Skip to main content

Advertisement

Log in

POTEE mutation as a potential predictive biomarker for immune checkpoint inhibitors in lung adenocarcinoma

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Precise selection of patients who could benefit from immune checkpoint inhibitors (ICIs) is an important challenge for immunotherapy in lung cancer. POTEE (POTE Ankyrin Domain Family Member E) is a member of one primate-specific gene family which have been identified as cancer-related antigens and potential target for immunotherapy of cancer. Here, we investigated the correlation between POTEE mutation and the clinical outcome of ICIs treatment in non-small cell lung cancer (NSCLC). We merged three NSCLC cohorts (n = 165) to assess predictive value of POTEE mutation of immunotherapy efficacy in NSCLC. The prognostic analysis and the potential molecular mechanism exploration were conducted based on the data from The Cancer Genome Atlas (TCGA) database. In the merged cohort, patients with POTEE-mutation (POTEE-Mut) had a significantly higher objective response rate (ORR) (100% vs 27.7%; P < 0.001) and longer progression-free survival (PFS) (P = 0.001; HR 0.08; 95% CI 0.01 - 0.54) compared to patients with POTEE wild-type (POTEE-WT) in NSCLC. Also, patients with POTEE-Mut showed higher ORR (100% vs 27.2%; P < 0.001) and longer PFS (P = 0.001; HR 0.07; 95% CI 0.01 - 0.52) in lung adenocarcinoma (LUAD). POTEE mutation was significantly associated with higher tumor mutational burden (TMB) and higher neoantigen load (NAL), but not with PD-L1 expression in LUAD. Gene set enrichment analyses (GSEA) analysis revealed prominent enrichment of signatures related to DNA repair in POTEE-Mut group (P < 0.001) in LUAD. Our results indicate that POTEE mutation could serve as a potential predictive biomarker for ICIs in LUAD. However, prospective cohort studies are still needed for further validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All of the data used in this study were publicly available in cBioPortal and TCGA.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Osmani L, Askin F, Gabrielson E, Li QK (2018) Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): moving from targeted therapy to immunotherapy. Semin Cancer Biol 52:103–109. https://doi.org/10.1016/j.semcancer.2017.11.019

    Article  CAS  PubMed  Google Scholar 

  3. Arbour KC, Riely GJ (2019) Systemic therapy for locally advanced and metastatic non–small cell lung cancer: a review. JAMA 322(8):764. https://doi.org/10.1001/jama.2019.11058

    Article  CAS  PubMed  Google Scholar 

  4. Dong ZY, Zhong WZ, Zhang XC et al (2017) Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res 23(12):3012–3024. https://doi.org/10.1158/1078-0432.CCR-16-2554

    Article  CAS  PubMed  Google Scholar 

  5. Skoulidis F, Goldberg ME, Greenawalt DM et al (2018) STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS -Mutant Lung Adenocarcinoma. Cancer Discov 8(7):822–835. https://doi.org/10.1158/2159-8290.CD-18-0099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang F, Zhao Q, Wang YN et al (2019) Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple Cancer types. JAMA Oncol 5(10):1504. https://doi.org/10.1001/jamaoncol.2019.2963

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bai H, Duan J, Li C et al (2020) EPHA mutation as a predictor of immunotherapeutic efficacy in lung adenocarcinoma. J Immunother Cancer 8(2):e001315. https://doi.org/10.1136/jitc-2020-001315

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu HX, Chen YX, Wang ZX et al (2019) Alteration in TET1 as potential biomarker for immune checkpoint blockade in multiple cancers. J Immunother Cancer 7(1):264. https://doi.org/10.1186/s40425-019-0737-3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marinelli D, Mazzotta M, Scalera S et al (2020) KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden. Ann Oncol 31(12):1746–1754. https://doi.org/10.1016/j.annonc.2020.08.2105

    Article  CAS  PubMed  Google Scholar 

  10. Zhang K, Hong X, Song Z et al (2020) Identification of deleterious NOTCH mutation as novel predictor to efficacious immunotherapy in NSCLC. Clin Cancer Res 26(14):3649–3661. https://doi.org/10.1158/1078-0432.CCR-19-3976

    Article  CAS  PubMed  Google Scholar 

  11. Zhang R, Wu HX, Xu M, Xie X (2020) KMT2A/C mutations function as a potential predictive biomarker for immunotherapy in solid tumors. Biomark Res 8(1):71. https://doi.org/10.1186/s40364-020-00241-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Conway JR, Kofman E, Mo SS, Elmarakeby H, Van Allen E (2018) Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Med 10(1):93. https://doi.org/10.1186/s13073-018-0605-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bera TK, Fleur AS, Lee Y et al (2006) POTE Paralogs are Induced and differentially expressed in many cancers. Cancer Res 66(1):52–56. https://doi.org/10.1158/0008-5472.CAN-05-3014

    Article  CAS  PubMed  Google Scholar 

  14. Shen Z, Feng X, Fang Y et al (2019) POTEE drives colorectal cancer development via regulating SPHK1/p65 signaling. Cell Death Dis 10(11):863. https://doi.org/10.1038/s41419-019-2046-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Q, Li X, Ren S et al (2015) Serum levels of the cancer-testis antigen POTEE and its clinical significance in non-small-cell lung cancer. Coleman WB, ed. PLOS One 10(4):e0122792. https://doi.org/10.1371/journal.pone.0122792

  16. Cine N, Baykal AT, Sunnetci D, Canturk Z, Serhatli M, Savli H (2014) Identification of ApoA1, HPX and POTEE genes by omic analysis in breast cancer. Oncol Rep 32(3):1078–1086. https://doi.org/10.3892/or.2014.3277

    Article  CAS  PubMed  Google Scholar 

  17. Miao D, Margolis CA, Vokes NI et al (2018) Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat Genet 50(9):1271–1281. https://doi.org/10.1038/s41588-018-0200-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rizvi NA, Hellmann MD, Snyder A et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 348(6230):124–128. https://doi.org/10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hellmann MD, Nathanson T, Rizvi H et al (2018) Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33(5):843-852e4. https://doi.org/10.1016/j.ccell.2018.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoadley KA, Yau C, Hinoue T et al (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of Cancer. Cell 173(2):291-304e6. https://doi.org/10.1016/j.cell.2018.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thorsson V, Gibbs DL, Brown SD et al (2018) The immune landscape of cancer. Immunity 48(4):812-830e14. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roh W, Chen PL, Reuben A et al (2017) Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 9(379):eaah3560. https://doi.org/10.1126/scitranslmed.aah3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J Integr Biol 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  Google Scholar 

  25. Bera TK, Fleur AS, Ha D et al (2008) Selective POTE paralogs on chromosome 2 are expressed in human embryonic stem cells. Stem Cells Dev 17(2):325–332. https://doi.org/10.1089/scd.2007.0079

    Article  CAS  PubMed  Google Scholar 

  26. Jay A, Reitz D, Namekawa SH, Heyer WD (2021) Cancer testis antigens and genomic instability: more than immunology. DNA Repair 108:103214. https://doi.org/10.1016/j.dnarep.2021.103214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Li M (2019) Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunol 20(1):4. https://doi.org/10.1186/s12865-018-0285-5

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bart J, Groen HJ, van der Graaf WT et al (2002) An oncological view on the blood–testis barrier. Lancet Oncol 3(6):357–363. https://doi.org/10.1016/S1470-2045(02)00776-3

    Article  PubMed  Google Scholar 

  29. Fratta E, Coral S, Covre A et al (2011) The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol Oncol 5(2):164–182. https://doi.org/10.1016/j.molonc.2011.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Charoentong P, Finotello F, Angelova M et al (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype Relationships and Predictors of response to checkpoint blockade. Cell Rep 18(1):248–262. https://doi.org/10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yongzhao Li conceived the study. Qidong Yang and Yaqin Liu prepared the manuscript and the literature search. Huan Yi analyzed the data and prepared figures. Yongzhi Ju and Guoyan Qi reviewed and edited the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Guoyan Qi.

Ethics declarations

Ethics approval and consent to participate

Since the study is based on public data, the informed consent and ethical proof are not required. All authors give their consent to publish this manuscript.

Consent for publication

All authors gave their consent for publication.

Conflict of interests

No authors have any conflict of interest or competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 71.8 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, Q., Liu, Y. et al. POTEE mutation as a potential predictive biomarker for immune checkpoint inhibitors in lung adenocarcinoma. Invest New Drugs 41, 556–563 (2023). https://doi.org/10.1007/s10637-023-01375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-023-01375-2

Keywords

Navigation