
Discrete Event Dynamic Systems (2024) 34:95–124
https://doi.org/10.1007/s10626-023-00390-y

MANUSCRIPT

�HyFlow: formalism, semantics, and applications

Fernando Barros1

Received: 21 July 2022 / Accepted: 6 December 2023 / Published online: 24 January 2024
© The Author(s) 2024

Abstract
Simulation models have been described using different perspectives, or worldviews. In the
process interaction world view (PI), every entity is modeled by a sequence of actions describ-
ing its life cycle, offering a comprehensivemodel that groups the events involving each entity.
In this paper we describe πHyFlow, a formalism for representing hybrid models using a
set of communicating processes. This set is dynamic, enabling processes to be created and
destroyed at runtime. Processes are encapsulated into πHyFlow base models and commu-
nicate through shared memory. πHyFlow, however, can guarantee modularity by enforcing
that models can only communicate by input and output interfaces. πHyFlow extends current
PI approaches by providing support for HyFlow concepts of sampling and dense (contin-
uous) outputs, in addition to the more traditional event-based communication. Likewise
HyFlow, πHyFlow is a modeling & simulation formalism driven by expressiveness and
performance analysis. We present πHyFlow semantics, and several applications to illustrate
πHyFlow ability to describe a diversity of systems.

Keywords Modeling & simulation · Process interaction worldview · Hybrid models ·
Operational semantics · Co-simulation · Performance analysis

1 Introduction

The process interaction worldview (PI) enables a simple and intuitive description of sim-
ulation models. Contrarily to the event interaction approach that offers an unstructured
perspective of the systems based on a set of events, commonly represented by event graphs
(Schruben 1983), the PI organizes events by entity and by their order of occurrence. The result
is a script that is easier to understand and verify than the corresponding event graphs. The
PI has its origins on the SIMULA language (Dahl et al. 1966). Some simulation languages
supporting PI favors the active client approach (Henriksen 1981). In this view, transitory
entities, like clients, are represented by processes, while permanence entities, like servers,
are represented as data structures. In the alternative active server, processes model the per-
manent resources of the systems, like machines, while clients are viewed as passive data
that is passed among processes. This view is often considered a requirement for a modular

B Fernando Barros
barros@dei.uc.pt

1 Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-023-00390-y&domain=pdf
http://orcid.org/0000-0002-3792-2354

96 Discrete Event Dynamic Systems (2024) 34:95–124

representation of systems, and it is supported by formalisms like DEVS (Zeigler 1976) for
describing discrete event systems, and HyFlow (Barros 2017), to represent hybrid systems.
Although modularity leverages hierarchical models, and the ability to represent complex
models by a composition of simpler ones, it does not always provide the most adequate level
of representation for simple models. In fact, base models in these types of modular represen-
tations can only describe one event, forcing, in general, that models with two or more events
to be represented as a composition of several base models, one for each event. Considering,
as an example, a system with one queue feeding two servers; a single event model needs to
decompose the system into three models and describe the synchronization among entities.
On the contrary, in PI, the communication can be achieved, in a simple way, through shared
memory data structures since simulation processes have non-preemptive semantics. How-
ever, simulation languages supporting PI often do not enforce modularity, making it difficult
to represent complex systems.

In this paper we present a new formalism to represent hierarchical, modular hybrid models
that enables, at the base level, the ability to represent several events, keeping the advantages of
PI. Our goal is to combine the simplicity of PI for describing small systems, with hierarchical,
and modular constructs that enable a systems-of-systems representation for revealing system
behavior and components’ interactions (Nielson et al. 2015). Modularity also makes easier
to represent systems with a dynamic topology, by providing a one-to-one mapping between
changes in system topology and the corresponding structural adaptation of the model. We
also show that the ability to create processes in runtime enables PI to support the active client
approach, while guaranteeing modular and hierarchical models.

In previous work, we have developed the Hybrid Flow System Specification (HyFlow),
a formalism aimed to represent hierarchical and modular hybrid systems (Barros 2017).
HyFlow defines sampling and the exact representation of continuous signals as first-order
constructs, enabling a simple specification of pull-communication in addition to push-
communication, typical of discrete event systems. HyFlow models exhibit a dynamic
topology, making it possible to make arbitrary changes in model composition and coupling.
In this paper we develop the πHyFlow formalism, an extension of the HyFlow formal-
ism, to represent base hybrid models using the process interaction worldview. πHyFlow
can describe simulation processes that can communicate through both sampling and discrete
events. The operational semantics of the πHyFlow formalism is also provided.

This paper is organized as follows. Section 2 introduces the πHyFlow formalism, and
the operational semantics of πHyFlow base and network models. Section 3 describes some
πHyFlowmodels of continuous, discrete and hybrid systems. Section 4 gives a brief descrip-
tion of πHyFlow++, a C++ implementation of πHyFlow. Related work is discussed in
Section 5. Conclusion is given in Section 6.

2 The �HYFLOW formalism

πHyFlow is a modeling and simulation (M&S) formalism aimed at performance evaluation.
It supports dense outputs, generalized sampling, discrete events, hierarchical and modular
models, and dynamic topology networks.πHyFlow extends the baseHyFlow formalism by
enablingbasemodels to bedescribedusingM&Sprocesses (or coroutines in computer science
terminology). M&S processes enable an easy specification of models as a set of concurrent
scripts defining the life-cycle of the entities describing the system under study. The simplicity
is achieved at the implementation level where processes can be mapped into coroutines that

123

Discrete Event Dynamic Systems (2024) 34:95–124 97

implicitly define an underlying state machine, freeing modeler from describing states and
state transitions. Processes coordinate through the shared memory defined by the parent
base model. Before presenting πHyFlow formal definition, and operational semantics, we
provide first an informal overview in the next section.

2.1 �HYFLOW overview

πHyFlow defines two types of models: base and network. The former supports a set of
processes that interact through shared state variables. The communication between base
models is made by a modular interface that includes support for sampling, continuous/dense
flows, and discrete flows (events). Figure 1 provides an overview of a base model with
modular input (X) and output (Y) interfaces, and a set of processes π1, ..., πn . The function ζ

handles external messages arriving at the base model. The shared (partial) state (p-state) p is
used to enable process interaction. Base model output {�p} is computed from the outputs of
all processes. The set of processes is dynamic, being possible to create or destroy processes
at runtime.

As a motivation example, we analyze a variation of the classical dining philosophers
problem (Peterson 1981). We consider a dining room with a round table with N forks and N
seats. Philosophers are allowed to enter/leave the room, but they also can renege service if
they wait too long in line for a seat. The base model defines two shared variables: a sequence
of f orks ∈ {(f1, . . . , fN)| fi ∈ {⊥,�}}, and a set of unoccupied seats. All forks and seats
are available at simulation begin. A philosopher process can be informally described by
Pseudo-code 1.
A philosopher has an id (line 1), and upon arrival (s)he requests a seat with the time duration
limit line (line 2). If a seat does not become available (line 3), (s)he reneges service through
the output port “renege” (line 4) and finishes (line 5). Otherwise, the philosopher gets a
(random) available seat (line 7, where “←” is the assignment operator) and identifies the left
and right forks (lines 8-9). The philosopher repeats k times a sequence of grabbing forks (lines
11-12), eating (line 13), releasing forks (line 14), and thinking (line 15). After this cycle,
the philosopher releases the seat (line 17), and exits the dining room through the output port
“exit” (line 18), and finishes (line 19).

Philosophers are created by the “door” process defined in Pseudo-code 2. We consider
that the base model defines an additional sequence of integers stored in variable bu f f ers[in]
that holds the philosophers’ ids arriving at input port “in”. This buffer is handled by the input
function ζ , not detailed here. The “door” loops forever (lines 2-6) executing the following

Fig. 1 Base model internal structure

123

98 Discrete Event Dynamic Systems (2024) 34:95–124

Pseudo-code 1: Philosopher’s process.

philosopher(id)
2: wait-duration-or-until (line, |seats| > 0)

if (|seats| = 0)
4: out (renege, id)

end-philosopher
6: end-if

seat ← seats.pop()
8: l ← left(seat)

r ← right(seat)
10: repeat (k)

wait-until (f orks[l] ∧ f orks[r])
12: f orks[l] ← f orks[r] ← ⊥

wait-duration (eat)
14: f orks[l] ← f orks[r] ← �

wait-duration (think)
16: end-repeat

seats.push(seat)
18: out (exit, id)

end-philosopher

sequence: i) wait until there is a waiting philosopher (line 3); ii) remove a philosopher’s id
from bu f f ers[in] (line 4); iii) create a philosopher to handle the id (line 5). πHyFlow
models can also describe continuous flows, enabling the representation of hybrid systems,
as shown in the next sections.

Pseudo-code 2: Door’s process.

door()
2: while (true)

wait-until(|bu f f ers[in]| > 0)
4: id ← bu f f ers(in).remove()

create philosopher(id)
6: end-while

end-door

The advantages of πHyFlow base models over HyFlow ones are significant. The shared
memory serves as in input buffer freeing processes from being automatically preempted.
It enables, for example, processes to specialize on a particular set of inputs. In the exam-
ple above, only the process “door”, defined in Pseudo-code 2, is preempted when a new
philosopher “id” arrives, freeing the other processes from reacting to this event. In general,
πHyFlow processes can specialize in any set of pre/post/preemption conditions, while the
corresponding HyFlow base model needs to handle all conditions simultaneously, making
it more complex. Processes also implicitly define a state/phase change, given their ability
to hold on a particular statement/index. The index being an abstraction of the coroutine
line/program count. The modeler does not need to define process state/phase machine since
the concept of state/phase is implicit in the sequential nature of the process description.

Formalism operational semantics is provided through the concepts of component and
simulator. A component is associated with a base model, interprets model definition, and
performsmodel implicitly-defined time-behavior. Similarly, the semantics of a processmodel
is defined by a simulator that maps model definition into a coroutine-like behavior and
performs model simulation.

123

Discrete Event Dynamic Systems (2024) 34:95–124 99

A network/executive component is associated with a network/executive model and
performs the simulation according to the corresponding model. Network and executive com-
ponents are responsible for interpreting network models, including, how samples and events
are exchanged between components, and how network topology can be adjusted during
simulation run. Since base and networks components have the same interface, they can be
seamlessly integrated, enabling the definition of hierarchical components.

Figure 2 depicts the relationship between (M)odels, (C)omponents and (S)imulators. The
network component “N” is associated with model “M1”, and controlled by the executive
component “E” associated with executive model “Mη1”. Component “E” has currently sim-
ulators “A” and “B” that share the same process model “M2”. “A” and “B” have access to
the shared state defined by parent component “E” and, in addition, they also have their own
private state.

Besides “E”, “N” is currently composed by base components “X” and “Y”, associatedwith
model “M3”. Different components can share the same model. Component state, however,
is not shared among components, being exclusively managed locally by each component,
and by their children’s simulators. Figure 2 also depicts a relevant property of the πHyFlow
formalism, its ability to keep modular components during simulation execution. As pointed
above, this property enables co-simulation, and it also provides support for dynamic topolo-
gies.

The next subsections define the semantics of the πHyFlow formalism that is targeted to
provide a simple definition of simulation models. Base models are defined in Section 2.2.
Process models are defined in Section 2.3. Base components are defined in Section 2.4.
Process simulators are described in Section 2.5. The network model, and the executive model
are described in Section 2.6. The executive component is defined in Section 2.7. The network
component is defined in Section 2.8. The component simulation algorithm that is responsible
to manage the global time, and drive the simulation is described in Section 2.9.

2.2 �HYFLOW basemodel

A πHyFlow base model defines a modular entity enclosing a set of processes that com-
municate through a shared p-state. Each process keeps its own (private) p-state and can
perform read/write operations on the shared p-state. Processes are non-preemptive making
them implementable by coroutines. While threads have long been available in most program-
ming languages, the native support for coroutines in the C++ high performance language is
recent, being introduced by C++20 (ISO/IEC 14882 standard). Formally, a πHyFlow base
model associated with name B is defined by:

MB = (X , Y , P, P0, ζ,�, π, σ, {�p}),
where:

X = X c × Xd is the set of input flow values, with
X c is the set of continuous input flow values,
Xd is the set of discrete input flow values, and
X∅ = X c × Xd + ∅),

Y = Y c × Y d is the set of output flow values, with
Y c is the set of continuous output flow values,
Y d is the set of discrete output flow values, and
Y∅ = Y c × (Y d + ∅),

P is the set of partial shared states (p-states),

123

100 Discrete Event Dynamic Systems (2024) 34:95–124

Fig. 2 Internal structure for simulating network component “N”

P0 is the set of (valid) initial p-states,
ζ : P × X∅ −→ P is the input function,
� is a set of processes names,
π : P −→ P(�) is the current-processes function, where P is the power set operator,
σ : P� −→ P∗(�) is the ranking function,whereP∗(�) is the set of all sequences based
on set �, constrained to: σ(C |C ⊆ �) = (c1, . . . , cn) ⇒ {c1, . . . , cn} = C ∧ |σ(C)| =
|C |,
for all p ∈ P:

�p : ×
i ∈ (σ◦π)(p)

Y∅

i −→ Y∅ is the output function associated with p-state p.

Since processes have no entry points, the representation of model input needs to be stored in
the shared p-state so it can be accessed by the processes. The input function ζ is responsible
for updating the current p-state when the model receives a value either through sampling
or event communication. The set of processes is dynamic, being the current set given by
function π . Given processes can access the shared p-state only one can be active at any time.
The ranking function σ decides process resume order. The output function λ = {λp} maps
the outputs of all processes into the output associated with the base model. In the next section
we provide the formal description of a πHyFlow process.

2.3 �HYFLOW process model

Aprocess is a sequence of actions that usually take someamount of virtual (simulation) time to
be executed. Processes are coordinated by the base model. The base model chooses a process

123

Discrete Event Dynamic Systems (2024) 34:95–124 101

that can be executed and resumes it. After executing, the process suspends itself and gives the
control back to base model. This explicit invocation is necessary since simulation processes
are non-preemptive. Given a base model MB = (X , YB , PB , P0,B , ζ,�, π, σ, {�p}), the
model of a process 	 ∈ � is defined by:

MB
	 = (Y , I , P, P0, κ, {ρi }, {ωi }, {κi }, {δi }, {�c

i }, {λdi }),
where:

Y is the set of output flow values,
Y c is the set of continuous output flow values
Y d is the set of discrete output flow values

I is the set of indexes,
P is the set of p-states,
P0 is the set of (valid) initial p-states,
κ : P −→ I is the index function,
for all i ∈ I :

ρi : P −→ H
+∞
0 is the time-to-input function,

ωi : P −→ H
+∞
0 is the time-to-output function,

κi : P × PB −→ {�,⊥} is the condition function,
δi : S × PB −→ P × PB is the transition function,
�c

i : S × PB −→ Y c is the continuous output function,
λdi : P × PB −→ Y d is the partial discrete output function,
�d

i : S × PB −→ Y d ∪ {∅} is the discrete output function defined by:

�d
i ((p, e), pB) =

{
λdi (p, pB) i f (e = ωi (p))
∅ otherwise

with S = {(p, e)| p ∈ P, 0 ≤ e ≤ νκ(p)(p)}, the state set,
and νi (p) = min{ρi (p), ωi (p)}, i = κ(p), is the time-to-transition function,

For time specification,πHyFlow uses the set of hyperreal numbersH, that enables to express
causality, by assuming that a transition occurring at time t , changes process p-state at time
t + ε, where ε ∈ H is an infinitesimal.

A process defines only its output, while the input is inferred, as mentioned before, from
base model p-state. A process defines its own (private) p-state, for reducing inter process
dependency. A process dynamic behavior is ruled by six structured/split functions, being the
segments currently active determined by the index function κ . The active function segments
associated with p-state p ∈ P are (ρi , ωi , κi , δi ,�

c
i , λ

d
i)|i=κ(p).

The time-to-input-function {ρi } specifies the interval for sampling (reading) a value. Since
each process specifies its own reading interval, sampling ismade asynchronously, and it can be
made independently by any process. The time-to-output-function {ωi } specifies the interval to
produce (write) a discrete flow. The condition function {κi }, checks whether the process has
conditions to run given base model p-state and its own p-state. While {ρi } and {ωi } specify
a time interval for process re-activation, {κi } checks if the process can be re-activated at
the current time. Function {δi } specifies process and base model p-states after process re-
activation. Function {�c

i } specifies process continuous output flow, and {�d
i } specifies process

discrete output flow. The former can be non-null at every time instant, while the latter can
only be non-null at a finite number of time instants during a finite time interval. We note that
{�c

i } can provide an exact description for an arbitrary continuous signal based on a discrete
formalism. Some approaches are limited to piecewise constant representations of continuous
signals (Bastian et al. 2011), Lee and Zheng (2005).

123

102 Discrete Event Dynamic Systems (2024) 34:95–124

Process description is made around the concept of process index that enables a parti-
tioning of several functions, like, conditions and transitions. Although process description
looks complex, the index can be mapped into the program count concept that is implicitly
defined in programming languages sequence of statements. πHyFlow processes have thus
a straightforward implementation. The simplicity of this approach is shown in Pseudo-codes
1 and 2.

A simulation process gets most of its modeling expressiveness by enabling the dynamic
switching of the active functions that describe its behavior. The semantics of base models
and processes are given in the next sections.

2.4 �HYFLOW base component

The semantics of πHyFlow base models is described using the concept of component. The
alternative concept of iterative system specification (Barros 2002) could also be used. We
found, however, that components can express model semantics in a simpler form, when
using the set of hyperreals, instead the set of real numbers, to define time. Additionally,
the component concept provides a simple description of dynamic network models. Given
that base model semantics rely on process semantics, we refer here informally to the latter,
postponing the formal description to the next section.

For each basemodel there is an associated component that is responsible for its simulation.
The component provides base model operational semantics enabling πHyFlow base model
unambiguous interpretation and implementation. A component is the actual entity that is
placed into simulation. As such, a component keeps its current state and defines a set of
actions to compute its next state, and component output, for example. Actions are described
using base model definition.

In component definition a variable v is represented by 〈v〉. In action definition, the
assignment to variable v of a value x is represented by v ← x , and The “forall” opera-
tor represents an iteration over a set or sequence. An action can also behave like a function
and return a value (using the keyword “return”). A base component associated with model
MB = (X , Y , P, P0, ζ, �, π, σ, {�p}), is defined by:

CB = (〈v, p〉, N ,�,�),

where:

v ∈ Y∅, is the output value variable,
2 p ∈ P , is the current p-state variable,
N :: −→ H, is the component next time transition action, defined by:

4 N() � return min
i ∈ π(p)

{Ni ()}

� :: H, is the output action, defined by:

6 �(t) � v ← �p(×
i ∈ (σ◦π)(p)

�i (t, p)),

V ::−→ Y∅, is the output value action, defined by:

8 V () � return v

� :: H × X∅, is the transition action, defined by:

10 �(t, (xc, xd)) �

123

Discrete Event Dynamic Systems (2024) 34:95–124 103

if (t �= N() ∧ xd = ∅) return
12 p ← ζ(p, (xc, xd))

M ← {i | i ∈ π(p) ∧ Ni () = t}
14 forall (i ∈ σ(M)) p ← �i (p)

do {
16 Z ← {i | i ∈ π(p) ∧ Ki (p))}

if (Z �= φ) {
18 i ← head(σ (Z))

p ← �i (t, p)
20 M ← M + i

}
22 } while (Z �= φ)

forall (i ∈ M)Ui (t)

A base component associated with model MB keeps its output in variable v (line 1). The
current p-state p is stored in line 2. Next time transition action N (line 3), computes the
minimum re-activation time (next time) of the inner/child processes (line 4). Base component
output action (line 5) sets variable v according to the outputs of the inner processes (line 6).
Variable v value can be accessed through the output value action (lines 7-8). The transition
action (line 9) defines base model next state based on the current time and the input value.
The condition of line 11 simplifies network component transition definition (described in
Section 2.8). Line 12 computes component the new p-state based on the input value. Line 13
finds the set of processes that are scheduled to undergo a transition at time t . These processes
are ranked and triggered at time t , possibly changing the base component p-state (line 14).
Since the p-state has changed, we find (line 16), the processes that can be re-activated, i.e.,
the processes whose conditions functions evaluate to �. Line 18 chooses the process with
the highest rank, which is re-activated in line 19. This sequence is repeated until there is no
more process that can undergo a conditional transition (line 22). A process can be triggered
several times in this cycle, since the guard condition also depends on the shared p-state that,
in general, is modified at each transition. All processes that have undergone a transition will
execute an update action (line 23). This action is described in the next section.

2.5 �HYFLOW process simulator

The process simulator is responsible for updating process p-state according to the correspond-
ing model. A process simulator describes the coroutine-like (non-preemptive) semantics
of each πHyFlow process. For processes we use the simulator concept since, contrar-
ily to base components, a simulator is a non-modular entity that can only exist within
a specific parent base component. In a practical implementation, coroutines representing
processes can only exist within some context, an object for example, being able to share
memory with the coroutines in the same context. We emphasize that a πHyFlow process
provides just a set of operators letting process semantics largely undefined and open to
different interpretations. The simulator is required to precisely define process dynamic-
behavior/operational-semantics. A simulator keeps the output value, the current p-state,
and the time when the last transition has occurred. A simulator for process 	 with model
MB

	 = (Y , I , P, P0, κ, {ρi }, {ωi }, {κi }, {δi }, {�c
i }, {λdi }) and associated with base

model MB = (X , Y , P, P0, ζ, �, π, σ, {�p})B is defined by:

SB
	 = (〈v, (p, tL)〉, N ,�, V , K ,�,U),

123

104 Discrete Event Dynamic Systems (2024) 34:95–124

where:

v ∈ Y∅, is the output value,
2 (p, tL) is the simulator current state, with p ∈ P the simulator p-state and tL ∈ H

+∞
0

the transition time to current p-state p,
4 N :: −→ H, is the next transition time, defined by:

N() � return tL + min{ρκ(p)(p), ωκ(p)(p)}
6 � :: H × PB , is the output action, defined by:

�(t, pB) �
8 e ← t − tL

v ← (�c
κ(p)((p, e), pB),�d

κ(p)((p, e), pB))

10 V ::−→ Y∅, is the output value, defined by:

V () � return v

12 K :: PB −→ {�, ⊥}, is the condition verification, defined by:

K (q) � return κκ(p)(p, q)

14 � :: H × PB −→ PB , is the transition action, defined by:

�(t, q) �
16 (p, q ′) ← δκ(p)((p, t − tL), q)

return q ′

18 U :: H, is the time update defined by:

U (t) � tL ← t + ε

Lines 4-5 define simulator next transition time. The output action stores the current output
value in variable v (lines 6-9). This value can be read by action V (lines 10-11). The condition
verification action (lines 12-13) checks whether the process has conditions to run. The tran-
sition action (lines 14-17) computes the new simulator and parent base component p-states.
The time update action (line 18) sets process simulator tL (line 19).

2.6 �HYFLOW networkmodel

πHyFlow networks are composed by base or other network models. Additionally, each
network has a special component, named as the executive, that is responsible for defining
network topology (composition and coupling). A πHyFlow network model associated with
name N is defined by:

MN = (X , Y , η),

where:

X = X c × Xd is the set of network input flows,
Y = Y c × Y d is the set of network output flows,
η is the name of the dynamic topology network executive.

The executive model is a πHyFlow base model extended with topology related operators.
This model is defined by:

Mη = (X , Y , P, P0, ζ, �, π, {�p}, �∗, γ),

123

Discrete Event Dynamic Systems (2024) 34:95–124 105

where:
�∗ is the set of network topologies,
γ : P −→ �∗ is the topology function.

The network topology γ (pα) ∈ �, corresponding to the p-state pα ∈ P , is given by:

γ (pα) = (Cα, {Ii,α} ∪ {Iη,α, IN ,α}, {Fi,α} ∪ {Fη,α, FN ,α}),
where:

Cα is the set of names associated with the executive p-state pα ,
for all i ∈ Cα + η:

Ii,α is the sequence of influencers of i ,
Fi,α is the input function of i ,

IN ,α is the sequence of network influencers,
FN ,α is the network output function,

for all i ∈ Cα

Mi = (X , Y , P, P0, ζ,�, π, σ, {�p}), for base models,
Mi = (X , Y , η), for network models.

Variables are subjected to the following constraints for all pα ∈ Pα:

N /∈ Cα ,
2 η /∈ Cα ,
N /∈ IN ,α ,

4 FN ,α : ×
k ∈ IN ,α

Yk −→ Y∅,

Fi,α : ×
k ∈ Ii,α

Vk −→ X∅

i ,

6 where Vk =
{
Y∅

k if k �= N

X∅ if k = N
FN ,α((vc,k1 , ∅), (vc,k2 , ∅), ...) = (yc,N , ∅),

8 Fi,α((vc,k1 , ∅), (vc,k2 , ∅), ...) = (xc,i , ∅).

Constraints 1 and 2 impose that the executive cannot remove neither the network nor
itself. Constraint 3 enforces causality (Section 2.3). Constraints 7 and 8 are a characteristic
of discrete systems and impose that a non-null discrete flowcannot be created froma sequence
composed exclusively of null discrete flows.

The topology of a network is defined by its executive through the topology function γ ,
which maps the executive p-state into network composition and coupling. Topology adaption
can thus be achieved by changing executive p-state. A πHyFlow network model is simu-
lated by a πHyFlow network component that performs the orchestration of network inner
components. Network simulation is achieved by a general communication protocol that relies
only on the component interface. This protocol is independent from model details, enabling
the composition of components that are handled as black boxes.

2.7 �HYFLOW executive component

Before describing the network component, we define first the executive component, an
extension to the base component, that introduces the topology function required to estab-

123

106 Discrete Event Dynamic Systems (2024) 34:95–124

lish network topology. A HyFlow executive component Cη associated with the executive
model Mη = (X , Y , P, P0, ζ, �, π, {�p}, �∗, γ) is defined by:

Cη = (〈v, (p, tL)〉, N ,�,�,�),

where:

� :: −→ �∗, is the executive topology action defined by:
�() � return γ (p)

The� action returns network topology at the current time, based on executive current p-state.
Since the executivemodel is an extension of the basemodel, the executive component inherits
the actions previously defined for the base component.

2.8 �HYFLOW network component

A network component is composed by one executive component and a set of other compo-
nents. As mentioned before, components and their interconnections can change according
to executive p-state. An exception being the executive that cannot be removed. Components
can be base or other πHyFlow network components, making it possible to define networks
hierarchically. A πHyFlow network component �N associated with the network model
MN = (X , Y , η), executive Mη = (X , Y , P, P0, ζ, �, π, {�p}, �∗, γ), and current
topology �η() = (C, {Ii } ∪ {Iη, IN }, {Fi } ∪ {Fη, FN }), is defined by:

CN = (〈v〉, N ,�,�),

where:

v ∈ Y , is network component output,
2 N ::−→ H, is the next transition time, defined by:

N() � return min{Ni ()| i ∈ C + η}
4 � :: H, is the network output action, defined by:

�(t) � v ← FN (×
i ∈ IN

�i (t))

6 V ::−→ Y∅, is the network output value action, defined by:
V () � return v

8 � :: H × X∅, is the network component transition, defined by:
�(t, x) �

10 forall (i ∈ C) �i (t, Fi (×
j ∈ Ii

v j))

�η(t, Fi (×
j ∈ Ii

v j))

12 with v j =
{
V j () if j �= N

x if j = N

Network next transition time (lines 2-3) is defined as the minimum transition time of network
components. Network output is defined based on the output of its inner components (lines
4-5). This value is stored in line 1 and can be accessed by the output action (lines 6-7).
The transition action (line 8) is divided in two steps. In the first step, components, except
the executive, compute their own transition (line 10). To simplify transition description,
the decision to actually make the transition is made by each component, as mentioned in
Section 2.4. The executive transition is only performed as the last one (line 11), since the
new topology will only be used after transition time, at t + ε.

123

Discrete Event Dynamic Systems (2024) 34:95–124 107

2.9 �HYFLOW component simulation

To perform a simulation, it is necessary to define a mechanism to execute component tran-
sitions according to their time advance specification. The simulation of a component, both
base or network, is performed by the action:

S :: C × H,

where C = {c| Mc = ({} × Xd, Y , . . .)}, is the set of names associated with πHyFlow
models (base or network) defining a null continuous input flow interface. The simulation
action is defined by:

S(c, end) �
2 clock ← Nc()

while (clock < end) {
4 �c(clock)

�c(clock, (∅, ∅))

6 clock ← Nc()

}
The simulation loop involves a sequence of steps: compute current component output (line
4), trigger component transition at time clock (line 5) and compute the time of next transition
that becomes the new clock (line 6). Line 4 enforces causality, since it computes component
output before the transition is performed.

3 Applications

We demonstrate πHyFlow modeling ability through examples of hybrid and discrete base
models. Some base models are used in subsequent sections for defining network models.

3.1 Continuous to piecewise-constant signal converter

We consider a model to convert a continuous signal into a piecewise constant representation
based on sampling. A continuous to piecewise-constant signal converter (CPC) samples its
continuousflow input at a fixed rate andproduces a piecewise constant signal. Simultaneously,
the CPC provides a sequence of discrete flows corresponding to the sampling times. A CPC
model is described by:

MCPC = (X , Y , P, P0, ζ,�, π, σ, {�p}),
where:

X = R × {},
2 Y = R × R,
P = R,

4 P0 = {v = 0},
ζ(v, (v′, ∅)) = v′,

6 � = {τ }, the sampling process,
π(v) = �,

8 σ({τ }) = (τ),
�v(�

c
i,τ (sτ , v),�d

i,τ (sτ , v)) = (�c
i,τ (sτ , v),�d

i,τ (sτ , v)),

123

108 Discrete Event Dynamic Systems (2024) 34:95–124

10 with i = κτ (pτ).

Base model shared p-state stores the current sample in variable v (lines 3-4). The input
function updates the sampled value (line 5). Only one process for sampling is considered
(line 6). This process is defined by:

MCPC
τ = (Y , I , P, P0, κ, {ρi }, {ωi }, {κi }, {δi }, {�c

i }, {λdi }),
where

Y = R × R

2 I = {0, 1, 2},
P = I × R

+
0 ,

4 P0 = {(i = 0, sT ime| sT ime ∈ R
+
0)},

κ(i, sT ime) = i ,
6 ρ0(i, sT ime) = 0

ρ1(i, sT ime) = ∞
8 ρ2(i, sT ime) = sT ime,

ω0,2(i, sT ime) = ∞,
10 ω1(i, sT ime) = 0,

κ0,1,2(i, sT ime) = ⊥,
12 δ0,2(((i, sT ime), e), v) = ((1, sT ime), v),

δ1(((i, sT ime), e), v) = ((2, sT ime), v),
14 �c

0,1,2(((i, sT ime), e), v) = v,

λd0,2((i, sT ime), v) = ∅,

16 λd31((i, sT ime), v) = v.

Process p-state includes the current index i , and the sampling interval sT ime (lines 3-4).
These intervals are defined by function ρ (lines 6-8). The first sample occurs at time 0
(line 6). After this time, sampling is made at regular intervals of length sT ime (line 8).
Discrete outputs are created immediately after sampling (line 10). The transition function is
responsible for updating the current index (lines 12-13). Converter continuous output value
is described in line 14. The discrete flow output is non-null for index i = 1 (line 16).

Figure 3 gives an overview of the CPC base model. At index 0 the CPS starts by immedi-
ately sampling the input and assigns the read value to variable v ([0,>> v]), changing then
to index 1. At index 1, it produces a discrete flow with the current sample v ([0,<< v]), and
changes to index 2. At this index, the model waits sT ime, and samples a new value v. After
sampling the CPS goes back to index 1, where the loop repeats.
For simulation purposeswe have used theCPSwith the input function 5 cos(t), and a sampling
interval of 0.5 s. CPC continuous flow is represented in Fig. 4, and the discrete flow is depicted
in Fig. 5.

3.2 Geometric integrator

πHyFlow support for sampling can be used to define numerical integrators. We consider
the representation of a geometric integrator commonly used to simulate energy conservation
systems (Swope et al. 1982). Given a 2nd-order Ordinary Differential Equation (ODE):

ÿ = f (x(t), y(t)),with y(0) = y0, ẏ(0) = ẏ0,

123

Discrete Event Dynamic Systems (2024) 34:95–124 109

Fig. 3 Converter state diagram

andusing the variable v(t) = ẏ(t), a fixed step size h, 2nd-orderODE, 2nd-degree polynomial
approximation, geometric integrator is described by the equations (Swope et al. 1982):

yn+1 = yn + hvn + 1

2
h2 fn, (1)

vn+1 = vn + h

2
(fn + fn+1). (2)

We exploit here the πHyFlow ability to define continuous flows for providing the interpo-
lation function that can be associated with Eq. 1. As a result, we can calculate the position,
not only at the sampling instants, but at any point in time. A geometric integrator can be
described by the πHyFlow base model:

MG = (X , Y , P, P0, ζ,�, π, σ, {�p}),
where:

X = R
3 × {},

2 Y = R
3 × {},

P = R
3,

4 P0 = {accel ∈ R
3},

ζ((accel), (xc, xd)) = xc,
6 � = {γ }, the geometric integrator process,
π(accel) = {γ },

8 σ({γ }) = (γ),

Fig. 4 Piecewise constant continuous flow generated by the CPC for the input function 5 cos(t)

123

110 Discrete Event Dynamic Systems (2024) 34:95–124

Fig. 5 CPC discrete output flow for 5 cos(t)

�(accel)(�
c
i,τ (sγ),�d

i,τ (sγ))) = (�c
i,τ (sγ), ∅),

10 with i = κγ (pγ).

The integrator samples acceleration values (line 1) and produces a continuous output flow
corresponding to its position (line 2). The acceleration is stored in variable accel (line 4).
The integrator has one process defined by:

MG
γ = (Y , I , P, P0, κ, {ρi }, {ωi }, {κi }, {δi }, {�c

i }, {λdi }),
where:

Y = R
3 × {}

2 I = {0, 1},
P = I × R

+
0 × R

3 × R
3 × R

3,
4 P0 = {(i = 1, sT ime, pos, vel, accel)| sT ime ∈ (0,∞), pos ∈ R

3, vel ∈
R
3, accel ∈ R

3},
κ(i, sT ime, pos, vel, accel) = i ,

6 ρ0(i, sT ime, pos, vel, accel) = 0,
ρ1(i, sT ime, pos, vel, accel) = sT ime,

8 ω0,1(i, sT ime, pos, vel, accel) = ∞
κ0,1((i, sT ime, pos, vel, accel), accel ′) = ⊥,

10 δ0,1(((i, sT ime, pos, vel, accel), e), accel ′) =
((1, sT ime, pos+vel ·e+ 1

2
accel ·e2, vel+ 1

2
(accel+accel ′) ·e, accel ′), accel ′),

12 �c
0,1(((i, sT ime, pos, vel, accel), e), accel ′) = pos + vel · e + 1

2
accel · e2,

λd0,1((i, sT ime, pos, vel, accel), accel ′) = ∅.

The integrator stores position, velocity, and acceleration (lines 3-4), and defines the time step
sT ime (line 7). The step is constant except when simulation starts, where it is 0 (line 6). The
transition function implements Eqs. 1 and 2 (lines 10-11). Integrator continuous output flow
corresponding to the position described by Eq. 1 is given in line 12. This model is used in
Section 3.5 to define a two-mass pendulum.

3.3 Infinite servers (Delay)

As pointed in previous work, the PI active server approach can provide an efficient model
for many systems, making it preferable to the naive PI active client alternative (Henriksen
1981), taken by languages like GPSS (Henriksen 1981), and Simscript (Russel 1999). Some
systems, however, can be more efficiently represented by the active client view. If we take,

123

Discrete Event Dynamic Systems (2024) 34:95–124 111

for example the representation of a single delay, the active server will require an infinite
number of processes, many of them possibly inactive and waiting for a customer. However,
the active client approach requires only one process for each client, removing the requirement
for an infinite number of processes. πHyFlow makes it possible to combine both the active
server and active client approaches in the same base model, due to the support for dynamic
creation/destruction of processes. An infinite sever model, can be represented using the active
client approach, given that we can create a process for each arriving client, and destroy it
when the client finishes service. An infinite server (delay) model can be described by:

MD = (X , Y , P, P0, ζ, �, π, σ, {�p}),
where:

X = {} × P(N),
2 Y = {} × P(N),
P = P(N),

4 P0 = {A = {}},
ζ(A, (∅, x)) = A ∪ x ,

6 � = P(N),
π(A) = A,

8 σ(A) = (. . . , ak−1, ak, ak+1, . . .), such that
. . . < ak−1 < ak < ak+1 < . . ., and

10 {. . . , ak−1, ak, ak+1, . . .} = A,
�A(. . . , (�c

i,ak
(sak , A),�d

i,ak
(sak , A)), . . .) =

12 (∅, {y = �d
i,ak

(sak , A)| ak ∈ A′ ∧ y �= ∅}),
with i = κak (pak), and A′ = σ(A) = (. . . , ak, . . .).

The delay receives a set of integer identifiers (IDs) corresponding to the arriving clients
(line 1). The IDs of processes finishing service are sent out as a discrete flow (line 2). Each
arriving ID triggers the creation of the corresponding customer processes (line 5). Customers
are ranked by their ID (lines 8-10). Server discrete flow output just collects the IDs of leaving
clients (lines 11-13). A client process associated with identifier id is defined by:

MD
C = (Y , I , P, P0, κ, {ρi }, {ωi }, {κi }, {δi }, {�c

i }, {λdi }),
where:

Y = {} × N,
2 I = {1, 2},
P = N × I × R

+
0 ,

4 P0 = {(id, i = 1, dT ime = r .v.)| id ∈ N ∧ dT ime ∈ R
+
0 },

κ(id, i, dT ime) = i ,
6 ρ1,2(id, i, dT ime) = ∞,
ω1(id, i, dT ime) = dT ime

8 ω2(id, i, dT ime) = ∞
κ1,2(id, i, dT ime) = ⊥,

10 δ1(((id, i, dT ime), e), A) = ((id, 2, dT ime), A − {id}),
�c

1,2(((id, i, dT ime), e), A) = ∅,

12 λd1((id, i, dT ime), A) = id ,
λd2((id, i, dT ime), A) = ∅.

123

112 Discrete Event Dynamic Systems (2024) 34:95–124

Client id is set at process creation being stored in the initial p-state (line 4). The delay time
is set (line 4) to a random variate (not detailed here). A process waits for dT ime (line 7)
and sends its id as a discrete flow value (line 12). Before leaving, the process removes itself
from base model set of processes (line 10). πHyFlow ability to dynamically modify the set
of processes provides a framework that enables the combination of the active client and the
active server PI, while keeping the support for modular and hierarchical models.

3.4 Tankmodel

Weconsider themodel of tank that can receive a piecewise constant flowof a liquid.Contrarily
to previous models, a tank allows continuous and discrete input and output flows. The tank
has minimum (zero) and maximum volume limits. When reaching these limits, the volume
remains constant until current conditions are modified. For simplification, we do not model
tank overflow. A tank is described by:

MT = (X , Y , P, P0, ζ, �, π, σ, {�p}),
where:

X = R × {event},
2 Y = [0,max] × {event},
P = R × {⊥,�},

4 P0 = {(rate = 0, f lag = ⊥)},
ζ((rate, f lag), (xc, xd)) = (xc, xd = event)

6 � = {v}, the (v)olume process,
π(rate, f lag) = v,

8 σ({v}) = (v),
�(rate, f lag)(�

c
i,v(sv, (rate, f lag)),�d

i,v(sv, (rate, f lag))) =
10 (�c

i,v(sv, (rate, f lag)),�d
i,v(sv, (rate, f lag))),

with i = κv(pv).

The tank receives continuous and discrete flows describing a piecewise continuous input rate
(line 1), making the output flow piecewise linear. The p-state stores the input rate and a flag
to signal an input event (lines 3-4). When the input rate is modified, the model receives the
discrete flow value “event”, and the flag variable is set to� (line 5). There is only one process
(v) in the tank (line 6). Tank output is computed by process v (line 9). This process is defined
by:

MT
v = (Y , I , P, P0, κ, {ρi }, {ωi }, {κi }, {δi }, {�c

i }, {λdi }),
where:

Y = [0,max] × event,
2 I = {1, 2},
P = [0,max] × R × R

+
0 ,

4 P0 = {(volume, rate = 0, interval = ∞, i = 1)| volume ∈ [0,max]},
κ(volume, rate, interval, i) = i ,

6 ρ1,2(volume, rate, interval, i) = ∞,
ω1(volume, rate, interval, i) = interval,

8 ω2(volume, rate, interval, i) = 0,
κ1((volume, rate, interval, i), (rate′, f lag)) = f lag,

10 κ2((volume, rate, interval, i), (rate′, f lag)) = ⊥,

123

Discrete Event Dynamic Systems (2024) 34:95–124 113

δ1(((volume, rate, interval, i), eT), (rate′, f lag)) =
((volume′, rate′′, interval ′, 2), (rate′,⊥)),

12 δ2(((volume, rate, interval, i), eT), (rate′, f lag)) =
((volume′, rate′′, interval ′, 1), (rate′,⊥)),
with

14 volume′ = volume + eT · rate,
rate′′ =

16 0 if
(rate′ = 0) ∨ (volume′ = 0 ∧ rate′ < 0) ∨ (volume′ = max∧rate′ > 0),

rate′ otherwise,
18 interval ′ =

max−volume′

rate′′ if rate′′ > 0,

20 −volume′

rate′′ if rate′′ < 0,

∞ otherwise,
22 �c

1,2((volume, rate, interval, i), eT), (rate′, f lag))) = volume + eT · rate,
λd1((volume, rate, interval, i), (rate′, f lag)) = ∅,

24 λd2((volume, rate, interval, i), (rate′, f lag)) = event.

Process v keeps tank volume, the current input rate, the time interval for the next event,
and the current index (lines 3-4). The process does not sample its input (line 6) since it is
driven by discrete flows. The transition function computes the time to reach one of the tank
limits, given the current input/output rate (lines 11-12). When a transition occurs, the current
volume is computed (line 14). In index 1, the transition can be triggered by variable f lag
(line 9) that represents a discontinuity in the input flow. A transition can also be triggered
when tank volume reaches a limit (lines 18-21). In these cases, tank rate is set to 0 to
guarantee that volume stays within the admissible limits (line 16). The new rate is set to the
current rate if volume constraints are guaranteed (line 17). When the new rate is zero, the
tank remains in the current p-state until conditions are changed (line 21). Tank volume is
piecewise linear (line 22) since tank psychical input/output rates are assumed as piecewise
constant. (Formally, the tank has only one input signal, representing the difference between
tank input and output rates.) In index 2, the process produces the discrete output flow “event”
for signaling a discontinuity in tank volume (line 24). Tank model is used in Section 3.6 to
describe πHyFlow dynamic topology networks.

3.5 Two-mass pendulum

We define now a πHyFlow network with a static topology, for representing the two-mass
pendulum depicted in Fig. 6. Mass M1 is constrained to move along the x-direction. For
simplicity, we assume that M1 motion on the x-direction has no bounds. M2 can move along
the 3-axis. M1 andM2 are connected through a spring with unstretched length L and stiffness
k. We assume there is no friction.

Pendulum network topology is shown in Fig. 7, where the model of both M1 and M2 is
the geometric integrator defined in Section 3.2. Pendulum model is given by:

MP = (X , Y , p),

where:

X = {} × {},

123

114 Discrete Event Dynamic Systems (2024) 34:95–124

Fig. 6 Two-mass pendulum

Y = {} × {},
p is the executive name.

The executive model is defined by:

Mp = (X , Y , P, P0, ζ, �, π, {�p}, �∗, γ),

where:

X = {} × {},
2 Y = {} × {},
P = P0 = {},

4 ζ() = ∅,
� = {},

6 σ({}) = (),
�() = (∅, ∅),

8 �∗ = {�},
γ () = �.

We consider a networkwithout input/output values (lines 1-2), andwith the static topology
� (line 8), given by:

C = {M1,M2},
2 IM1 = (M1,M2),
IM2 = (M2,M1),

4 IP = Ip = (),
FM1((p1, ∅), (p2, ∅)) =

Fig. 7 Network model of the two-mass pendulum

123

Discrete Event Dynamic Systems (2024) 34:95–124 115

Fig. 8 Plot x(time) of mass M1

6

(− k · p1,2
m1

(||p1,2|| − L)

||p1,2||
(
1 0 0
0 0 0
0 0 0

)
, ∅

)
, with p1,2 = p1 − p2,

FM2((p2, ∅), (p1, ∅)) =
8

(− k · p2,1
m2

(||p2,1|| − L)

||p2,1|| − (0, g, 0), ∅

)
, with p2,1 = p2 − p1,

FP() = Fp() = (∅, ∅),
10 MM1 = MM2 = Mγ , where Mγ is the geometric integrator model defined in
Section 3.2.

The acceleration at M1 is computed in lines 5-6, where only the x-direction is considered.
Lines 7-8 compute the acceleration at M2. Here there is no constraint in the acceleration, and
M2 can move along the 3-directions.

Simulation results

For simulation we use the following initial parameters: p0,M1 = (id = 1, sT ime =
10−3, pos = (0, 0, 0), vel = (−0.125, 0, 0)); p0,M2 = (id = 1, sT ime = 10−3, pos =
(0,−1.5, 0), vel = (0.5, 0, 0)). Spring has parameters k = 5.0 Nm−1, and L = 1.0 m. M1

has mass m1 = 0.4 kg, M2 has mass m2 = 0.1 kg, and g = 9.8 ms−2. For simplifying
results, M2 initial conditions were chosen so there is only motion in the x and y directions.
M1 position is depicted in Fig. 8, for a simulation time of 5 s.
For M2, the x-y plot is depicted in Fig. 9. Given that the geometric integrators M1 and M2

have continuous output flows, the sampling interval for generating the plots can be arbitrarily

Fig. 9 Plot (x, y) of mass M2

123

116 Discrete Event Dynamic Systems (2024) 34:95–124

Fig. 10 Two-tank system

set for producing a smooth curve. For simplicity the sampler model for generating the results
was omitted.

3.6 Two-tank system

For demonstrating πHyFlow dynamic topologies we interconnect two tanks described in
Section 3.4 in a time-varying network that depends on tank volumes and rates. The system
is depicted in Fig. 10. The model has tanks T1 and T2, and pumps P1 and P2, with rates r1
and r2, respectively. We do not provide the details of the pumps, but we assume they produce
piecewise constant signals, similar to those generated by the CPC converter model described
in Section 3.1.

The network needs to modify its topology to avoid chattering that would occur when T1 is
empty and r2 > r1. Under these conditions P2 can only be operated at rate r1 and the system
becomes effectively represented by Fig. 12 that includes T2, P1 and P2. The network keeps
track of pumps rates, so it can switch back to the model represented by Fig. 10.

The initial tank network model is depicted in Fig. 11, and is given by:

MK = (X , Y , k),

where:

X = {} × {},
Y = {} × {},
k is the executive name.

Fig. 11 Two-tank network model

123

Discrete Event Dynamic Systems (2024) 34:95–124 117

Fig. 12 Pump P1 connected to T2

The executive model is defined by:

Mk = (X , Y , P, P0, ζ, �, π, {�p}, �∗, γ),

where:

X = R
2 × {event},

2 Y = {} × {event},
P = {0, 1} × {�,⊥},

4 P0 = {(tpy = 0, f lag = ⊥)},
ζ((0, f lag), ((v1, r1,2), event)) =

6 (1,�) if v1 = 0 ∧ r1,2 ≤ 0,
(0,⊥) otherwise,

8 ζ((1, f lag), ((v1, r1,2), event)) =
(0,�) if r1,2 > 0,

10 (1,⊥) otherwise,
� = {α},

12 σ({α}) = (α),
�(tpy, f lag)(�

c
i,α(sα, (tpy, f lag)),�d

i,α(sα, (tpy, f lag))) =
(∅,�d

i,α(sα, (tpy, f lag))),
14 with i = κα(pα),
�∗ = {�0, �1},

16 γ (0, f lag) = �0,
γ (1, f lag) = �1.

For simplicity, we consider �0 as the initial topology, omitting the procedure to find this
topology from tanks and pumps initial conditions. The executive receives v1 (the volume
of T1), the difference r1 − r2, and events from T1, P1, and P2 (line 1). It produces discrete
flows to add discontinuities to the input signals received by T1 and T2 (line 2). The executive
stores the current topology identifier, and a flag signaling a request for a change in topology
(lines 3-4). As mentioned before, there are two topologies (line 15). When in topology 0,
the network will switch to topology 1, if v1 = 0 and r1,2 = r1 − r2 ≤ 0 (lines 5-6). When
in topology 1, the network switches to topology 0, if r1,2 > 0 (lines 8-9). Topology �0 is
defined by:

C0 = {P1,P2,T1,T2},
2 IP1,0 = IP2,0 = IK,0 = (),
IT1,0 = (P1,P2, k),

123

118 Discrete Event Dynamic Systems (2024) 34:95–124

4 IT2,0 = (P2, k),
Ik,0 = (T1,P1,P2),

6 FT1,0((r1, d1), (r2, d2), (∅, dk)) = (r1 − r2, d), with
d =

8 event if event ∈ {d1, d2, dk},
∅ otherwise,

10 FT2,0((r2, d2), (∅, dk)) = (r2, d), with
d =

12 event if event ∈ {d2, dk},
∅ otherwise,

14 Fk,0((r1, d1), (v1, dv), (r2, d2)) = ((v1, r1 − r2), d), with
d =

16 event if event ∈ {d1, d2, dv},
∅ otherwise,

18 FK,0() = (∅, ∅),
MT1 = MT2 = MT , where MT is the tank model defined in Section 3.4.

T1 input function maps the values received from P1, P2, and k, into the pair(r1 − r2, d) (line
6). T2 input function maps the values received from P2, and k, into the pair(r2, d) (line 10).
Executive input function maps the values received from P1, T1, and P2 into ((v1, r1 − r2), d)

(line 14). These values are used by the executive to perform changes int the topology, as
described above.

When T1 is empty and r1 < r2 the system can be represented by Fig. 12, where T1 is
removed, the connection P2 → T2 is removed, and the link P1 → T2 is created.

The corresponding network topology �1 is depicted in Fig. 13 and defined by:

C1 = {P1,P2,T2},
2 IP1,1 = IP2,1 = IK,1 = (),
IT2,1 = (P1, k),

4 Ik,1 = (P1,P2),
FT2,1((r2, d2), (∅, dk)) = FT2,0((r2, d2), (∅, dk)),

6 Fk,1((r1, d1), (r2, d2)) = (r1 − r2, d), with
d =

8 event if event ∈ {d1, d2},

Fig. 13 One tank network model

123

Discrete Event Dynamic Systems (2024) 34:95–124 119

∅ otherwise,
10 FK,1() = (∅, ∅).

�1 changes both network composition and coupling. T1 is removed since it keeps the zero
volume while topology remains in �1. T2 receives now its input from P1, and not from P2
(line 3). The executive receives inputs from P1 and P2 (line 4) since it needs the value r1 − r2
for deciding when to switch back to �0.

Tanks are informed from structural changes, so they can receive updated input rates. The
executive needs a process to signal the structural changes to tanks. This process is defined
by:

MT
η = (Y , I , P, P0, κ, {ρi }, {ωi }, {κi }, {δi }, {�c

i }, {λdi }),
where:

Y = {} × {event},
2 I = {1, 2},
P = N,

4 P0 = {i = 1},
κ(i) = i ,

6 ρ1,2(i) = ∞,
ω1(i) = ∞,

8 ω2(i) = 0,
κ1,2(i, (tpy, f lag)) = f lag,

10 δ1((i, eT), (tpy, f lag)) = (2, (tpy,⊥)),
δ2((i, eT), (tpy, f lag)) = (1, (tpy,⊥)),

12 �c
1,2((i, eT), (tpy, f lag)) = ∅,

λd1(i, (tpy, f lag)) = ∅,
14 λd2(i, (tpy, f lag)) = event.

The executive process waits for the flag signaling a change in topology (line 9). It then
sends a discrete flow to inform tanks that topology was changed (line 14). After this value is
sent, the current index i is set to 1 (line 11).

Simulation results

For experiments we have considered T1 with a maximum volume of 40 l. Pump rates r1 and
r2, and the volume of T1, v1, are depicted in Fig. 14. From time 0 to 15 s, r1 > r2, and tank

Fig. 14 Rates at pumps P1 and P2, and volume at tank T1

123

120 Discrete Event Dynamic Systems (2024) 34:95–124

volume increases. Under these conditions, at time 11 s, T1 reaches it maximum volume that
is kept until time 17 s, when r2 > r1. From this time on, the volume decreases until it reaches
0 at time 21 s. Here the network changes topology to �1, and T1 stays empty. At time 31 s,
r1 > r2, and the topology is changed to �0. The topology goes again to �1 at time 34.8 s.

This example showsπHyFlow ability to represent hybrid systemswith dynamic topology
that includes support for modifying both composition and coupling.

4 �HYFLOW++ framework overview

πHyFlow++ is an implementation of πHyFlow in MSVC++ 20. πHyFlow++ uses C++
support for modules, variants, lambdas, and coroutines. It uses the concept of port to segment
continuous and discrete flows. For each discrete flow input πHyFlow++ assigns an input
buffer that collects all values directed to that port. Each continuous output port is assigned
to a process, that defines a function parameterized by the elapsed time since process last
transition. Listing 1 providesπHyFlow++ implementation of theCPCconverter described in
Section 3.1.πHyFlow++ also provides the operators to support dynamic topology networks,
like the one described in Section 3.6.

1 export class cpwc: public sim : : component {
2 public :
3 std : : vector<sim : : port> in_ports_c () { return { " value " } ; }
4 std : : vector<sim : : port> out_ports_c () { return { " value " } ; }
5 std : : vector<sim : : port> out_ports_d () { return { " event " } ; }
6 cpwc(std : : string_view const name, double sTime) :
7 sim : : component(name) {
8 i n i t () ;
9 sampler (" sampler " , sTime) ;

10 }
11 sim_void sampler (std : : string_view const name, double sTime) {
12 sim_start (name) ;
13 double value = 0;
14 output_c (" value " , [&] (const double&)−>sim : : cvalue {
15 return value ;
16 }) ;
17 sim_wait sample(0 , " value " , value) ;
18 while (true) {
19 sim_wait out (0 , "event " , value) ;
20 sim_wait sample(sTime , " value " , value) ;
21 }
22 sim_end ;
23 }
24 } ;

Listing 1 πHyFlow++ continuous to piecewise-constant signal converter model.

The πHyFlow++ cpwc component defines the continuous input port “value” (line 3),
the continuous output port “value” (line 4), and the discrete output port “event” (line 5). The
sampler process is created in line 9 and is defined in line 11. The process sets the continuous
flow associated with output port “value” (lines 14-16). The first sample is taken at time 0 (line
17). The sampler executes a loopwhere it sends the value through discrete output port “event”
(line 19), and after waiting “sTime” units, it samples the continuous output port “value” (line
20). Given the declarative description of processes, we consider that πHyFlow++ leverages
a simplified representation of complex systems.

123

Discrete Event Dynamic Systems (2024) 34:95–124 121

5 Related work

The concepts of continuous flow and generalized sampling were introduced in the Contin-
uous Flow System Specification (CFSS) formalism (Barros 2002). CFSS enables the exact
representation of continuous signals in digital computers. These signals can be read using
non-uniform sampling. Different components can also sample signals asynchronously. The
support for multiple clocks was introduced in the Esterel language (Berry and Sentovich
2001), but continuous flows were limited to piecewise constant segments (Berry and Sen-
tovich 2001).

The Hybrid Flow System Specification (HyFlow) formalism (Barros 2017) combines
continuous flows (Barros 2002) and discrete events (Zeigler 1976). The process interaction
worldview (PI) was introduced by SIMULA (Dahl et al. 1966). The formal specification
of PI was introduced in (Zeigler 1976). This work, however, was limited to discrete event
non-modular models, based on a static set of processes. This approach also provides a limited
view on process conditional waiting. A more general approach to this problem was proposed
in Cota and Sargent (1992). This work, however, did not add any support tomodelmodularity.

Conditional waiting was also defined in Timed Process Algebras (TPAs) (Nicollin and
Sifakis 1994), being time constrained to be discrete on earlier developments. A restriction
of formal algebras like CSP is that they represent resources, like forks in the philosophers
problem, as processes, requiring extra features, like an additional footman process (who
only allows four philosophers to be seat simultaneously in a table with five seats), to avoid
deadlock (Hoare, 1985, Chapter 2.5). On the contrary, πHyFlow processes access to shared
variables supports Petri Net-like semantics where resources are only taken when they all
become available. This semantics avoids introducing extrinsic causes of deadlock (Peterson
1981, Chapter 3.4.6).

Traditional representations of ODEs rely on the analog computer paradigm and require
no explicit representation of numerical methods (Henzinger 1996). In these approaches, the
modeler only needs to describe the ODEs (Praehofer 1991), and in some cases to choose
the numerical method for handling the overall set of ODEs Fritzson (2003). Although at a
first glance this is a good solution, since it frees users from numerical details, it has several
limitations. The co-simulation (Bastian et al. 2011) is not guaranteed since ODEs need to be
transformed and converted into a set of first-order ODEs and collectively solved by a single
numerical integrator. Another limitation of these approaches is the difficulty to introduce new
numerical integrators since they are not explicitly represented. Given that these frameworks
only offer ODEs as first-class constructs, solutions requiring the combination of different
families of numerical integrators can also not be described.

Statecharts (SCs) provide similar semantics of processes when regarding discrete event
systems (Harel and Politi 1998). The concept of orthogonal components can be considered
analogous to πHyFlow concurrent processes. πHyFlow presents, however, several major
differences. Given SCs graphical notation it semantics is limited to a small set of operators
like conditions and switch statements. We consider that, in more complex cases, a program-
ming language supporting general purpose statements may be preferable to a complex set of
annotations that need to be added to SCs. While πHyFlow provides a direct access to the
time elapsed since the last transition, useful when a preemption occurs, SCs do not offer a
direct access to this value. Although SCs enable sampling operations, these are performed on
physical devices. SCs do not actually support dense outputs to enable the representation of
continuous variables, being mostly limited to represent piecewise constant values. A major
limitation of SCs, in the perspective of M&S, is the inability to support the dynamic cre-

123

122 Discrete Event Dynamic Systems (2024) 34:95–124

ation/destruction of processes, limiting SCs expressiveness, making it difficult to represent,
for example, the simple delay model described in Section 3.3.

SCs extension has been used in Simflow but keeping most of its features and limitations
(Tripakis et al. 2005). ODEs are discretized making the overall system discrete time, where
components can only communicate at discrete time instants. Likewise Modelica (Fritzson
2003), Simulink, maps ODEs into a set of 1st-order equations, making it difficult to extend
Modelica or Simulink with geometric integrators, for example.

Extensions to Petri Nets have introduced the representation of continuous signals (Allami-
geon et al. 2017; Ciardo et al. 1999; David andAlla 2001; Júlvez andOliver 2019). In general,
Petri Nets extensions to represent hybrid systems do not have the ability to describe numerical
integrators, exhibiting the limitations pointed before for this type of approach. Petri Net-like
formalisms are designed for analysis and optimization but, generally, they impose limitations
to modeling constructs. On the contrary, πHyFlow is focused on simulation/performance
evaluation providing, in general, more expressive semantics to describe models supporting,
for example, arbitrary transition pre&post-conditions. Preemptive behavior based on generic
rules can also be described in πHyFlow. Nevertheless, modeling and simulation is often
complementary to Petri net-based modeling, being the choice limited, for example, by model
large number of states (Valmari 1998).

Mixed-logical-dynamical (MLD) approaches combine hybrid models with control strate-
gies, and they were designed to optimize hybrid systems using model predictive control
(Bemporad and Morari 1999; Yaakoubi and Haggège 2022. ODE representation can be
based on hybrid automaton ideal description without any reference to numerical integrators
(Yaakoubi and Haggège 2022). MLD has also been described using discrete event models
where the optimization algorithm uses piecewise constant velocities for describing vehicles
moving in a highway (Fabiani andGrammatico 2018). In this case, simulation was performed
without any relation to a particular modeling approach, suggesting an unstructured imple-
mentation (Fabiani and Grammatico 2018) based on a discrete time model. This points that
MLD can be mapped into a hybrid modular modeling formalism like πHyFlow.

6 Conclusion

The πHyFlow formalism provides a representation for hierarchical, and modular hybrid
systems. This formalism is intended to support modeling & simulation for performance
evaluation. πHyFlow uses the concepts of continuous flow and generalized sampling to
describe continuous systems. πHyFlow networks have a time-varying topology leveraging
a simple description of systems that undergo structural changes. πHyFlow introduces the
support for processes into the originalHyFlow formalism.πHyFlow ability to dynamically
create/destroy processes provides a framework to combine the active client and the active
server process interaction worldviews. To the best of our knowledge this paper introduces the
first formal definition of hybridmodels semantics based on the process interactionworldview.

Funding Open access funding provided by FCT|FCCN (b-on).

Declarations

123

Discrete Event Dynamic Systems (2024) 34:95–124 123

Conflict of Interest The author declares that he has no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Allamigeon X, Boeuf V, Gaubert S (2017) Stationary solutions of discrete and continuous Petri nets with
priorities. Performance Eval 113:1–12

Barros F (2002) Towards a theory of continuous flow models. Int J General Syst 31(1):29–39
Barros F (2017) Chattering avoidance in hybrid simulation models: a modular approach based on the HyFlow

formalism. In: Symposium on theory of modeling and simulation
Bastian J, ClaußC, Wolf S, Schneider P (2011) Master for co-simulation using FMI. In: Proceedings of the

8th modelica conference
Bemporad A, Morari M (1999) Control of systems integrating logic, dynamics, and constraints. Automatica

35:407–427
Berry G, Sentovich E (2001) Multiclock Esterel. Correct hardware design and verification methods, LNCS

2144:110–125
Ciardo G, Nicol D, Trivedi K (1999) Discrete-event simulation of Fluid Stochastic Petri Nets. IEEE Trans

Softw Eng 25(2):207–217
Cota B, Sargent R (1992) A modification of the process interaction world view. ACM Trans Model Comput

Simulat 2(2):109–129
Dahl O-J,Myhrhaug B, Nygaard K (1966) SIMULA -AnALGOL-based simulation language. CommunACM

9(9):671–678
David R, Alla H (2001) On hybrid Petri nets. Discrete Event Dynamic Systems: Theory and Applications

11:9–40
Fabiani F, Grammatico S (2018) A mixed-logical-dynamical model for automated driving on highways. In:

IEEE Conference on decision and control, pp 1011–1016
Fritzson P (2003) Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley
Harel D, Politi M (1998) Modeling Reactive Systems with Statecharts. McGraw-Hill
Henriksen J (1981) GPSS - finding the apropriate world-view. In: Winter simulation conference, pp 505–516
Henzinger T (1996) The theory of hybrid automata. In: 11th Annual IEEE symposium on logic in computer

science, pp 278–292
Hoare C (1985) Communicating Sequential Processes. Prentice-Hall
Júlvez J, Oliver S (2019) Flexible Nets: a modeling formalism for dynamic systems with uncertain parameters.

Discrete Event Dynamic Syst 29:367–392
Lee E, Zheng H (2005) Operational semantics of hybrid systems. Hybrid systems computation and control, of

LNCS 3414:392–406
Nicollin X, Sifakis J (1994) An overview and synthesis on timed process algebras. Inf Comput 114:131–178
Nielson C, Larsen P, Fitzgerald J, Woodcock J, Peleska J (2015) Systems of systems engineering: basic

concepts, model-based techniques, and research directions. ACM Comput Surv 48(2):1–41
Peterson J (1981) Petri Net Theory and the Modeling of Systems. Prentice-Hall
Praehofer H (1991) Systems theoretic formalisms for combined discrete-continuous system simulation. Int J

General Syst 19(3):219–240
Russel E (1999) Building Simulation Models with Simscript II.5. CACI, La Jolla
Schruben L (1983) Simulation modeling with event graphs. Commun ACM 26(11):957–963
Swope W, Andersen H, Berens P, Wilson K (1982) A computer simulation method for the calculation of

equilibrium constants for the formation of physical clusters of molecules: Application to small water
clusters. J Chemical Phys 76(1):637–649

Tripakis S, Sofronis C, Caspi P, Curic A (2005) Translating discrete-time Simulink to Lustre. ACM Trans
Embedded Comput Syst 4(4):779–818

Valmari A (1998) The state explosion problem. Lectures on petri nets I: basic models, Springer 1491:429–528

123

http://creativecommons.org/licenses/by/4.0/

124 Discrete Event Dynamic Systems (2024) 34:95–124

Yaakoubi H, Haggège J (2022) Modeling of three-tank hybrid system using Mixed Logical Dynamical for-
malism. In: 5th International conference on advanced systems and emergent technologies, pp 55–60

Zeigler B (1976) Theory of Modelling and Simulation. Wiley

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Fernando Barros is a professor at the University of Coimbra. His
research interests include theory of modeling and simulation, hybrid
systems, and dynamic topology models. Fernando Barros has pub-
lished more than 80 papers in modeling and simulation. He is asso-
ciate editor of SIMULATION and vice-president of the Society for
Modeling and Simulation.

123

	πHyFlow: formalism, semantics, and applications
	Abstract
	1 Introduction
	2 The πHyFlow formalism
	2.1 πHyFlow overview
	2.2 πHyFlow base model
	2.3 πHyFlow process model
	2.4 πHyFlow base component
	2.5 πHyFlow process simulator
	2.6 πHyFlow network model
	2.7 πHyFlow executive component
	2.8 πHyFlow network component
	2.9 πHyFlow component simulation

	3 Applications
	3.1 Continuous to piecewise-constant signal converter
	3.2 Geometric integrator
	3.3 Infinite servers (Delay)
	3.4 Tank model
	3.5 Two-mass pendulum
	Simulation results

	3.6 Two-tank system
	Simulation results

	4 πHyFlow++ framework overview
	5 Related work
	6 Conclusion
	References

