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Introduction

Head and neck squamous cell carcinoma (HNSCC) are 
among the ten most common cancers. In 2020, HNSCC 
comprised 4.6% of all new cancer diagnoses and 4.5% of 
cancer deaths worldwide [1]. Most patients present with 
locally advanced stages and frequently require multimodal 
therapy, which includes surgery and radio(chemo)therapy or 
radiochemotherapy alone [2, 3]. However, treatment with 
high-dose cisplatin is only possible in nonelderly patients 
with no major comorbidities [4]. Thus, new therapeutic 
options are needed to improve the response to radio- and 
chemotherapy, which could ideally help to reduce their 
doses and adverse effects.

Ataxia telangiectasia and Rad3-related (ATR) plays a 
major role in DNA damage response and triggers the S and 
G2/M cell cycle checkpoints. ATR is activated by DNA 
single-strand breaks and replication stress, which are both 
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Abstract
Alterations in the DNA damage response play a crucial role in radio- and chemoresistance of neoplastic cells. Activation 
of the Ataxia telangiectasia and Rad3-related (ATR) pathway is an important DNA damage response mechanism in head 
and neck squamous cell carcinoma (HNSCC). Berzosertib, a selective ATR inhibitor, shows promising radio- and chemo-
sensitizing effects in preclinical studies and is well tolerated in clinical studies. The aim of this study was to elucidate the 
effect of berzosertib treatment in combination with radiation and cisplatin in HNSCC. The HNSCC cell lines Cal-27 and 
FaDu were treated with berzosertib alone and in combination with radiation or cisplatin. Cell viability and clonogenic 
survival were evaluated. The effect of combination treatment was evaluated with the SynergyFinder or combination index. 
Apoptosis was assessed via measurement of caspase 3/7 activation and migration was evaluated using a wound healing 
assay. Berzosertib treatment decreased cell viability in a dose-dependent manner and increased apoptosis. The IC50 of 
berzosertib treatment after 72 h was 0.25–0.29 µM. Combination with irradiation treatment led to a synergistic increase in 
radiosensitivity and a synergistic or additive decrease in colony formation. The combination of berzosertib and cisplatin 
decreased cell viability in a synergistic manner. Additionally, berzosertib inhibited migration at high doses. Berzosertib 
displays a cytotoxic effect in HNSCC at clinically relevant doses. Further evaluation of combination treatment with irra-
diation and cisplatin is strongly recommended in HNSCC patients as it may hold the potential to overcome treatment 
resistance, reduce treatment doses and thus mitigate adverse events.
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induced by radio- and chemotherapy. HNSCC commonly 
exhibits an impaired G1/S checkpoint, due to mutation or 
inactivation of TP53, which is associated with radio- and 
chemoresistance. Thus, HNSCC cells are dependent on S 
and G2/M checkpoints. The activation of these checkpoints 
leads to the arrest of the cell cycle and allows for DNA 
damage repair. As a consequence, inhibition of ATR (in the 
G1 checkpoint impaired state) leads to synthetic lethality, 
while normal adjacent tissue with an intact G1 checkpoint 
is spared [2].

Berzosertib (also known as VX-970, VE-822 or M6620) 
is a selective inhibitor of ATR. Treatment with berzosertib as 
single agent treatment and in combination with chemother-
apy and radiotherapy showed promising preclinical antican-
cer effects in several cancers in vitro [5]. No relevant effect 
was observed on normal fibroblasts or breast epithelial cells 
[6–9]. Berzosertib is currently under clinical investigation 
in several phase I-III studies [10]. First results show that 
berzosertib is well tolerated as monotherapy and in com-
bination with cisplatin, gemcitabine or topotecan [11–15].

This study aimed to investigate the effect of berzosertib 
in HNSCC cell lines and the interaction between berzosertib 
and radiation or cisplatin treatment.

Methods

Reagents

The ATR inhibitor berzosertib was purchased from Selleck 
Chemicals (Houston, TX, USA). A stock solution was dis-
solved in DMSO at a concentration of 50mM and stored at 
-20 °C. The chemotherapeutic agent cisplatin (1 mg/ml) was 
retrieved from ready-to-use infusions from the pharmacy of 
the General Hospital of Vienna. The working concentration 
of each agent was prepared directly before each experiment.

Cell lines and Cell Culture

To investigate the effect of berzosertib treatment the HNSCC 
cell lines FaDu and Cal-27 (German Collection of Microor-
ganisms and Cell Cultures GmbH, DSMZ, Braunschweig, 
Germany) were used. Cells were kept at 37 °C and 5% CO2 
in a humidified incubator. The used cell culture medium was 
Dulbecco’s Modified Eagle’s Medium (DMEM; Thermo 
Fisher Scientific, Gibco, Waltham, MA, USA) supple-
mented with 10% Fetal Bovine Serum (FBS; Thermo Fisher 
Scientific), 100 U/mL Penicillin, and 100  µg/mL Strepto-
mycin (Thermo Fisher Scientific), further referred to as 
culture medium. Subculturing was performed at 80–90% 
confluency and to a maximum passage number of 25.

Radiation treatment

To investigate the combined effect of berzosertib and irra-
diation, treatment was combined with 2–8 Gy directly after 
berzosertib treatment. Cells were irradiated at a dose rate of 
1 Gy/min with the 200 kV YXLON Maxishot unit YXLON 
International GmbH, Hamburg, Germany) as previously 
described [16]. In detail, irradiation was performed at a dis-
tance of 45.5 cm, with a focus size of 5.5 cm and a current 
of 20mA. A 4 mm aluminum and 0.6 mm copper filter were 
applied.

Cell viability assay

To investigate the effect of treatment on the HNSCC cells, a 
resazurin assay was performed in 96-well plates. Five thou-
sand cells were seeded per well. One day after seeding, cells 
were treated with berzosertib alone (0.031-1 µM), or a com-
bination of berzosertib (0.016-0.5 µM) and cisplatin (0.31-
10 µM) or irradiation (0–8 Gy). 0.1% DMSO was used as a 
control. After 72 h of incubation, the medium was removed 
and cells were incubated with medium containing 56 µM 
resazurin (Sigma-Aldrich, St. Louis, MO, USA). After 2-3 h 
of incubation, absorbance was measured using a TECAN 
SPARK 10 M microplate reader (Männedorf, Switzerland) 
at 570 nm.

Colony formation assay

Colony formation of Cal-27 and FaDu was measured using 
the colony formation assay as described by Franken et al. 
[17]. Cal-27 cells were seeded at a density of 250, 250, 500 
and 1000 cells per well for 0, 2, 4 and 6 Gy, respectively. 
FaDu cells were seeded at a density of 300, 300, 600, 1200 
cells per well for 0, 2, 4 and 6 Gy, respectively. After one day 
of incubation, cells were treated with berzosertib (0.016–
0.125 µM) and radiation (0–6 Gy). After 72 h, berzosertib-
containing medium was replaced with normal medium and 
cells were incubated for another ten days. Colony formation 
was then scanned using a TECAN SPARK 10  M micro-
plate reader and evaluated with ImageJ 1.53e as previously 
described [18]. Briefly, a binary contrast enhanced image 
was created and the colonies containing more than 50 cells 
were counted using the “analyze particles” function. The 
average pixel area of 50–60 cells was measured and the cut-
off for the minimum particle size was adjusted accordingly.

Apoptosis assay

Apoptosis was measured using the Caspase-Glo® 3/7 assay 
(Promega Corporation, Madison, WI, USA) according to the 
manufacturers protocol. The experiment was carried out in a 
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96-well plate with 5000 cells per well. After 24 h of incuba-
tion after seeding, cells were treated with berzosertib alone 
(Cal-27: 0.25 µM, FaDu: 0.5 µM), and in combination with 
cisplatin (Cal-27 2.5 µM, FaDu: 5 µM) or radiation (4 Gy) 
for 48 h. Then, the tissue plate was cooled to room tempera-
ture and incubated with the Caspase-Glo® 3/7 reagent for 
30 min. The resulting luminescence was measured using the 
TECAN SPARK 10  M reader. Luminescence levels were 
normalized to the DMSO 0.1% control.

Migration assay

Cell migration after berzosertib treatment was measured 
using 2 chamber culture-inserts (ibidi GmbH, Graefeling, 
Germany). Cal-27 and FaDu cells were seeded at a density 

of 60,000 and 70,000 cells per culture-insert in a 24-well 
plate. After 24  h of incubation, the inserts were carefully 
removed and cells were treated with berzosertib (0.125-0.5 
µM). Gap closure was measured at 0, 24 and 48  h (only 
for FaDu cells) using the TECAN SPARK 10 M reader and 
evaluated using the MRI wound healing tool [19] in ImageJ 
1.53e.

Statistical analysis

Data was normalized to the DMSO 0.1% control group. 
Results were visualized and evaluated using a one-way or 
two-way ANOVA and Dunnett’s multiple comparisons test 
in Graph Pad Prism 8 (Version 8.4.2, GraphPad Software 
Inc., San Diego, CA, USA). The inhibitor’s IC50 values 
were calculated using a nonlinear regression model with a 
variable slope. Combination experiments with irradiation 
were evaluated using the SynergyFinder 3.0 and the Zero 
Interaction Potency (ZIP) method [20, 21]. A ZIP score 
below -10 indicates antagonism, above 10 synergy and in 
between an additive effect. Combination experiments with 
cisplatin were evaluated using the Combination Index (CI) 
as published by Chou et al. using CompuSyn software 
(ComboSyn Inc.) [22]. A CI below 0.9 indicates a synergis-
tic effect, between 0.9 and 1.1 an additive effect and above 
1.1 an antagonistic effect. A p-value below 0.05 was consid-
ered statistically significant.

Results

Berzosertib decreases cell viability

To investigate the effect of berzosertib on HNSCC cell 
lines, a cell viability assay using resazurin was performed. 
The cell lines Cal-27 and FaDu were incubated with ber-
zosertib for 72  h and showed a dose-dependent decrease 
in cell viability (Fig.  1). The IC50 values were 0.285 µM 
(95%CI: 0.259–0.315) for Cal-27 and 0.252 µM (95%CI: 
0.231–0.275) for FaDu.

Berzosertib acts as a radiosensitizer

Combination experiments were carried out using a resazurin 
assay and a clonogenic assay. After 72 h of incubation, the 
resazurin assay revealed significant inhibition of cell viabil-
ity for the combination of berzosertib and irradiation in Cal-
27 (p ≤ 0.002) and FaDu cells (p ≤ 0.033, Fig. 2). In detail, 
4 Gy of radiation reduced cell viability to 72%, 0.25 µM 
berzosertib to 72% and combination treatment reduced cell 
viability to 7% in Cal-27 cells (p < 0.0001). In FaDu cells, 
irradiation with 4 Gy resulted in a decrease in cell viability 

Fig. 1  Cell viability assay of berzosertib. Cal-27 (A) and FaDu (B) 
cells were treated with berzosertib for 72 h. Cell viability was mea-
sured using resazurin. Data were normalized to the untreated (DMSO 
0.1%) control group. Error bars represent the standard error of the 
mean
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Combination of berzosertib and cisplatin shows a 
synergistic effect

The combination of berzosertib and cisplatin was evaluated 
after 72 h of treatment using a resazurin assay and the com-
bination index (CI; Fig. 4) [22]. The combination ratio was 
chosen using the IC50 values of monotherapy as guidance. 
IC50 values of cisplatin treatment were 2.15 µM and 6.08 
µM in Cal-27 and FaDu cells, respectively. Thus, a ratio 
of 1:10 was chosen for combination experiments. In Cal-27 
cells, all evaluated doses of combination treatment exhib-
ited a significant reduction in cell viability for the combi-
nation treatment when compared to single-agent therapy 
(all p < 0.0001). Single agent treatment with 2.5 µM cispla-
tin reduced cell viability to 46% and 0.25 µM berzosertib 
reduced cell viability to 45%. The combination of both 
agents at the same concentrations decreased cell viability to 
9% (p < 0.0001). Evaluation of Cal-27 cell viability with the 
CI revealed a strong or very strong synergism (experimental 
and calculated CI < 0.3) for a dose up to 2.5 µM cisplatin 
and 0.25 µM berzosertib (fraction affected below 0.97). 
The combination of 5 µM cisplatin and 0.5 µM berzosertib 
revealed a moderate synergistic effect (CI: 0.35).

In FaDu cells, the cell viability was decreased signifi-
cantly up to the combination of 0.5 µM berzosertib and 
5 µM cisplatin (all p < 0.001). In detail, 2.5 µM cisplatin 
decreased cell viability to 74% and 0.25 µM berzosertib to 
42%. Combination treatment further reduced cell viability 

to 82%, treatment with 0.25 µM berzosertib to 55% and 
combination treatment reduced cell viability to 22% 
(p < 0.0001). Evaluation of the combinatory effect using the 
SynergyFinder [20, 21] revealed a synergistic effect with an 
overall ZIP synergy score of 26.6 and 13.6 for Cal-27 and 
FaDu, respectively (Fig. 2). The most potent doses of the 
combination were between 0.125 and 0.5 µM and 2–6 Gy 
for Cal-27 and 0.063–0.25 µM and 2–6 Gy for FaDu.

To further elucidate the effect on colony formation, the 
effect of berzosertib in combination with radiation was 
examined in a clonogenic assay. Again, the combination 
of berzosertib (0.016–0.125 µM) and radiation (2–4  Gy) 
exhibited a decrease in colony formation greater than single 
agent therapy (Fig. 3). In Cal-27 cells, treatment with 2 Gy 
of irradiation led to a decrease in colony formation to 43%, 
while treatment with 0.016 µM berzosertib decreased colony 
formation to 67%. Combination treatment further reduced 
colony formation to 18% (p < 0.0001). The colony forma-
tion of FaDu cells was not affected by 2  Gy. Berzosertib 
treatment with 0.031 µM alone slightly decreased colony 
formation to 89% (not significant). However, combination 
of both treatments led to a decrease in colony formation to 
57% (p = 0.0003). The SynergyFinder [20, 21] revealed an 
additive effect in Cal-27 (ZIP Synergy Score 3.3; Fig. 3B), 
and a synergistic effect in FaDu cells (ZIP Synergy Score 
14.3; Fig. 3D).

Fig. 2  Cell viability assay of ber-
zosertib and radiation. Cal-27 (A) 
and FaDu (C) cells were treated 
with berzosertib and/or radiation 
for 72 h. Results were evaluated 
with the synergy finder and zero 
interaction potency (ZIP) score 
(B,D). Data were normalized 
to the untreated (DMSO 0.1%, 
0 Gy) control group. Asterisks 
represent a significant differ-
ence of berzosertib treatment 
compared to the DMSO control 
treated with the same radiation 
dose (*: p < 0.05; **p < 0.01; 
***: p < 0.001; ****: p < 0.0001). 
Error bars represent the standard 
error of the mean. A ZIP score 
above 10 indicates synergism, 
below -10 antagonism, and in 
between (-10–10) an additive 
interaction
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synergism for the combination of 0.625 µM cisplatin and 
0.0625 µM berzosertib (CI: 0.87), a moderate synergistic 
effect for the combination of 1.25-5 µM cisplatin and 0.125-
0.5 µM berzosertib (CI: 0.40–0.66), and a slight antagonism 

to 16% (p < 0.0001). FaDu cells responded to combination 
treatment in a nearly additive and synergistic manner. The 
calculated CI values all indicated a synergistic effect (CI: 
0.42–0.88). The experimental CI values revealed a slight 

Fig. 4  Cell viability assay of ber-
zosertib and cisplatin. Cal-27 (A) 
and FaDu (C) cells were treated 
with berzosertib and/or cisplatin 
for 72 h. Results were evalu-
ated with the combination index 
(B,D). Data were normalized to 
the untreated (DMSO 0.1%) con-
trol group. Asterisks represent a 
significant difference of combina-
tion treatment compared to single 
agent treatment (*: p < 0.05; 
**p < 0.01; ***: p < 0.001; ****: 
p < 0.0001). Error bars represent 
the standard error of the mean

 

Fig. 3  Colony formation assay of 
berzosertib and radiation. Cal-27 
(A) and FaDu (C) cells were 
treated with berzosertib and/or 
radiation and then incubated for 
ten days. Results were evaluated 
with the synergy finder and zero 
interaction potency (ZIP) score 
(B,D). Data were normalized 
to the untreated (DMSO 0.1%, 
0 Gy) control group. Asterisks 
represent a significant differ-
ence of berzosertib treatment 
compared to the DMSO control 
treated with the same radiation 
dose (*: p < 0.05; **p < 0.01; 
***: p < 0.001; ****: p < 0.0001). 
Error bars represent the standard 
error of the mean. A ZIP score 
above 10 indicates synergism, 
below -10 antagonism, and in 
between (-10–10) an additive 
interaction
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0.25 µM and 0.5 µM berzosertib decreased gap closure to 
82% (p = 0.011) and 50% (p < 0.0001), respectively. Migra-
tion of FaDu cells was inhibited at 0.25 µM and 0.5 µM 
after 24 h and 0.5 µM after 48 h. In more detail, after 24 h of 
incubation, untreated FaDu cells exhibited a gap closure of 
41%, whereas treatment with 0.25 µM and 0.5 µM resulted 
in a reduced gap closure of 24% for both concentrations 
(p < 0.001).

Discussion

Although treatment regimens for HNSCC have undergone 
some incremental improvements over the last decades, sur-
vival rates of HNSCC patients are still low [3, 23–26]. Acti-
vation of ATR is an important response mechanism to DNA 
damage caused by radio- and chemotherapy in HNSCC [2]. 
The ATR inhibitor berzosertib shows potent preclinical anti-
cancer effects in several cancers and is well tolerated in clin-
ical studies [5]. In HNSCC, first studies showed increased 
sensitivity to simultaneous treatment with berzosertib and 
cisplatin or irradiation [6, 27, 28]. Thus, this study aimed to 
further elucidate combination treatment and provide addi-
tional evidence for the use of berzosertib in combination 
with irradiation and cisplatin in HNSCC.

In this study, Berzosertib inhibited cell viability and had 
a proapoptotic effect in the investigated HNSCC cell lines 
with comparable IC50 values observed in other cancer enti-
ties [7, 29–33]. Faulhaber et al. showed a cytotoxic effect in 
HPV-positive and HPV-negative HNSCC cell lines and no 
significant effect on normal fibroblasts [6]. In clinical trials, 
a plasma concentration of up to 4410 ng/ml (approx. equiv-
alent to 9.51 µmol/l) was well tolerated [11–14]. Therefore, 

for combination of 10 µM cisplatin and 1 µM berzosertib 
(CI: 1.12).

Berzosertib treatment induces apoptosis

Apoptosis was measured using the Caspase-Glo® 3/7 assay. 
Cal-27 and FaDu cells were treated with berzosertib, 4 Gy 
of irradiation or cisplatin or a combination of two agents for 
48 h (Fig. 5). In Cal-27 cells, 0.25 µM berzosertib increased 
apoptosis to 279%, radiation to 232% and 2.5 µM cisplatin 
treatment to 190% (p < 0.0001). Combination of berzosertib 
and irradiation significantly increased apoptosis levels to 
420% (p < 0.0001). When berzosertib was combined with 
cisplatin, apoptosis levels were increased to 326%. Statis-
tical analysis revealed a significant increase in apoptosis 
when combination treatment was compared with cisplatin 
monotherapy (p < 0.0001), but not in comparison with ber-
zosertib monotherapy (p = 0.056).

In FaDu cells, 0.5 µM berzosertib treatment increased 
apoptosis to 244% (p < 0.0001), while treatment with radia-
tion (123%) or 5 µM cisplatin (117%) did not increase apop-
tosis levels. Combination therapy, significantly enhanced 
induction of apoptosis to 295% after treatment with ber-
zosertib and irradiation (p ≤ 0.007), and 434% after combi-
nation of berzosertib and cisplatin (p < 0.0001).

Migration is partially inhibited by berzosertib

The effect of berzosertib treatment on cell migration was 
evaluated with a migration assay using 2-well inserts 
(Fig.  5). Berzosertib treatment inhibited cell migration of 
Cal-27 at a dose of 0.25 µM and higher. In detail, while 
untreated cells led to a gap closure of 98%, treatment with 

Fig. 5  Apoptosis and migration 
assay. For the apoptosis assay, 
Cal-27 (A) and FaDu (D) cells 
were treated with berzosertib, 
radiation and/or cisplatin for 48 h 
and caspase 3/7 activity was mea-
sured. Migration was evaluated 
after 24 h for Cal-27 (B,C) or 24 
and 48 h for FaDu (E,F) cells. 
Data were normalized to the 
untreated (DMSO 0.1%) control 
group. Asterisks above the error 
bars represent a significant dif-
ference of berzosertib treatment 
compared to the DMSO control 
group (*: p < 0.05; **p < 0.01; 
***: p < 0.001; ****: p < 0.0001). 
Error bars represent the standard 
error of the mean
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in Cal-27 cells and a synergistic to additive effect in FaDu 
cells. The evaluation of apoptosis levels further supported 
the enhanced sensitivity, as apoptosis was significantly 
increased by combination treatment 1.7–3.7 fold. In line 
with our results, the combination of berzosertib and cispla-
tin revealed synergistic effects in esophageal and lung can-
cer [29, 41]. In clinical trials, the combination of cisplatin 
and berzosertib was well tolerated in triple-negative breast 
cancer and advanced solid tumors [11, 45].

Last, the effect of berzosertib on migration was investi-
gated to evaluate whether it may inhibit metastasis. ATR is 
essential for keeping the nuclear plasticity under mechanical 
stress and interstitial migration due to its role in the nuclear 
envelope [46]. According to Faulhaber et al., HNSCC cell 
lines’ migration was not affected at 0.1µM berzosertib. [6] 
In our study, berzosertib showed antimigratory effects at 
high doses. However, serum starvation was not tolerated 
by our cell lines. Thus, the observed effect may be partially 
attributable to an inhibition of cell viability. In other cancer 
cells, berzosertib inhibits cell migration in liposarcoma [47] 
and gastric cancer [32].

There are some limitations of this study: Berzosertib 
was investigated in vitro in a 2D cell culture and only in 
two HNSCC cell lines. The mechanistic background of ber-
zosertib treatment on ATR inhibition and cell cycle regula-
tion was not investigated as this was previously reported by 
Faulhaber et al. and Dobler et al. [6, 27].

In summary, this study underlines the cytotoxic effect 
of berzosertib treatment at clinically relevant doses. Com-
bination treatment with radiation or cisplatin showed an 
additive or synergistic effect. Altogether, we conclude that 
berzosertib might be a promising agent for combination 
treatment with cisplatin and irradiation and could poten-
tially help to overcome p53-associated treatment resistance 
in HNSCC.
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we presume that berzosertib exhibits cytotoxicity in HNSCC 
cell lines at clinically relevant concentrations.

Although berzosertib as a standalone treatment appears 
promising [7, 29–33], combination with radiation treatment 
may potentiate response rates due to the common depen-
dance of HNSCC on ATR as a damage response mechanism 
[2]. Faulhaber et al. demonstrated that berzosertib slightly 
increases radiosensitivity when combined with 2 Gy of irra-
diation in HNSCC cell lines [6]. However, the impact on 
high-dose irradiation or the mode of interaction (additive vs. 
synergistic) was not evaluated. The radiosensitizing effect 
in HNSCC is further supported by Chen et al. [28]. In this 
study, the combination of berzosertib and irradiation sig-
nificantly decreased cell viability and led to a reduction of 
colony formation in an additive or synergistic manner. The 
addition of berzosertib to irradiation treatment increased 
apoptosis levels by 1.8–2.4 fold. This is especially inter-
esting in the radioresistant cell line FaDu [34]. Here, the 
addition of berzosertib to irradiation potently reduced cell 
viability and colony formation even at low doses. In other 
cancer entities, berzosertib significantly enhances radiosen-
sitivity in esophageal cancer, colorectal cancer, melanoma 
and lung cancer [7, 35, 36]. Furthermore, the clonogenic 
survival rate was reduced at similar concentrations [7–9, 31, 
35]. Interestingly, there is no enhanced effect of radiation on 
normal fibroblasts [7, 8]. Radiation-induced DNA damage 
triggers cell cycle checkpoints to ensure DNA integrity. The 
G1/S checkpoint is commonly impaired in HNSCC cells; 
thus, they rely on the S and G2/M checkpoints, which are 
activated by ATR. Inhibition of ATR is therefore lethal in 
the G1/S impaired state as the DNA damage can no lon-
ger be managed. Unlike HNSCC cells, regular fibroblasts 
can still repair radiation-induced DNA damage through the 
intact G1/S checkpoint [2]. This may explain why addition 
of berzosertib has no radiosensitizing effect on normal fibro-
blasts. Based on these observations, we hypothesize that 
the adverse effects of irradiation on normal tissue are not 
increased by the addition of berzosertib.

ATR plays a pivotal role in the management of cispl-
atin-induced DNA damage [37–40]. Inhibition through 
berzosertib therefore sensitizes cells to cisplatin treatment 
in several cancers [28, 29, 41, 42]. The cisplatin induced 
DNA-damage is managed by ATR, which in turn activates 
p53 and other downstream targets [40, 43]. However, p53 is 
commonly inactivated or lost in HNSCC [2] and mutation of 
p53 is linked to a decreased sensitivity to cisplatin treatment 
[44]. Studies have shown, that loss of p53 increases depen-
dance on ATR to manage cisplatin induced-DNA damage 
[40, 43]. In this study, the combination of berzosertib and 
cisplatin significantly inhibited cell viability compared to 
single agent therapy. Analysis with the combination index 
revealed a strong synergistic effect of combination treatment 
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