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Abstract
Eftozanermin alfa (eftoza), a second-generation tumor necrosis factor-related apoptosis-inducing ligand receptor 
(TRAIL-R) agonist, induces apoptosis in tumor cells by activation of death receptors 4/5. This phase 1 dose-escalation/
dose-optimization study evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary activity of eftoza 
in patients with advanced solid tumors. Patients received eftoza 2.5–15 mg/kg intravenously on day 1 or day 1/day 8 
every 21 days in the dose-escalation phase, and 1.25–7.5 mg/kg once-weekly (QW) in the dose-optimization phase. 
Dose-limiting toxicities (DLTs) were evaluated during the first treatment cycle to determine the maximum tolerated 
dose (MTD) and recommended phase 2 dose (RP2D). Pharmacodynamic effects were evaluated in circulation and tumor 
tissue. A total of 105 patients were enrolled in the study (dose-escalation cohort, n = 57; dose-optimization cohort, 
n = 48 patients [n = 24, colorectal cancer (CRC); n = 24, pancreatic cancer (PaCA)]). In the dose-escalation cohort, 
seven patients experienced DLTs. MTD and RP2D were not determined. Most common treatment-related adverse events 
were increased alanine aminotransferase and aspartate aminotransferase levels, nausea, and fatigue. The one treatment-
related death occurred due to respiratory failure. In the dose-optimization cohort, three patients (CRC, n = 2; PaCA, 
n = 1) had a partial response. Target engagement with regard to receptor saturation, and downstream apoptotic pathway 
activation in circulation and tumor were observed. Eftoza had acceptable safety, evidence of pharmacodynamic effects, 
and preliminary anticancer activity. The 7.5-mg/kg QW regimen was selected for future studies on the basis of safety 
findings, pharmacodynamic effects, and biomarker modulations. (Trial registration number: NCT03082209 (registered: 
March 17, 2017)).
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Introduction

Tumor necrosis factor (TNF)-related apoptosis-inducing 
ligand (TRAIL) is a member of the TNF superfamily of 
proteins that help activate intracellular signaling pathways 
involved in cell proliferation, survival, and apoptosis [1]. 
The ability of TRAIL to selectively induce the extrinsic 
apoptotic pathway in cancer cells via its trimeric binding to 
cell surface death receptors TRAIL-R1 (DR4) and TRAIL-
R2 (DR5) provided the basis for developing TRAIL recep-
tor agonists as a therapeutic approach [1, 2]. Although 
activation of the TRAIL pathway has emerged as an attrac-
tive therapeutic strategy in cancer, and early phase 1 trials 
yielded encouraging preliminary data, this did not translate 
to significant clinical benefit in subsequent phase 2 stud-
ies [2, 3]. The limited efficacy of first-generation TRAIL 
receptor agonists likely reflects weak agonistic activity and 
several resistance mechanisms through which tumor cells 
escape TRAIL-induced apoptosis [1, 2, 4]. Some of these 
factors include reduced expression of DRs, upregulation of 
anti-apoptotic proteins, and suppression of the caspase cas-
cade [5–7]. However, the major contributing factor to the 
lack of clinical activity by these first-generation agonists 
has been ascribed to suboptimal TRAIL receptor clustering 
that in some cases requires additional Fc-FcγR–mediated 
cross-linking [8–10].

Eftozanermin alfa (formerly known as ABBV-621) is a 
second-generation TRAIL receptor agonist comprising a 
human immunoglobulin G1-Fc mutant backbone linked to 
two sets of trimeric native single-chain TRAIL receptor-
binding domain monomers that bind to death-inducing 
DR4 and DR5 [4, 11]. Eftozanermin alfa thus contains a 
total of six DR-binding sites per molecule to maximize 
optimal receptor clustering on tumor cells. In human hema-
tologic and solid tumor cell lines, eftozanermin alfa selec-
tively binds to DR4 and DR5 with nanomolar affinity to 
drive on-target biologic activity with enhanced caspase-8 
aggregation, death-inducing signaling complex formation, 
and potent caspase-dependent antitumorigenic activity that 
is independent of Fc-FcγR interactions [4, 12]. Using an 
in vivo patient-derived xenograft (PDX) screen across 15 
different tumor indications, eftozanermin alfa demonstrated 
a range of potent antitumor activity, with PDX response 
rates of 45% (10/22) in colorectal cancer (CRC) and 35% 
(7/20) in pancreatic cancer (PaCA) [4]. In addition, activ-
ity was found to be significantly enhanced when combined 
with chemotherapeutics (e.g., taxanes or topoisomerase-1 
inhibitors) or inhibitors of B-cell lymphoma-extra-large 
protein [4].

This first-in-human, open-label, phase 1 study aimed 
to determine the maximum tolerated dose (MTD), recom-
mended phase 2 dose (RP2D), safety, pharmacokinetics, 

pharmacodynamics, and antitumor activity of eftozaner-
min alfa as monotherapy in patients with advanced solid 
tumors and hematologic malignancies. This manuscript 
reports results from the eftozanermin alfa monotherapy 
dose-escalation and dose-optimization cohorts in patients 
with solid tumors.

Methods

Study design

The primary objectives of this phase 1, first-in-human, open-
label, multicenter study (NCT03082209) were to establish 
the MTD/RP2D of eftozanermin alfa, and to determine 
its pharmacokinetic profile. Secondary objectives were to 
assess safety and tolerability of the compound and define 
dose-limiting toxicities (DLTs). Exploratory objectives 
included evaluation of preliminary antitumor efficacy, and 
assessment of the pharmacodynamic effect and association 
with pharmacokinetics, safety, and efficacy. The study con-
sisted of two cohorts: dose escalation and dose optimization. 
Patients in both cohorts underwent screening procedures 
within 21 days before eftozanermin alfa administration.

Dose‑escalation/dose‑optimization cohorts

Patients with solid tumors received intravenous infusions 
of eftozanermin alfa at a starting dose of 2.5 mg/kg admin-
istered on day (D)1 of a 21-day cycle (D1 every 3 weeks 
[Q3W]). Once the criteria for dose escalation were met, 
the second dose level of 2.5 mg/kg administered on D1 and 
8 of a 21-day cycle (D1/D8 Q3W) was initiated, and sub-
sequently, doses were escalated (2.5, 3.75, 5, 6.5, 8.5, 11, 
and 15 mg/kg) with the frequency of D1/D8 Q3W. Dose 
escalation was guided by a Bayesian continual reassessment 
method (to determine the MTD) not exceeding a two-fold 
increase in total dose administered over the 21-day cycle. 
The dose-optimization cohort was initiated to inform the 
RP2D. Three concurrent, non-randomized dose levels 
were explored with eftozanermin alfa (1.25, 3.75, 7.5 mg/
kg) administered intravenously as monotherapy on a once-
weekly (QW) dosing schedule (D1, 8, and 15 of a 21-day 
cycle) in patients with KRAS-mutated CRC and in patients 
with PaCA. Although there is high prevalence of KRAS 
mutation in PaCA (> 90%), confirmation of KRAS status 
was not a criterion for enrollment.

The study was conducted in accordance with International 
Conference on Harmonization Good Clinical Practice guide-
lines and the study protocol was approved by an independent 
ethics committee/institutional review board at each partici-
pating site. All patients provided written informed consent.
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Patients

Patients aged ≥ 18 years with Eastern Cooperative Oncology 
Group performance status 0–2 and diagnosed with a solid 
tumor with measurable disease by Response Evaluation Crite-
ria in Solid Tumors (RECIST) v1.1 were eligible. Patients with 
non-Hodgkin lymphoma with measurable disease per Lugano 
classification were eligible for the dose-escalation cohort, but 
none were enrolled. Patients in the dose-optimization cohort 
included those with KRAS-mutated CRC or PaCA (irrespective 
of mutational status). Patients in both cohorts were additionally 
required to have had prior treatment with one or more systemic 
therapy and relapsed/progressed on available standard thera-
pies. All eligible patients needed adequate hematologic, renal, 
and hepatic function, and to consent to providing tumor tissue 
(archived or fresh tumor) for biomarker assessment. In addi-
tion, at least 24 patients from dose-optimization cohorts had to 
consent to two fresh biopsies (pre-treatment and on-treatment) 
for pharmacodynamic assessment (Online Resource 1 – cohort 
diagram). The latter portion of the study was limited to those 
sites agreeable to performing the mandatory biopsies.

Patients meeting any of the following criteria were excluded 
from the study: presence of primary hepatobiliary malignancy 
(criterion added after dose level 4); undergone major surgery 
within 4 weeks of first dose of study drug; received any sys-
temic anticancer treatment within 21 days or three half-lives 
prior to first dose of study drug (whichever was longer); history 
of brain metastases without clinical/radiographic stable disease 
(SD) for ≥ 28 days after definitive therapy; or any clinically 
significant, uncontrolled medical condition.

Assessments

Routine safety evaluations were performed and adverse-
event (AE) severity was assessed by the investigator via the 
National Cancer Institute Common Terminology Criteria for 
Adverse Events v4.03.

The DLT assessment period was defined as beginning 
on the first day of eftozanermin alfa dosing and continuing 
for 21 days. DLTs for dose escalation and dose optimiza-
tion were determined during the first cycle and were defined 
as: any eftozanermin alfa-related grade ≥ 3 toxicity; grade 
3 mucositis, nausea, vomiting, or diarrhea lasting > 72 h, 
or grade 4 of any duration; > 7-consecutive-day treatment 
delay due to eftozanermin alfa-related toxicity; grade 4 
clinically significant laboratory non-hematologic toxicity 
lasting > 24 h; any grade 4 hematologic toxicity; or any AE 
meeting the definition of Hy’s law.

Pharmacokinetic sampling details are presented in Online 
Resource 1. Eftozanermin alfa serum concentrations were 
determined using a validated electrochemiluminescence 
immunoassay (Online Resource 1).

Tumor assessments were performed at baseline within 
28 days of cycle (C)1D1, and post-baseline within 7 days 
before dosing on C3D1, and Q9W thereafter. Tumor 
response was evaluated using RECIST v1.1. Tumor assess-
ments were made per local investigators for all patients and 
required confirmation by central radiologists for the CRC 
dose-optimization cohort.

Pharmacodynamic and exploratory biomarker 
assessments

Pharmacodynamic and biomarker analyses were conducted 
to demonstrate receptor binding of eftozanermin alfa with 
TRAIL receptors, and confirm apoptotic pathway activa-
tion in tumor; details are presented in Online Resource 1. 
Twenty-five patients from the dose-optimization cohort 
(CRC and PaCA) consented to fresh pre- and on-treatment 
(paired) tumor biopsies (Online Resource 1 – cohort dia-
gram). Pre-treatment biopsies were collected anytime during 
the screening period – within 28 days before starting the 
study treatment – and on-treatment biopsies were collected 
24 ± 4 h following second or third infusion. Formalin-fixed 
paraffin-embedded (FFPE) and flash-frozen core biopsy 
samples were collected. The FFPE paired tumor tissues 
were used to assess apoptotic pathway activation (cleaved 
poly[ADP-ribose] polymerase [c-PARP]) by immunohisto-
chemistry (IHC) and immune infiltrate (by multiplex immu-
nofluorescence and RNA whole‐transcriptome sequenc-
ing assays) (Online Resource 1). The frozen paired tumor 
tissues were used for reverse-phase protein array (RPPA) 
analysis (George Mason University, Manassas, VA) (Online 
Resource 1).

DR4 IHC was performed on archival and fresh biopsy if 
available on FFPE tissue, at CellCarta (formerly HistoGeneX, 
Antwerp, Belgium) using rabbit monoclonal antibody clone 
D9S1R, Cell Signaling #42,533 (Danvers, MA/USA). Staining 
was performed on the Leica BOND RX instrument (Buffalo 
Grove, IL, USA). Staining on membrane, cytoplasmic, and 
overall were separately scored. Scoring included intensity of 
staining and proportion of cells staining at a certain intensity 
(Online Resource 2 – DR4/5 levels).

Statistical analyses

AE analyses were based on treatment-emergent AEs 
(TEAEs), i.e., those AEs with onset on/after the day of first 
dose of study drug and no more than 30 days after last dose 
of study drug.

Efficacy was assessed through objective response rate 
(defined as confirmed complete response [CR] or partial 
response [PR]), best response, and disease control rate 
(defined as CR, PR, or SD ≥ 5 weeks away from the date of 
first dose of study drug).
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Statistical analyses for pharmacodynamic assessments are 
described in Online Resource 1.

Results

Demographics and baseline characteristics

Between March 29, 2017 and February 14, 2018, 57 patients 
were enrolled in the dose-escalation cohort. Between March 
28, 2018 and February 11, 2019, 24 patients with CRC and 
24 with PaCA were enrolled in the dose-optimization cohort. 
Baseline demographics and clinical characteristics of both 
cohorts are summarized in Table 1.

Exposure and disposition

As of the March 6, 2020 data cutoff, all 57 patients in the 
dose-escalation cohort received one or more treatment 
cycles, with a median two treatment cycles (range, 1–11). 
Median treatment duration was 29 days (range, 1–221). 
The most common reason for eftozanermin alfa discontinu-
ation was disease progression (n = 40; 70%), followed by 
AEs (n = 7; 12%) and consent withdrawal (n = 3; 5%). Two 

patients discontinued eftozanermin alfa due to physician’s 
decision (4%), and five other patients discontinued study 
drug due to other reasons (9%). In the dose-optimization 
cohorts, all 48 patients received one or more doses of efto-
zanermin alfa, with a median two treatment cycles (range, 
1–14). Median treatment duration was 36  days (range, 
1–290). Patient disposition for the dose-optimization cohort 
is summarized in Online Resource 3 – Fig. S1. Thirty-eight 
(79%) patients discontinued eftozanermin alfa due to pro-
gressive disease.

Safety

In the dose-escalation cohort, 54 of 57 patients completed all 
scheduled doses of eftozanermin alfa during the 21-day DLT 
evaluation period. The MTD was not identified, inclusive of 
the highest tested dose of 15 mg/kg. In total, seven patients 
experienced DLTs (Online Resource 3 – Table S1). Fifty-five 
(97%) patients experienced TEAEs, with 31 (54%) patients 
experiencing grade ≥ 3 TEAEs, and 22 (39%) patients report-
ing serious AEs (SAEs). Frequently reported TEAEs were 
fatigue (39%), nausea and tumor pain (35% each), decreased 
appetite and pyrexia (26% each), diarrhea (25%), vomiting 
(23%), and alanine aminotransferase (ALT) increase (21%). 

Table 1   Patient demographics 
and baseline characteristics

a Bile duct cancer/cholangiocarcinoma patients enrolled in dose levels 1 to 4 only; after dose level 4 (5 mg/
kg D1/D8 Q3W), a protocol amendment excluded patients with primary hepatobiliary malignancy due to 
increased risk for hepatic lab abnormalities during eftozanermin alfa treatment
CRC​ colorectal cancer, D day, PaCA pancreatic cancer, Q3W every 3 weeks

Characteristic Dose escalation Dose optimization

(N = 57) CRC​ PaCA Total

(n = 24) (n = 24) (N = 48)

Age, median (range), years 61 (34–82) 60 (43–76) 65 (48–76) 63 (43–76)
Sex, n (%)
  Male 34 (60) 15 (63) 16 (67) 31 (65)
  Female 23 (40) 9 (38) 8 (33) 17 (35)

Race, n (%)
  White 42 (74) 22 (92) 22 (92) 44 (92)
  Black 4 (7) 1 (4) 1 (4) 2 (4)
  Asian 11 (19) 1 (4) 1 (4) 2 (4)

Primary tumor type, n (%)
  Colorectal cancer 13 (23) 24 (100) 0 24 (50)
  Pancreatic cancer 17 (30) 0 24 (100) 24 (50)
  Sarcoma 4 (7) 0 0 0
  Bile duct cancera 3 (5) 0 0 0
  Other solid tumors 20 (35) 0 0 0

No. of prior treatments, median (range) 4 (1–10) 4 (2–8) 3 (1–7) 3 (1–8)
KRAS mutation status, n (%)
  Mutated 13 (23) 24 (100) 8 (33) 32 (67)
  Unmutated 15 (26) 0 1 (4) 1 (2)
  Missing 29 (51) 0 15 (63) 15 (31)
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AEs were assessed as treatment related in 43 (75%) patients; 
the most common are summarized in Table 2.

In the dose-optimization cohort, all patients received at 
least one dose of eftozanermin alfa. Three (6%) patients 
experienced treatment-related AEs (TRAEs; not considered 
DLTs) that led to study discontinuation, including increases 
in ALT, aspartate aminotransferase (AST), and/or bilirubin, 
and respiratory failure in one patient with PaCA receiving 
7.5 mg/kg. Four (8%) patients reported DLTs possibly asso-
ciated with eftozanermin alfa treatment (Online Resource 
3 – Table S1). All patients experienced one or more TEAEs 
regardless of attribution to study treatment, including 31 
(65%) patients with grade ≥ 3 TEAEs and 27 (56%) patients 
with SAEs. There was no apparent relationship of grade ≥ 3 
TEAEs to eftozanermin alfa dose (Online Resource 3 
– Table S2). Most frequently reported TEAEs were fatigue 
(46%), constipation (35%), diarrhea (29%), nausea (27%), 
increased ALT and AST (25% each), decreased appetite 
and vomiting (23% each), and stomatitis (21%). TRAEs 
occurred in 44 (92%) patients, including 10 (21%) with 
grade ≥ 3 TRAEs and seven (15%) with treatment-related 
SAEs. The most common TRAEs were hepatic or consti-
tutional (Table 2). Sixteen patients received the 7.5-mg/kg 
QW regimen; all reported TRAEs, including five (31%) with 
grade ≥ 3 TRAEs and three (19%) with treatment-related 
SAEs (Online Resource 3 – Table S2). The most common 
TRAEs at the 7.5-mg/kg QW dose were gastrointestinal dis-
orders, with stomatitis (n = 5, 31%) and nausea (n = 4, 25%) 
the most frequently reported events.

Pharmacokinetics

In the dose-escalation cohort, after D1 and D1/D8 intravenous 
infusion at doses of 2.5–15 mg/kg Q3W, the mean systemic 
exposure of eftozanermin alfa showed dose-proportional 
kinetics in the dose range of 1.25–7.5 mg/kg weekly (Fig. 1). 
Pharmacokinetics were also dose proportional in the dose-
optimization cohort after single-dose administration of efto-
zanermin alfa on C1D1 in the dose range of 1.25–7.5 mg/kg 
(Fig. 1; Online Resource 3 – Table S3). The half-life of efto-
zanermin alfa ranged from 21–46 h. No accumulation after 
multiple doses was observed.

Efficacy

In the dose-escalation cohort, 50 patients had one or more 
post-baseline tumor assessments (Fig. 2a). Best responses 
to eftozanermin alfa monotherapy included a PR lasting 
11 weeks in a patient with PaCA in the 2.5-mg/kg D1/D8 
cohort and SD lasting > 12 weeks in six patients. In the 
dose-optimization cohort, a confirmed PR was observed in 
two patients with CRC (central read; 7.5 mg/kg) and one 
patient with PaCA (local read; 1.25 mg/kg). In addition, 
20 (42%) patients achieved a best response of SD (local 
read) at an average of 10 weeks of treatment with efto-
zanermin alfa monotherapy, including nine (38%) patients 
with CRC and 11 (46%) with PaCA. Figure 2b and Online 
Resource 3 – Fig. S2 show the percentage change in size 
of tumor lesions over time for each patient with CRC or 

Table 2   Summary of treatment-related adverse events occurring in ≥ 15% of patients in either the dose-escalation or dose-optimization cohorts 
of the study

ALT alanine aminotransferase, AST aspartate aminotransferase, CRC​ colorectal cancer, PaCA pancreatic cancer, TRAE treatment-related adverse 
event

Treatment-
related adverse 
event, n (%)

Dose escalation Dose optimization

(N = 57) CRC (n = 24) PaCA (n = 24) Total (N = 48)

Any TRAE Grade ≥ 3 
TRAE

Any TRAE Grade ≥ 3 
TRAE

Any TRAE Grade ≥ 3 
TRAE

Any TRAE Grade ≥ 3 
TRAE

Patients with ≥ 1 
TRAE

43 (75) 12 (21) 22 (92) 4 (17) 22 (92) 6 (25) 44 (92) 10 (21)

Increased ALT 11 (19) 7 (12) 4 (17) 1 (4) 6 (25) 2 (8) 10 (21) 3 (6)
Increased AST 10 (18) 5 (9) 4 (17) 2 (8) 4 (17) 2 (8) 8 (17) 4 (8)
Nausea 10 (18) 1 (2) 2 (8) 0 6 (25) 0 8 (17) 0
Diarrhea 7 (12) 1 (2) 1 (4) 0 6 (25) 0 7 (15) 0
Stomatitis 7 (12) 0 5 (21) 0 4 (17) 0 9 (19) 0
Fatigue 5 (9) 1 (2) 7 (29) 0 4 (17) 0 11 (23) 0
Vomiting 5 (9) 0 1 (4) 0 6 (25) 0 7 (15) 0
Decreased 

appetite
5 (9) 0 4 (17) 0 3 (13) 0 7 (15) 0
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PaCA and one or more post-baseline tumor assessments 
(dose-optimization cohort).

Pharmacodynamic and exploratory biomarker 
analyses

In the dose-escalation cohort, complete saturation of all 
eftozanermin alfa-binding sites (both decoy receptor 1 and 
2) of the TRAIL receptor occurred in blood neutrophils at 
2 h post-dosing for all doses evaluated (Fig. 3a). This was 
followed by gradual receptor desaturation across the dose 
range, returning to near pre-dose levels before the start of 
the next eftozanermin alfa dosing cycle. These changes were 
confirmed in the dose-optimization cohort, with complete 
saturation of all eftozanermin alfa-binding sites on neu-
trophils 2 h after dosing at all doses evaluated, followed 
by dose-dependent time to receptor desaturation (Fig. 3b). 
Since TRAIL receptors are also expressed on epithelial cells 
of normal tissues, appearance of the circulating apoptosis 
markers M30 and M65 that are shed in the bloodstream fol-
lowing cell death in epithelial cells was also assessed, to 
demonstrate target engagement. Increases in serum levels 
of M30 and M65 were observed at 8, 24, and 48 h post-
dose, with these changes occurring independently of dose 
(Fig. 3c, d). Transient increases in both M30 and M65 levels 
were observed with all doses tested in patients with CRC 
(Fig. 3e, f), and also in patients with PaCA (Online Resource 
3 – Fig. S3). Furthermore, M65 and M30 were consistently 
lower than baseline levels after C2 in patients with CRC who 
received the 7.5-mg/kg dose.

Overall, tumor biomarker data for exploratory analyses 
were from a small number of patients, which limited the 
power of these analyses. Of the twenty-five patients who 
consented to provide fresh biopsies, evaluable FFPE tissue 
was available on 11 paired pre- and on-treatment biopsies. 
Biopsies from the other 14 patients were not evaluable, either 
because the pre- or on-treatment samples lacked tumor cells, 
or because on-treatment samples were not collected (patients 
withdrew consent or investigator determined that biopsy may 
not be safe). Eight of 11 pairs were assessed for c-PARP 
levels by IHC (three pairs were non-evaluable due to limited 
tissue or assay failure). Seven of eight on-treatment biopsies 
showed increased levels of c-PARP relative to pre-treatment 
biopsies (Online Resource 2 – Fig. S1c, S1d).

Tumor biopsies that were collected as frozen cores were 
available for four pairs. Analysis of frozen paired biopsies by 
RPPA showed two- to four-fold increase in c-PARP in three 
of four on-treatment biopsies compared with pre-treatment 
tumor tissue (Online Resource 2 – Fig. S1a, S1b). Addi-
tionally, levels of pro-survival pathway molecules such as 
p-MEK1/2, p-AKT, and p-ERK decreased in three of four 
on-treatment tumor tissue samples compared with pre-
treatment tumor tissue. Parenthetically, as per protocol the 
clinical sites prioritized the first cores for formalin fixation; 
hence, the majority of frozen cores had very low/no tumor 
content. Data on RPPA are described in Online Resource 
2 – Fig. S1.

Tumor-infiltrating immune cells were also assessed 
using RNA sequencing data from FFPE tumor tissues. 
Of 11 pairs, six had on-treatment biopsies with two- to 
three-fold higher levels of total immune cells relative to 

Fig. 1   Mean (SD) log-linear 
plasma concentration–time 
profiles of eftozanermin alfa 
in dose-escalation and dose-
optimization cohorts. D1, day 1; 
D8, day 8; Q3W, every 3 weeks; 
QW, once-weekly; SD, standard 
deviation
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pre-treatment biopsies. The CD4-positive (CD4 +) naive T 
cells were also higher in seven of 11 on-treatment biopsies 
relative to pre-treatment biopsies. The immunofluorescence 
assay also showed increase in CD4 + cells in on-treatment 
biopsies compared with pre-treatment biopsy in the major-
ity of paired samples (Online Resource 2 – Fig. S2). The 
small cohort size limits robust statistical analysis, and as 
such these data demonstrate the trends of increased immune 
infiltrate in tumor following eftozanermin alfa treatment.

Additional biomarker data on DR4/5 levels in archival or 
fresh tumor tissues are reported in Online Resource 2.

Discussion

This first-in-human phase 1 study showed that adminis-
tration of eftozanermin alfa monotherapy in patients with 
previously treated solid tumors was well tolerated, with the 
drug showing an acceptable safety profile at all dose levels. 
The MTD was not identified in the dose-escalation cohort, 
in which eftozanermin alfa was administered at doses of 

up to 15 mg/kg in a D1/D8 Q3W schedule. Although all 
doses were tolerated, dose-proportional kinetics were only 
observed in the dose range of 1.25–7.5 mg/kg weekly. Sub-
sequent evaluation of eftozanermin alfa at three concur-
rent (non-randomized) dose levels up to 7.5 mg/kg QW in 
dose-optimization cohorts that included patients with PaCA 
and KRAS-mutated CRC confirmed the safety findings of 
the dose-escalation cohort, and permitted an expanded 
evaluation of eftozanermin alfa safety, pharmacokinetics, 
and pharmacodynamics. The most common AEs related 
to treatment with eftozanermin alfa were increased ALT 
and AST levels, nausea, and fatigue. The safety findings of 
eftozanermin alfa in the present study were broadly consist-
ent with other TRAIL receptor agonists [13, 14], includ-
ing the safety profiles of DR5 agonist DS-8273a, and dual 
Apo2L/TRAIL agonist [15, 16]. Eftozanermin alfa showed 
dose-proportional pharmacokinetics, with a half-life rang-
ing from 21–46 h. Evidence of antitumor efficacy was also 
observed, with one patient with PaCA in the dose-escalation 
cohort and three patients in the dose-optimization cohort 
(CRC, n = 2; PaCA, n = 1) achieving PR. On the basis of the 

Fig. 2   Efficacy evaluation of 
eftozanermin alfa: (a) Best 
percentage change in size of target 
lesions from baseline in patients 
with one or more post-baseline 
tumor assessment (dose-escalation 
cohort); (b) Spider plot of per-
centage change in size of tumor 
lesions over time in patients with 
colorectal cancer with one or 
more post-baseline tumor assess-
ment (dose-optimization cohort). 
Baseline tumor assessments were 
performed at D1 (baseline), within 
28 days of C1D1, within 7 days 
before dosing on C3D1 (post-
baseline), and Q9W thereafter. 
C, cycle; D, day; Q3W, every 
3 weeks; Q9W, every 9 weeks
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collective safety/tolerability, efficacy, and pharmacokinetic 
and pharmacodynamic data, 7.5 mg/kg QW was selected 
(due to lack of additional increase in exposure beyond this 
dose level) as the dose for further evaluation in ongoing 
studies.

The present study confirms the pharmacodynamic effects 
of eftozanermin alfa treatment through saturation of TRAIL 
receptor occupancy and subsequent engagement of the apop-
totic pathway. The longitudinal quantitation of circulating 
full-length (M65) and caspase-cleaved (M30) cytokeratin 
18 in serum showed that cells were undergoing apoptosis 
following eftozanermin alfa treatment. The dose-dependent 
time to receptor desaturation was observed with receptor 
occupancy assay; however, increase in M65 and M30 serum 
concentrations or in tumor were not dose dependent. M65 
and M30 were consistently lower than baseline levels after 
C2 in patients with CRC who received the 7.5-mg/kg dose, 
suggestive of a potential decrease in tumor burden.

Several exploratory biomarker analyses demonstrated 
apoptotic cell death and impact on infiltrating tumor cells 
following eftozanermin alfa in paired fresh pre- and on-
treatment tumor tissues. Although tumor biomarker data 
from small numbers of patients limited the power of these 
analyses, we observed increased PARP cleavage in tumor 
cells following eftozanermin alfa dosing, demonstrating 
activation of the agent’s key mechanism of action. In addi-
tion, decreased cell proliferation/survival signaling path-
ways (MEK/Erk/AKT), and potentially increased tumor-
infiltrating lymphocytes in tumor tissue after eftozanermin 
alfa dosing, were also observed. The mechanism of decrease 
in MEK/AKT signaling by eftozanermin alfa is not fully 
understood. Incidentally, these pathways are active in KRAS-
mutated tumors, and a decrease in these pathways may be 
partially due to cell killing by eftozanermin alfa.

The impact of TRAIL receptor agonists on immune cells, 
notably depletion/decrease in myeloid-derived suppressor 
cells, was reported in mice and humans previously [17, 18]. 
We observed a trend toward increase in CD4 + T cells in 
tumor following eftozanermin alfa treatment. Mandatory 
biopsies, albeit with low numbers, have provided prelimi-
nary evidence on pharmacodynamic effect in tumor fol-
lowing eftozanermin alfa dosing. The sponsor has adopted 
American Society of Clinical Oncology guidelines regarding 
these procedures [19].

Association between clinical responses and target 
expression could not be established due to limited data. 
As such, we observed higher DR4 and DR5 gene expres-
sion in pre-treatment fresh tumor biopsy specimens 
compared with archival tissue. Although this observa-
tion suggests the prior lines of treatment result in DR4/5 
expression increase, other factors such as heterogeneity in 
different lesions/anatomic sites of biopsies, and the age of 
tumor samples cannot be ruled out (data summarized in 
Online Resource 3 [figures]). In light of this observation, 
it is advisable in future studies to evaluate fresh biop-
sies for DR4/5 assessments, to establish the association 
between target expression and eftozanermin alfa activity.

In conclusion, the most common TRAEs associated 
with eftozanermin alfa administration were liver related 
or constitutional, and manageable. At the selected 7.5-
mg/kg QW regimen dose exposure, eftozanermin alfa had 
acceptable tolerability and safety while achieving more-
frequent relevant tumor regressions in CRC. The reported 
study provides a foundation for trials in patients with CRC 
assessing therapy with eftozanermin alfa, as monotherapy 
or in combinations to overcome resistance mechanisms.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10637-​022-​01247-1.
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