Skip to main content

Advertisement

Log in

The p53 reactivator PRIMA-1MET synergises with 5-fluorouracil to induce apoptosis in pancreatic cancer cells

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Pancreatic cancer (PC) is one of the deadliest malignancies; p53 is mutated in approximately 75% of PC patients. Hence, the protein derived from mutant/wild-type TP53 may represent a therapeutic target. Interestingly, a p53 reactivator (PRIMA-1MET) showed promise in clinical trials of haematological malignancies; therefore, it warrants an in vitro evaluation in PC cell lines. To evaluate the antiproliferative effects of PRIMA-1MET, either alone or combined with the common chemotherapy 5-fluorouracil (5-FU), against mutated and wild-type p53 PC cell lines. This study involved p53-mutant (AsPC-1) and p53-wild type (Capan-2) PC cell lines. The cytotoxicity of PRIMA-1MET alone or in combination with 5-FU was evaluated by MTT assay. Synergism was assessed by calculating the combination index (CI) via CalcuSyn software. Fluorescence microscopy was used to analyse apoptosis following acridine orange/ethidium bromide (AO/EB) staining. Morphological changes were investigated with an inverted microscope. Quantitative reverse transcription PCR (RT‒qPCR) was used to measure gene expression. Both PC cell lines were sensitive to PRIMA-1MET monotherapy. Furthermore, PRIMA-1MET and 5-FU had a synergistic effect (CI < 1), reflected by significant enhancement of apoptosis and morphological changes in the combination vs. monotherapy treatments. Moreover, the RT‒qPCR results indicated increased expression of the NOXA and TP73 genes in combination-treated cells. Our data suggested that PRIMA-1MET, whether alone or combined with 5-FU, has an antiproliferative effect on PC cell lines regardless of p53 mutational status. The synergism of the combination was associated with significant apoptosis induction through p53-dependent and p53-independent pathways. Preclinical confirmation of these data in in vivo models is highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Voutsadakis IA (2021) Mutations of p53 associated with pancreatic cancer and therapeutic implications. Annals of hepato-biliary-pancreatic surgery. 25(3):315–327. https://doi.org/10.14701/ahbps.2021.25.3.315

  2. Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP (2016) Pancreatic cancer. Nat Reviews Disease Primers 2(1):16022. https://doi.org/10.1038/nrdp.2016.22

    Article  PubMed  Google Scholar 

  3. Muniraj T, Jamidar PA, Aslanian HR (2013) Pancreatic cancer: a comprehensive review and update. Dis Mon 59(11):368–402. https://doi.org/10.1016/j.disamonth.2013.08.001

    Article  PubMed  Google Scholar 

  4. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA: a cancer journal for clinicians. 63(1):11–30. https://doi.org/10.3322/caac.21166

  5. Simeone DM (2008) Pancreatic Cancer stem cells: implications for the treatment of pancreatic Cancer. Clin Cancer Res 14(18):5646–5648. https://doi.org/10.1158/1078-0432.ccr-08-0584

    Article  CAS  PubMed  Google Scholar 

  6. Thomas AF, Kelly GL, Strasser A (2022) Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death & Differentiation 29(5):961–971. https://doi.org/10.1038/s41418-022-00996-z

    Article  CAS  Google Scholar 

  7. Du J, Gong H, Xiao H (2021) Somatic TP53 mutations and comparison of different TP53 functional domains in human cancers: data analysis from the IARC TP53 database and the National Cancer Institute GDC data portal. Med Data Min 4(1):3

    Article  Google Scholar 

  8. Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338. https://doi.org/10.1038/nrc1074

    Article  CAS  PubMed  Google Scholar 

  9. Yuan C, Parekh H, Allegra C, George TJ, Starr JS (2019) 5-FU induced cardiotoxicity: case series and review of the literature. Cardio-oncology 5(1):1–7. https://doi.org/10.1186/s40959-019-0048-3

    Article  Google Scholar 

  10. Wang WB, Yang Y, Zhao YP, Zhang TP, Liao Q, Shu H (2014) Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J Gastroenterol 20(42):15682–15690. https://doi.org/10.3748/wjg.v20.i42.15682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han J, Li J, Tang K, Zhang H, Guo B, Hou N, Huang C (2017) Mir-338-3p confers 5-fluorouracil resistance in p53 mutant colon cancer cells by targeting the mammalian target of rapamycin. Exp Cell Res 360(2):328–336. https://doi.org/10.1016/j.yexcr.2017.09.023

    Article  CAS  PubMed  Google Scholar 

  12. Alhammer A, Case M, Blair HJ, Vormoor J, Irving J (2016) Exploring Pre-B cell receptor signalling as a therapeutic target in Acute Lymphoblastic Leukaemia. Blood 128(22):4066–4066. https://doi.org/10.1182/blood.V128.22.4066.4066

    Article  Google Scholar 

  13. Bykov VJN, Eriksson SE, Bianchi J, Wiman KG (2018) Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer 18(2):89–102. https://doi.org/10.1038/nrc.2017.109

    Article  CAS  PubMed  Google Scholar 

  14. Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8(3):282–288

    Article  CAS  PubMed  Google Scholar 

  15. Rangel LP, Ferretti GD, Costa CL, Andrade SM, Carvalho RS, Costa DC, Silva JL (2019) p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) inhibits amyloid aggregation of mutant p53 in cancer cells. J Biol Chem 294(10):3670–3682. https://doi.org/10.1074/jbc.RA118.004671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lambert JM, Gorzov P, Veprintsev DB, Söderqvist M, Segerbäck D, Bergman J, Fersht AR, Hainaut P, Wiman KG, Bykov VJ (2009) PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15(5):376–388. https://doi.org/10.1016/j.ccr.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  17. Yoshikawa N, Kajiyama H, Nakamura K, Utsumi F, Niimi K, Mitsui H, Sekiya R, Suzuki S, Shibata K, Callen D (2016) PRIMA-1MET induces apoptosis through accumulation of intracellular reactive oxygen species irrespective of p53 status and chemo-sensitivity in epithelial ovarian cancer cells. Oncol Rep 35(5):2543–2552. https://doi.org/10.3892/or.2016.4653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saha MN, Jiang H, Yang Y, Reece D, Chang H (2013) PRIMA-1Met/APR-246 displays high antitumor activity in multiple myeloma by induction of p73 and noxa. Mol Cancer Ther 12(11):2331–2341. https://doi.org/10.1158/1535-7163.MCT-12-1166

    Article  CAS  PubMed  Google Scholar 

  19. Zandi R, Selivanova G, Christensen CL, Gerds TA, Willumsen BM, Poulsen HS (2011) PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53. Clin Cancer Res 17(9):2830–2841. https://doi.org/10.1158/1078-0432.CCR-10-3168

    Article  CAS  PubMed  Google Scholar 

  20. Li X-L, Zhou J, Chan Z-L, Chooi J-Y, Chen Z-R, Chng W-J (2015) PRIMA-1met (APR-246) inhibits growth of colorectal cancer cells with different p53 status through distinct mechanisms. Oncotarget 6(34):36689. https://doi.org/10.18632/oncotarget.5385

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lehmann S, Bykov VJN, Ali D, Andrén O, Cherif H, Tidefelt U, Uggla B, Yachnin J, Juliusson G, Moshfegh A, Paul C, Wiman KG, Andersson P-O (2012) Targeting p53 in vivo: a first-in-human study with p53-Targeting compound APR-246 in refractory hematologic malignancies and prostate Cancer. J Clin Oncol 30(29):3633–3639. https://doi.org/10.1200/jco.2011.40.7783

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Manero G, Goldberg AD, Winer ES, Altman JK, Fathi AT, Odenike O, Roboz GJ, Sweet K, Miller C, Wennborg A, Hickman DK, Kanagal-Shamanna R, Kantarjian H, Lancet J, Komrokji R, Attar EC, Sallman DA (2023) Eprenetapopt combined with venetoclax and azacitidine in TP53-mutated acute myeloid leukaemia: a phase 1, dose-finding and expansion study. Lancet Haematol 10(4):e272–e283. https://doi.org/10.1016/s2352-3026(22)00403-3

    Article  CAS  PubMed  Google Scholar 

  23. Deer EL, González-Hernández J, Coursen JD, Shea JE, Ngatia J, Scaife CL, Firpo MA, Mulvihill SJ (2010) Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39(4):425–435. https://doi.org/10.1097/MPA.0b013e3181c15963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Izetti P, Hautefeuille A, Abujamra AL, de Farias CB, Giacomazzi J, Alemar B, Lenz G, Roesler R, Schwartsmann G, Osvaldt AB (2014) PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines. Investig New Drugs 32(5):783–794. https://doi.org/10.1007/s10637-014-0090-9

    Article  CAS  Google Scholar 

  25. Chou T-C (2010) Drug combination studies and their synergy quantification using the Chou-Talalay Method. Cancer Res 70(2):440–446. https://doi.org/10.1158/0008-5472.can-09-1947

    Article  CAS  PubMed  Google Scholar 

  26. Ibtehal Mohammed I, Ali Haider A (2022) Effects of combined PRIMA-1MET with 5-Fluorouracil in BxPC-3 pancreatic cancer cells expressing mutant TP53. NeuroQuantology 20(10):3862–3871. https://doi.org/10.14704/nq.2022.20.10.NQ55377

    Article  Google Scholar 

  27. Ploner C, Kofler R, Villunger A (2008) Noxa: at the tip of the balance between life and death. Oncogene 27 Suppl 1(Suppl 1). https://doi.org/10.1038/onc.2009.46. S84-92

  28. Yoon MK, Ha JH, Lee MS, Chi SW (2015) Structure and apoptotic function of p73. BMB Rep 48(2):81–90. https://doi.org/10.5483/bmbrep.2015.48.2.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanahan D (2022) Hallmarks of Cancer: New Dimensions. Cancer Discov 12(1):31–46. https://doi.org/10.1158/2159-8290.cd-21-1059

    Article  CAS  PubMed  Google Scholar 

  30. Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M, Goodman SN, Sohn TA, Hruban RH, Yeo CJ, Kern SE (1997) Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 57(9):1731–1734

    CAS  PubMed  Google Scholar 

  31. Eisold S, Linnebacher M, Ryschich E, Antolovic D, Hinz U, Klar E, Schmidt J (2004) The effect of adenovirus expressing wild-type p53 on 5-fluorouracil chemosensitivity is related to p53 status in pancreatic cancer cell lines. World J Gastroenterol 10(24):3583–3589. https://doi.org/10.3748/wjg.v10.i24.3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hientz K, Mohr A, Bhakta-Guha D, Efferth T (2017) The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 8(5):8921–8946. https://doi.org/10.18632/oncotarget.13475

    Article  PubMed  Google Scholar 

  33. Hu H-f, Ye Z, Qin Y, Xu X-w, Yu X-j, Zhuo Q-f, Ji S-r (2021) Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacol Sin 1–17. https://doi.org/10.1038/s41401-020-00584-2

  34. Sallman DA, DeZern AE, Garcia-Manero G, Steensma DP, Roboz GJ, Sekeres MA, Cluzeau T, Sweet KL, McLemore A, McGraw KL, Puskas J, Zhang L, Yao J, Mo Q, Nardelli L, Al Ali NH, Padron E, Korbel G, Attar EC, Kantarjian HM, Lancet JE, Fenaux P, List AF, Komrokji RS (2021) Eprenetapopt (APR-246) and azacitidine in TP53-Mutant myelodysplastic syndromes. J Clin Oncol 39(14):1584–1594. https://doi.org/10.1200/jco.20.02341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roh JL, Kang SK, Minn I, Califano JA, Sidransky D, Koch WM (2011) p53-Reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol 47(1):8–15. https://doi.org/10.1016/j.oraloncology.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  36. Bao W, Chen M, Zhao X, Kumar R, Spinnler C, Thullberg M, Issaeva N, Selivanova G, Strömblad S (2011) PRIMA-1Met/APR-246 induces wild-type p53-dependent suppression of malignant melanoma tumor growth in 3D culture and in vivo. Cell cycle (Georgetown Tex) 10(2):301–307. https://doi.org/10.4161/cc.10.2.14538

    Article  CAS  PubMed  Google Scholar 

  37. Messina RL, Sanfilippo M, Vella V, Pandini G, Vigneri P, Nicolosi ML, Gianì F, Vigneri R, Frasca F (2012) Reactivation of p53 mutants by p53 reactivation and induction of massive apoptosis in thyroid cancer cells. Int J Cancer 130(10):2259–2270. https://doi.org/10.1002/ijc.26228

    Article  CAS  PubMed  Google Scholar 

  38. Kobayashi T, Makino T, Yamashita K, Saito T, Tanaka K, Takahashi T, Kurokawa Y, Yamasaki M, Nakajima K, Morii E, Eguchi H, Doki Y (2021) APR-246 induces apoptosis and enhances chemo-sensitivity via activation of ROS and TAp73-Noxa signal in oesophageal squamous cell cancer with TP53 missense mutation. Br J Cancer 125(11):1523–1532. https://doi.org/10.1038/s41416-021-01561-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abrams SL, Duda P, Akula SM, Steelman LS, Follo ML, Cocco L, Ratti S, Martelli AM, Montalto G, Emma MR, Cervello M, Rakus D, Gizak A, McCubrey JA (2022) Effects of the mutant TP53 Reactivator APR-246 on therapeutic sensitivity of pancreatic Cancer cells in the Presence and absence of WT-TP53. Cells 11(5). https://doi.org/10.3390/cells11050794

  40. Grellety T, Laroche-Clary A, Chaire V, Lagarde P, Chibon F, Neuville A, Italiano A (2015) PRIMA-1MET induces death in soft-tissue sarcomas cell independent of p53. BMC Cancer 15(1):684. https://doi.org/10.1186/s12885-015-1667-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gu WJ, Liu HL (2013) Induction of pancreatic cancer cell apoptosis, invasion, migration, and enhancement of chemotherapy sensitivity of gemcitabine, 5-FU, and oxaliplatin by hnRNP A2/B1 siRNA. Anticancer Drugs 24(6):566–576. https://doi.org/10.1097/CAD.0b013e3283608bc5

    Article  CAS  PubMed  Google Scholar 

  42. Abrams SL, Lertpiriyapong K, Yang LV, Martelli AM, Cocco L, Ratti S, Falasca M, Murata RM, Rosalen PL, Lombardi P, Libra M, Candido S, Montalto G, Cervello M, Steelman LS, McCubrey JA (2018) Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Advances in biological regulation. 6916–6934. https://doi.org/10.1016/j.jbior.2018.06.002

  43. Liu DSH, Read M, Cullinane C, Azar WJ, Fennell CM, Montgomery KG, Haupt S, Haupt Y, Wiman KG, Duong CP, Clemons NJ, Phillips WA (2015) APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma. Gut 64(10):1506–1516. https://doi.org/10.1136/gutjnl-2015-309770

    Article  CAS  PubMed  Google Scholar 

  44. Liu DS, Read M, Cullinane C, Azar WJ, Fennell CM, Montgomery KG, Haupt S, Haupt Y, Wiman KG, Duong CP, Clemons NJ, Phillips WA (2015) APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma. Gut 64(10):1506–1516. https://doi.org/10.1136/gutjnl-2015-309770

    Article  CAS  PubMed  Google Scholar 

  45. Wiegering A, Matthes N, Mühling B, Koospal M, Quenzer A, Peter S, Germer CT, Linnebacher M, Otto C (2017) Reactivating p53 and inducing Tumor apoptosis (RITA) enhances the response of RITA-Sensitive Colorectal Cancer cells to Chemotherapeutic Agents 5-Fluorouracil and oxaliplatin. Neoplasia (New York N Y) 19(4):301–309. https://doi.org/10.1016/j.neo.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  46. Menichini P, Monti P, Speciale A, Cutrona G, Matis S, Fais F, Taiana E, Neri A, Bomben R, Gentile M, Gattei V, Ferrarini M, Morabito F, Fronza G (2021) Antitumor Effects of PRIMA-1 and PRIMA-1(Met) (APR246) in hematological malignancies: still a mutant P53-Dependent. Affair? Cells 10(1). https://doi.org/10.3390/cells10010098

  47. Liu T, Roh SE, Woo JA, Ryu H, Kang DE (2013) Cooperative role of RanBP9 and P73 in mitochondria-mediated apoptosis. Cell Death Dis 4(1):e476–e476. https://doi.org/10.1038/cddis.2012.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sobhani M, Abdi J, Manujendra SN, Chen C, Chang H (2015) PRIMA-1Met induces apoptosis in Waldenström’s macroglobulinemia cells independent of p53. Cancer Biol Ther 16(5):799–806. https://doi.org/10.1080/15384047.2015.1026482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Hu H, Heitink L, Rogers K, You Y, Tan T, Suen CLW, Garnham A, Chen H, Lieschke E, Diepstraten ST, Chang C, Chen T, Moujalled D, Sutherland K, Lessene G, Sieber OM, Visvader J, Kelly GL, Strasser A (2023) The anti-cancer agent APR-246 can activate several programmed cell death processes to kill malignant cells. Cell Death Differ 30(4):1033–1046. https://doi.org/10.1038/s41418-023-01122-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohell N, Alfredsson J, Fransson Ã, Uustalu M, Byström S, Gullbo J, Hallberg A, Bykov VJ, Björklund U, Wiman KG (2015) APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis 6(6):e1794. https://doi.org/10.1038/cddis.2015.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Basma Talib Jasim for providing cell lines. We also thank Dr. Wrood Salim Dawood for her assistance in the TC lab of the College of Pharmacy, Mustansiriyah University. We also thank biologist Shahad Ali Abdulameer Mudhafar for offering help when needed for the work done in the Biotechnology Research Center, Al-Nahrain University labs.

Funding

The authors funded this study, and no other funding was gained.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, and material preparation. I.M. and A.A. performed data collection and analysis. A.A. wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ali Haider Alhammer.

Ethics declarations

Ethics approval

We used only commercially available cell lines for all experiments. As a result, no permission from the ethical committee was required following our institution’s policies.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, I., Alhammer, A.H. & Arif, I.S. The p53 reactivator PRIMA-1MET synergises with 5-fluorouracil to induce apoptosis in pancreatic cancer cells. Invest New Drugs 41, 587–595 (2023). https://doi.org/10.1007/s10637-023-01380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-023-01380-5

Keywords

Navigation