
Vol.:(0123456789)

https://doi.org/10.1007/s10639-021-10546-8

1 3

Teaching highly mixed-ability CS1 classes: A proposed
approach

Abdallah Mohamed1 

Received: 13 January 2021 / Accepted: 11 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
With the increased reliance on technology, computer programming has emerged as
an essential skill that is interesting to many audiences beyond merely computer scien-
tists. As a result, many students from various disciplines take first-year computer sci-
ence courses. This led to classrooms with a lot of diversity in student motivation, back-
grounds, learning needs, and educational levels. Teaching the same material to such
a diverse group is challenging. The aim of this paper is two-fold. Firstly, we present
a flipped-based approach that benefits from the mixed-ability nature of first-year pro-
gramming courses rather than considering it as a burden. Secondly, we present a study
that evaluates the extent to which the proposed approach enhances student learning in
such a mixed-ability environment. The study was conducted in a first-year course at the
University of British Columbia – Okanagan, and it was based on three components:1)
a survey of 25 Likert items(n = 46), 2) class average grade and pass rate over 6 years
(n = 42 + 38 + 56 + 79 + 90 + 74), and 3) student ratings of the course over 5 years
(n = 42 + 38 + 56 + 79 + 90). Findings of the survey indicate an overall positive students’
impression with no significant difference in the opinions of various student populations.
Analyzing the course grades, pass rates, and student ratings confirmed the survey find-
ings and showed an overall improvement in grades, pass-rates, and student satisfaction.

Keywords  Programming for all · CS1 · Active learning · Flipped classroom · Mixed-
ability classes

 *	 Abdallah Mohamed
	 abdallah.mohamed@ubc.ca

1	 Department of Computer Science, University of British Columbia-Okanagan, Kelowna, BC,
Canada

Education and Information Technologies (2022) 27:961–978

Published online: 2 July 2021/

http://orcid.org/0000-0003-0941-2645
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-021-10546-8&domain=pdf

1 3

1 � Introduction and motivation

Computer programming has been playing an integral role in many industries. As a
skill, programming has increased in value across many disciplines and audiences
beyond merely computer scientists. It is, therefore, no surprise that first-year com-
puter science (CS1) programming courses attract a diverse crowd of students with
mixed abilities and backgrounds (Dawson et al., 2018; Fassbinder et al., 2015).
Records at the University of British Columbia – Okanagan (UBC-O), for exam-
ple, show that students from Computer Science, Management, Engineering, Media
Studies, Arts, and Human Kinetics were enrolled in one or more CS1 programming
courses. Teaching the same material to such mixed-ability classrooms poses an
interesting challenge to the instructor. This challenge must be carefully addressed as
many students are already struggling to learn to program (Bennedsen & Caspersen,
2007; Lahtinen et al., 2005; Robins et al., 2003), and these courses already suf-
fer from high failure and attrition rates (Beaubouef & Mason, 2005; Bennedsen &
Caspersen, 2007; Watson & Li, 2014).

Traditional teaching style has been argued to be insufficient in supporting
students in mixed-ability classrooms (Koutselini, 2006; Valiande & Koutselini,
2009). Instructors need to find creative ways to reach all students and increase
their motivation and success. Several technical reports approach this problem
from different perspectives and in different contexts. Tomlinson (Tomlinson,
2017) suggests using differentiated instruction for kids in grade school, and she
also provides guidelines for teachers to tailor their instruction to reach indi-
vidual learners. Haatainen et al. (Haatainen et al., 2013) considered differen-
tiated instruction and social barriers (i.e., whether students felt comfortable
requesting help) when teaching CS1 courses. Salli-Copur (Şalli-Çopur, 2005)
suggests using class activities and extra homework, and to base the teaching
on a meaningful context which appeals to all students. Roberts (Roberts, 2016)
argues that collaborative learning can mutually benefit both lower-ability and
more-capable students.

On the other hand, the flipped classroom model (Talbert, 2017) has shown a
promise to enhance student learning and success in general (Bishop & Verleger,
2013; Knutas et al., 2016; Lage et al., 2000; Rosiene & Rosiene, 2015). In this
model, students are introduced to learning materials before class to allow using
the class time for problem-solving activities and peer instruction. The flipped
model has been adopted in various disciplines (e.g., (Lockwood & Esselstein,
2013; Maher et al., 2015; Moravec et al., 2010; Toto & Nguyen, 2009)), and it
has proven to be successful for teaching programming in the CS domain (e.g.,
(Çakıroğlu & Öztürk, 2017; Elmaleh & Shankararaman, 2017; Fassbinder et al.,
2015; Indi, 2016; Zhuo & Qi-Xian, 2015)).

In this paper, we present a successful flipped-based course design, named
T-MACS1, for Teaching Mixed-Ability CS1 programming classes. The design
uses several pedagogical strategies that benefit from the mixed-ability nature of
the student body. We have been successfully using this design for the past three

962 Education and Information Technologies (2022) 27:961–978

1 3

years in a highly mixed-ability first-year course, namely COSC 123: Computer
Creativity.

The paper also presents a study that confirms the effectiveness of the approach
in terms of student learning and satisfaction. The study involves a survey that
is used to get insights into student perceptions of the flipped design and how it
affected their learning inside and outside of the classroom. The survey also offers
a platform to investigate whether there was a significant difference between the
responses of different student populations. To validate the survey findings, we
compared the class average grades, pass rates, and student ratings of the new
design against previous offerings of the same course, taught by the same instruc-
tor using the traditional teaching style.

The rest of this paper is structured as follows: Section 2 gives a brief overview of
COSC 123 and summarizes the variances among its student populations. Section 3
presents the proposed T-MACS1 approach. Sections 4 to 6 present the study and its
findings. Section 7 discusses the limitations, Section 8 includes the conclusions and
our future work.

2 � COSC 123: A highly mixed‑ability course

COSC 123 (Computer Creativity) provides students with a hands-on introduction to
programming and computer-based problem solving and creativity. The course aims
to attract non-CS majors, women, and underrepresented groups in order to motivate
them to try computer science by emphasizing the creativity aspect of programming.
With the course growing significantly, it now has a very broad and mixed-ability
student body, which can be very challenging to teach. Such large diversity can be
described in terms of the following aspects:

a)	 Diversity in programming background: COSC 123 has one of two prerequisites,
either COSC 122 or COSC 111 (Fig. 1):

Fig. 1   Prerequisite structure resulting in the highly mixed-ability nature of COSC 123

963Education and Information Technologies (2022) 27:961–978

1 3

•	 COSC 122 (Computer Fluency) teaches students the basics of programming
using JavaScript during one-third of the semester. The remaining time is used
to introduce students to other CS fundamentals such as databases and security.
Students finishing this course usually have little programming proficiency. Most
non-CS students and some CS students use COSC 122 as a prerequisite for
COSC 123.

•	 COSC 111 (Computer Programming I) uses the entire semester to teach algo-
rithmic thinking and programming using Java. Students finishing this course are
much more proficient in programming compared to those who only took COSC
122. Most CS students use COSC 111 as a prerequisite for COSC 123.

b)	 Diversity in motivation, learning needs, and educational level: COSC 123
is part of several programs at UBC-O that require different levels of com-
puter-programming proficiency. The course was mandatory in the Bachelor
of Media Studies,1 an elective in several disciplines, and part of CS majors
and minors in Science, Arts, Engineering, Data Science, and Management.
Observations and interviews with students over six years have shown that their
learning needs and motivations to take the course are notably different. For
example, while many students were interested in improving their program-
ming skills, others were inclined to the creativity aspect of the course or just
getting an easy credit (e.g. senior students).

Based on points (a) and (b) above, the student body in COSC 123 can be loosely
classified into four populations:

•	 P1: CS students who finished COSC 111: usually good programmers with high
motivation.

•	 P2: CS students who finished COSC 122: usually weak programmers with high
motivation.

•	 P3: non-CS students who finished COSC 122: often weak programmers; motiva-
tion varies but usually low.

•	 P4 non-CS students who finished COSC 111: often good programmers; motiva-
tion varies but usually low.

2.1 � The older course design

Traditional lecturing was used to teach COSC 123 from 2009 (when it was first
offered) to 2017. This was a suitable method back then due to the small class sizes
and little student diversity. The average number of registered students was 33 from
2009 to 2016. However, this number has significantly increased since then. We
had 56 students in 2017, and then an average of 82 students from 2018 to 2020.
Although this is a positive change, it introduced more diversity and challenge, caus-
ing the traditional lecturing style to become less and less suitable. Some students felt

1  In 2020, the course became an elective in this program.

964 Education and Information Technologies (2022) 27:961–978

1 3

overqualified and unhappy about the redundancy the course has with its prerequisite,
and others struggled to develop valid programs, despite their familiarity with the
code syntax and semantics. Students expressed these concerns both verbally and in
their written evaluations of the course.

3 � T‑MACS1: A proposed approach

In 2018, we completely redesigned COSC 123 (Mohamed, 2019) in order to
address students’ concerns and handle the emerging mixed-ability nature of the
course. The design process focused on three questions:

1.	 How to teach programming fundamentals in a way that is new and appealing to
everyone (especially those who already have good programming background as
with P1 and P4 students)? The aim here is to reach all students and keep them
motivated and engaged.

2.	 Which programming language to use? COSC 123 is a prerequisite for a few other
CS courses that use Java (Fig. 1). Consequently, Java might seem to be the logical
choice. However, depending on students’ previous experiences, some had a good
knowledge of Java while others were intimidated to learn it. Therefore, we needed
a language that is similar to Java (to help those who take subsequent CS courses)
and, at the same time, simple and interesting enough to engage everyone.

3.	 How to address the large variance in students’ skills when working on class exer-
cises? The use of classroom activities proved to be a successful active learning
strategy in the original course design, and therefore we decided to keep using this
technique. However, we noticed significant time differences among student groups
when finishing these activities, which sometimes resulted in more experienced
students getting bored and even misbehaving while waiting for others who were
still struggling to finish the same activities.

In our effort to answer the above questions, we partially flipped the course and
we integrated five pedagogical strategies into a novel design that benefits from
the mixed-ability nature of the course rather than considering it as a burden.
These strategies along with the overall teaching approach (called T-MACS1) are
shown in Fig. 2.

a)	 Partially flipped classroom FC

The flipped model was a key component and a perfect fit for our new course
design. Learning programming focuses on algorithmic thinking and writing code.
Hence, the time spent in class would be better used for active learning, where
students develop algorithms and programs while getting feedback from others,
rather than passively receiving information from the instructor.

To address the mixed-ability nature of the class, we used the partially flipped
model (Knutas et al., 2016; Talbert, 2017). In our design, we flipped lectures with

965Education and Information Technologies (2022) 27:961–978

1 3

topics that we believed students could learn on their own, while we taught other
topics using traditional teaching reinforced by observational learning (Shettleworth,
2010) (discussed in point (d) below).

The flipped lectures used pre-class material such as lecture notes, short videos,
animations, and coding examples. The material was designed such that it: (1) lists
specific learning objectives that guide students to what they need to learn, and (2)
is not overwhelming, primarily keeping in mind the weaker programmers.

We used short quizzes (using clickers) at the beginning of each flipped lecture
to assess student understanding and motivate them to finish the pre-class work.
Students had to answer these quizzes individually. The first question was always
on whether students had finished the pre-class material and understood them.
Most students indicated that they had no issues finishing the pre-class work.

After the quizzes, we had open discussions on topics that were confusing to most
students. Then, students were asked to use the remaining time of the class to finish
coding assignments, with the deadline set at the end of the class or shortly after.

LAB-WORK
Exercises and Assignments

using pair programming

TPS PPGP

Flipped Lectures

PRE-CLASS

Short Exercises

CLASSROOM

Problem solving
(by students)

Tradi�onal Lectures

PRE-CLASS
Students are asked to

quickly review the
lecture notes.

CLASSROOM

Lecture given by the
instructor. Several ideas

and challenges are
discussed interac�vely.

Problem solving (by
students, if �me allows)

GPFC

CP

OL

TPS PPGPFC

TPS PPGP

AFTER-CLASS
Reading material
Discussion forums
Solved Exercises

Finish unsolved problems

GP

SHORTLY AFTER-CLASS

Finish Unsolved Problems

CPPPGP

Reading material
Videos
Code Examples
Discussion forums

1. Overview of
pre-class material.

2. Short Quiz (clickers).
3. Students-led Q/A’s.

TPS

Think-Pair-
Share

PP

Pair
Programming

OL

Observational
Learning

GP

Game
Development

with Processing

FC

Partially
Flipped Class

CP

Contingency
Plans

T-MACS1

Fig. 2   T-MACS1 Approach: Key Elements (left) and Course Design (Right)

966 Education and Information Technologies (2022) 27:961–978

1 3

b)	 Game development using processingGP

We researched several programming languages and application domains and
eventually chose Processing (Reas & Fry, 2006), an open source library and
a programming environment that are used to code within the context of the
visual arts. Processing uses simplified Java syntax to create visual, interactive
media. The first steps in learning Processing involve creating and animating
basic shapes using buil-in functions (e.g. to display a circle located at (x,y),
use circle(x,y,d), where d is the diameter). In our course, students were able
to learn programming fundamentals while developing interactive animations
and games, wherein they had to algorithmically solve problems related to game
design, e.g., to use conditionals to check if two-game items collide – see the
example in the appendix.

By using Processing, we emphasized topics that were previously taught in
the prerequisite courses while simultaneously introduced new topics within an
engaging application domain that appeals to most, if not all, senses and compe-
tencies in the class (Guzdial, 2010; Leutenegger & Edgington, 2007). Despite
the differences among students in terms of language proficiency or previous
experience, this programming environment was new and interesting, and hence
enhanced the motivation of almost everyone.

An additional benefit of using Processing was to prepare students to join other
CS courses that also use Java. As Processing only uses simplified Java syntax, we
dedicated one lecture at the end of the course to help students with the transition
from Processing to the standard Java development environment.

c)	 Pair programming PP

This technique has been proven to be successful in supporting the flipped
teaching in CS education (Maher et al., 2015). Studies show that using Pair Pro-
gramming in CS courses leads to better learning and retention rates (McDowell
et al., 2006; Porter et al., 2013). In this paradigm, students are paired together
to develop a program. One student works as a driver and the other as an
observer, frequently swapping roles while sharing ideas and giving instructions
to each other.

In our design, we addressed the large variance in students’ skills by pairing stu-
dents such that each group had a strong programmer paired with a weak one. We
used the prerequisite courses to identify strong and weak programmers. In a few
cases, we did not have enough students who finished COSC 111 (i.e. strong pro-
grammers), so we asked about other prior programming experiences (e.g. high-
school CS courses) and used that information for balancing the programming skills
across all groups. Whenever students were engaged in class exercises, the instruc-
tor’s role was to monitor and guide different groups while ensuring that students
were alternating roles and supporting each other.

967Education and Information Technologies (2022) 27:961–978

1 3

d)	 Observational LearningOL

Several topics were taught using the observational learning technique (Shettleworth,
2010) in which the instructor solved coding exercises step-by-step, and encouraged stu-
dent teams to code with him and to provide suggestions on the next steps.

The new programming environment and application domain (i.e., Processing and
visual arts) worked very well with the observational learning technique. Almost eve-
ryone was actively engaged as many students found it fun to work with the instructor
and visualize the results almost instantly on their own machines, and then experi-
ment with the code in order to alter or enrich their visual results.

We also found that observational learning was very beneficial in combination
with pair-programming. Students were able to receive instant feedback from their
peers while coding with the instructor. This helped them keep pace and motivated
them to finish, and even extend, the work at hand.

e)	 Think-pair-shareTPS

We frequently used the think-share-pair cooperative structure (Kothiyal et al.,
2013; Lyman, 1987) in both traditional and flipped lectures in a way that benefits
from the mixed-ability nature of the class. In our design, the pairing part was done at
two levels: first, student-teams discuss internally, and then each team exchange ideas
with other teams. This helped to actively involve all students and allowed them to
see the problem from different angles and to learn from each other.

f)	 Contingency plansCP

To respond to those who finish the class exercises sooner than others, bonus tasks
were prepared as contingency plans. Tasks included going deeper into the lecture
topics and working on more creative designs or complex interactions within the ani-
mation or game at hand. These exercises were made available to students to submit
either during the lecture or after class.

4 � Validation

In order to explore the extent to which the T-MACS1 approach enhanced students
learning in COSC 123, as an example of a highly mixed-ability first-year program-
ming course, we conducted a study that is based on three components:

1.	 A survey (25 Likert items completed by 46 students).
2.	 Class average grade and pass rate (3 years of the new design compared to 3 years

of the old design).
3.	 Student ratings of the course (2 years of the new design versus 3 years of the old

design).2

2  Student evaluations of the course was suspended in 2020 due to COVID-19.

968 Education and Information Technologies (2022) 27:961–978

1 3

Section 5 covers point (1), and Section 6 covers (2) and (3).

5 � The survey: Capturing student perceptions

The survey aims to get insights on how students perceived the usefulness of the
flipped course design. With the study objective in mind, the following research ques-
tions were formulated:

RQ1:	 What are the overall student perceptions of the partially-flipped T-MACS1
design?

RQ2:	 How does the flipped model affect student learning inside a mixed-ability
classroom?

RQ3:	 To what extent does the flipped model improve a student’s self-directed learn-
ing process?

RQ4:	 What are student perceptions of some of the techniques used to support the
flipped model?

In addition, we investigate whether there is a significant difference between the
responses of different student populations enrolled in the course.

5.1 � Survey design

We used an online questionnaire to collect data from students on the above ques-
tions. To ensure that we have no biased results, no incentives or penalties were given
to participants, and the course instructor was not allowed access to collected data
until the grade appeal process was completed. An unbiased third-person explained
the study procedure to students and invited them to participate, and then collected
and stored data on behalf of the course instructor.

The survey was completed by 46 students whose profiles are shown in Tables 1 and
3. Participants were composed of 25 (54.3%) good programmers and 21 (45.7%) weak
programmers. 29 out of all participants (63%) were majoring in CS or DS. Of all students,
only 47.8% were majoring in CS or DS and at the same time had a strong programming
background. This means that we had a demographic consisting of students in the course

Table 1   Profile of participants
and survey reliability

Participants’ Profile Participants # Cronbach’s
α

Count %

Programming
background

Strong programmer 25 54.3% 0.81
Weak programmer 21 45.7% 0.83

Major Comp. Science (CS) 26 56.5% 0.79
Data Science (DS) 3 6.5%
Non-CS/DS majors 17 37% 0.88

Overall 46 0.82

969Education and Information Technologies (2022) 27:961–978

1 3

who were majoring in CS or DS, but were considered weak programmers. 39 (85%) par-
ticipants were in their first or second year of study; the other 7 (15%) were upper-year stu-
dents, with 6 in their third year and 1 in the fourth year. We assume that students who fin-
ished COSC 111 (as a prerequisite course) are good programmers and others who did not
finish COSC 111 do not have sufficient programming background (weak programmers).
We also assume that Computer Science (CS) and Data Science (DS) majors have a higher
motivation to learn to program than non-CS majors. These assumptions were confirmed
based on several discussions with students.

The 25 Likert items used a scale from 1 to 5 (5 means strongly agree, and 1
strongly disagree), and they were distributed across the four research questions as
listed in Table 2. The first group (6 items) evaluates the students’ general percep-
tion of the flipped design as implemented in this course (RQ1). The second group (4
items) focuses on the usefulness of the flipped model during the lecture time (RQ2).
The third group (9 items) studies the effect of the flipped design of the course on the
students’ self-directed learning process (RQ3). The fourth group (6 items) measures
the students’ perception of the support techniques used in the course (RQ4).

The reliability of the data was evaluated using Cronbach’s alpha coefficient (Şalli-
Çopur, 2005) which was computed 5 times: once based on the responses collected from
all 46 participants, and then once for each student group. Table 1 shows Cronbach’s alpha
scores which, as can be seen, indicate acceptable levels of internal consistency.

5.2 � Survey findings and discussion

5.2.1 � Overall results

Table 3 lists the questionnaire items and student responses. The first three col-
umns include our research questions and related questionnaire items. The middle
section shows the number of student votes under each Likert level, with a mini-
chart included for convenience. Finally, the right section includes the mean and
standard deviation based on all responses.

Table 2   Relationship of research questions to questionnaire items

Research Questions Aspect Questionnaire
Items

RQ1.General perception Overall liking of the flipped design 1–4
Partially-flipped or fully-flipped? 5, 6

RQ2.Classroom learning Confidence level with study material 7, 8
Engagement and communication 9, 10

RQ3.Self-learning Ability to work on one’s own 11–13
Understanding versus memorization 14, 15
Time and effort requirements 16–19

RQ4.Support techniques Observational learning 20
Pair-programming, learning from peers 21–23
Clickers 24
Video lectures 25

970 Education and Information Technologies (2022) 27:961–978

1 3

Overall student perception of the partially‑flipped model in a mixed‑ability class-
room  As seen in Table 3, students had a positive impression of the flipped model.
67.4% agreed (μ = 3.8, σ = 0.82) that the flipped design has significantly contrib-
uted to improving their learning in this course, and only 4.3% (μ = 1.67, σ = 0.89)
reported that they hated the flipped model. 76.1% of students agreed (μ = 3.87,
σ = 0.95) that they would recommend this model to a friend, and 17.4% disagreed
with implementing the flipped design in other courses.

Most of the students preferred the partially-flipped model over fully flipping the
course (items #5 and #6 in Table 3). The written feedback of the course evaluation
showed that many students liked the idea of flipping the easy-to-self-learn topics
while using the traditional lecturing style for the harder topics.

Table 3   Student responses

(SA: Strongly Agree, A: Agree, N: Neutral, D: Disagree, SD: Strongly Disagree)

971Education and Information Technologies (2022) 27:961–978

1 3

The flipped model as implemented in this course supports classroom learning  As
shown in items 9 and 10 in Table 3, the majority of participants agreed that the
flipped model is more engaging and allows for better communication with their
peers compared to the traditional lecturing style. Furthermore, 76.1% agreed
(μ = 4.02, σ = 0.82) that they feel more confident about course material after practic-
ing in class versus only 53% of the students (μ = 3.57, σ = 0.88) who felt confident
after only reading the pre-class material.

The flipped course design positively affects student self‑directed learning process  The
data shows that 30 students (65%) agreed (μ = 3.67, σ = 0.84) that they were not only more
confident with their self-learning but also better equipped to tackle unfamiliar problems
as a result of the proposed design, and only 10.9% disagreed with that statement. Surpris-
ingly, 4 out of the 30 students who agreed were upper-year students, which is over half of
the upper-year students surveyed in this study.

In terms of study techniques, the majority (80.4%, μ = 2.13, σ = 0.9) disagreed that the
flipped model made them focus on memorization rather than understanding. The data also
shows that most students agreed that the amount of time and effort that they had to put
into this course was reasonable, with 52.2% agreeing that the flipped design helped them
plan their work. However, there was no general consensus in terms of the time required in
our course compared to similar courses that use traditional teaching methods.

Positive student perception of techniques used to support the flipped design  The major-
ity of students agreed that pair-programming helped them grasp the course material and
develop teamwork skills (87%, 80.5%, and 82.7% for items #20, 21, and 22 respectively).
In addition, only 17.4% agreed that they need a TA in the classroom to help them due to
the lack of support they received from their classmates. On the other hand, 80.4% agreed
that clicker quizzes on the pre-class readings motivated them to finish the pre-class work
before coming to class. Finally, 60.9% agree that more video lectures should be prepared
to support their pre-class work.

5.2.2 � Comparing various student populations

Two independent sample t-tests (which assumes different variances) were con-
ducted; the first was to compare responses from the two student groups: strong pro-
grammers (SP) and weak programmers (WP); and the second t-test for the two stu-
dent groups: CS-majors and non-CS majors. The results are shown in Table 4 and
Table 5. At 0.05 significance level, we found that:

Table 4   Comparing responses
based on programming
proficiency

SP (n = 25) WP (n = 21) Significance

μ σ μ σ t-test p (2-tailed)

RQ1 3.83 0.59 3.81 0.44 0.20 0.846
RQ2 4.08 0.55 3.71 0.56 2.22 0.035
RQ3 3.74 0.47 3.50 0.45 1.76 0.092
RQ4 3.85 0.39 3.98 0.44 −1.12 0.282

972 Education and Information Technologies (2022) 27:961–978

1 3

•	 There is no significant difference between the two groups SP and WP for ques-
tions RQ1, RQ3, RQ4. However, these two groups are significantly different in
terms of RQ2 (classroom learning) with the SP group outscoring WP.

•	 There is no significant difference between CS and non-CS majors in terms of
questions RQ1, RQ2, RQ3. On the other hand, there was a significant difference
for RQ4 (support techniques) with the non-CS majors outscoring CS majors.

6 � Student grades, pass rates, and evaluation of the course

We analyzed the course grades, pass rates, and the end-of-term course ratings in
order to confirm the survey findings. Three course-offerings that used the new
design (2018 to 2020) were compared to three previous offerings that used the older
design (2015 to 2017). All offerings were taught by the same instructor, and the
assessment components (e.g. lab work and exams) were prepared to ensure the same
level of difficulty and to focus on the same learning outcomes.

6.1 � Grades and pass rate

Figure 3 compares student performance in the new design versus the old design. Not
only did the pass rate considerably increase compared to the mean of pass rates in the
old design, but the class averages had also increased. As shown below, the class average

Table 5   Comparing students’
responses based on their major

CS (n = 29) Non-CS (n = 17) Significance

μ σ μ σ t-test p (2-tailed)

RQ1 3.76 0.61 3.93 0.33 −1.18 0.243
RQ2 3.92 0.63 3.90 0.49 0.15 0.883
RQ3 3.68 0.55 3.55 0.30 1.04 0.303
RQ4 3.79 0.37 4.12 0.42 −2.83 0.013

2018 (n=79) 2019 (n=90) 2020 (n=74)
Class Average Grade 4.24 7.82 8.40
Pass Rate 4.33 8.59 6.52

2

4

6

8

10

im
pr
ov

em
en

ti
n

%
 p

oi
nt

Fig. 3   Improvement in New Course Offerings Compared to the Old Design

973Education and Information Technologies (2022) 27:961–978

1 3

grade in the new design had a 4.24, 7.82, and 8.40 percentage point increase in 2018
to 2020 respectively, compared to the mean of class averages from 2015 to 2017. We
believe the “jump” in results from 2018 to 2019 is due to instructor’s gained experience
with the new design.

6.2 � Student evaluation of the course

With regard to student satisfaction, the new design received a higher rating.3 Fig-
ure 4 shows the mean of student ratings for the course from 2015 to 2019 as meas-
ured by the question: “I would rate this course as very good”, with ratings from
5 (strongly agree) to 1 (strongly disagree). As can be seen, there was a notable
increase in 2018 and 2019, when the new design was implemented.

Figure 4 also illustrates the norms in the Faculty of Science and the Department of
Computer Science at UBC-O with the above question. Unlike the ratings of the old-
design, which were within the norms, the new design had a considerably higher rating.

In the written feedback of the course evaluations, most students praised the
new design, teaching style, and application domain. Students indicated that while
the course was an excellent introduction to coding for those with a little program-
ming background, it was still enjoyable for those already familiar with program-
ming because of the use of a “visually engaging environment” to develop anima-
tions and games. In addition, most students commended programming in pairs (a
handful felt that teamwork was stressful or useless). Most students also felt the
course pace and structure were appropriate except for a handful who complained
that the course was too easy or slow, but they still liked the bonus parts, which
presented them a challenge and helped them sharpen their skills.

Fig. 4   Mean Ratings for COSC 123 from 2015 to 2019 4

3  Response rate is about 50%.

974 Education and Information Technologies (2022) 27:961–978

1 3

7 � Limitations

While the survey shows positive results in favor of the proposed flipped design, we
recognize that these results are based on the data collected from only 46 students.
More studies and further research must be conducted to confirm the findings and
gain more in-depth insights.

The results obtained from the course grades, pass-rates, and student evalua-
tions are based on three course-offerings that use the new design versus three
offerings of the old design. Given the fact that student mix changes from year
to year and course to course, these results also need further validation, which is
part of our future work.

Furthermore, the data from the year 2020 (column 3 in Fig. 3) were measured
during the COVID-19 pandemic where we had to switch to online teaching in the
midst of the semester. This caused had some impact on the accuracy of student eval-
uation (i.e. grades from that year may not be the most reliable). However, as the
course grades were consistent with the previous two years, we decided to include
them here.

8 � Conclusions and future work

This paper introduced a flipped based approach for teaching highly mixed-ability
CS1 courses. The approach is based on the partially-flipped classroom model, and
it uses several techniques, including pair-programming, observational learning, and
game development, in order to teach programming fundamentals in the visual arts
domain using Processing language.

The paper extends existing findings on the usefulness of the flipped model by
showing how combining it with other techniques is effective in teaching highly
mixed-ability CS1 classrooms.

The proposed model was evaluated in terms of its impact on the student learning
experience and performance. We used three evaluation components: a survey, the
class average grade and pass-rate, and the student ratings of the course. The survey
showed an overall positive student perception, and the course grades, pass rates, and
student ratings confirmed the survey findings.

Our future work includes testing the approach in other classes taught by the
current or other instructors. This includes testing the approach in a fully online
course-mode.

It is worth mentioning that switching COSC 123 to online learning amid the pan-
demic semester was relatively easy. The flipped nature of the course, with much of
its material already assigned as out-of-class work, helped students adapt to the new
format quickly. The transition was not ideal, but it was smoother than other courses
taught by the same instruction. A blend of synchronous and asynchronous lectures
was used to implement the online format of T-MACS1, and we used breakout rooms
to enable students to work in pairs.

975Education and Information Technologies (2022) 27:961–978

1 3

Our future work also includes testing other motivational techniques and continu-
ing to report more results as class size increases, student populations vary, and tech-
nology changes.

Appendix

To give a feeling of the programming environment used in the proposed design, we
include in this appendix two examples of the programming exercises used when
teaching conditionals, one from the old course design and one from the new one.

976 Education and Information Technologies (2022) 27:961–978

1 3

Acknowledgments  This work is partially funded by I.K. Barber Endowment fund at the University of
British Columbia-Okanagan.

Authors’ contributions  Please see the cover letter below.

Funding  This work is partially funded by the I.K. Barber Endowment fund at the University of British
Columbia-Okanagan.

Data availability  Questionnaire raw data available upon request.

Code availability  Not applicable.

Declarations 

Ethical statement  The study included in this paper was approved by the research ethics board at the Uni-
versity of British Columbia-Okanagan. This work is is based on (Mohamed, 2019, 2020) as explained in
the cover letter.

Consent statement  Not applicable.

Disclosure of potential conflicts of interest  No conflicts of interest.

References

Beaubouef, T., & Mason, J. (2005). Why the high attrition rate for computer science students: Some thoughts
and observations. ACM SIGCSE Bulletin, 37(2), 103–106.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM SIGCSE Bulletin,
39(2), 32–36.

Bishop, J. L., & Verleger, M. A. (2013) The flipped classroom: A survey of the research. In American Society
for Engineering Education Annual Conference and Exposition (ASEE), Atlanta, GA, (Vol. 30, pp. 1–18,
Vol. 9).

Çakıroğlu, Ü., & Öztürk, M. (2017). Flipped classroom with problem based activities: Exploring self-regu-
lated learning in a programming language course. Journal of Educational Technology & Society, 20(1),
337–349.

Dawson, J. Q., Allen, M., Campbell, A., & Valair, A. (2018). Designing an introductory programming course
to improve non-majors’ experiences. In ACM symposium on Computer Science Education (SIGCSE) (pp.
26–31). ACM.

Elmaleh, J., & Shankararaman, V. (2017). Improving student learning in an introductory programming course
using flipped classroom and competency framework. In IEEE Global Engineering Education Conference
(EDUCON) (pp. 49–55). IEEE.

Fassbinder, A. G. d. O., Botelho, T. G., Martins, R. J., & Barbosa, E. F. (2015). Applying Flipped Classroom
and Problem-Based Learning in a CS1 Course. In IEEE Frontiers in Education Conference (FIE).

Guzdial, M. (2010). Does contextualized computing education help? ACM Inroads, 1(4), 4–6.
Haatainen, S., Lakanen, A.-J., Isomöttönen, V., & Lappalainen, V. (2013). A practice for providing additional

support in CS1. In 2013 Learning and Teaching in Computing and Engineering (pp. 178–183). IEEE.
Indi, T. S. (2016). An Experience Report of Flipped Classroom Strategy Implementation for Java Programming

Course. In IEEE 18th International Conference on Technology for Education (T4E) (pp. 240–241). IEEE.
Knutas, A., Herala, A., Vanhala, E., & Ikonen, J. (2016). The Flipped Classroom Method: Lessons Learned

from Flipping Two Programming Courses. In 17th International Conference on Computer Systems and
Technologies (pp. 423–430). ACM.

Kothiyal, A., Majumdar, R., Murthy, S., & Iyer, S. (2013). Effect of think-pair-share in a large CS1 class:
83% sustained engagement. In ACM conference on International Computing Education research
(pp. 137–144). ACM.

977Education and Information Technologies (2022) 27:961–978

1 3

Koutselini, M. (2006). Towards a meta-modern paradigm of curriculum: Transcendence of a mistaken
reliance on theory. Educational Practice and Theory, 28(1), 55–68.

Lage, M. J., Platt, G. J., & Treglia, M. (2000). Inverting the classroom: A gateway to creating an inclusive
learning environment. Journal of Economic Education, 31(1), 30–43.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of novice program-
mers. In 10th SIGCSE conference on Innovation and Technology in Computer Science Education
(iTiCSE) (vol. 37, pp. 14–18, Vol. 3). ACM.

Leutenegger, S., & Edgington, J. (2007). A games first approach to teaching introductory programming.
In ACM symposium on Computer Science Education (SIGCSE) (pp. 115–118).

Lockwood, K., & Esselstein, R. (2013). The inverted classroom and the CS curriculum. In ACM sympo-
sium on Computer Science Education (SIGCSE) (pp. 113–118). ACM.

Lyman, F. (1987). Think-pair-share: An expanding teaching technique. Maa-Cie Cooperative News, 1(1),
1–2.

Maher, M. L., Latulipe, C., Lipford, H., & Rorrer, A. (2015). Flipped classroom strategies for CS educa-
tion. In ACM symposium on Computer Science Education (SIGCSE) (pp. 218–223). ACM.

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves student
retention, confidence, and program quality. Communications of the ACM, 49(8), 90–95.

Mohamed, A. (2019). Designing a CS1 programming course for a mixed-ability class. In the Western
Canadian Conference on Computing Education (WCCCE’19), (pp. 1–6).

Mohamed, A. (2020). Evaluating the effectiveness of flipped teaching in a mixed-ability CS1 course.
In the 20th ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE’20), (pp. 452–458).

Moravec, M., Williams, A., Aguilar-Roca, N., & O’Dowd, D. K. (2010). Learn before lecture: A strategy
that improves learning outcomes in a large introductory biology class. CBE-Life Sciences Educa-
tion, 9(4), 473–481.

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013). Success in introductory programming: What
works? Communications of the ACM, 56(8), 34–36.

Reas, C., & Fry, B. (2006). Processing: Programming for the media arts. AI & Society, 20(4), 526–538
https://​proce​ssing.​org. Accessed Dec 2020.

Roberts, J. (2016). The ‘more capable peer’: Approaches to collaborative learning in a mixed-ability
classroom. Changing English, 23(1), 42–51.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and dis-
cussion. Computer Science Education, 13(2), 137–172.

Rosiene, C. P., & Rosiene, J. A. (2015). Flipping a programming course: The good, the bad, and the ugly.
In IEEE Frontiers in Education Conference (FIE) (pp. 1–3). IEEE.

Şalli-Çopur, D. (2005). Coping with the problems of mixed ability classes. The Internet TESL Journal,
11(8), 1–5.

Shettleworth, S. J. (2010). Cognition, evolution, and behavior. Oxford University Press.
Talbert, R. (2017). Flipped Learning: A Guide for Higher Education Faculty. Stylus Publishing, LLC.
Tomlinson, C. A. (2017). How to differentiate instruction in academically diverse classrooms (3rd ed.).

Alexandria: Association for Supervision and Curriculum Development (ASCD).
Toto, R., & Nguyen, H. (2009). Flipping the work design in an industrial engineering course. In IEEE

Frontiers in Education Conference (FIE) (pp. 1–4). IEEE.
Valiande, S., & Koutselini, M. I. (2009). Application and evaluation of differentiation instruction in

mixed ability classrooms. In 4th Hellenic Observatory PhD Symposium (pp. 25-26): LSE, London
School of Economics London, UK.

Watson, C., & Li, F. W. (2014). Failure rates in introductory programming revisited. In Innovation &
technology in computer science education (pp. 39–44). ACM.

Zhuo, L., & Qi-Xian, G. (2015). The Application of Hybrid Flipped Classroom in the Course of Java Pro-
gramming. In 7th International Conference on Information Technology in Medicine and Education
(ITME) (pp. 637–641). IEEE.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

978 Education and Information Technologies (2022) 27:961–978

https://processing.org

	Teaching highly mixed-ability CS1 classes: A proposed approach
	Abstract
	1 Introduction and motivation
	2 COSC 123: A highly mixed-ability course
	2.1 The older course design

	3 T-MACS1: A proposed approach
	4 Validation
	5 The survey: Capturing student perceptions
	5.1 Survey design
	5.2 Survey findings and discussion
	5.2.1 Overall results
	5.2.2 Comparing various student populations

	6 Student grades, pass rates, and evaluation of the course
	6.1 Grades and pass rate
	6.2 Student evaluation of the course

	7 Limitations
	8 Conclusions and future work
	Acknowledgments
	References

