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Summary
It has previously been demonstrated that the polybisphosphonate osteodex (ODX) inhibits bone resorption in organ-cultured 
mouse calvarial bone. In this study, we further investigate the effects by ODX on osteoclast differentiation, formation, and 
function in several different bone organ and cell cultures. Zoledronic acid (ZOL) was used for comparison. In retinoid-
stimulated mouse calvarial organ cultures, ODX and ZOL significantly reduced the numbers of periosteal osteoclasts without 
affecting Tnfsf11 or Tnfrsf11b mRNA expression. ODX and ZOL also drastically reduced the numbers of osteoclasts in cell 
cultures isolated from the calvarial bone and in vitamin D3–stimulated mouse crude bone marrow cell cultures. These data 
suggest that ODX can inhibit osteoclast formation by inhibiting the differentiation of osteoclast progenitor cells or by directly 
targeting mature osteoclasts. We therefore assessed if osteoclast formation in purified bone marrow macrophage cultures 
stimulated by RANKL was inhibited by ODX and ZOL and found that the initial formation of mature osteoclasts was not 
affected, but that the bisphosphonates enhanced cell death of mature osteoclasts. In agreement with these findings, ODX and 
ZOL did not affect the mRNA expression of the osteoclastic genes Acp5 and Ctsk and the osteoclastogenic transcription factor 
Nfatc1. When bone marrow macrophages were incubated on bone slices, ODX and ZOL inhibited RANKL-stimulated bone 
resorption. In conclusion, ODX does not inhibit osteoclast formation but inhibits osteoclastic bone resorption by decreasing 
osteoclast numbers through enhanced cell death of mature osteoclasts.

Keywords Bisphosphonates · Osteodex · Osteoclasts · RANKL

Abbreviations
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Introduction

Bisphosphonates (BPs) are anti-resorptive pharmaceu-
ticals that have been used for several decades in the 
treatment of diseases with excessive formation of osteo-
clasts like osteoporosis, skeletal metastasis of malignant 
tumors, and malignant osteolysis with hypercalcemia [1]. 
The efficacy of BPs as inhibitors of bone resorption and 
skeletal fractures is demonstrated by the findings that 
a yearly intravenous administration of zoledronic acid 
to postmenopausal women reduced all clinical fractures 
by 35% during a 2-year follow-up [2] and new verte-
bral fractures and hip fractures by 70 and 41%, respec-
tively, during a 3-year follow-up [3]. According to the 
“seed-and-soil” hypothesis, suggested by Paget more 
than 100 years ago [4], osteoclasts provide tumor growth 
substances from the bone matrix during bone resorption 
in osteolytic lesions in patients with breast and lung can-
cer, as well as in sclerotic lesions in patients with pro-
static cancer [5–7]. For this reason, BPs are used with 
the aim not only to protect the skeleton from excessive 
bone resorption and skeletal-related events (SRE) but 
also to reduce tumor growth [8]. Zoledronic acid (ZOL) 
has been shown to significantly reduce the time to first 
SRE and the overall risk of SRE in breast cancer patients 
with skeletal metastases [9] and in patients with skeletal 
metastasis of lung cancer and other solid tumors except 
breast and prostatic cancers [10, 11].

The general chemical structure of BPs is two phospho-
nate groups linked to a central carbon (P–C-P) and with 
two sidechains,  R1 and  R2, linked to the central carbon [1, 
12]. The P–C-P group renders the compounds resistant to 
degradation by phosphatases. The  R1 side group is usually 
a hydroxyl group facilitating binding to hydroxyapatite  
crystals in bone, and  R2 may have a range of chemi-
cal structures. There are two classes of BPs, nitrogen- 
containing and those without nitrogen, where those hav-
ing nitrogen in the  R2 side chain are second- and third- 
generation BPs. BPs containing nitrogen are several orders 
of magnitude more potent as anti-resorptive agents than 
the first-generation BPs [13]. Third-generation BPs are 
the most potent compounds with a tertiary nitrogen incor-
porated within a ring structure, e.g., imidazole in ZOL. 
BPs bound to bone become internalized in osteoclasts [14] 
when these cells resorb bone, which causes accumulation 
of BPs at concentrations high enough to inhibit osteoclast 
activity through apoptotic cell death [15, 16].

The current prevailing hypothesis regarding the primary 
mode of action, i.e., how nitrogen-containing BPs inhibit 
osteoclastic bone resorption, is by inhibition of farnesyl 
diphosphate synthase (FPPS), an enzyme in the meva-
lonate pathway [12]. The ultimate consequence of FPPS 

inhibition is loss of geranylgeranylated GTPases leading 
to disruption of osteoclast cytoskeleton, osteoclast apop-
totic cell death, and loss of bone resorption activity [17], 
although the intracellular mechanism leading to the pro-
apoptotic pathway is unknown.

Osteodex (ODX) is a polymer conjugate constituting a 
carbohydrate backbone with alendronate and guanidine moi-
eties covalently coupled to the backbone. ODX is bifunc-
tional, having anti-resorptive properties and pronounced 
anti-tumor efficacy [18]. We have previously reported that 
ODX inhibits bone resorption in organ-cultured mouse 
calvarial bones [18]. The aim of the present study was to 
explore the cellular mechanism by which ODX inhibits bone 
resorption. To achieve this, we utilized various bone organ 
and bone cell culture systems that allowed us to study osteo-
clast differentiation, formation, and function.

Materials and methods

Materials

Recombinant mouse macrophage colony-stimulating 
factor (M-CSF) and recombinant extracellular domain 
of mouse receptor activator of NF-κB ligand (RANKL) 
(Arg72-Asp316) fused to a six histidine residue tag (cat. 
no. 462-TR) were purchased from R&D Systems; the kit 
for leukocyte acid phosphatase staining, SIGMA 104 
Phosphatase Substrate, ATRA, and zoledronic acid were 
from Sigma Chemical Co. (www. sigma aldri ch. com); 
α-modification of minimum essential medium (α-MEM), 
and fetal calf serum (FCS) were from Thermo Fisher Sci-
entific; Thermo Sequenase™ II DYEnamic ET™ termi-
nator cycle sequencing kit were from Amersham (www. 
amers ham. com); oligonucleotide primers were from Inv-
itrogen (www. invit rogen. com) or Applied Biosystems 
(www. appli edbio syste ms. com); HotStarTaq polymerase 
kit and QIAquick PCR Purification Kit were from QIA-
GEN Ltd. (www. qiagen. com); DNA free was obtained 
from Ambion, Inc. (www. ambion. com); 1st strand cDNA 
synthesis kit and the PCR Core Kit were from Roche 
(www. roche- appli ed- scien ce. com); fluorescent-labeled 
probes (reporter fluorescent dye VIC at the 5′end and 
quencher fluorescent dye TAMRA at the 3′end), TaqMan 
Universal PCR Master Mix, and the kits for quantitative 
real-time PCR were from Applied Biosystems (www. appli 
edbio syste ms. com); culture dishes, multiwell plates, and 
glass Chamber Slides were from Nunc Inc. (www. nuncb 
rand. com); suspension culture dishes were from Corn-
ing Inc. (www. scien cepro ducts. corni ng. com); and bone 
slices and CrossLaps® for Culture ELISA (CTX) were 
from Immunodiagnostics a/s (www. idsplc. com/ no/ home/).

http://www.sigmaaldrich.com
http://www.amersham.com
http://www.amersham.com
http://www.invitrogen.com
http://www.appliedbiosystems.com
http://www.qiagen.com
http://www.ambion.com
http://www.roche-applied-science.com
http://www.appliedbiosystems.com
http://www.appliedbiosystems.com
http://www.nuncbrand.com
http://www.nuncbrand.com
http://www.scienceproducts.corning.com
http://www.idsplc.com/no/home/
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1,25(OH)2-vitamin D3 (D3) was a kind gift from 
Hoffmann-La Roche, Basle, Switzerland. ODX was a 
kind gift from DexTech Medical, Uppsala, Sweden. The 
cathepsin K antiserum was a kind gift from Professor Göran 
Andersson at Karolinska Institute, Stockholm, Sweden.

Animals

We utilized CsA mice from our own inbred colony at 
Umeå University to conduct bone organ cultures, peri-
osteal cell cultures, and crude bone marrow cell cultures. 
These mice have been extensively used in numerous stud-
ies for over 30 years, and the results obtained have always 
been comparable to those seen in other mouse strains, 
including C57BL/6 mice. C57BL/6 mice from Harlan 
Laboratories, Inc., and Taconic Bioscience were used 
for the bone marrow macrophage cultures. We ensured 
that animal care and experiments were conducted in 
accordance with internationally accepted standards of 
humane animal care. Additionally, we used animals only 
as deemed appropriate by the Animal Care and Use Com-
mittees of Umeå University, Umeå, and the University of 
Gothenburg, Gothenburg.

Mouse calvarial bone cultures

Parietal bones from 5- to 7-day-old mice were microdis-
sected and cut into calvarial halves. The bones were prein-
cubated for 18–24 h in α-MEM containing 0.1% albumin 
and 1 µmol/l indomethacin [19, 20]. Following preincuba-
tion, the bones were extensively washed and subsequently 
cultured for 96 h in multiwell culture dishes containing 
1.0 ml of an indomethacin-free medium with or without 
test substances. The bones were incubated in the presence 
of 5%  CO2 in humidified air at 37 °C. At the end of the 
cultures, bones were used for immunohistochemistry or 
gene expression analysis.

Mouse calvarial periosteal cell cultures

Cells were isolated from 2- to 5-day-old mice using time-
sequential collagenase digestion, and cells from all diges-
tions (1–10) were pooled [21]. These isolations contain not 
only osteoblastic cells but also osteoclast progenitor cells 
[21, 22]. The periosteal cells were seeded in 2  cm2 multi-
well dishes at a density of  103 cells/cm2 and incubated in 
α-MEM/10% FCS in the absence or presence of RANKL 
with or without either ODX or ZOL for 12 days. At the end 
of the cultures, the cells were stained for tartrate-resistant 
acid phosphatase (TRAP), and cells with more than three 
nuclei, expressing TRAP, were considered osteoclasts and 
numbers counted  (TRAP+MuOCL).

Mouse bone marrow cell cultures

Bone marrow cells (BMC) were flushed from femurs and 
tibiae from 5- to 7-week-old male mice. BMC were seeded 
in 48 multiwells  (106 cells/cm2), incubated overnight in 
α-MEM/10% FCS, and subsequently cultured in the same 
medium in the absence or presence of 1,25(OH)2-vitamin 
D3, with or without ODX or ZOL for 9 days. After this time 
period, the cells were fixed with acetone in citrate buffer/3% 
formaldehyde and stained for TRAP. TRAP-positive cells 
with three or more nuclei were considered osteoclasts and 
the number of multinucleated osteoclasts was counted 
 (TRAP+MuOCL).

Mouse bone marrow macrophage cultures

Bone marrow cells were flushed from femur and tibiae and 
seeded in α-MEM/10% FCS containing 30 ng/ml mouse 
M-CSF on plastic suspension culture dishes to which stromal 
cells and lymphocytes do not adhere [21, 23]. After 2 days, 
the adhering cells (bone marrow macrophages (BMM)) were 
detached, and then, 5000 cells in 5 µl α-MEM/10% FBS 
were spot seeded at the center of 96-well plates and left to 
adhere for 10 min. Subsequently, 200 µl medium was added 
containing either 30 ng/ml of M-CSF (controls) or 30 ng/
ml M-CSF + 4 ng/ml of RANKL, without and with ODX 
or ZOL. After 3–4 days, the cells were fixed and stained 
for TRAP. TRAP-positive cells with three or more nuclei 
were considered osteoclasts, and multinucleated osteoclasts 
 (TRAP+MuOCL) were counted. For the actin ring staining, 
osteoclasts were fixed after 4 days with 4% phosphate-buff-
ered formaldehyde for 20 min, washed 3 times in PBS, and 
permeabilized using 0.1% Triton X-100 for 10 min. Then, 
the cells were incubated with 2% BSA/PBS and stained 
with FITC-labeled phalloidin diluted 1:40 in 2% BSA/
PBS for 30 min. In some experiments, 20,000 cells in 20 µl 
α-MEM/10% FBS were spot-seeded in 48-well plates, cul-
tured as above, and used for gene expression analysis.

Mouse BMM were also seeded on slices of devitalized 
bovine bone (2 ×  104 cells/bone slice) in 96-well plates 
in α-MEM/10% FCS and cultured for up to 14 days, with 
change of medium every third day. Subsequently, cells were 
removed, and bones were stained with 0.5% toluidine blue 
to visualize resorption pits. The release of CTX into the cul-
ture medium during resorption was analyzed by CrossLaps 
ELISA.

Immunohistochemistry

Calvarial bones were fixed in 4% phosphate-buffered para-
formaldehyde; decalcified in 10% EDTA in Tris buffer, 
pH 6.95; and embedded in paraffin. Sections were cut, 
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deparaffinized, fixed in cold acetone, and subsequently 
treated with 3%  H2O2 in PBS and Avidin/Biotin blocking kit. 
After blocking with protein block, sections were incubated 
with unlabeled polyclonal rabbit anti-mouse cathepsin K 
[24] diluted 1:700 or normal rabbit serum as a negative con-
trol. After blocking with normal goat serum, biotin-labeled 
goat anti-rabbit serum was used as a secondary antibody and 
was followed by incubation with a VECTASTAIN ABC kit 
and DAB substrate kit. All sections were counterstained with 
Mayer’s hematoxylin and evaluated using a Leica Q500MC 
microscope (Leica, Cambridge, UK) by an observer (CL) 
blinded to the identity of the sections. The numbers of cath-
epsin K–positive multinucleated cells per section were deter-
mined; two sections per bone were analyzed.

RNA extraction and gene expression

RNA was isolated from mouse calvarial bone cultures 
using the RNAqueous-4 PCR kit. Single-stranded cDNA 
was synthesized from 0.1 to 0.5 µg of total RNA using a 
High Capacity cDNA Reverse Transcription Kit. Quantita-
tive real-time PCR analysis of Tnfsf11 and Tnfrsf11b was 
performed using the KAPA™ Probe Fast qPCR Kit with 
primers and probe as described in detail previously [25].

RNA from bone marrow macrophage cultures was iso-
lated using the RNeasy Micro Kit. Single-stranded cDNA 
was synthesized using a High Capacity cDNA Reverse 
Transcription Kit, and gene expression was analyzed 
using custom TaqMan Assays. The following premade 
primer–probe mix from Applied Biosystems assays was 
used: Acp5 (Mm00475698_m1), Ctsk (Mm00484036_m1), 
Nfatc1 (Mm00479445_m1), Fas (Mm01204974_m1), Bax 
(Mm00432051_m1), Bcl2 (Mm00477631_m1), Bcl2l1 
(Mm00437783_m1). The housekeeping gene 18S was  
used as endogenous control, and the data were displayed as 
percent of control.

Statistics

Statistical differences were analyzed using one-way 
ANOVA, followed by Dunnett’s multiple comparisons test 
versus ATRA, D3, RANKL, or M-CSF/RANKL treated 
cells as indicated.

Results

Osteodex decreases osteoclast numbers in mouse 
calvarial bones

We have previously shown that ODX can inhibit bone 
resorption, as assessed by mineral release, in organ-cultured 
mouse calvarial bones stimulated by all-trans-retinoic acid 

(ATRA) [18], a well-known stimulator of bone resorption 
in vitro and in vivo [26]. To determine whether inhibition of 
bone resorption by ODX was a result of decreased numbers 
of osteoclasts, we stimulated bone resorption in the neo-
natal mouse calvarial bones in ex vivo organ cultures by 
using ATRA  (10−7 M) [27] with and without either ODX 
(2 ×  10−7 M) or ZOL (2 ×  10−7 M). ZOL is the most potent, 
clinically used nitrogen-containing BP inhibiting bone 
resorption by causing osteoclast apoptosis [28] and used 
in the present experiments as a positive control. ODX and 
ZOL significantly decreased the numbers of cathepsin  K+ 
osteoclasts present in the periosteum of the calvarial bones 
after ATRA treatment (Fig. 1A).

In the calvarial bones, the inhibitors might act either at 
the level of RANKL-producing osteoblasts or by directly 
targeting the osteoclasts or their progenitors. We, therefore, 
assessed if ODX affected the ATRA-induced expression 
of RANKL and its inhibitor OPG. Neither ODX nor ZOL 
affected the robust enhancement of Tnfsf11 mRNA expres-
sion (encoding RANKL) induced by ATRA (Fig. 1B). The 
mRNA expression of Tnfrsf11b (encoding OPG) was not 
affected by ATRA, in agreement with previous observations 
[27], and the expression was not affected by co-treatment 
with ODX or ZOL (Fig. 1C).

Osteodex decreases the numbers of osteoclasts 
in mouse calvarial periosteal cell cultures

The osteoclasts formed in the mouse organ cultured bones 
are derived from mononuclear osteoclast progenitors present 
in the periosteum. We have reported that such progenitors 
are present in collagenase-digested periosteal cell isolations 
from neonatal mouse calvarial bones and that stimulation of 
cells isolated from the periosteum results in mature osteo-
clast formation [21]. As shown in Fig. 2A, B,  TRAP+ cells 
were formed in unstimulated control cultures, but very few 
were  TRAP+MuOCL (Fig. 2F). Stimulation of the cell cul-
tures with RANKL (10 ng/ml) for 12 days resulted in the 
formation of many  TRAP+MuOCL (Fig. 2A, C), and this 
response was abolished by ODX and ZOL (Fig. 2A, D–F).

Osteodex decreases the numbers of osteoclasts 
in mouse bone marrow cell cultures

Bone marrow cell cultures are widely used to assess osteo-
clast formation. To explore the potential of ODX in inhibit-
ing the formation of osteoclasts from bone marrow osteoclast 
progenitor cells, we stimulated crude mouse bone marrow 
cells (BMC) cultures with 1,25(OH)2-vitamin D3 (D3). D3 
primarily targets stromal cells present in the BMC cultures 
inducing their expression of RANKL, and subsequently, the 
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differentiation of  RANK+ osteoclast progenitors is stimu-
lated [29]. Stimulation of BMC cultures with D3  (10−8 M) 
for 6 days resulted in the formation of many  TRAP+MuOCL 
(Fig. 3A, B). Co-treatment with either ODX or ZOL substan-
tially decreased the number of  TRAP+MuOCL (Fig. 3A, B).

Osteodex enhances osteoclast cell death 
without affecting osteoclast differentiation in bone 
marrow macrophage cultures

The observations in the calvarial bone and BMC cultures 
suggest that ODX decreases the numbers of osteoclasts 
either by inhibiting osteoclast progenitor cell differentia-
tion or fusion at late stages or by acting directly on mature 
osteoclasts to enhance cell death. To further assess if ODX 
can directly target osteoclast progenitor cells, we used puri-
fied bone marrow macrophage (BMM) cultures, which were 
stimulated by M-CSF and RANKL to induce osteoclastogen-
esis. We then analyzed the effect by ODX and ZOL either 
by analyzing osteoclast differentiation in TRAP-stained cul-
tures at different time points or by analyzing the expression 
of osteoclastic and osteoclastogenic genes.

In BMM cultures stimulated by M-CSF (30  ng/ml) 
and RANKL (4 ng/ml) for 3 days, most of the mononu-
cleated cells were  TRAP+, and some of them had formed 
 TRAP+MuOCL (Fig. 4A). After 4 days, very many of the 
BMM stimulated by M-CSF/RANKL had formed mature 
 TRAP+MuOCL (Fig. 4A), and 1 day later, several of these 
cells had started to die as assessed by their morphology 
(Fig. 4A). Treatment of the M-CSF/RANKL-stimulated 
BMM with ODX (2 ×  10−7 M) did not affect the appearance 
of mononucleated  TRAP+ cells or mature  TRAP+MuOCL 
at day 3 or 4 (Fig. 4A). At day 5, however, very few mature 
 TRAP+MuOCL could be seen (Fig. 4A). Similar to ODX, 
treatment with ZOL (2 ×  10−7 M) did not affect the appear-
ance of  TRAP+ mono- or multinucleated osteoclasts at day 3 
(Fig. 4A). At day 4, the numbers of mature  TRAP+MuOCL 
were fewer in ZOL-treated cultures than in M-CSF/RANKL-
stimulated BMM with or without ODX (Fig. 4A). At day 5, 
no mature  TRAP+MuOCL could be seen in the ZOL-treated 
cells similar to the observation in ODX-treated BMM. In 
agreement with these findings, ODX did not affect the pres-
ence of mature osteoclasts with  phalloidin+ actin rings at 
day 4, whereas these cells were much fewer in ZOL-treated 
BMM cultures (Fig. 4B).

To investigate if ODX can inhibit bone resorption when 
BMM cells were cultured on bone slices, we incubated 
BMM on bovine bone slices for 14 days in the presence 
of M-CSF/RANKL with or without ODX or ZOL. The 
formation of osteoclasts in BMM cultures on bone slices 
was considerably delayed compared to BMM cultures on 
plastic dishes, and therefore, bone resorption was assessed 
by analyzing the release of the bone matrix fragment CTX 
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Fig. 1  Osteodex (ODX) and zoledronic acid (ZOL) decrease osteoclast num-
bers induced by all-trans-retinoic acid (ATRA) in cultured neonatal mouse 
calvarial bones (A) without affecting the mRNA expression of the osteoclas-
togenic cytokine Tnfsf11 or its decoy inhibitor Tnfrsf11b (B, C). Calvarial 
explants were incubated in the presence of ATRA  (10−7  M) with or without 
ODX or ZOL, both at 2 ×  10−7 M for 96 h, and numbers of osteoclasts per sec-
tion were counted after immunostaining for cathepsin K (A). Gene expression 
of Tnfsf11 and Tnfrsf11b was analyzed after 48 h (B, C). Data are means of 
four observations, and SEM is given as vertical bars. Asterisks denote statis-
tical significance; *P < 0.05, **P < 0.01, and ***P < 0.001, one-way ANOVA, 
followed by Dunnett’s multiple comparisons test versus ATRA 
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from the bones to the media during days 10 to 14 and bone 
resorption pits visualized by toluidine blue staining on day 
14. Stimulation of BMM with M-CSF/RANKL resulted in 
the formation of numerous resorption pits, a response that 
was substantially reduced by ODX or ZOL (Fig. 4C). The 
release of CTX was enhanced tenfold (approx.) from bone 
slices with BMM stimulated by M-CSF/RANKL compared 
to M-CSF-stimulated controls (Fig. 4D). This response was 
substantially decreased by ODX and ZOL.

We next assessed the effect by different concentrations 
of ODX on mature osteoclasts. On day 4, no effect by ODX 
at 1 ×  10−9 M and 1 ×  10−8 M was observed. At 1 ×  10−7 M 
and 2 ×  10−7 M, however, a modest increase of dead mature 
osteoclasts could be observed (Fig. 5). At day 5, ODX at 
1 ×  10−7 and 2 ×  10−7 M clearly had enhanced the number 
of dead osteoclasts compared to M-CSF/RANKL without 

bisphosphonates, a difference which was more modest at 
1 ×  10−8 and absent at 1 ×  10−9 M (Fig. 5).

The effect by ZOL on mature osteoclasts in the BMM 
was concentration-dependent (Fig.  5). At day 4, ZOL 
at 1 ×  10−9 M had a modest effect, and then the response 
gradually was more evident at 1 ×  10−8 M, 1 ×  10−7, and 
2 ×  10−7 M. At day 5, effects were more pronounced than at 
day 4 at all concentrations tested.

These observations indicate that ODX, similar to ZOL, 
decreases osteoclast numbers by inducing cell death in 
mature osteoclasts without affecting the differentiation of 
mononucleated osteoclast progenitor cells. However, the 
cell death response seems slightly delayed and slightly less 
potent compared to ZOL. To further confirm that ODX does 
not affect the differentiation of osteoclast progenitor cells, 
we next analyzed the expression of genes in BMM known 
to be associated with osteoclastogenesis. M-CSF/RANKL 
stimulation induced the mRNA expression of Acp5 (encod-
ing TRAP) and Ctsk (encoding cathepsin K), as expected 
(Fig. 6). The expression of these osteoclastic genes was not 
significantly affected by ODX or ZOL at early (day 2) or 
late stages (days 3 and 4) of osteoclastogenesis. This finding 
suggests that ODX and ZOL did not interfere with osteo-
clastogenic signaling mechanisms downstream the receptor 
RANK. This conclusion was further confirmed by the obser-
vation demonstrating that M-CSF/RANKL-induced upreg-
ulation of the mRNA expression of the osteoclastogenic 

Fig. 2  Osteodex (ODX) and zoledronic acid (ZOL) decrease osteo-
clast numbers induced by RANKL in mouse calvarial periosteal cell 
cultures. Cells were isolated from neonatal mouse calvaria and incu-
bated in the presence of RANKL (10  ng/ml) with or without ODX 
or ZOL, both at 2 ×  10−7 M for 12 days and then stained for TRAP. 
Overview photo of TRAP-stained cells in culture plate (A), repre-
sentative microscope photos (B), and counting of  TRAP+MuOCL 
(C). Data are means of four observations, and SEM is given as verti-
cal bars. Asterisks denote statistical significance; ***P < 0.001, one-
way ANOVA, followed by Dunnett’s multiple comparisons test versus 
RANKL-treated cells
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Fig. 3  Osteodex (ODX) and zoledronic acid (ZOL) decrease osteo-
clast numbers induced by 1,25(OH)2-vitamin D3 (D3) in mouse bone 
marrow cell cultures. Mouse bone marrow cells were incubated in the 
absence or presence of D3  (10−8 M) with or without ODX or ZOL, 
both at 2 ×  10−7 M for 9 days and then stained for TRAP. Representa-

tive microscope photos (A) and counting of  TRAP+MuOCL (B). 
Data are means of four observations, and SEM is given as vertical 
bars. Asterisks denote statistical significance; *P < 0.05, **P < 0.01, 
and ***P < 0.001, one-way ANOVA, followed by Dunnett’s multiple 
comparisons test versus D3
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transcription factor Nfatc1 was not affected by ODX or ZOL 
(Fig. 6).

To assess if the activities by ODX and ZOL on mature 
osteoclast cell death were associated with regulation of anti- 
or pro-apoptotic genes, we analyzed the mRNA expression 
of four such genes. The Bax and Fas genes, known to be 
pro-apoptotic, were both significantly downregulated by 
RANKL (Fig. 7A, B). This response was not affected by 
ODX or ZOL (Fig. 7A, B). The Bcl2 and Bcl2l1 genes are 
known to be anti-apoptotic, and both were significantly 
downregulated by RANKL, responses also unaffected by 
ODX or ZOL (Fig. 7C, D).

Discussion

ODX is a polymer based on a carbohydrate backbone with 
alendronate and guanidine moieties having anti-tumor and 
anti-resorptive capacity [18]. ODX has been investigated in 
clinical trials (phase I, phase II) for the treatment of bone 
metastases in castration-resistant prostate cancer. The results 
confirm a profound inhibitory effect on bone markers, pri-
mary on osteoclast markers and secondary on osteoblast 
markers. Direct anti-tumoral effects were recorded without 
significant side effects [30, 31]. We here demonstrate that 
ODX exerts anti-resorptive activity by enhancing mature 
osteoclast cell death without affecting the differentiation of 
osteoclast progenitor cells to mature osteoclasts.

We have previously reported that ODX inhibits bone 
resorption in ex vivo cultures of neonatal mouse calvaria, 
resulting in decreased calcium release from the explants. 
Here, we demonstrate that this response is associated with a 
robust decrease of multinucleated osteoclast numbers. The 
stimulator used, ATRA (the biologically active metabolite 
of vitamin A [26]), increases osteoclast formation and bone 
resorption indirectly through enhanced production of the 
osteoclastogenic cytokine RANKL [27]. RANKL can be 
produced by several cell types including osteoblasts and 
osteocytes and binds to the cognate receptor RANK on 

mononuclear osteoclast progenitor cells to induce their dif-
ferentiation to mature, multinucleated osteoclasts [32]. The 
decoy receptor osteoprotegerin (OPG) also binds to RANKL 
and inhibits the binding to RANK. We found that ODX 
did not affect the mRNA expression of Tnfsf11 (encoding 
RANKL) or Tnfrsf11b mRNA expression (encoding OPG) 
indicating that ODX inhibited osteoclast formation through 
a direct action on either osteoclast progenitors or mature 
osteoclast.

Periosteal cells isolated from neonatal mouse calva-
riae, often designated mouse calvarial osteoblasts, are 
enriched with osteoblasts but also contain a substantial 
amount of macrophages/osteoclast progenitor cells which 
will form osteoclasts when stimulated with RANKL or by 
osteoclastogenic cytokines and hormones enhancing the 
expression of RANKL in osteoblasts [21]. Recent single-
cell RNA sequencing has also demonstrated the presence 
of macrophages in these isolations and that their numbers 
enhance during cell culture [22]. To gain further support 
to the conclusion that ODX targets cells in the osteoclastic 
lineage, we stimulated calvarial periosteal cell cultures 
with RANKL with and without ODX. The finding that 
ODX abolished RANKL-stimulated osteoclast formation 
further shows that ODX can inhibit osteoclast formation 
independent of RANKL/OPG production, although these 
experiments cannot demonstrate if ODX exerts its anti-
osteoclastogenic effect by inhibiting osteoclast differentia-
tion or promoting mature osteoclast cell death.

The experiments using calvarial explants and calvarial 
cells indicate that ODX can decrease the number of osteo-
clasts on the cortical periosteum. We used bone marrow 
cell cultures to assess whether ODX can inhibit osteoclast 
formation also on endosteal surfaces or on trabecular bone. 
We found that ODX robustly inhibited osteoclast forma-
tion also in these cell cultures.

The common standard view is that inhibition by BPs 
of bone resorption in vivo is due to the binding of BPs to 
bone mineral through its affinity to hydroxyapatite crystals 
and that osteoclasts are exposed to high concentrations 
of BPs when the mineral crystals are dissolved during 
the resorptive process [28]. This is the reason why one 
injection of ZOL per year is sufficient for the treatment of 
patients with osteoporosis. The reduction of mature osteo-
clasts observed in cell cultures on plastic dishes due to 
ODX illustrates the ability of ODX to impede mature oste-
oclasts irrespective of its binding to mineral crystals and 
without requiring active bone resorption by osteoclasts.

To investigate if ODX inhibited osteoclast formation in 
the cell cultures by interfering with osteoclast differentiation 
or by enhancing mature osteoclast cell death, we next puri-
fied macrophages from bone marrow (BMM) and used them 
as osteoclast progenitor cells [23, 33]. Since all cells in these 
cultures express the macrophage marker CD11b as assessed 

Fig. 4  Osteodex (ODX) and zoledronic acid (ZOL) do not affect oste-
oclast formation in bone marrow macrophage (BMM) cultures but 
enhance mature osteoclast cell death and inhibit late stages of bone 
resorption. BMMs were purified from bone marrow cells and then 
incubated in the presence of M-CSF (M; 30 ng/ml) and RANKL (RL; 
4  ng/ml) with or without ODX or ZOL, both at 2 ×  10−7  M. At the 
stated time periods, cells were stained for TRAP (A) or with FITC-
labeled phalloidin (B). In separate experiments, BMM were incu-
bated on bone discs and resorption pits visualized by toluidine blue 
staining and reflective light microscopy after 14 days (C), and CTX 
released to culture medium during days 10–14 was analyzed (D). 
Data are means of four observations, and SEM is given as vertical 
bars. Asterisks denote statistical significance; ***P < 0.001, one-way 
ANOVA, followed by Dunnett’s multiple comparisons test versus M/
RL

◂
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by FACS analysis [33], ODX can only target cells in the 
macrophage/osteoclast lineage in these cultures. Similar to 
the findings in bone marrow cell cultures, ODX robustly 

decreased the number of osteoclasts in the BMM cultures 
as demonstrated in TRAP-stained cultures and by staining 
of the characteristic actin ring in mature osteoclasts. When 

Day 4 Day 5

1x10-9 M

M/RL

M/RL + ODX
Day 4 Day 5

M/RL + ZOL
Day 4 Day 5

1x10-8 M

1x10-7 M

2x10-7 M

Fig. 5  Osteodex (ODX) and zoledronic acid (ZOL) enhance mature 
osteoclast cell death in a concentration-dependent manner. Bone 
marrow macrophages were incubated in the presence of M-CSF (M; 

30 ng/ml) and RANKL (RL; 4 ng/ml) with or without different con-
centrations of ODX or ZOL. Cells were stained for TRAP after 4 and 
5 days
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BMM cells were incubated on bone slices, ODX robustly 
inhibited the release of CTX from bone slices, demonstrat-
ing the anti-resorptive effect by ODX although this analysis 
cannot discriminate between inhibition of osteoclast for-
mation and stimulation of osteoclast cell death. Osteoclast 
counting was not performed in these experiments since the 
continuous fusion of mono- and multinucleated osteoclasts 
to huge, pancake-like osteoclasts, which gradually become 
apoptotic, makes counting of the numbers of osteoclasts not 
an accurate measure.

The observation that ODX did not affect RANKL-
induced upregulation of mRNA expression of the osteoclas-
tic genes Acp5 and Ctsk during the first 4 days in the BMM 
cultures, a time period when the mononuclear osteoclast 
progenitors differentiate to mature osteoclasts, demonstrates 
that ODX does not affect osteoclast progenitor cell differen-
tiation. Intracellular signaling downstream activated RANK 
includes activation of MAPK and transcription factors such 
as AP-1, NF-κB, PU.1, MITF, and NFATc1, with NFAC1 
being considered the master regulator of osteoclastogenesis 
[34]. The fact that ODX did not affect RANKL-induced 
upregulation of Nfatc1 mRNA expression shows that ODX 

does not affect RANK signaling upstream Nfatc1. Similarly, 
ZOL did not affect the mRNA expression of osteoclastic and 
osteoclastogenic genes.

In all three assay systems used, the effects by ODX were 
similar to those obtained by ZOL, a well-documented and 
clinically often used BP. Since ODX, similar to ZOL, is a 
nitrogen-containing BP and since this class of BP exerts 
its anti-osteoclastic effects through stimulating mature 
osteoclast apoptosis [28], we made detailed observations 
on osteoclast morphology at different time points dur-
ing the culture. It was evident that ODX had no effect on 
mature osteoclast numbers at early time points (days 3 
and 4) but clearly at day 5, also demonstrating that ODX 
does not affect osteoclast differentiation and formation of 
mature osteoclasts. The remnants of osteoclasts observed at 
late time points had the appearance of apoptotic osteoclasts 
with parts of the cell membrane, nuclei, and cytosolic com-
partments persisting, although formal proof for that ODX 
caused mature osteoclast death by apoptosis would require 
more detailed analyses. This response was very sensitive and 
observed at concentrations of ODX at 0.01 µM and above, 
which is considerably lower than those usually used to study 

Fig. 6  Osteodex (ODX) and zoledronic acid (ZOL) do not affect the 
expression of osteoclastic (Acp5, Ctsk) and osteoclastogenic (Nfatc1) 
genes induced by RANKL. Bone marrow macrophages were incu-
bated in the presence of M-CSF (M; 30  ng/ml) and RANKL (RL; 
4  ng/ml) with or without ODX or ZOL, both at 2 ×  10−7  M. After 

2, 3, and 4 days, RNA was extracted, and gene expression was ana-
lyzed. Data are means of four observations, and SEM is given as 
vertical bars. Asterisks denote statistical significance; **P < 0.01 
and ***P < 0.001, one-way ANOVA, followed by Dunnett’s multiple 
comparisons test versus M/RL
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Fig. 7  Osteodex (ODX) and 
zoledronic acid (ZOL) do not 
affect the expression of pro-
apoptotic (A) and anti-apoptotic 
(B) genes regulated by RANKL. 
Bone marrow macrophages 
were incubated in the presence 
of M-CSF (M; 30 ng/ml) and 
RANKL (RL; 4 ng/ml) with or 
without ODX or ZOL, both at 
2 ×  10−7 M. At the stated time 
periods, RNA was extracted, 
and gene expression was 
analyzed. Data are means of 
four observations, and SEM is 
given as vertical bars. Asterisks 
denote statistical significance; 
**P < 0.01 and ***P < 0.001, 
one-way ANOVA, followed by 
Dunnett’s multiple comparisons 
test versus M/RL

A

B
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effects by BPs on apoptosis in vitro where concentrations in 
the range of 10–100 µM often are used [17, 35].

We assessed the mRNA expression of four pro- and anti-
apoptotic genes regulated by RANKL, but none was affected 
by ODX, which suggests that ODX-induced cell death is 
induced by other mechanisms. This observation further sup-
ports our conclusion that ODX does not affect RANK sign-
aling. Both nitrogen-containing BPs and non-nitrogen BPs 
inhibit osteoclasts, but only nitrogen-containing BPs inhibit 
the mevalonate pathway [17]. Nitrogen-containing BPs inhibit 
the incorporation of 14C-mevalonate into both farnesylated 
and geranylgeranylated GTP-binding proteins in rabbit osteo-
clasts [17]. The fact that GGTI-298, a specific inhibitor of 
geranylgeranyl transferase I, induces osteoclast apoptosis indi-
cates that geranylgeranylation of proteins is more important 
than farnesylation of proteins for osteoclast function.

In conclusion, we here report that ODX does not inhibit 
mature osteoclast formation but inhibits osteoclastic bone 
resorption by decreasing osteoclast numbers through 
enhanced cell death of mature osteoclasts. ODX and ZOL 
seem to be equipotent as inhibitors of bone resorption 
[18] and inducers of osteoclast cell death (present study). 
Important from a clinical point of view is the observation 
that ODX is considerably more potent than ZOL as inducer 
of apoptotic cell death in human prostate cancer and breast 
cancer cell lines [18]. These findings indicate that ODX 
causes apoptosis in tumor cells and cell death of mature 
osteoclasts by different mechanisms.
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