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Summary
In the absence of suitable molecular markers, non-small cell lung cancer (NSCLC) patients have to be treated with chemo-
therapy with poor results at advanced stages. Therefore, the activity of the anticancer marine drug fascaplysin was tested 
against primary NSCLC cell lines established from pleural effusions. Cytotoxicity of the drug or combinations were deter-
mined using MTT assays and changes in intracellular phosphorylation by Western blot arrays. Fascaplysin revealed high 
cytotoxicity against NSCLC cells and exhibit an activity pattern different of the standard drug cisplatin. Furthermore, 
fascaplysin synergizes with the EGFR tyrosine kinase inhibitor (TKI) afatinib to yield a twofold increased antitumor effect. 
Interaction with the Chk1/2 inhibitor AZD7762 confirm the differential effects of fascplysin and cisplatin. Protein phospho-
rylation assays showed hypophosphorylation of Akt1/2/3 and ERK1/2 as well as hyperphosphorylation of stress response 
mediators of H1299 NSCLC cells. In conclusion, fascaplysin shows high cytotoxicity against pleural primary NSCLC lines 
that could be further boosted when combined with the EGFR TKI afatinib.
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Introduction

Approximately 80% of all lung cancers are of the Non-small 
Cell Lung Cancer (NSCLC) type that is often detected at an 
advanced stage and portends a dismal prognosis [1]. The 
standard first-line therapy employing platinum-based chem-
otherapy resulted in minor improvements in survival but at 
the cost of side effects and poorer quality of life (QoL). The 
platinum drug combinations with either gemcitabine, doc-
etaxel or pemetrexed have reached a plateau offering a mean 
survival of approximately one year in advanced NSCLC 
[2]. Patients expressing immune checkpoint markers are 
amenable to treatment with monoclonal antibodies [3, 4]. 
The focus of NSCLC treatment shifted significantly with 
availability of inhibitors of targetable driver kinases such 
as mutated epidermal growth factor (EGFR) and anaplastic 
lymphoma kinase (ALK) rearrangements, among others [5].

The first-generation EGFR tyrosine kinase inhibitors 
(TKIs) gefitinib and erlotinib bind reversibly to the kinase 
domain of the receptor, but second-generation drugs such as 
the pan-ErbB inhibitor afatinib show irreversible inhibition 
of the kinase activity [6]. In NSCLC, pancreatic cancer and 
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colorectal cancer, afatinib resulted in an inhibition of cellu-
lar growth and induction of apoptosis [7]. Although afatinib 
is most effective against mutated EGFR it is likewise active 
against the wildtype receptor. Unfortunately, the majority of 
NSCLC lacks actionable drivers and still have to be treated 
with cytotoxic combination chemotherapy. However, dura-
ble disease control is rare and the 5-year survival is below 
5% [8]. Therefore, new agents with different mechanisms 
of antitumor activity may improve outcomes of NSCLC 
patients.

A range of antitumor compounds has been extracted 
from the sponge Fascaplysinopsis spp. with fascaplysin 
(12,13-dihydro-13-oxo-pyrido[1,2-a:3,4-b'] diindol-5-ium 
monochloride) as the most important agent [9]. Fascaplysin 
and derivatives exhibits a multitude of biological activities 
including antitumor effects based on antiproliferative and 
anti-angiogenic properties via targeting of cyclin-dependent 
kinase-4 (CDK4;  IC50 350 nM) and by intercalation into 
DNA [10, 11]. Furthermore, fascaplysin increases phospho-
rylation of Akt, and adenosine monophosphate-activated 
protein kinase (AMPK), which are essential due to their 
anti-apoptotic or pro-survival functions in cancer [12]. Fas-
caplysin inhibited ovarian cancer cell proliferation, invasion 
and migration and suppressed CDK4, cyclin D1, Bcl-2, and 
VEGF-A expression [13, 14].

Our previous studies revealed that fascaplysin exhibited 
high cytotoxicity against Small Cell Lung Cancer (SCLC) 
cell lines (mean  IC50 0.89 µM) and against SCLC Circulat-
ing Tumor Cell (CTCs) lines (mean  IC50 0.57 µM) [15, 16]. 
Selected NSCLC lines exhibited a mean  IC50 of 1.15 µM for 
fascaplysin and the compound showed an additive cytotoxic 
effect with cisplatin. Available permanent cancer cell lines 
have been adapted for vigorous in vitro growth and may not 

be truly representative of the in vivo situation in patients. 
Acquisition of NSCLC cells for tests is possible by routine 
thoracentesis in patients with advanced NSCLC. Malignant 
pleural effusion (MPE) is observed in half of advanced 
NSCLC cases and is associated with a short survival [17]. 
MPE samples frequently contain numerous tumor cells, that 
allow for the determination of driver gene status and che-
mosensitivity [18–20]. In the present study, a panel of pri-
mary NSCLC lines from pleural effusions was employed to 
compare their chemosensitivity against fascaplysin with that 
for cisplatin. Furthermore, both drugs were combined with 
the afatinib to test a possible synergistic activity and with 
the Chk1/2 inhibitor AZD7762 to investigate DNA damage-
mediated drug effects. The results demonstrate that afatinib 
acts synergistically with fascaplysin to sensitize the NSCLC 
cancer cells against this marine drug.

Materials and methods

Cell Culture and reagents Unless otherwise noted, all 
chemicals were obtained from Sigma-Aldrich (St. Louis, 
MO, USA). Dulbecco’s phosphate buffered saline (PBS) 
was purchased from Gibco/Invitrogen (Carlsbad, CA, USA). 
Compounds were prepared as stock solutions of 2 mg/mL in 
either DMSO or 0.9% NaCl for cisplatin and aliquots stored 
at − 20 °C. Equivalent concentrations of DMSO were sup-
plemented to medium controls. Established permanent cell 
lines were obtained from the American Type Culture Col-
lection (Manassas, VA, USA) and primary lung cancer lines 
were established in our lab. Collection of pleural effusions 
of lung cancer patients, isolation of tumor cells and genera-
tion of cell lines was done according to the Ethics Approval 
366/2003 by the Ethics Committee of the Medical University 
of Vienna, Vienna, Austria. In brief, pleural effusions were 
centrifuged and the tumor cells washed with tissue culture 
medium consisting of RPMI-1640 medium, supplemented 
with 10% FBS (Seromed, Berlin, Germany) and antibiotics  

Fig. 1  a-c. The figure show the  IC50 values for fascaplysin (1a), cis-
platin (1b) and afatinib (1c), for the panel of pleural primary NSCLC 
cell lines and H23, H1299, PC-9 and A549 permanent NSCLC lines, 
respectively. Data shown represent mean values ± SD

◂

Fig. 2  Overview of the CI 
values for the fascaplysin – 
afatinib combinations (mean 
values ± SD. Values below 1 
indicate a synergistic interaction
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(final concentrations: 50 U/mL of penicillin, 50 µg/mL of 
streptomycin, and 100 µg/mL neomycin). When required, 
erythrocytes were removed by Histopaque®-1077 (Sigma-
Aldrich) gradient centrifugation. Primary NSCLC cell lines 
were established in tissue culture medium and cultures split 
by trypsination. All cell lines showed an EGFR del19 dele-
tion, with exception of BH1059/RET mutation, BH419 
BRCA1 mutation and three lines, namely BH482, BH583 
and BH827, with ALK rearrangements.

Phosphokinase Array Relative protein phosphorylation 
levels of 38 selected proteins were obtained by analysis of 
43 specific phosphorylation sites using the Proteome Profiler 
Human Phospho-Kinase Array Kit ARY003B/C (R&D Sys-
tems, Minneapolis, MN, USA) in duplicate tests carried out 
according to the manufacturer’s instructions. Briefly, cells 
were rinsed with PBS, 1 ×  107 cells/mL lysis buffer were 
solubilized under permanent shaking at 4 °C for 30 min, 
and aliquots of the lysates were stored frozen at − 80 °C. 
After blocking, membranes with spotted catcher antibodies 
were incubated with diluted cell lysates at 4 °C overnight. 
Thereafter, cocktails of biotinylated detection antibodies 
were added at room temperature for 2 h. Phosphorylated 
proteins were revealed using streptavidin-HRP/chemilumi-
nescence substrate (SuperSignal West Pico, Thermo Fisher 
Scientific, Rockford, IL, USA) and detection with a Molecu-
lar Imager ChemiDoc MP imaging system (Bio-Rad, Hercu-
les, CA, USA). Images were quantified using Image J (NIH, 
Bethesda, MD, USA) and Origin (OriginLab, Northampton, 
MA, USA) software. The different Western blot membranes 
were normalized using the 6 calibration spots included.

Cytotoxicity Assay Aliquots of 1 ×  104 cells in 200 
µL medium were treated for four days with twofold dilu-
tions of the test compounds in 96-well microtiter plates 
in quadruplicate (TTP, Trasadingen, Switzerland). The 
plates were incubated under tissue culture conditions 

and cell viability was measured using a modified MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide) assay (EZ4U, Biomedica, Vienna, Austria). 
Optical density was measured using a microplate reader at 
450 nm and values obtained from control wells containing 
cells and media alone were set to 100% proliferation. For 
the assessment of the interaction of the test compounds, 
tests were performed comprising the individual drugs 
alone and in combination, followed by analysis using the 
Chou-Talalay method with help of the Compusyn software 
(ComboSyn Inc., Paramus, NJ, USA).

Statistics Statistical analysis was performed using Stu-
dent’s t test for normally distributed samples (* p < 0.05 was 
regarded as statistically significant). Values are shown as 
mean ± SD.

Results

Cellular toxicity of fascaplysin, cisplatin and afatinib

Cytotoxicity of fascaplysin, cisplatin and afatinib were 
determined in MTT assays employing primary NSCLC cell 
lines and the permanent NSCLC cell lines H23, H1299, PC9 
and A549 (Fig. 1A-C).  IC50 values for fascaplysin varied 
from 0.48 – 1.37 µg/ml, with 8/17 cell lines exhibiting high 
chemosensitivity (Fig. 1A). A group of cell lines with high 
sensitivity of 0.48 ± 0.14 µg/ml contrasts to a more resist-
ant NSCLC cell population exhibiting a mean  IC50 value of 
1.37 ± 0.18 µg/ml (p = 0.001). The difference in fascaplysin 
sensitivity of the permanent cell line H23, H1299, PC-9 
and A549 versus primary NSCLC lines is not statistically 
different.

The  IC50 values for cisplatin show a distinct sensitiv-
ity pattern for the NSCLC cell lines tested (range: 1.42 

Fig. 3  shows the CI values for 
the fascaplysin—AZD7762 
combinations and the panel of 
NSCLC lines under investiga-
tion. Data represent mean val-
ues ± SD. Differences between 
fascaplysin/cisplatin AZD7762 
were significant for all com-
binations, except for BH751, 
BH865, H23 and H1299
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– 6.48 µg/ml), with 13/17 cell lines exhibiting chemo-
sensitivity below clinical achievable peak plasma con-
centrations (PPCs) of 3 µg/ml (Fig. 1B). A group with 
high sensitivity 1.42 ± 0.79 µg/ml contrasts to a more 
resistant NSCLC cell population with 6.48 ± 2.16 µg/ml 
(p = 0.001). Analysis of the fascaplysin and cisplatin  IC50 
values showed a lack of correlation (correlation coeffi-
cient  r2 = 0.07) and, thus, completely different chemosen-
sitivities of the primary NSCLC cells to these cytotoxic 
drugs.

In contrast,  IC50 values for afatinib range from 2 µM 
to approximately 8 µM indicating relatively low sensitiv-
ity for these primary NSCLC cell lines with exception of 
BH584 and BH659 that have revealed a NSCLC-SCLC 
transformation (mean  IC50: 4.81 ± 2.05  µM; Fig.  1C). 
Accordingly, several of these primary NSCLC lines have 
been obtained after progress under EGFR TKI therapy. 
The difference in afatinib sensitivity of the permanent cell 
line H23, H1299, PC-9 and A549 versus primary NSCLC 
lines is not statistically different. Due to high variability 
of the IC50 values observed for the permanent lines, dif-
ferences to primary NSCLC lines were not significant for 
all drugs.

Cellular toxicity of fascaplysin‑afatinib 
combinations

The cytotoxic effects of fascaplysin-afatinib combina-
tions were tested in proliferation assays using 10 two-
fold dilutions of the single drugs and a combination of 
the two drugs at full concentrations. The effects of the 

combinations were calculated according to the Chou-
Talalay method. The combination indices (CIs) are 
shown in Fig. 2 and all tests revealed synergy of this 
combination with CIs ranging from 0.08 – 0.67. The 
mean CI value for the fascaplysin-afatinib combina-
tions and all cell lines was 0.324 ± 0.19. For the three 
ALK-rearranged cell lines, the fascaplysin-alectinib and 
fascaplysin-crizotinib combinations were synergistic for 
BH482 and BH827 but not for the alectinib-resistant  
cell line BH583 (data not shown).

Combinations of fascaplysin and cisplatin 
with AZD7762

Combination experiments employing fascaplysin and 
AZD7762 showed synergistic effects with CI values rang-
ing from 0.35 – 1.13 (mean value 0.54 ± 0.21), except of the 
BH419 BRCA1-mutated NSCLC cell line. The combina-
tions of cisplatin with AZD7762 showed synergy in 3/13 cell 
lines (mean value 0.76 ± 0.53) with 10/13 cell lines being 
significantly different from fascaplysin-AZD7762 combina-
tions (Fig. 3).

Comparisonof  IC50 values of fascaplysin‑afatinib 
combinations versus fascaplysin single drug

A comparison of the  IC50 values of fascaplysin alone with 
 IC50 values obtainted from fascaplysin-afatinib combina-
tions showed significantly increased drug sensitivity of the 
NSCLC lines in 8/14 cases (Fig. 4).

Fig. 4  depicts the differences of 
the  IC50 values of fascaplysin as 
single drug and in combination 
with afatinib. Data represent 
mean values ± SD and the statis-
tically significant differences are 
marked with an asterisk
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H1299 NSCLC cell line: effects of fascaplysin 
on protein phosphorylation

Changes in the phosphorylation of signaling proteins of 
H1299 cells in response to fascaplysin were analyzed with 
help of a Western blot profiler array that detects 43 kinase 
phosphorylation sites and 2 related proteins. Significant 
changes in the phosphorylation pattern of selected proteins 
are shown in Fig. 5. Specific sites were hypophosphorylated 
for Akt1/2/3, ERK1/2, GSK-3β and HSP27, whereas Chk2, 
src, c-Jun, PRAS40 and RSK1/2/3 become hyperphospho-
rylated in response to drug exposure.

Discussion

Therapy of NSCLC has changed dramatically with the 
advent of TKIs against driver kinases and the activation of 
antitumor immune responses by monoclonal checkpoint 
inhibitors (ICIs) [5]. However, the efficacy of such thera-
peutic modalities is restricted to approximately 30% of the 
patients and the majority of advanced NSCLC cases has 
still to be treated with cytotoxic chemotherapy. However, 
classical chemotherapy has reached a plateau at a low level 
in respect to overall survival (OS) [21]. The recent combi-
nations of ICIs with chemotherapy revealed relatively low 
and unpredictable responses [22, 23]. Thus, novel com-
pounds that hit targets different from that of the platinum-
based combinations may improve responses and prolong 
survival. We have demonstrated previously that fascaplysin 
has high cytotoxic activity against SCLC, SCLC CTCs and 
a limited range of NSCLC lines [16]. Here, the chemosen-
sitivity of a panel of primary pleural NSCLC lines against 
fascaplysin was compared to the cytotoxic effects of cis-
platin. The  IC50 values for fascaplysin ranged from 0.48 
– 1.37 µg/ml for the whole NSCLC cell line panel and from 

1.42 – 6.48 µg/ml for cisplatin, although most cell lines 
proved to be cisplatin-sensitive with  IC50 values below and 
around 3 µg/ml. Thus, fascaplysin displays considerable 
cytotoxicity against the primary NSCLC lines that may 
be further boosted in combination with TKIs directed to 
EGFR.

The EGFR TKI afatinib is a second generation, irrevers-
ible ErbB family blocker, that exhibits inhibitory activity 
against EGFR, human EGFR 2 (HER2) and 4 (HER4), with 
 IC50 values of 0.5, 14, and 1 nM, respectively [6, 24]. The 
 IC50 afatinib values for the whole primary NSCLC cell line 
panel of 4.81 ± 2.05 µM is a typical result for cell lines not 
dependent on mutated EGFR, such as breast cancer cell lines 
T47D and BT20, whereas  IC50 values for afatinib and cell 
lines addicted to mutated EGFR may be as low as 6–10 nM 
[25]. At extremes, NSCLC cell lines such as NCI-H460 and 
NCI-H226 exhibit afatinib  IC50 values of approximately 
50 µM. A pharmacokinetics analysis revealed that plasma 
concentrations of afatinib peaked at 3 – 4 h after adminis-
tration and decreased with a half-life of 37 h at steady state 
[26]. Afatinib is administered at 40 mg PO/day resulting 
in approximately 0.2 µM peak plasma concentration after 
multiple dosing. Our results show that this TKI in combina-
tion with fascaplysin results in approximately twofold sen-
sitization and a considerable decrease of the  IC50 values. 
Although afatinib is the standard drug for the treatment of 
lung squamous cell carcinoma (SCC) with EGFR overex-
pression, attempts have been made to use this irreversible 
blocker for other EGFR expressing tumors. Advanced head 
and neck squamous cell carcinoma (HNSCC) hold a poor 
prognosis and tumor progression is associated with over-
expression of EGFR [27]. Afatinib increased the cytotox-
icity of cisplatin when combined in different schedules of 
exposure against these HNSCC cell lines. In detail, cispl-
atin treatment followed by afatinib exposure showed higher 
activity against two EGFR wildtype HNSCC cell lines 

Fig. 5  Out of the whole 
panel of phosphoproteins, the 
significantly altered proteins in 
fascaplysin-treated H1299 cells 
are presented in Fig. 5. Data 
presented are mean values ± SD 
of duplicate determinations. 
All differences betweem H1299 
Con and H1299 Fascaplysin are 
statistically significant

0

500

1000

1500

2000

2500

3000

3500

Pi
xe

l I
nt

en
sit

y 
[a

rb
itr

ar
yu

ni
ts

]

Phospho-Kinases

H1299 Con
H1299 Fascaplysin

220 Investigational New Drugs (2022) 40:215–223



1 3

compared to other approaches. Furthermore, EGFR was 
found hyperphosphorylated in cisplatin-resistant wildtype 
EGFR NSCLC cells,  H358R and  A549R, and the cisplatin/
gefitinib combination applied promoted apoptotic cell death 
[28]. Another study employing five human EGFR wild-type 
HNSCC cell lines showed significant synergy of afatinib 
with cisplatin [29]. In detail, in three out of the five cell 
lines 0.625 µM afatinib in combination with cisplatin exerted 
antiproliferative effects and the remaining two lines showed 
responses for a combination with ≥ 1.25 µM afatinib. Since 
the EGFR TKI gefitinib showed similar effects to afatinib 
in sensitizing wildtype EGFR NSCLC cells to cisplatin, the 
effects of afatinib seem not to be linked by off-target effects 
due to reactions with non-EGFR protein cysteine residues 
[30]. In general, the synergistic toxicity may be based on the 
link of EGFR signaling to the response to DNA damage by 
chemotherapeutic agents including cisplatin [31].

The induction of the DNA repair system involves sens-
ing of the damage by ATM (ataxia-telangiectasia mutated) 
and ATR (ATM- and Rad3-Related) kinases and activation 
of Chk1/2 downstream kinases [32]. The overexpression of 
Chk1 is associated with poorer outcomes and may contribute 
to therapy resistance in NSCLC [33]. AZD7762 is a potent 
inhibitor of Chk1/2 that blocks specifically the ATP binding 
pocket  (IC50 5 nM) [34]. AZD7762 has activity on a range 
of other kinases SRC family members, colony stimulating 
factor receptor (CSF1R), RET and others. In combination 
with DNA-damaging agents such as gemcitabine, topotecan, 
doxorubicin, and cisplatin, AZD7762 inhibits cancer cell 
growth in vitro via Chk1 inhibition and abrogation of the 
G2 and S phase checkpoints [35]. The sensitzing effect of 
this inhibitor over the DNA-damaging agents alone ranged 
from 5- to 20-fold. Furthermore, AZD7762 could enhance 
cisplatin-mediated apoptosis by inhibiting damage repair 
in vitro and enhanced xenograft apoptosis induced by cis-
platin in vivo [36]. Surprisingly, in our experiments the 
synergistic effect of AZD7762 on tumor cell death proved 
to be higher in fascaplysin-AZD7762 combinations versus 
cisplatin-AZD7762 combinations. Studies has shown that 
the intercalation of fascaplysin is regarded as the major bind-
ing mode for DNA [37]. Fascaplysin displaces ethidium bro-
mide from DNA that is known to bind to the minor groove 
of doublestrand DNA and, therefore, intercalation is hold to 
be responsible for the unique cytotoxicity of native fascapla-
sin versus nonplanar derivatives and induction of the DNA 
repair system [38].

Investigation of fascaplysin-induced changes in pro-
tein phosphorylation in H1299 NSCLC cells was assessed 
using Western blot arrays, as previously demonstrated for 
the A549 cell line [16]. The PI3K/AKT/mTOR pathway, 
which plays essential roles in cell proliferation and sur-
vival is frequently deregulated in cancer, in particular 
due to loss of PTEN, as in the case of H1299 [39]. The 

fascaplysin-induced decreases in Akt (Ser473) phospho-
rylation are correlated with lower cell survival due to 
induction of apoptosis [40]. Decreased phosphorylation of 
the mitogen-activated protein kinase (MAPK) pathway ter-
minal master kinases ERK1/2 results in diminished prolif-
eration and was found here for the exposure to fascaplysin, 
[41]. Chk2 and Chk1 phosphorylation triggers DNA repair 
and hyperphosphorylation of c-Jun and Src which is linked 
to the cellular stress response [42]. Hypophosphorylation 
of multifunctional glycogen synthase kinase 3β (GSK3β) 
alters a key node of survival pathways mediated by Ser/
Thr protein kinases related to Akt, protein kinase C (PKC), 
ERK1/2 and Wnt [43]. Furthermore, hypophosphorylation 
of the chaperone HSP27 is known to enhance the cytotox-
icity of chemotherapeutics [44]. The p90 ribosomal S6 
kinases (RSK1-4) comprise a family of serine/threonine 
kinases that lie at the terminus of the ERK pathway. RSKs 
promotes silencing of G2 DNA damage checkpoint in a 
Chk1-dependent manner, and activation of RSKs promotes 
resistance to DNA-damaging agents [45]. The cell stress 
response observed in H1299 seems to result in activation 
of the RSK kinases. The proline-rich Akt substrate of 
40 kDa (PRAS40) is a substrate of Akt and is phospho-
rylated by growth factors or other stimuli. PRAS40 is an 
important substrate of the Akt3 kinase, which regulates the 
apoptotic sensitivity of cancer cells and becomes activated 
in H1299 to counteract the cytotoxic effects of fascaplysin 
[46]. The fascaplysin-induced alterations in protein phos-
phorylation indicate efficient execution of cytotoxic effects 
and a failing intracellular stress response.

In summary, fascaplysin promotes cell death of NSCLC 
cell line in a manner different from the standard platinum 
drugs. This marine drug induces a DNA repair response, 
syngergizes with the Chk1/2 inhibitor AZD7762 and with 
the EGFR TKI afatinib.
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