (abstract:"machine 
learning" OR abstract:"neural network")) pubyear: since 2010

IEEE Xplore Digital Library (("Abstract":“visual programming” OR "Abstract":“block-based pro-
gramming” OR "Abstract":“gui tool” OR "Abstract":“toolkit”) AND 
("Abstract":"machine learning" OR "Abstract":"neural network")) 
Filters Applied: 2010—2020

Science Direct Year: 2010–2020 Title, abstract, keywords: (("visual programming" OR 
"block-based programming" OR "gui tool" OR toolkit) AND ("machine 
learning" OR "neural network"))

Scopus TITLE-ABS-KEY ((( "visual programming" OR "block-based program-
ming" OR "gui tool" OR toolkit) AND ( "machine learning" OR "neural 
network"))) AND PUBYEAR > 2009 AND PUBYEAR < 2021 AND ( 
LIMIT-TO ( SUBJAREA, "COMP"))

Web of Science (AB = (("visual programming" OR "block-based programming" OR "gui 
tool" OR toolkit) AND ("machine learning" OR "neural network"))) 
AND LANGUAGE: (English)

Timespan: 2010–2020. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-
S, CPCI-SSH, ESCI

Wiley "visual programming" OR "block-based programming" OR "gui tool" 
OR toolkit" in Abstract and "machine learning" OR "neural network" in 
Abstract (Filter 2010–2020)

Google "block-based" "machine learning"

Table 3  Number of artifacts identified per stage of selection

Source No. of search results No. of 
analyzed 
artifacts

No. of potentially 
relevant artifacts

No. of relevant artifacts

ACM 263 263 12 3
ERIC 160 160 2 0
IEEE 310 300 9 2
Science Direct 76 76 3 0
SCOPUS 703 300 8 4
Web of Science 434 300 8 3
Wiley 28 28 0 0
Google 484,000 300 14 5
Backward snowballing 15 6
Forward snowballing 7 3
Total 24 (without duplicates)
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(Van Brummelen et  al.,  2019), guiding the development of one specific model (or 
parts) and/or their deployment only. We also excluded visual tools targeting profes-
sional use and for which no applications in K-12 education have been reported, such 
as Apple Machine Learning,3 KNIME,4 Microsoft Azure,5 Nvidia Digits,6 Sony Neu-
ral Network Console7 (Hauck et al., 2019; Xie et al., 2019), among others. We also 
excluded block-based extensions such as BlockPy (Bart et al., 2017) or Jigsaw8 pro-
viding a combination of block-based interfaces with Python in Jupyter notebooks, as 
they are rather targeted at higher education students. Applying backward and forward 
snowballing based on the primary studies, we identified 9 additional artifacts. As a 
result, a total of 24 relevant artifacts of diverse types (Fig. 1) have been identified, rep-
resenting 16 tools.

4  Results

According to the analysis questions, relevant data has been extracted from the arti-
cles. If available, we have also consulted secondary literature, for example, academic 
works as well as exploring the tools themselves. Data extraction was done indepen-
dently by the authors and then revised by all authors until consensus was obtained. 
Varying terminology referring to the same concept has been unified and aggregated.

4.1  What visual tools for teaching ML exist?

As a result, we identified 16 visual tools developed or being used for teaching the 
development of custom ML models in K-12 (Table 4).

Most of the tools comprehensively support both the development of ML models 
and their deployment as part of software artifacts, such as games or mobile appli-
cations. The deployment is integrated into block-based programming environments 

Fig. 1  Quantity of relevant 
artifacts per type

8 https:// github. com/ Calys to/ metak ernel/ blob/ 3d79e fe571 75336 80116 9a31d 14891 4c8fb 4b0d2/ examp les/ 
Jigsaw% 20in% 20IPy thon. ipynb

3 https:// devel oper. apple. com/ machi ne- learn ing/ create- ml
4 https:// www. knime. com
5 https:// azure. micro soft. com
6 https:// devel oper. nvidia. com/ digits
7 https:// dl. sony. com
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Table 4  Visual tools for teaching ML in K-12

Name Brief description Scope Reference(s)

ML plat-
form

Deployment 
 platform9

AlpacaML An iOS application that 
supports users in build-
ing, testing, evaluating, 
and using ML models of 
gestures based on data 
from wearable sensors

x Scratch (Zimmermann-Niefield 
et al., 2020; Zimmermann-
Niefield et al., 2019a, b)

BlockWiS-
ARD

A visual programming 
environment that makes 
use of the WiSARD 
WANN to enable people 
to develop systems with 
some learning capability

x BlockWiSARD (Queiroz et al., 2020)

Cognimates An AI education platform 
for programming and 
customizing the devel-
opment of AI models 
embodied in devices, 
such as Amazon’s smart 
speaker Alexa, Cozmo, 
etc

x Scratch (Druga, 2018; Druga 
et al., 2019)

DeepScratch A programming language 
extension to Scratch 
that provides elements 
to facilitate building 
and learning about 
deep learning models 
by either training a 
neural network based on 
built-in datasets or using 
pre-trained deep learn-
ing models

x Scratch (Alturayeif et al., 2020)

eCraft2learn Additional blocks to the 
visual programming 
language Snap! that 
provides an easy-to-use 
interface to both AI 
cloud services and deep 
learning functionality

x Snap! (Kahn & Winters, 2017, 
2018; Kahn et al., 2018, 
2020)

Educational 
Approach 
to ML with 
Mobile 
Applica-
tions

A set of App Inventor 
extensions spanning 
several ML subfields, 
among which the Teach-
able Machine extension 
allows to develop an ML 
model

x App Inventor (Zhu, 2019)
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Table 4  (continued)

Name Brief description Scope Reference(s)

ML plat-
form

Deployment 
 platform9

Google 
Teachable 
Machine 
(TM)

A web-based interface 
that allows people to 
train their own ML 
classification models, 
without coding, using 
their webcam, images, 
or sound

x – (Carney, 2020)

LearningML A platform aimed at learn-
ing supervised ML for 
teaching ML in K-12

x Scratch (Rodríguez-García 
et al., 2020)

mblock A block and code-based 
programming software 
and its Teachable 
Machine extension that 
allows to create an ML 
model

x mblock https:// www. mblock. cc

Milo A web-based visual 
programming environ-
ment for Data Science 
Education

x – (Rao et al., 2018)

ML4K A tool that introduces ML 
by providing hands-on 
experiences for training 
ML systems and build-
ing things with them

x Scratch, App 
Inventor, 
Python

(Lane, 2018)

Orange A data visualization, ML, 
and data mining toolkit 
that features a visual 
programming front-end 
for exploratory data 
analysis and interactive 
data visualization

x – (Demšar, 2013; Godec 
et al., 2019)

Personal 
Image 
Classifier 
(PIC)

A web system where users 
can train, test, and ana-
lyze personalized image 
classification models 
with an extension for 
MIT App Inventor that 
allows using the models 
in apps

x App Inventor (Tang et al., 2019a, b)

RapidMiner Comprehensive data 
science platform with 
visual workflow design 
and full automation of 
ML solutions

x – (Sakulkueakulsuk 
et al., 2018)

Scratch-
NodesML

A system enabling chil-
dren to create personal-
ized gesture recognizers 
and share them

x Scratch (Agassi et al., 2019)
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typically used in K-12 such as Scratch, App Inventor, and Snap! (Fig. 2). Fewer tools 
support the integration with text-based languages such as Python.

Most of the tools are available online for free, but some require user registration 
and/or the use of API keys, which may be confusing for the target audience to obtain 
and to use (Table 8). The majority of the tools is available in English only. Only 
mblock and ML4K are available in several different languages supporting a wider 
application, as typically native languages are required on this educational stage.

4.2  What are their educational characteristics?

Following a strategy of learning by doing the tools are typically used in short dura-
tion extracurricular units, either as standalone units of about 1–4 h. In some cases, 
they are adopted as part of a more comprehensive ML course over several weeks 
covering also to a larger extend more theoretical knowledge and/or discussing ethi-
cal and societal impact of ML as well as career opportunities. And, although there 
are educational units focusing on younger children (from age 6 up), most concen-
trate on the high school level, with a considerable number also for middle school 
level. Several tools do not further specify an educational stage, targeting K-12 in 
general (Fig. 3).

In accordance with the current generalized lack of knowledge on ML, all tools 
are primarily targeting novices in ML. However, providing an advanced mode, some 

Table 4  (continued)

Name Brief description Scope Reference(s)

ML plat-
form

Deployment 
 platform9

SnAIp A framework that enables 
constructionist learning 
of Reinforcement learn-
ing with Snap!

x Snap! (Jatzlau et al., 2019)

9 We consider the availability of a deployment platform only when the tool allows the model deployment 
in platforms that can be directly accessed by the students.

Fig. 2  Supported environments 
for the deployment of the cre-
ated ML models
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of the tools also enable more knowledgeable users to interact on a more detailed 
level when building, training, and/or evaluating the ML model. Several tools assume 
that the users have experiences with the respective programming environment for 
deployment beforehand, for example, through coding classes.

Most tools are accompanied by educational units that are either just a practical 
activity typically guided by a step-by-step tutorial and example artifacts or, in some 
cases, also include a more theoretical part in form of expository lectures and/or vid-
eos. Several follow the use-modify-create cycle, encouraging the students also to 
create their custom ML model in the final stage of the educational unit (Table 5). 
Adopting a computational action strategy, several courses include the deployment of 
the developed ML models, allowing students to create a working intelligent solution 
in the form of a mobile app or game. Applying ML concepts through the creation of 
ML models, these units also provoke critical analysis of the obtained performance 
results as well as the strengths and weaknesses of ML in general. Varying degrees 
of educational support accompany the tools, including mainly step-by-step tutorials 
for hands-on activities using the tools. Further educational materials include lesson 
plans, slides, videos, examples, and exercises. Most of the accompanying educa-
tional units are available in English only.

4.3  What are their characteristics concerning the ML platform?

We identified three types of tool support for the development of ML models as 
illustrated in Figs. 4 and 6 and detailed in Table 9. Six tools, such as DeepScratch, 
eCraft2Learn, ScratchNodesML, and SnAIp provide block-based support by extend-
ing the respective programming environment providing specific ML blocks for data 
preparation, training, and evaluation. Yet, the majority (8 tools), including Google 
Teachable machine, PIC, and LearningML, adopt a workflow-based approach sup-
porting the development of the ML by guiding the user step-by-step via a web 
browser or app-based visual user interface. We also encountered reports of the 
usage of two data flow-based tools (Orange and RapidMiner) for teaching ML in 
K-12. Adopting a dataflow-based approach, they use boxes as entities, connected by 
arrows, lines, or arcs which represent directed relations and the data flow. Such data 

Fig. 3  Frequency of educational 
stages targeted by the tools
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flow-based tools provide much more detailed and complex functionality, enabling 
the user to even build the neural network architecture. This approach is typically 
adopted in visual ML tools for professional use.

All tools are limited concerning the ML task they support, focusing mainly on 
recognition, such as image or speech recognition, being the tasks in which current 
ML applications are being very successful (Fig. 5 and Table 9). Only eCraft2learn 
recently also added blocks supporting object detection and segmentation, while Zhu 
(2019) supports object detection. Other tasks covered, include speech synthesis by 
eCraft2Learn, clustering by Milo, and a game agent by SnAIp.

Fig. 4  Examples of ML development support

Fig. 5  Frequency of supported 
ML tasks
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The tools largely support all basic steps of a human-centric ML development pro-
cess (Fig. 6 and Table 9): first, they encourage the collection of small amounts of 
data and its labeling by organizing it into categories created by the user. Then, this 
data is used to train an ML model using transfer learning, which allows to build 
accurate models in a time-saving way, using diverse ML backends such as IBM Wat-
son, Keras, Tensorflow. Once the model is trained, its performance can be evaluated. 
This is done mostly by allowing the user to test the model with new data for which 
the model gives as output the predicted label. Fewer tools visualize also performance 
metrics, such as accuracy and loss function (Carney et al., 2020), or provide support 
to analyze the performance per image (Godec et al., 2019; Tang et al., 2019). Most 
tools support also the export of the created model for its deployment either directly 
to a block-based programming environment or in diverse formats (such as Tensor-
flow.js, Python, etc.). Yet, none of the tools supports requirements analysis. Feature 
engineering is also covered only by Orange and RapidMiner, as they support more 
comprehensively a variety of ML techniques, including decision trees, etc.

In this respect, the tools support an interactive way that allows the students to 
make any necessary corrections in an informed and systematic manner. The com-
prehensive support for the complete ML process including the opportunity for the 
students to perform data preparation and evaluation also enables them to construct a 
more accurate understanding.

The tools support a variety of data types, mostly images as summarized in 
Fig. 7  and detailed in Table 10. All of the tools expect users to collect their own 
data, having students creatively engage with data by incorporating datasets that 
learners can easily relate to and understand as suggested by Hautea et  al. (2017). 
Data collection is enabled via webcam, microphone, etc. Yet, for example, the col-
lection of even a small sample of images via webcam requires having the related 
objects nearby and can be somewhat tiresome after a while. Other tools focusing on 
specific types of inputs enable users to collect data from wearable sensors, or other 
physical devices, such as Alexa. Several tools also allow uploading files directly 
from the computer either as a batch or individually, which might be less efficient.

On the other hand, as it may be impracticable for students to collect data during 
the activities or in order to assure certain characteristics of the datasets, for exam-
ple, low-dimensional datasets when initially introducing concepts or datasets that 

Fig. 6  Frequency of tool types and steps of the ML process supported
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are on purpose “messy” when demonstrating issues of bias, it would be helpful to 
have some example datasets available (D’Ignazio, 2017; Sulmont et al., 2019). How-
ever, only a few tools provide easy access to datasets. Google Teachable Machine, 
for example as part of the “Ethics of Artificial Intelligence Curriculum for Middle 
School Students” (Payne, 2019) provides easy access to initial datasets available 
via google drive. Orange provides a widget to directly load data from 65 popular 
datasets, mainly from the UCI ML Repository and Milo and DeepScratch, the well-
known Iris dataset. DeepScratch also provides access to the MNIST dataset contain-
ing binary images of handwritten digits. A strength of several tools is the ease with 
which the dataset can be visually explored via the tools’ interface, allowing the user 
to systematically analyze and, if necessary, adjust the dataset.

As ML Backend, the majority of the tools use common ML frameworks or pro-
viders such as Tensorflow or IBM Watson, or their proprietary implementations 
(Table  6). The predominance of the use of Tensorflow.js can be explained by its 
ease of execution, without the need for client-side installation or a dedicated infra-
structure for the tool. To accelerate training, some tools adopt transfer learning 
approaches using MobileNet or SqueezeNet as pre-trained deep learning models for 
image recognition, etc.

In general, the tools support supervised learning, with few exceptions supporting 
reinforcement learning (Cognimates, ML4K, and SnAIp) and/or unsupervised learn-
ing (Orange, RapidMiner). Model training can be performed on the local machine 
(BlockWiSARD, RapidMiner), with some tools allowing the use of a cloud server 
(eCraft2learn, Cognimates) or directly on a mobile device (Zhu, 2019). Yet, most 
use the user’s web browser to train the model (Teachable Machine, PIC, Learn-
ingML, mBlock). As the model training process can sometimes be slow, tools that 
allow training locally can make use of the local machine’s GPU, when available, to 
speed up the training process (eCraft2Learn, RapidMiner).

Using visual tools, ML concepts are typically concealed with black boxes to 
reduce the cognitive load when learning (Resnick et  al.,  2000). Such abstractions 
of ML concepts include very high-level representations, as, in ML4K, training the 
model is reduced to a single action button. Yet, as this concealing of ML concepts 
limits people’s ability to construct a basic understanding of ML concepts (Hitron 
et al., 2019; Resnick et al., 2000), some tools provide advanced modes that provide a 
lower-level representation. For example, DeepScratch, eCraft2Learn, Milo and PIC, 

Fig. 7  Frequency of supported data types and input options
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allow defining parameters of the neural network architecture (such as type of model, 
number of layers, etc.), while data flow-based tools such as Orange, even provide 
low-level functionalities to build a neural network from neurons and layers. Such 
an advanced mode is also provided concerning training parameters (such as epochs, 
learning rate, batches, etc.) as part of DeepScratch, eCraft2Learn, Google TM, Milo, 
Orange, PIC, RapidMiner, and SnAIP. Yet, although some tools provide brief infor-
mation on the vocabulary and/or these parameters, no further help tailored to the 
target audience is provided to guide the selection of their values.

As uncertainty is an inevitable characteristic of ML models in most real-world 
applications, and, thus, when interacting with an ML model, it is important that 
users are aware of this uncertainty to manage their expectations on the model’s per-
formance (Dudley & Kristensson, 2018). Yet, the concept of a probabilistic model 
and its limitations can be difficult to convey to the students, who may have difficul-
ties comprehending the implications as studies show that even a single outlier in 
a classifier can result in significant confusion for users (Kim et  al.,  2015). In this 
respect, most tools also provide support for the evaluation of the trained ML model 
(Table 11), mostly by allowing the user to test the model with new data (captured 
via webcam, etc.) for which the model gives as output the predicted label to which 
the input belongs, and the confidence value representing the hit probability.

Fewer tools visualize also performance metrics, such as accuracy and loss func-
tion (Carney et al., 2020) (Fig. 8). Another approach is the visualization of a cor-
rectness table and/or confidence graph (Tang et  al.,  2019) (Fig.  9). A  correctness 
table shows all of the testing images and whether or not they were classified cor-
rectly. This helps users to infer why specific images were classified correctly or not 
by comparing the images to find similarities. A confidence graph shows all testing 
images for one label at a time based on model confidence. It allows users to infer the 
characteristics of images that a model learns for specific labels so that users can find 

Fig. 8  Frequency of evaluation metrics
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patterns in how the model makes decisions to improve its accuracy. LearningML 
intends to show in advanced mode also a confusion matrix, a table that in each row 
presents the examples in a predicted class while each column represents the exam-
ples in an actual class. These visualizations of the results of the classification, facili-
tate the identification of data that are not accurately classified, and thus, support the 
analysis of the students to improve the model’s performance. The use of examples 
to support the understanding of classes appears to be a promising solution that reso-
nates with users (Kim et  al.,  2015). Only tools targeting professional use such as 
Orange and RapidMiner, provide a more complete set of commonly used perfor-
mance metrics, including mean Average Precision, F1, among others.

Yet, considering the need for understanding of certain mathematical concepts, 
such as percentages, which are typically taught only at the end of primary school or 
beginning of middle school, the appropriate application of these concepts depend-
ing on the educational stage has to be carefully selected. No further guidance on the 
interpretation of value ranges and the performance level they indicate is given, nei-
ther tips on how to adjust the model if desired performance levels are not achieved. 
Providing such information as part of an educational tool could help the students to 
interpret and understand the results and to constructively guide them to learn how to 
improve the model.

Fig. 9  Examples of support for the evaluation of the ML models
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4.4  What are their characteristics concerning the deployment platform?

While some tools just support the export of the created ML model, several provide 
also support for the deployment as part of a game or mobile application, integrated 
or as an extension of a block-based programming environment (Fig. 10).

Depending on the specific task(s) the tool supports, ML programming blocks 
are provided to embed the created ML into the project (Table 12). By far the most 
adopted block-based environment is Scratch followed by App Inventor (Fig. 2). To 
embed the created ML models, these extensions provide additional programming 
blocks. Depending on the variety of tasks supported by the tool, this may range from 
very few blocks (such as 3 image recognition blocks) to larger sets with up to 119 
blocks (DeepScratch) for diverse purposes (Table 12). In general, these new blocks 
are designed in conformance with the visual design of the respective block-based 
programming language.

In this way, the tools allow students to learn ML concepts while empowering 
them to create meaningful artifacts with a direct impact on their lives and their com-
munities. This may motivate them to create innovative applications that match their 
interests and passions providing a learning tool with wide walls (Kahn et al., 2020).

Fig. 10  Example of block-based deployment support (PIC and Cognimates)
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4.5  How have the ML tools been developed and evaluated?

Most of the encountered publications lack a description of the research methodology 
adopted to develop the ML tools (Table 13). Only Queiroz et al. (2020) indicate an 
alignment with Constructivism, Constructionism and knowledge building and intel-
ligent agents, learning process, and the perception of intelligence, Druga et al. (2019) 
used a participative design approach with codelab sprites, and Alturayeif et al. (2020) 
used an incremental agile model. The source code of several tools (Table 13) is avail-
able under open-source licenses allowing their evolution and adaptation.

However, several studies aiming at the evaluation of the tools are reported (Table 7). 
The factors evaluated range from the tools’ effectiveness on the students’ learning, usabil-
ity, usefulness, and efficiency to the identification of their strengths and weaknesses. The 
evaluations have been conducted as case studies or report applications in an informal way 
(Carney et al., 2020). Sample sizes are mostly small, ranging from 5 to 23 participants, 
only Kahn and Winters (2018) presented a study with 40 students, Sakulkueakulsuk et al. 
(2018) with 84 students and Druga et al. (2019) present a large replicated international 
study including 102 children. The findings of these studies indicate that the tools help to 
leverage the students’ domain knowledge to collect data, build models, test, and evaluate 
models by allowing them to conduct rapid iterations to test hypotheses about model per-
formance and reformulate their models. They also rated the tools’ usability as very good. 
Furthermore, the tools seem to help students to develop and discuss theories about how 
the models work, and the characteristics of a good model, thus, helping them to grasp 
even complex ML concepts as well as to critically reflect on the impact of ML in practice. 
The integration into general block-based programming environments also enables the cre-
ation of engaging and purposeful artifacts.

5  Discussion

Considering the recentness of the trend to teach Machine Learning in K-12, we identi-
fied a considerable amount of 16 tools. These tools support exploration allowing stu-
dents to try out different alternatives and create their custom ML models. Providing a 
visual interface, the tools allow the students to interact and execute a human-centric 
ML process in an interactive way using a train-feedback-correct cycle, enabling them 
to iteratively evaluate the current state of the model and take appropriate actions to 
improve it. This plays a critical role in order to demonstrate the limitations and impli-
cations of ML in practice. Most of these tools have a simple and appealing design that 
allows intuitive user interaction and easy task accomplishment. The majority of the 
tools are proposed in the context of block-based programming environments such as 
Scratch, Snap!, and App Inventor, typically adopted at this educational level.

Although there can be observed a slightly larger number of tools targeting the 
high-school level, a considerable number of tools also aims at K-12 in general, pro-
viding, thus, support for various educational stages. Taking into account the current 
situation, in which most students in K-12 do not have any previous knowledge on 
Artificial Intelligence or Machine Learning, most of these tools are appropriately 
designed for novices. Thus, following the design principles proposed by Resnick 
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et al. (2005), these tools provide a low threshold, high ceiling, and wide walls. By 
concentrating on essential features allowing users to learn how to use them and to 
assemble models quickly in a completely no-code fashion, especially workflow-
based tools are well aligned with the novices’ cognitive process. On the other hand, 
block-based tools adopting a programming approach to the development of ML 
models are more complex, requiring the students to have a prior understanding of 
coding concepts and practices. Data flow-based tools, such as Orange or Rapid-
Miner, that even enable the user to assemble the ML model from scratch, are mostly 
used in advanced contexts being designed rather for professional use than K-12 edu-
cation. And, by providing support for the development of custom ML models, the 
tools also provide support for a “high ceiling”, which means that the tools are suf-
ficiently powerful to create sophisticated, complete solutions.

Furthermore, to allow students to create their own ML models adopting a compu-
tational action strategy to make computing education engaging, it is also necessary 
that these tools provide a structure for common processes while remaining flexible 
to account for variability in problems (Patel, 2010). Considering object recognition 
being currently one of the most typical ML tasks, the majority of the tools only 
support the development of ML models for recognition tasks, mostly image recogni-
tion. Being one of the most straightforward ML tasks, this seems to be adequate for 
starting to learn ML. Following the current trend on transfer learning, most of the 
tools provide adequate support for this technique adopting prominent Deep Learning 
models, such as TensorFlow.

Following the strategy to make it easy to get started but providing room to use 
more complex concepts, these tools tend to abstract key operations during the learn-
ing process. Especially workflow-based tools are in alignment with this require-
ment abstracting the ML process as much as possible. For example, training an ML 
model in ML4K is reduced to click one action button. These tools are also designed 
most straightforwardly, limiting the features they offer to only essential ones, leav-
ing part of the process as a black box. Yet, this concealing of ML concepts limits 
people’s ability to construct a basic understanding of ML concepts and seems to not 
only result in a smaller learning effect but no learning at all (Hitron et al., 2019). 
Therefore, the goal has to be to create an ML learning environment with sufficient 
scaffolds for novices to start to create ML models with little or no formal instruc-
tion (low threshold) while also being able to support sophisticated programs (high 
ceiling). To simultaneously target different kinds of users, some of the tools (i.e., 
DeepScratch, Google TM, Orange, PIC, SnAIp) offer advanced modes in which 
they allow more advanced students to define hyperparameters for training (such as 
learning rate, epochs, batch size, etc.) or more detailed evaluation metrics while hid-
ing these details from novices. Yet, designing these tools, one of the most important 
decisions is the choice of the “primitive elements” that users will manipulate. Future 
research is necessary to explore this issue and identify the balance between uncover-
ing carefully selected underlying concepts while minimizing the cognitive load as 
much as possible and adequately support learning progress.

Some tools provide more varied support for diverse ML tasks and/or data types 
(such as images, speech, pose, etc.), which may evolve in the future with K-12 
students becoming more advanced in ML. Yet, even providing support for the 
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development of custom ML models for one specific task already opens an enor-
mous opportunity for exploration and the development of original solutions, con-
tributing also to the development of creativity as an important 21st-century skill. 
It also provides the opportunity of an interdisciplinary insertion of ML education 
in traditional K-12 disciplines as well as supporting education paradigms such as 
“computational action” that aims at learning the creation of useful computational 
artifacts for social aims, empowering young people to impact their communities 
by becoming creators in the digital economy (Weintrop et  al.,  2020). It can be 
expected that future research will further explore the vast possibilities of applying 
ML for different data types and tasks such as object detection and natural language 
processing including support for a larger variety of tasks and data types by these 
visual tools.

Several tools also provide support for the deployment of the custom ML model 
as part of a game or mobile application, either integrated or as an extension of a 
block-based programming environment. Such support is essential to teach not only 
the development, but also the deployment and consequent usage of the created mod-
els, and, thus, demonstrate the usefulness of this knowledge as part of the students’ 
life and community for solving real problems. Yet, regarding some tools, little or 
no support for deployment is provided. For example, although Google Teachable 
Machine provides code snippets for deploying the created model as a tensorflow.js 
within a web browser, more detailed and age-adequate educational support teaching 
deployment on this educational level is not yet available. Especially considering the 
popularity of Google Teachable Machine as a visual tool for creating ML models, it 
would be important to create such support for deployment, including technical infra-
structure as well as educational material covering this step.

In accordance with the current situation, in which Artificial Intelligence/ML con-
cepts are not included in K-12 curriculums in most countries, the majority of the 
educational units developed for teaching ML using the visual tools are designed for 
short-duration extracurricular activities. Several provide step-by-step tutorials for 
hands-on activities, as well as lesson plans, slides, etc. Yet, most of the educational 
resources are available in English only, hindering a wider worldwide adoption, as 
these materials need to be available in the native language of the students at this 
educational stage. This indicates not only the need for the translation of the exist-
ing educational units to different languages but also the customization of the top-
ics addressed to motivate the students by presenting problems that are of interest in 
their specific local context, such as e.g., the example of classifying the ripeness of 
mangos as proposed in the application in Thailand by Sakulkueakulsuk et al. (2018).

Considering these visual tools as a means for learning, we observed that so far, they 
seem not to provide a more comprehensive educational support, as typically offered 
by other visual environments aiming at teaching algorithms and programming. This 
includes for example the provision of instructions and constructive hints as part of 
the tool environment. And, although some of the block-based visual tools are directly 
integrated within the same environment in which the deployment of the custom ML 
models takes place, this is not the case for most other tools. Therefore, a better integra-
tion of the visual tools within the deployment environment would eliminate the need 
for the usage of different tools. Another issue is collaborative learning, commonly 
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adopted in computing education in K-12 by students working together in small groups 
to maximize their own and each other’s learning and motivation (Bellanca et al., 2010; 
Gillies, 2016; Johnson & Johnson, 2014). Yet, we did not encounter any support for 
developing the ML solutions as a team, which may complicate their application in an 
educational context in practice. Observing also the popularity of sharing projects as 
part of several block-based programming communities (such as Scratch), only mblock, 
as part of their community platform, supports students to share their created ML mod-
els and/or to remix ones from the community.

Another issue is the lack of support for a performance-based assessment of the 
created ML models, representing the learning outcome. Neither the tools nor the 
associated educational units provide any kind of embedded or associated support. 
Yet, assessment in the learning process is important to provide feedback to the 
learner, teacher, and other interested stakeholders. And, observing the availability 
of such assessments, even in automated ways for “traditional” block-based program-
ming languages (e.g., Dr. Scratch (Moreno-León & Robles, 2015) or CodeMaster 
(Alves et al., 2020; Gresse von Wangenheim, 2018; Solecki et al., 2020), the need 
for such support also in the context of ML education becomes evident. We also 
observed that most tools do not provide any kind of support for teachers to monitor 
their students’ learning. An exception is the ML4K tool environment, for which just 
very recently has been added a teacher supervision functionality that lists the pro-
jects and the training data of all students in a class.

This indicates diverse research opportunities by extending the tools’ functionalities 
including support for collaborative teamwork and sharing as well as in some cases a 
more comprehensive embedding in environments covering also deployment. And, in 
addition, the integration of teacher support, especially visioning the automation of the 
performance-based assessment of the learning outcomes created by the students allow-
ing also timely feedback to the students themselves to guide their learning process.

Most of the visual tools are free and are available online, making installation 
unnecessary, but on the other hand requiring a continuous internet connection dur-
ing class, which may be a problem in some educational contexts. Some tools require 
user registration and/or the use of keys which can be complicated for the target 
audience. Model training is mostly done through cloud-based services such as IBM 
Watson or Google Machine, which makes advanced machine learning capabilities 
approachable. Few tools (such as mblocks or ML4K) provide hybrid support, offer-
ing a textual programming alternative for more advanced use preparing a transition 
to text-based ML environments using Python.

Analyzing the publications, we observed a generalized lack of information on how 
the tools have been developed. Yet, a systematic methodology for the design of such 
tools including the analysis of the educational context, their design as well as the adop-
tion of a systematic software development process is essential to develop tools that 
satisfy the needs effectively and efficiently. As with few exceptions, empirical studies 
evaluating the tools are also rather exploratory regarding the quality factors evaluated, 
research design as well as sample size. As a consequence, there still seems to be lack-
ing evidence on which tools may be best for certain educational stages, educational 
contexts, etc. to guide their selection in a sound way. Thus, there is a need for more 
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empirical research analyzing diverse aspects of these visual ML tools to systematically 
evolve and improve these tools for better support of ML education in K-12.

Threats to validity. In order to minimize threats to the validity of the results of 
this study, we identified potential threats and applied mitigation strategies. System-
atic reviews suffer from the common bias that positive outcomes are more likely to 
be published than negative ones. However, we do not consider this a critical threat 
to our research as rather than focusing on the impact of these tools, we aimed to 
characterize the tools themselves. To mitigate the omission of relevant studies, we 
carefully constructed the search string to be as inclusive as possible, considering 
not only core concepts but also synonyms. The risk of excluding relevant primary 
studies was further mitigated by the use of multiple databases and the inclusion of 
secondary literature. Threats to study selection and data extraction were mitigated 
by providing a detailed definition of the inclusion/exclusion criteria. We defined and 
documented a rigid protocol for the study selection and all authors conducted the 
selection together, discussing the selection until consensus was achieved.

6  Conclusion

This paper presents a systematic mapping of visual tools for teaching Machine 
Learning in K-12 in the last ten years (2010–2020). As a result, we identified 16 
tools providing a visual interface that allow the students to interact and execute 
a human-centric ML process in an interactive way. Most of the tools are targeted 
mainly at beginners at the high school level or K-12 in general. Following design 
principles proposed by Resnick et  al. (2005), these tools provide a low threshold 
and wide walls concentrating on essential features to allow users to learn how to 
use them and to assemble results quickly, while some simultaneously target “high 
ceilings”, offering advanced modes that allow the configuration of the ML process. 
Most tools focus on recognition tasks, providing support for the complete ML pro-
cess, from data preparation to evaluation using different types of visual representa-
tions. The majority of the tools are integrated into common block-based program-
ming languages, allowing for the direct deployment of ML models created as part 
of intelligent software solutions. Several tools are accompanied by educational units 
for teaching, yet, most of them are only available in English. Therefore, further edu-
cational material is required to facilitate a wider application in other countries con-
sidering also locally relevant problems to adequately motivate the usefulness of this 
kind of knowledge. Furthermore, the tools need to be enhanced in order to support 
collaborative teamwork and the sharing of the learning outcomes, as well as to pro-
vide in some cases a more direct integration with the deployment environment. This 
also includes the need for support for automatic assessments guiding in a timely 
fashion the learning process of the students as well as easing the teachers’ effort.

In general, we observed a lack of information on how the tools have been devel-
oped and evaluated, although, the results of few explorative empirical studies indi-
cate the usability and usefulness of these tools in K-12. Yet, there is still a need 
for more empirical research analyzing diverse aspects of these visual ML tools to 
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systematically evolve and improve these tools for better support of ML education in 
K-12.

As a result, this mapping can help instructional designers and educators to choose the 
most appropriate tool for their educational goals and contexts. Furthermore, the results of 
the mapping also point out several implications for future research in this area, including:

• Development of tools for the introduction of Machine Learning at earlier educa-
tional stages, such as middle school, to further popularize knowledge on Artifi-
cial Intelligence and Machine Learning.

• Large-scale applications and studies of learning progress in K-12 regarding ML 
concepts and practices to identify the balance between uncovering carefully selected 
underlying concepts while minimizing the cognitive load as much as possible.

• Enhancement of tools for the support of a greater variety of ML tasks to offer 
more contents alternatives and facilitate the interdisciplinary integration of 
teaching ML into existing K-12 curricula.

• Extending the provision of adequate support for deployment as part of some of 
the tools, such as the popular Google Teachable Machine, including technical 
infrastructure and educational material.

• Provision of support for different levels of learners concerning their knowledge 
in Machine Learning and Programming, as once more students have partici-
pated in introductory ML courses, a greater need for intermediate and advanced 
courses will arise.

• Provision of tool support for different learning modes, such as online learning, 
especially motivated also by the current COVID-19 situation.

• Analysis of learning performance to improve the underlying learning strategies 
and consequently the respective tool support to systematically help students to learn 
Machine Learning concepts effectively, efficiently, and in a creative and engaging way.

• Adoption of rigorous scientific methodologies for the development of tools and their 
functionality, in addition to the conduction of more rigorous studies analyzing more 
comprehensively and systematically the impact of these tools on ML learning in K-12.

As the results of this mapping also provide a first indication that the adoption 
of visual tools for teaching ML in K-12 can be beneficial and provide a valuable 
contribution especially for novices and considering the current importance of the 
popularization of AI/ML, it also provides a basis for further research in this area to 
support the teaching of this innovative knowledge area in K-12.
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