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ERGs were recorded from both eyes. Offline digital 
filters at 50, 75 and 100  Hz low cutoff frequencies 
were applied to isolate high-frequency components 
from the original ERG signals.
Results  ERG a-waves and b-waves were compa-
rable between LHON patients and controls, while 
PhNR was significantly reduced (p = 0.009) in 
LHON patients compared to controls, as expected. 
OPs derived from DA signals (75 Hz low cutoff fre-
quency) showed reduced peak amplitude for OP2 
(p = 0.019). LA OP differences between LHON and 
controls became significant (OP2: p = 0.047, OP3: 
p = 0.039 and OP4: p = 0.013) when the 100 Hz low-
cutoff frequency filter was applied.
Conclusions  Reduced OPs in LHON patients 
may represent disturbed neuronal interactions in the 
inner retina with preserved photoreceptoral (a-wave) 
to bipolar cell (b-wave) activation. Reduced DA 
OP2 and high-cutoff LA OP alterations may be fur-
ther explored as functional measures to characterize 
LHON status and progression.
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Introduction

Leber hereditary optic neuropathy (LHON) is a rare 
inherited disease predominantly affecting males with 
a prevalence in Europe of approximately 1:45,000 

Abstract 
Purpose  Leber hereditary optic neuropathy 
(LHON) affects retinal ganglion cells causing severe 
vision loss. Pattern electroretinogram and photopic 
negative response (PhNR) of the light-adapted (LA) 
full-field electroretinogram (ERG) are typically 
affected in LHON. In the present study, we evalu-
ated dark-adapted (DA) and LA oscillatory potentials 
(OPs) of the flash ERG in genetically characterized 
LHON patients to dissociate slow from fast compo-
nents of the response.
Methods  Seven adult patients (mean 
age = 28.4 ± 5.6) in whom genetic diagnosis con-
firmed LHON with mtDNA or nuclear DNAJC30 
(arLHON) pathogenic variants were compared to 12 
healthy volunteers (mean age = 35.0 ± 12.1). Full-field 
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considering the three primary (m.11778G>A, 
m.14484T>C and m.3460G>A) maternally trans-
mitted mitochondrial DNA (mtDNA) mutations [1]. 
These mtDNA mutations are associated with abnor-
mal cellular respiratory chain function causing oxi-
dative stress [2] that severely affects retinal ganglion 
cells (RGCs) causing progressive optic atrophy [3–6]. 
The changes in RGCs and in the retinal nerve fiber 
layer (RNFL) strongly impact the central retina lead-
ing to low vision or irreversible legal blindness with 
small number of patients that eventually recover 
vision partially [7, 8]. Equivalent mitochondrial 
alterations can be also caused by biallelic mutations 
in genes of the nuclear DNA leading to an autosomal 
recessive form of LHON, as recently reported [9, 10].

There are no specific signs of retinal alterations 
preceding the conversion to the acute phase in LHON 
patients [11]. The discovery of retinal biomarkers 
preceding the conversion could be relevant for early 
interventions. In addition to the structural exami-
nation with optical coherence tomography (OCT), 
visual electrophysiology plays an important role in 
the assessment of retinal integrity in LHON. Typi-
cally, affected LHON patients show abnormal pat-
tern-reversal visual evoked potential (VEP) and pat-
tern electroretinogram (PERG) with abnormal N95 
amplitude or N95/P50 amplitude ratio and shorten-
ing of P50 peak time, revealing the primary dysfunc-
tion of RGCs [12–17]. The a-wave and the b-wave 
of the standard (ISCEV) full-field flash ERG may 
be classified as normal or slightly reduced in LHON 
patients [16, 18]. On the other hand, the photopic 
negative response (PhNR) originating in the inner 
retina, dependent on RGCs’ integrity [19], has been 
described as altered and associated to the disease pro-
gression in LHON patients [17, 18, 20].

In addition to the PhNR, oscillatory potentials 
(OPs) have been long reported to originate in the 
inner part of the retina, reflecting inhibitory/excita-
tory interactions involving bipolar and amacrine cells 
in the inner plexiform layer of the primate retina [21, 
22]. Each individual OP wavelet may be originated 
by a different subset of cells which may provide the 
possibility of accessing specific retinal mechanisms 
by evaluating individual and consecutive OP peaks 
[23–26]. Considering the proximity and physiological 
interdependence of RGCs and the OP generators, it 
could be speculated that LHON patients are at higher 
risk of presenting OP dysfunctions. Reduction in OP 

amplitudes were reported in patients with dominant 
optic atrophy with OPA1 gene mutations [27] and 
glaucoma [28, 29], conditions predominantly affect-
ing the retinal ganglion cells. We are not aware of any 
prior study investigating OPs in LHON.

In the present study, OPs were extracted from DA 
and LA full-field ERG signals with the application 
of digital filters using different cutoff frequencies 
in genetically confirmed LHON patients to evaluate 
whether OP changes reflect retinal alterations caused 
by LHON.

Methods

Participants

Participants were 7 young adult patients aged 20 to 
34 (mean age = 28.4 ± 5.6, 5 males) and 12 healthy 
volunteers (mean age = 35.0 ± 12.1, 2 males). All sub-
jects underwent complete ophthalmological exami-
nation including spectral-domain optical coherence 
tomography (SD-OCT). All patients showed typical 
LHON phenotype in chronic phase: bilateral low vis-
ual acuity; presence of central scotoma in the visual 
field; pale (atrophic) optic disk; retinal atrophy with 
predominant thinning of the ganglion cell complex 
both in macular and peripapillary areas; and PERG 
and VEP findings typical for optic neuropathies. 
All patients were genetically tested for mtDNA and 
clinical exome. Table  1 shows that six out of seven 
patients showed pathogenic mtDNA mutations, while 
one patient (number 7) showed autosomal recessive 
DNAJC30  152 A > G nuclear DNA mutation. One 
eye of the controls and LHON patients (bold VA val-
ues) were selected for statistical comparisons. Only 

Table 1   Participants’ information

P Age Sex LogMAR 
VA OD

LogMAR 
VA OS

Gene variant

1 34 M 2.3 2.3 m.13042G>T
2 23 M 2.0 1.8 m.13042G>T
3 34 F 1.1 2.3 m.11778G>A
4 20 M 1.7 1.7 m.3700G>A
5 33 M 1.3 1.3 m.3460G>A
6 28 M 0.0 1.0 m.14484T>C
7 27 M 0.2 0.2 DNAJC30 152A>G
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results of the right eyes were considered, except for 
patient 4, who in addition to optic nerve atrophy had 
strabismic amblyopia on the right eye, and patient 
6 who showed spontaneous visual recovery of the 
right eye after several months experiencing blindness 
(Table 1).

ERG recording

Full-field ERGs were recorded using the RetiPort 
system (Roland Consult, Brandenburg, Germany) 
from both eyes following the International Society 
for Clinical Electrophysiology of Vision (ISCEV) 
Standards [30]. First, pupils were dilated with 1% 
tropicamide (Mydriacyl, Alcon). ERGs were recorded 
with HK-loop electrodes [31]. Participants were dark-
adapted for 20 min. Full-field stimulus of 20 consecu-
tive flashes of 3.0  cd·s/m2 with a 10-s interstimulus 
interval were delivered for recording DA 3 ERGs. 
Subsequently, the participants underwent light adap-
tation to a background of 30 cd/m2 for 10-min. Then 
LA ERGs to 3.0  cd·s/m2 flashes were recorded (LA 
3 ERG). Signals were amplified with a band-pass fil-
ter from 1 to 300 Hz and sampled at 512 plot points 
within a 150 ms time window, which gives a sampling 
frequency of 3413.3  Hz. All stimulus and record-
ing conditions followed ISCEV Standard for clinical 
full-field electroretinography [30], except the lower 
corner frequency of the amplifier was higher than the 
recommended (1 Hz instead of 0.3 Hz). ERG signals 
obtained from 60 consecutive flashes for LA 3 were 
averaged resulting in a 150-ms epoch. Raw data were 
exported from the RetiPort system in time–amplitude 
matrix and analyzed offline.

Offline signal processing and data analysis

ERG components were analyzed by peak/trough 
detection: a-waves, b-waves and photopic negative 
response (PhNR). The amplitude of the a-wave was 
defined as the difference in microvolts (µV) between 
the baseline and the minimum value after stimu-
lus onset. The amplitude of the b-wave was the dif-
ference in µV between a-wave trough and the peak 
of the b-wave. PhNR was defined as the difference 
between the baseline and the late negative component 
after the i-wave, the positive waveform following the 
b-wave. Peak times corresponded to the intervals, in 

milliseconds (ms), between the stimulus onset and the 
peak amplitudes.

Isolated oscillatory potentials (OPs) were extracted 
from the original ERG signals using fast Fourier 
transform (FFT) and inverse fast Fourier transform 
(IFFT) MATLAB® (The MathWorks Inc., Natick, 
Massachusetts, USA) routines. The low-frequency 
part of the spectrum identified with the FFT was 
excluded before the application of IFFT. The high 
cutoff frequency of the band-pass filters was 300 Hz. 
The low cutoff frequency was 75 Hz for DA signals, 
following ISCEV recommendations [30], and two 
cutoff frequencies, 50 Hz and 100 Hz, for LA signals 
to obtain OPs, respectively, more or less influenced 
by low-frequency ERG components. While OP2 
and OP4 extracted from LA signals with the low-
cutoff frequency (50  Hz) filter were always present, 
the other three major OPs were not always observed. 
Group comparisons between controls and LHON 
patients were performed using one-way ANOVA 
(independent samples t-test) or two-way ANOVA 
plus Bonferroni post hoc analyses in the presence of 
within-subjects repeated measurements such as indi-
vidual OPs. Corrected p values < 0.05 were consid-
ered statistically significant.

Results

Slow DA 3 and LA 3 ERG components

Negative (a-wave and photopic negative response: 
PhNR) and positive (b-wave) components of the DA 
3 ERG (Fig.  1A) and of the LA 3 ERG (Fig.  1B) 
were first evaluated to check the integrity of retinal 
networks generating the low-frequency ERG com-
ponents. Mean DA and LA control traces including 
the low ERG components analyzed are shown in 
Fig. 2A, and the mean (± standard deviation) ampli-
tude and peak time values are shown in Table  2. 
Figure  2B shows that the mean amplitudes of the 
DA ERG a-wave (F(1,18) = 0.736; p = 0.403) and 
b-wave (F(1,18) = 0.116; p = 0.738) were comparable 
between the groups. Mean peak times of the DA 3 
ERG a-wave (F(1,18) = 0.193; p = 0.666) and b-wave 
(F(1,18) = 0.157; p = 0.697) were also comparable 
between CTRL and LHON patients. The b-to-a-wave 
mean amplitude ratio was slightly larger in LHON 
patients compared to controls (CTRL = 1.74 ± 0.17 



	 Doc Ophthalmol

1 3
Vol:. (1234567890)

and LHON = 1.92 ± 0.21). However, the differ-
ence was not statistically significant (F(1,18) = 0.193; 
p = 0.081). LA ERG (Fig.  2C), on the other hand, 
was not completely comparable between the groups. 
The a-wave (F(1,18) = 3.864; p = 0.067) and the 
b-wave (F(1,18) = 4.290; p = 0.054) mean ampli-
tudes showed marginal (nonsignificant) differences 
between CTRL and LHON groups. The mean peak 
times of the a-wave (F(1,18) = 0.047; p = 0.830) and 
the b-wave (F(1,18) = 0.585; p = 0.455) were simi-
lar for the LA slow components. In contrast, the 
mean PhNR amplitude (Fig.  2D) in LHON patients 
(mean = 15.6 ± 1.3  µV) was about half of the mean 
PhNR control amplitude (mean = 29.8 ± 11.5  µV). 
Group comparison showed significantly reduced 

(F(1,18) = 8.870; p = 0.009) PhNR amplitudes in 
LHON patients compared to the control group.

Dark‑adapted OPs in LHON

Five OPs (OP1–OP5) of the DA 3 ERG were ana-
lyzed in the time domain by peak/trough detec-
tion after the application of an offline band-pass 
75–300  Hz filter. Additional filtering with different 
band-pass filters did not show any significant changes 
between the groups. Therefore only results of ISCEV 
standard low cutoff frequency of 75 Hz are reported.

Figure 3A shows the OP trace of a representative 
subject of the control group and individual OP traces 
from the LHON patients showing that the five OPs 

100 µV

Control RE, VA = 0.0 P1 RE, VA = 2.3 P2 RE, VA = 2.0 P3 RE, VA = 1.1

P4 LE, VA = 1.7 P5 RE, VA = 1.3 P6 LE, VA = 1.0 P7 RE, VA = 0.2

30 ms

15 ms
50 µV

Control RE, VA = 0.0 P1 RE, VA = 2.3 P2 RE, VA = 2.0 P3 RE, VA = 1.1

P4 LE, VA = 1.7 P5 RE, VA = 1.3 P6 LE, VA = 1.0 P7 RE, VA = 0.2

A

B

a-wave

b-wave

a-wave

b-wave

PhNR

Fig. 1   Dark-adapted 3 and light-adapted 3 ERG original 
responses. Black traces = individual response of a representa-
tive subject from the control group with normal VA = 0.0 
LogMAR. Gray traces = individual responses from the seven 
LHON patients included in the study. A = dark-adapted 

responses and B = light-adapted responses. Above the signals 
the eye included as well as the respective VA are shown for all 
subjects. Note that PhNRs in LHON patients, pointed with the 
arrows, were reduced in comparison to controls
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were detected in all traces. Although completely pre-
served dark-adapted a-waves and b-waves were found 
in LHON patients, as described in the previous sec-
tion (Figs. 1 and 2), dark-adapted OPs were reduced 
in LHON patients. Analysis of variance showed that 

the sum OP amplitude was just slightly attenuated 
(F(1,18) = 5.397, p = 0.033) in LHON patients com-
pared to controls (Fig. 3B). However, when individual 
OP amplitudes were compared between the groups, 
OP2 (Fig. 3C) was found to mainly drive this group 
difference (F(1,18) = 6.987, p = 0.017) while other OPs 
were just slightly reduced (Fig.  3D) and statistically 
comparable between the groups (OP1: F(1,18) = 3.841, 
p = 0.067; OP3: F(1,18) = 4.263, p = 0.055; OP4: 
F(1,18) = 2.851, p = 0.110; OP5: F(1,18) = 2.109, 
p = 0.165). Figure 3E shows that OP peak times were 
all comparable between the groups (F(1,18) < 1.5, 
p > 0.25).

Light‑adapted OPs in LHON

LA 3 ERG signals (Fig. 1B) were filtered using two 
offline band-pass filters: one was set at 50  Hz low 
cutoff frequency and the other was set at 100  Hz 
low cutoff frequency. In both conditions 300 Hz was 
selected as the high cutoff frequency. The OP signals 
extracted from the original LA 3 ERG are shown in 
Fig. 4 for a representative subject of the control group 

Fig. 2   Dark-adapted 3 
and light-adapted 3 ERG 
slow components. Repre-
sentative control signals 
for dark-adapted (DA) and 
light-adapted (LA) ERG 
responses showing the 
components analyzed (A). 
Mean/median (box = IQR; 
whisker = minimum and 
maximum values) ampli-
tudes (upper boxplots) 
and peak times (bottom 
boxplots) for a-wave and 
b-wave of the DA 3 ERG 
(B) and LA 3 ERG (C), and 
for the PhNR (D). Black 
symbols = controls. Gray 
symbols = LHON patients. 
*Significant difference 
(p < 0.05). PhNR was the 
only slow ERG component 
found to be significantly 
reduced in LHON patients 
compared to controls

A DA a-wave DA b-wave

C
LA a-wave LA b-wave

D
PhNR

*

Control

LHON

a-wave

b-wave

a-wave

b-wave

PhNR

BDA

LA

Table 2   Comparison of control and LHON patients mean val-
ues

CTRL LHON p-values

DA ERG component
a-wave amplitude (µV) 133.8 ± 18.9 124.6 ± 27.8 0.403
a-wave peak time (ms) 20.8 ± 2.5 21.3 ± 2.6 0.666
b-wave amplitude (µV) 230.8 ± 29.4 241.3 ± 68.3 0.738
b-wave peak time (ms) 46.3 ± 4.6 46.7 ± 5.6 0.697
b-to-a-wave ratio 1.74 ± 0.17 1.92 ± 0.21 0.081
LA ERG component
a-wave amplitude (µV) 27.2 ± 6.1 20.5 ± 4.6 0.067
a-wave peak time (ms) 15.7 ± 0.7 15.6 ± 1.3 0.830
b-wave amplitude (µV) 121.1 ± 18.1 99.2 ± 28.4 0.054
b-wave peak time (ms) 30.9 ± 1.4 30.4 ± 1.3 0.455
PhNR amplitude (µV) 29.8 ± 11.5 15.8 ± 5.5 0.009*
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and the individual OP traces from LHON patients. 
In both filter conditions five OPs (OP1–OP5) were 
observed. However, for the 50  Hz condition, OP1 
was near the baseline level and OP3 was not always 
measurable. OP5 implicit time was usually over 
b-wave peak and, therefore, strongly influenced by 
the PhNR. Therefore, only major components, OP2 
and OP4, were analyzed in the time domain using 
50 Hz cutoff filter. OP4, the largest oscillation, coin-
cided in time with the b-wave peak (control mean 
b-wave peak time = 30.9 ± 1.4  ms and control OP4 
peak time = 30.6 ± 1.3), as expected. Therefore, it 
was more influenced by the b-wave peak. At 100 Hz 
cutoff condition, LA OP waveforms were less influ-
ence by the slow ERG components. All five OPs 
were measurable in all subjects and they were ana-
lyzed in the time domain by peak/trough detection, 

as shown in Fig. 4B. At 50 Hz filter condition, sum 
OPs (OP2 amplitude + OP4 amplitude) were slightly 
reduced in LHON patients (Fig.  4C), but still com-
parable to controls (group effect: F(1,18) = 4.731 and 
p = 0.050): mean control = 65.1 ± 15.8 and mean 
LHON = 48.2 ± 17.2  µV. The within-subjects vari-
able, using two-way analysis of variance, revealed 
a marginal OP*group effect (F(1,18) = 4.377 and 
p = 0.052) with significant group difference for OP4 
amplitude (F(1,18) = 5.463 and p = 0.032) but not for 
OP2 amplitude (F(1,18) = 2.856 and p = 0.109).

On the other hand, sum OP (Figure  4C), group 
effects of the LA OPs extracted with 100 Hz cut-
off frequency showed more evident group differ-
ences (F(1,18) = 8.330 and p = 0.010) when comparing 
controls (mean = 54.2 ± 15.3) with LHON patients 
(mean  =  36.6 ± 5.8). Further analysis including OP 
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Fig. 3   Oscillatory potentials of the DA 3 ERG. DA OP traces 
of a representative control subject and all LHON patients 
examined with the respective eye tested and LogMAR visual 
acuity (A). DA OPs (OP1–OP5) were derived from DA ERG 
signals with 75–300  Hz band-pass digital filter. Mean (± one 

standard deviation) control (black) and LHON patients (gray) 
sum OP amplitudes (B) and amplitudes (upper plots, C) and 
implicit times (bottom plots, D) of controls (black) and LHON 
patients (gray). *Significant difference (p < 0.05)
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as within-subjects variable using two-way analysis 
of variance revealed no significant OP*group effect 
(F(1,18) = 1.634 and p = 0.176). However, Figure  4D 
shows that individual OP amplitudes were signifi-
cantly affected in LHON patients. While early OPs 
showed only marginal differences (F(1,18) < 5.198 
and p > 0.036), OP4 amplitude reduction was sta-
tistically significant (F(1,18) = 7.798 and p = 0.013). 
OP5 amplitude was comparable between the groups 
(F(1,18) = 2.986 and p = 0.102). The comparisons of 
OP peak times (Figure 4D right column) showed no 
significant group (F(1,18) = 0.139 and p = 0.714) or 
OP*group (F(1,18) = 0.194 and p = 0.665) effects. The 
individual analysis also revealed no group effects on 
OP peak times (F(1,18) < 0.902 and p > 0.356). Finally, 
there were no correlations between PhNR and LA OP 
amplitudes (Spearman correlation = − 0.17 to 0.33 
and p > 0.4).

Discussion

In addition to the well-known, and confirmed by this 
study, inner retina dysfunction reflected by pattern 
ERG (PERG) and photopic negative response (PhNR) 
changes, the present report shows that oscillatory 
potentials (OPs) are also affected in LHON patients. 
Retinal alterations caused by LHON were reflected in 
full-field dark-adapted (DA) and light-adapted (LA) 
ERG OPs. Interestingly, LA OP abnormalities were 
more evident when slow components were filtered 
out using a higher-band-pass digital filter. The present 
data also confirm preserved or relatively preserved 
photoreceptor to bipolar cell (outer retina) mecha-
nisms as revealed by normal a-wave and b-wave 
values in the DA responses (Fig.  1A) and close to 
normal values in the LA responses (Fig.  1B) in our 
cohort, as previously reported [17, 18, 20]. In addi-
tion, LHON patients also showed affected inner reti-
nal components of the multifocal ERG [32].

The OPs of the full-field flash ERG are low-
voltage high-frequency electric oscillations consist-
ently observed in the rising phase of the b-wave [26, 
33–35]. DA OP analysis is recommended by ISCEV 
[30] using band-pass (~ 75–300  Hz) filter of signals 
obtained with the standard (3.0 cd·s/m2) DA full-field 
ERG. Interestingly, individual OPs are generated by 
distinct retinal mechanisms which are also differen-
tially influenced by the flash intensity and the state 

of adaptation [24–26, 35–37]. It has been proposed 
that the early OPs may have more distal retinal ori-
gins while intermediate and late OPs show inner 
retinal spiking generators [38]. Since the late OPs are 
believed to originate from the inner retina (amacrine/
ganglion cells) which is severely affected in LHON, 
we investigated the integrity of the five major DA and 
LA OPs. DA OPs have been consistently reported 
to be sensitive to retinal changes caused by diabetes 
[39–41] and other conditions affecting inner retinal 
mechanisms [24]. OP alterations may accompany 
other optic neuropathies as they have been reported in 
patients with autosomal dominant optic atrophy [27]. 
However, OPs were not specifically studied in LHON 
patients. Abnormal OPs have also been reported in 
patients with glaucoma primarily affecting retinal 
ganglion cells. These findings suggested amacrine 
cells alterations in addition to ganglion cells altera-
tion [28, 29]. DA OPs in non-human primate with 
experimental glaucoma were not consistently differ-
ent from control eyes [42], while LA OPs were not 
specifically studied.

In the present report, DA OP differences between 
controls and LHON patients with completely intact 
DA a-wave and b-wave were slight for the sum of the 
DA OPs (Fig.  3B). The comparisons of individual 
OPs revealed that OP2 was mainly affected. The LA 
OPs seemed more affected in LHON patients. Impor-
tantly, significant differences between LHON patients 
and controls for OPs extracted with the 100  Hz 
low-cutoff frequency filter suggested that fast OPs 
(105–215  Hz) [23] likely originated at inner retinal 
cells [38] might be involved in the pathogenies.

There are no current standard recommendations to 
derive OPs from LA ERG signals although they are 
clinically relevant. For instance, reduced or absent LA 
OP2 has been observed in inherited retinal conditions 
affecting signal transmission between photoreceptors 
and bipolar cells [43]. Interestingly, in patients with 
congenital stationary night blindness (CSNB), LA 
OP2 and OP3 were absent while OP4 was preserved 
[44]. Likely, abnormal OP2 and OP3 was probably 
due to a defect in the on-bipolar cells, with normal 
OP4 as off-bipolar cells were properly functioning. 
The present data shows asymmetric LA OP altera-
tions in LHON patients with OP4 more prominently 
reduced. Although the origins of the ERG OPs have 
been debated for several decades [22, 25, 45, 46], 
early observations indicated that they may originate in 
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the retinal interneurons with different OPs represent-
ing the electrical manifestation of a distinct retinal 
event [35]. Possibly, the lower OP amplitudes found 

in LHON patients represent functional changes of the 
amacrine cells, similar to what has been reported in 
patients with autosomal dominant optic atrophy [27]. 
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However, a direct effect of RGCs dysfunction on the 
OP amplitudes [45] may also be taken into considera-
tion when analyzing OP changes in LHON patients.

Visual processing driven by the RGCs that are 
responsible for sharp vision and color discrimination 
are at high risk of suffering from mitochondrial dys-
function [47] which may influence inner retinal mech-
anisms. DA OPs have been long reported to be specif-
ically affected in diabetic patients with no detectable 
signs of diabetic retinopathy [48], with lower ampli-
tudes of the early OPs correlated with the vascular 
changes [49]. Microvascular changes have also been 
considered a pathogenic mechanism and a potential 
biomarker in LHON patients [50]. Special microvas-
cular properties are present in the optic nerve head 
that is affected in LHON [5] and may therefore influ-
ence DA OP2 amplitudes perhaps in presymptomatic 
stages. However, other mechanisms affecting the syn-
aptic conduction of affected ganglion cells may play 
a role in the chronic stage as observed in the patients 
included in this study.

The limitations of the study were small sam-
ple size and the genetic / clinical heterogeneity of 
LHON patients included in the study. In order to con-
firm whether this group can be representative of the 
LHON disease, future studies may consider inves-
tigating genetically homogeneous groups as well 
as subjects with and without microvascular changes 
(OCT) in presymptomatic stages.

Conclusion

The particular group of genetically characterized 
LHON patients in chronic stage of the disease dis-
played OP abnormalities suggesting inner retinal 
dysfunction in addition to ganglion cell loss. Inner 
retinal ERG components such as P50/N95 (PERG) 

and the PhNR may be affected as a consequence of 
retinal ganglion cells’ dysfunction. OP abnormalities 
could be the result of a direct dysfunction of retinal 
mechanisms other than RGCs. These findings, how-
ever, remain to be further explored in terms of patho-
physiology and possible cellular generators. Finally, 
if future investigations show that the OPs are reduced 
early in the disease process, then it would prove to be 
a useful biomarker for the diseases progression.
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