Skip to main content

Advertisement

Log in

Genetic variations in the ATP-binding cassette transporter ABCC10 are associated with neutropenia in Japanese patients with lung cancer treated with nanoparticle albumin-bound paclitaxel

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

ABCC10/MRP7, an ATP-binding cassette (ABC) transporter, has been implicated in the extracellular transport of taxanes. Our group reported that the ABCC10 single nucleotide polymorphism (SNPs), rs2125739, influences docetaxel cytotoxicity in lung cancer cell lines as well as its side effects in clinical practice. In this study, we investigated whether the rs2125739 variant could affect paclitaxel (PTX) cytotoxicity in lung cancer cell lines. We also investigated the effect of rs2125739 on the efficacy and safety of nanoparticle albumin-bound PTX (nab-PTX) in clinical practice. The association between rs2125739 genotypes and the 50% inhibitory concentration (IC50) of PTX was investigated in 18 non-small cell lung cancer (NSCLC) cell lines, HeLa cells, and genome-edited HeLa cells. Next, blood samples from 77 patients with NSCLC treated with carboplatin plus nab-PTX were collected and analyzed for six SNPs, including rs2125739. The clinical outcomes among the different genotype groups were evaluated. In NSCLC cell lines, HeLa cells, and genome-edited HeLa cells, the IC50 was significantly higher in the ABCC10 rs2125739 T/T group than in the T/C and C/C groups. In 77 patients with NSCLC, there were no significant differences in clinical outcomes between the T/T and T/C groups. However, the rs2125739 T/T genotype was associated with a higher frequency of Grades 3/4 neutropenia. In contrast, there was no association between other SNPs and clinical efficacy or neutropenia. Our results indicate that the ABCC10 rs2125739 variant is associated with neutropenia in response to nab-PTX treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed MINORU HORIUCHI and TAKEHIRO UEMURA. The first draft of the manuscript was written by MINORU HORIUCHI, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

  1. Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, Zhou C, Reungwetwattana T, Cheng Y, Chewaskulyong B, Shah R, Cobo M, Lee KH, Cheema P, Tiseo M, John T, Lin MC, Imamura F, Kurata T, Todd A, Hodge R, Saggese M, Rukazenkov Y, Soria JC, Investigators FLAURA (2020) Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 382:41–50. https://doi.org/10.1056/NEJMoa1913662

    Article  CAS  PubMed  Google Scholar 

  2. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, Ou SI, Pérol M, Dziadziuszko R, Rosell R, Zeaiter A, Mitry E, Golding S, Balas B, Noe J, Morcos PN, Mok T, Trial Investigators ALEX (2017) Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 377:829–838. https://doi.org/10.1056/NEJMoa1704795

    Article  CAS  PubMed  Google Scholar 

  3. Shaw AT, Riely GJ, Bang YJ, Kim DW, Camidge DR, Solomon BJ, Varella-Garcia M, Iafrate AJ, Shapiro GI, Usari T, Wang SC, Wilner KD, Clark JW, Ou SI (2019) Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol 30:1121–1126. https://doi.org/10.1093/annonc/mdz131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland Å, Giannone V, D’Amelio AM Jr, Zhang P, Mookerjee B, Johnson BE (2017) Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol 18:1307–1316. https://doi.org/10.1016/S1470-2045(17)30679-4

    Article  CAS  PubMed  Google Scholar 

  5. Paik PK, Felip E, Veillon R, Sakai H, Cortot AB, Garassino MC, Mazieres J, Viteri S, Senellart H, Van Meerbeeck J, Raskin J, Reinmuth N, Conte P, Kowalski D, Cho BC, Patel JD, Horn L, Griesinger F, Han JY, Kim YC, Chang GC, Tsai CL, Yang JC, Chen YM, Smit EF, van der Wekken AJ, Kato T, Juraeva D, Stroh C, Bruns R, Straub J, Johne A, Scheele J, Heymach JV, Le X (2020) Tepotinib in non-small-cell lung cancer with MET Exon 14 skipping mutations. N Engl J Med 383:931–943. https://doi.org/10.1056/NEJMoa2004407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Drilon A, Oxnard GR, Tan DSW, Loong HHF, Johnson M, Gainor J, McCoach CE, Gautschi O, Besse B, Cho BC, Peled N, Weiss J, Kim YJ, Ohe Y, Nishio M, Park K, Patel J, Seto T, Sakamoto T, Rosen E, Shah MH, Barlesi F, Cassier PA, Bazhenova L, De Braud F, Garralda E, Velcheti V, Satouchi M, Ohashi K, Pennell NA, Reckamp KL, Dy GK, Wolf J, Solomon B, Falchook G, Ebata K, Nguyen M, Nair B, Zhu EY, Yang L, Huang X, Olek E, Rothenberg SM, Goto K, Subbiah V (2020) Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. N Engl J Med 383:813–824. https://doi.org/10.1056/NEJMoa2005653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O'Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, KEYNOTE-024 Investigators (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823-1833. https://doi.org/10.1056/NEJMoa1606774

  8. Herbst RS, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios CH, Morise M, Felip E, Andric Z, Geater S, Özgüroğlu M, Zou W, Sandler A, Enquist I, Komatsubara K, Deng Y, Kuriki H, Wen X, McCleland M, Mocci S, Jassem J, Spigel DR (2020) Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N Engl J Med 383:1328–1339. https://doi.org/10.1056/NEJMoa1917346

    Article  CAS  PubMed  Google Scholar 

  9. Ohe Y, Ohashi Y, Kubota K, Tamura T, Nakagawa K, Negoro S, Nishiwaki Y, Saijo N, Ariyoshi Y, Fukuoka M (2007) Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. Ann Oncol 18:317–323. https://doi.org/10.1093/annonc/mdl377

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto N, Nakagawa K, Nishimura Y, Tsujino K, Satouchi M, Kudo S, Hida T, Kawahara M, Takeda K, Katakami N, Sawa T, Yokota S, Seto T, Imamura F, Saka H, Iwamoto Y, Semba H, Chiba Y, Uejima H, Fukuoka M (2018) Phase III study comparing second- and third-generation regimens with concurrent thoracic radiotherapy in patients with unresectable stage III non-small-cell lung cancer: West Japan Thoracic Oncology Group WJTOG0105. J Clin Oncol 28:3739–3745. https://doi.org/10.1200/JCO.2009.24.5050

    Article  Google Scholar 

  11. West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, Kopp HG, Daniel D, McCune S, Mekhail T, Zer A, Reinmuth N, Sadiq A, Sandler A, Lin W, Ochi Lohmann T, Archer V, Wang L, Kowanetz M, Cappuzzo F (2019) Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 20:924–937. https://doi.org/10.1016/S1470-2045(19)30167-6

    Article  CAS  PubMed  Google Scholar 

  12. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, Hermes B, Çay Şenler F, Csőszi T, Fülöp A, Rodríguez-Cid J, Wilson J, Sugawara S, Kato T, Lee KH, Cheng Y, Novello S, Halmos B, Li X, Lubiniecki GM, Piperdi B, Kowalski DM, KEYNOTE-407 Investigators (2018) Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 379:2040-2051. https://doi.org/10.1056/NEJMoa1810865

  13. Kap EJ, Seibold P, Scherer D, Habermann N, Balavarca Y, Jansen L, Zucknick M, Becker N, Hoffmeister M, Ulrich A, Benner A, Ulrich CM, Burwinkel B, Brenner H, Chang-Claude J (2016) SNPs in transporter and metabolizing genes as predictive markers for oxaliplatin treatment in colorectal cancer patients. Int J Cancer 138:2993–3001. https://doi.org/10.1002/ijc.30026

    Article  CAS  PubMed  Google Scholar 

  14. Zaïr ZM, Singer DR (2016) Efflux transporter variants as predictors of drug toxicity in lung cancer patients: systematic review and meta-analysis. Pharmacogenomics 17:1089–1112. https://doi.org/10.2217/pgs-2015-0006

    Article  CAS  PubMed  Google Scholar 

  15. Oguri T, Ozasa H, Uemura T, Bessho Y, Miyazaki M, Maeno K, Maeda H, Sato S, Ueda R (2008) MRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer. Mol Cancer Ther 7:1150–1155. https://doi.org/10.1158/1535-7163.MCT-07-2088

    Article  CAS  PubMed  Google Scholar 

  16. Bessho Y, Oguri T, Ozasa H, Uemura T, Sakamoto H, Miyazaki M, Maeno K, Sato S, Ueda R (2009) ABCC10/MRP7 is associated with vinorelbine resistance in non-small cell lung cancer. Oncol Rep 21:263–268

    CAS  PubMed  Google Scholar 

  17. Sone K, Oguri T, Uemura T, Takeuchi A, Fukuda S, Takakuwa O, Maeno K, Fukumitsu K, Kanemitsu Y, Ohkubo H, Takemura M, Ito Y, Niimi A (2019) Genetic variation in the ATP binding cassette transporter ABCC10 is associated with neutropenia for docetaxel in Japanese lung cancer patients cohort. BMC Cancer 19:246. https://doi.org/10.1186/s12885-019-5438-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Takakuwa O, Oguri T, Ozasa H, Uemura T, Kasai D, Miyazaki M, Maeno K, Sato S (2011) Over-expression of MDR1 in amrubicinol-resistant lung cancer cells. Cancer Chemother Pharmacol 68:669–676. https://doi.org/10.1007/s00280-010-1533-4

    Article  CAS  PubMed  Google Scholar 

  19. Hopper-Borge EA, Churchill T, Paulose C, Nicolas E, Jacobs JD, Ngo O, Kuang Y, Grinberg A, Westphal H, Chen ZS, Klein-Szanto AJ, Belinsky MG, Kruh GD (2011) Contribution of Abcc10 (Mrp7) to in vivo paclitaxel resistance as assessed in Abcc10(-/-) mice. Cancer Res 71:3649–3657. https://doi.org/10.1158/0008-5472.CAN-10-3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang H, Patel A, Wang YJ, Zhang YK, Kathawala RJ, Qiu LH, Patel BA, Huang LH, Shukla S, Yang DH, Ambudkar SV, Fu LW, Chen ZS (2017) The BTK inhibitor ibrutinib (PCI-32765) overcomes paclitaxel resistance in ABCB1- and ABCC10-overexpressing cells and tumors. Mol Cancer Ther 16:1021–1030. https://doi.org/10.1158/1535-7163.MCT-16-0511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S, Mross K, Figg WD, Verweij J, McLeod HL, Sparreboom A (2007) Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther 81:76–82. https://doi.org/10.1038/sj.clpt.6100011

    Article  CAS  PubMed  Google Scholar 

  22. Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH (2005) MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer 116:824–829. https://doi.org/10.1002/ijc.21013

    Article  CAS  PubMed  Google Scholar 

  23. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  24. Rusiecka I, Składanowski AC (2011) Induction of the multixenobiotic/multidrug resistance system in HeLa cells in response to imidazolium ionic liquids. Acta Biochim Pol 58:187–192

    Article  CAS  Google Scholar 

  25. Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10:147–156. https://doi.org/10.1038/nrc2789

    Article  CAS  PubMed  Google Scholar 

  26. Hopper-Borge E, Chen ZS, Shchaveleva I, Belinsky MG, Kruh GD (2004) Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 64:4927–4930. https://doi.org/10.1158/0008-5472.CAN-03-3111

    Article  CAS  PubMed  Google Scholar 

  27. Bleasby K, Castle JC, Roberts CJ, Cheng C, Bailey WJ, Sina JF, Kulkarni AV, Hafey MJ, Evers R, Johnson JM, Ulrich RG, Slatter JG (2006) Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica 36:963–988. https://doi.org/10.1080/00498250600861751

    Article  CAS  PubMed  Google Scholar 

  28. Liptrott NJ, Pushpakom S, Wyen C, Fätkenheuer G, Hoffmann C, Mauss S, Knechten H, Brockmeyer NH, Hopper-Borge E, Siccardi M, Back DJ, Khoo SH, Pirmohamed M, Owen A, Network GC, for HIV, AIDS (2012) Association of ABCC10 polymorphisms with nevirapine plasma concentrations in the German Competence Network for HIV/AIDS. Pharmacogenet Genomics 22:10–19. https://doi.org/10.1097/FPC.0b013e32834dd82e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Socinski MA, Bondarenko I, Karaseva NA, Makhson AM, Vynnychenko I, Okamoto I, Hon JK, Hirsh V, Bhar P, Zhang H, Iglesias JL, Renschler MF (2012) Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J Clin Oncol 30:2055–2062. https://doi.org/10.1200/JCO.2011.39.5848

    Article  CAS  PubMed  Google Scholar 

  30. Satouchi M, Okamoto I, Sakai H, Yamamoto N, Ichinose Y, Ohmatsu H, Nogami N, Takeda K, Mitsudomi T, Kasahara K, Negoro S (2013) Efficacy and safety of weekly nab-paclitaxel plus carboplatin in patients with advanced non-small cell lung cancer. Lung Cancer 81:97–101. https://doi.org/10.1016/j.lungcan.2013.02.020

    Article  PubMed  Google Scholar 

  31. Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10:194–204. https://doi.org/10.1038/nrc2803

    Article  CAS  PubMed  Google Scholar 

  32. Rahman A, Korzekwa KR, Grogan J, Gonzalez FJ, Harris JW (1994) Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 54:5543–5546

    CAS  PubMed  Google Scholar 

  33. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, Cheng SY, Bischoff HG, Peled N, Grossi F, Jennens RR, Reck M, Hui R, Garon EB, Boyer M, Rubio-Viqueira B, Novello S, Kurata T, Gray JE, Vida J, Wei Z, Yang J, Raftopoulos H, Pietanza MC, Garassino MC, KEYNOTE-189 Investigators (2018) Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N Engl J Med 378:2078-2092. https://doi.org/10.1056/NEJMoa1801005

  34. Nishio M, Barlesi F, West H, Ball S, Bordoni R, Cobo M, Longeras PD, Goldschmidt J Jr, Novello S, Orlandi F, Sanborn RE, Szalai Z, Ursol G, Mendus D, Wang L, Wen X, McCleland M, Hoang T, Phan S, Socinski MA (2021) Atezolizumab Plus Chemotherapy for First-Line Treatment of Nonsquamous NSCLC: Results From the Randomized Phase 3 IMpower132 Trial. J Thorac Oncol 16:653–664. https://doi.org/10.1016/j.jtho.2020.11.025

    Article  CAS  PubMed  Google Scholar 

  35. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, Finley G, Kelsch C, Lee A, Coleman S, Deng Y, Shen Y, Kowanetz M, Lopez-Chavez A, Sandler A, Reck M; IMpower150 Study Group (2018) Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N Engl J Med 378:2288–2301. https://doi.org/10.1056/NEJMoa1716948

    Article  Google Scholar 

  36. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E, Park K, Alexandru A, Lupinacci L, de la Mora JE, Sakai H, Albert I, Vergnenegre A, Peters S, Syrigos K, Barlesi F, Reck M, Borghaei H, Brahmer JR, O’Byrne KJ, Geese WJ, Bhagavatheeswaran P, Rabindran SK, Kasinathan RS, Nathan FE, Ramalingam SS (2019) Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med 381:2020–2031. https://doi.org/10.1056/NEJMoa1910231

    Article  CAS  PubMed  Google Scholar 

  37. Paz-Ares L, Ciuleanu TE, Cobo M, Schenker M, Zurawski B, Menezes J, Richardet E, Bennouna J, Felip E, Juan-Vidal O, Alexandru A, Sakai H, Lingua A, Salman P, Souquet PJ, De Marchi P, Martin C, Pérol M, Scherpereel A, Lu S, John T, Carbone DP, Meadows-Shropshire S, Agrawal S, Oukessou A, Yan J, Reck M (2021) First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol 22:198–211. https://doi.org/10.1016/S1470-2045(20)30641-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the contributions of all patients included in this study.

Funding

This study was supported by a Grant-in-Aid from Nagoya City University Foundation. (2015. No.6). We used this grant for cell line experiments. The funding body was not involved in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed MINORU HORIUCHI and TAKEHIRO UEMURA. The first draft of the manuscript was written by MINORU HORIUCHI, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Takehiro Uemura.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Nagoya City University (No. 70–00-0095).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

There are no details on individuals reported within the manuscript.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horiuchi, M., Uemura, T., Oguri, T. et al. Genetic variations in the ATP-binding cassette transporter ABCC10 are associated with neutropenia in Japanese patients with lung cancer treated with nanoparticle albumin-bound paclitaxel. Invest New Drugs 40, 934–943 (2022). https://doi.org/10.1007/s10637-022-01275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-022-01275-x

Keywords

Navigation