
Discrete Event Dynamic Systems (2023) 33:181–219
https://doi.org/10.1007/s10626-022-00373-5

Extending the network calculus algorithmic toolbox
for ultimately pseudo-periodic functions:
pseudo-inverse and composition

Raffaele Zippo1,2,3 ·Paul Nikolaus3 ·Giovanni Stea2

Received: 25 May 2022 / Accepted: 23 December 2022
© The Author(s) 2023

Abstract
Network Calculus (NC) is an algebraic theory that represents traffic and service guaran-
tees as curves in a Cartesian plane, in order to compute performance guarantees for flows
traversing a network. NC uses transformation operations, e.g., min-plus convolution of two
curves, to model how the traffic profile changes with the traversal of network nodes. Such
operations, while mathematically well-defined, can quickly become unmanageable to com-
pute using simple pen and paper for any non-trivial case, hence the need for algorithmic
descriptions. Previous work identified the class of piecewise affine functions which are
ultimately pseudo-periodic (UPP) as being closed under the main NC operations and able
to be described finitely. Algorithms that embody NC operations taking as operands UPP
curves have been defined and proved correct, thus enabling software implementations of
these operations. However, recent advancements in NC make use of operations, namely the
lower pseudo-inverse, upper pseudo-inverse, and composition, that are well-defined from
an algebraic standpoint, but whose algorithmic aspects have not been addressed yet. In this
paper, we introduce algorithms for the above operations when operands are UPP curves, thus
extending the available algorithmic toolbox for NC. We discuss the algorithmic properties
of these operations, providing formal proofs of correctness.

Keywords Network calculus · Min-plus algebra · Algorithms ·
Pseudo-inverse · Composition

1 Introduction

Network Calculus (NC) is an algebraic theory where traffic and service guarantees are rep-
resented as functions of time. The I/O transformations that network traversal imposes on an
input traffic can be represented as operations of min-plus algebra involving these curves.
This allows one to compute worst-case performance guarantees for a flow traversing a net-
work. NC dates back to the early 1990s, and it is mainly due to the work of Cruz (Cruz

� Raffaele Zippo
raffaele.zippo@unifi.it

Extended author information available on the last page of the article.

/ Published online: 18 August 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-022-00373-5&domain=pdf
http://orcid.org/0000-0001-9111-7471
http://orcid.org/0000-0001-5277-0267
http://orcid.org/0000-0001-5310-6763
mailto: raffaele.zippo@unifi.it

Discrete Event Dynamic Systems (2023) 33:181–219

1991a; 1991b), Le Boudec and Thiran (Le Boudec and Thiran 2001), and Chang (Chang
2000). Originally devised for the Internet, where it was used to engineer models of ser-
vice (Le Boudec 1998b; Firoiu et al. 2002; Le Boudec 1998a; Bennett et al. 2002; Fidler
and Sander 2004), it has found applications in several other contexts, from sensor networks
(Schmitt and Roedig 2005) to avionic networks (Charara et al. 2006; Bauer et al. 2010),
industrial networks (Zhang et al. 2019; Maile et al. 2020; Zhao et al. 2021), automotive
systems (Rehm et al. 2021), and systems architecture (Andreozzi et al. 2020; Boyer et al.
2020).

NC characterizes constraints on traffic arrivals (due to traffic shaping) and on minimum
received service (due to scheduling) as curves, i.e., functions of time.1 These curves are then
used with operators from min-plus and max-plus algebra to derive further insights about the
system. For example, the per-flow service curve of a scheduler, such as Weighted Round
Robin, or performance bounds on the traffic such as an end-to-end delay bound. While
these operations can be computed with pen and paper for simple examples, in most practical
cases the application of NC requires the use of software. To this end, works (Bouillard
and Thierry 2008; Bouillard et al. 2018) provide an “algorithmic toolbox” for NC: they
show that piecewise affine functions that are ultimately pseudo-periodic (UPP) represent
good models for both traffic and service guarantees. Moreover, they prove that this class
of functions is closed under the main NC operations and can be described with a finite
amount of information. Additionally, they introduce the algorithms that embody the main
NC operations, computing UPP results starting from UPP operands. The results in these
works cover the main operations used in NC, such as minimum, min-plus convolution, min-
plus deconvolution, etc. (see (Bouillard et al. 2018) for a complete list). The toolbox was
first implemented in the COINC free library (Bouillard et al. 2009), which is not available
anymore, and later by the commercial library RTaW-Pegase (RealTime-at-Work: RTaW-
Pegase (min +) library 2022).

However, other NC operators, i.e., the composition and lower and upper pseudo-inverse,
have been the focus of recent NC literature. In (Bouillard et al. 2018, Theorem 8.6), lower
pseudo-inverse and composition are used to compute the per-flow service curve for a
Weighted Round-Robin scheduler; in (Tabatabaee et al. 2021, Theorem 1), a similar result
is shown for an Interleaved Weighted Round-Robin scheduler, using again lower pseudo-
inverse and composition; in (Tabatabaee and Le Boudec 2022), authors show that several
service curves can be found for a flow scheduled in a Deficit Round-Robin scheduler, under
different hypotheses regarding cross-traffic. Works (Mohammadpour et al. 2019; 2022) use
pseudo-inverses and compositions to study properties of IEEE Time-Sensitive Networking
(TSN) (IEEE: Time-sensitive networking (TSN) task group 2020), a standard relevant for
many applications. Work (Liebeherr 2017) shows the duality between min-plus and max-
plus models, and how the lower and upper pseudo-inverses can be used to switch between
the two models. This is exploited in Pollex et al. (2011) to devise an alternative algorithm
for min-plus convolution, which transforms it into a max-plus convolution, obtaining a con-
siderable speedup in the settings discussed in that paper. We can therefore obtain the results
presented in these papers, using arbitrarily complex UPP curves as inputs.

While the algebraic formulation of these three operations is well known, their algorithmic
aspects have not been addressed, to the best of our knowledge. This means that we do not
have publicly known algorithms that compute these operations yet. In this paper, we aim to

1We use the terms function and curve interchangeably.

182

Discrete Event Dynamic Systems (2023) 33:181–219

fill this gap and extend the existing algorithm toolbox to include lower- and upper-pseudo
inverses and composition of functions.

We show that the UPP class is closed with respect to these operations, and provide algo-
rithms to compute the result of each one. We prove that all of them have linear complexity
with respect to the number of segments that represent the operands. We design special-
ized, more efficient versions of the composition algorithm that leverage characteristics of
the operand functions – notably, their being Ultimately Affine (UA) or Ultimately Con-
stant (UC) (Bouillard et al. 2018). Last, we exemplify our findings on a comprehensive
proof of concept, showing how to compute the per-flow service curve of (Tabatabaee et al.
2021, Theorem 1). The algorithms described in this paper, together with those for known
NC operators, are implemented in the Nancy open-source toolbox (Zippo and Stea 2022a),
which, to the best of our knowledge, is the only public one to implement UPP algorithms.

The rest of this paper is organized as follows: Section 2 briefly introduces NC notation
and some basic results. Section 3 introduces the definitions and notation used throughout the
paper, and discusses the kind of results that we need to provide for each operator to enable
their implementation. In Section 4, we present the results for the lower and upper pseudo-
inverse operators, including their properties for UPP curves and algorithms to compute
them. Section 5 shows our results for the composition operator, including its properties on
UPP curves and an algorithm to compute it. In Section 6, we report a proof-of-concept eval-
uation, by computing the results of a recent NC paper via our algorithms. Finally, Section 7
draws some conclusions and highlights directions for future works.

2 Network calculus basics

This section briefly introduces Network Calculus (NC). We use here the same notation as in
(Le Boudec and Thiran 2001), to which the interested reader is referred for a more in-depth
explanation. A NC flow is represented by a function of time A(t) that counts the amount of
traffic arrived by time t . Such function is necessarily non-decreasing. It is often assumed to
be left-continuous, i.e., A(t) represents the number of bits in [0, t[. In particular, A(0) = 0.

Flows can be constrained by arrival curves. A non-decreasing function α is an arrival
curve for a flow A if

A(t) − A(s) ≤ α(t − s), ∀s ≤ t .
For instance, a leaky-bucket shaper, with a rate ρ and a burst size σ , enforces the affine
arrival curve

γσ,ρ(t) =
{

σ + ρt, if t > 0,

0, otherwise,
as shown in Fig. 1. In particular, this means that the long-term arrival rate of the flow cannot
exceed ρ. Leaky-bucket shapers are often employed at the entrance of a network, to ensure
that the injected traffic does not exceed the negotiated amount.

Let A and D be non-decreasing functions that describe the same data flow at the input
and output of a lossless network element (or node), respectively. 2 If that node does not
create data internally (which is often the case), causality requires that A ≥ D. We say that
the node guarantees to the flow a (minimum) service curve β if

D(t) ≥ inf
0≤s≤t

{A(s) + β(t − s)} =: (A ⊗ β)(t), ∀t ≥ 0. (1)

2The function argument t is omitted whenever it is clear from the context.

183

Discrete Event Dynamic Systems (2023) 33:181–219

bits

Fig. 1 Example of leaky-bucket shaper, taken fromAndreozzi et al. (2020). The traffic processA(t) is always
below the arrival curve α(t) and its translations along A(t)

We call the operation on the right the min-plus convolution of A and β. Several network
elements, such as delay elements, schedulers or links, can be modeled through service
curves.

A very frequent case is the one of rate-latency service curves, defined as

βR,θ (t) = R · [t − θ]+

for some rate R > 0 and latency θ ≥ 0. We write [·]+ to denote max {·, 0}. For instance, a
constant-rate server (e.g., a wired link) can be modeled as a rate-latency service curve with

Fig. 2 Graphical interpretation of the convolution operation. A is the input function, βR,θ is a rate-latency
service curve, and A ⊗ β is a lower bound on the output

184

Discrete Event Dynamic Systems (2023) 33:181–219

Fig. 3 Graphical example of a delay bound

zero latency. Figure 2 shows the lower bound of D obtained by computing A ⊗ β, with
β = βR,θ .

A point of strength of NC is that service curves are composable: the end-to-end service
curve of a tandem of nodes traversed by the same flow can be computed as the min-plus
convolution of the service curves of each node.

For a flow that traverses a service curve (be it the one of a single node, or the end-to-end
service curve of a tandem computed as discussed above), an upper bound on the delay can
be computed by combining its arrival curve α and the service curve β itself, as follows:

h(α, β) = sup
t≥0

{inf {d ≥ 0 | α(t − d) ≤ β(t)}} . (2)

The quantity h(α, β) is in fact the maximum horizontal distance between α and β, as
shown in Fig. 3. Therefore, computing the end-to-end service curve of a flow in a tandem
traversal is the crucial step towards obtaining its worst-case delay bound.

The above introduction, albeit concise, should convince the alert reader that algorithms
for automated manipulation of curves, implementing NC operators, are necessary to reap the
benefits of NC algebra in practical scenarios. Many such algorithms have been discussed in
(Bouillard and Thierry 2008; Bouillard et al. 2018). The next section describes the generic
algorithmic framework exposed in these papers, which we extend in this work.

3 Mathematical background and notation

In this section, we provide an overview of the mathematical background for this paper,
including the definitions used and the results we aim to provide.

NC computations can be implemented in software. In order to do so, one needs to provide
finite representations of functions and well-formed algorithms for NC operations. Accord-
ing to the widely accepted approach described in Bouillard and Thierry (2008) and Bouillard
et al. (2018), a sufficiently generic class of functions useful for NC computations is the set
U of (i) ultimately pseudo-periodic (ii) piecewise affine Q+ → Q∪ {+∞,−∞} functions.
We define both properties (i) and (ii) separately:

185

Discrete Event Dynamic Systems (2023) 33:181–219

Fig. 4 Example of ultimately pseudo-periodic piecewise affine function f and its representation Rf

Definition 1 (Ultimately Pseudo-Periodic Function (Bouillard and Thierry 2008, p. 8)) Let
f be a function Q+ → Q ∪ {+∞,−∞}. Then, f is ultimately pseudo-periodic (UPP) if
there exist Tf ∈ Q+, df ∈ Q+ \ {0}, cf ∈ Q ∪ {+∞,−∞} such that 3

f (t + k · df) = f (t) + k · cf , ∀t ≥ Tf , ∀k ∈ N. (3)

We call Tf the (pseudo-periodic) start or length of the initial transient, df the (pseudo-
periodic) length, and cf the (pseudo-periodic) height.

Definition 2 (Piecewise Affine Function (Bouillard and Thierry 2008, p. 9)) We say that a
function f is piecewise affine (PA) if there exists an increasing sequence (ai), i ∈ N0 which
tends to +∞, such that a0 = 0 and ∀i ∈ N0, it either holds that f (t) = bi + ρit for some
bi, ρi ∈ Q, or f (t) = +∞, or f (t) = −∞ for all t ∈]

ai, ai+1
[
. The ai’s are called

breakpoints.

In Bouillard and Thierry (2008), this class of functions is shown to be stable w.r.t. all
min-plus operations, while functions R+ → R ∪ {+∞,−∞} are not.4

We remark that functions in U are not necessarily wide-sense increasing. While NC
functions are usually assumed to be so, in order to implement min-plus operations it is
sometimes useful to include non-monotonic functions as well. Similarly, functions in U can
assume infinite values. This is also useful for algebraic manipulations, e.g., to express a
function as a minimum of two or more functions.

Throughout this paper, we will consider all functions to be in U , hence, piecewise affine
and UPP. For such functions, it is enough to store a representation of the initial transient part
and of one period, which is a finite amount of information. This is exemplified in Fig. 4.

Accordingly, we call a representation Rf of a function f the tuple (S, T , d, c), where
T , d, c are the values described above, and S is a sequence of points and open segments
describing f in [0, T + d[. We use both points and open segments in order to easily model
discontinuities. We will use the umbrella term elements to encompass both when convenient.

3We denote the set of non-negative numbers {0, 1, 2, 3, . . . } by N0 and the set of strictly positive numbers
{1, 2, 3, . . . } by N.
4 An alternative class of functions with such stability is N → R, however this is only feasible for models
where time is discrete.

186

Discrete Event Dynamic Systems (2023) 33:181–219

Definition 3 (Point) We define a point as a tuple

pi := (ti , f (ti)), i ∈ {1, . . . , n} .

Definition 4 (Segment) We define a segment as a tuple

si := (
ti , ti+1, f (t+i), f (t−i+1)

)
, i ∈ {1, . . . , n} ,

which describes f in the open interval
]
ti , ti+1

[
in which it is affine, i.e.,

f (t) = f (t+i) + f (t−i+1) − f (t+i)

ti+1 − ti
· (t − ti) =: b + r · (t − ti) for all t ∈]ti , ti+1

[
,

where we used the following shorthand notation for one-sided limits:

f
(
t+i
) = lim

t→t+i
f (t) , f

(
t−i
) = lim

t→t−i
f (t) .

If r = 0, we call si a constant segment.

Definition 5 (Sequence) We define a sequence SD
f as on ordered set of elements e1, . . . , en

that alternate between points and segments and describe f in the finite interval D ⊂ Q+.

For example, given D = [0, T [, then SD
f = {p1, s1, p2, . . . , pn, sn} where

p1 = (0, f (0)) and, assuming pn = (tn, f (tn)) for some 0 < tn < T , sn =(
tn, T , f (t+n), f (T −)

)
.

Note that, given Rf , one can compute f (t) for all t ≥ 0, and also SD
f for any interval

D. Furthermore, being finite, Rf can be used as a data structure to represent f in code. As
discussed in depth in Zippo and Stea (2022b), Rf is not unique, and using a non-minimal
representation of f can affect the efficiency of the computations. Work (Zippo and Stea
2022b) also describes an efficient algorithm that minimizes a representation Rf (i.e., com-
putes the smallest Tf , df that are required to represent f). Given a sequence S, let n(S) be
its cardinality. As it is useful in the following, we define Cut to be an (obvious) algorithm
that, given Rf and D, computes SD

f . With a little abuse of notation, we use min-plus oper-

ators directly on finite sequences such as SD
f . For instance, given the lower pseudo-inverse

of f , (f)−1
↓ (its formal definition is in the next section), we will write

(
SD

f

)−1

↓ , to express

that we are computing it on f over the limited interval D.
A NC operator can then be defined computationally as an algorithm that takes UPP

representations of its input functions and yields a UPP representation of the result, provided
that the class of UPP functions is closed with respect to such operator. Considering a generic
unitary operator [·]∗, in order to compute f ∗ we need an algorithm that computes Rf ∗ from
Rf , i.e., Rf → Rf ∗ . We call this by-curve algorithm. This process can be divided in the
following steps:

1. compute valid parameters Tf ∗ , df ∗ and cf ∗ for the result;
2. compute SD

f → Sf ∗ , i.e., use an algorithm that computes the resulting sequence
from the sequence of the operand. We call this by-sequence algorithm for operator
[·]∗. In order to run this algorithm, a suitable domain D must be identified, based on
the properties of operator [·]∗, and, accordingly, one must compute sequence SD

f =
Cut(Rf , D);

3. return Rf ∗ = (Sf ∗ , Tf ∗ , df ∗ , cf ∗).

187

Discrete Event Dynamic Systems (2023) 33:181–219

We therefore need to provide the following results:

• a proof that the result of the operator [·]∗, applied to a UPP function, yields a UPP
result;

• a way to compute UPP parameters Tf ∗ , df ∗ and cf ∗ from Rf ;
• a valid domain D, again to be computed from Rf ;
• a by-sequence algorithm.

Combining the above results, we can then construct the by-curve algorithm for operator
[·]∗, which allows one to compute [·]∗ for any UPP curve.5

We exemplify the above by showing the by-curve algorithm for the left shift of a function
by τ ≥ 0. Given f (t), whose representation is Rf = (Sf , Tf , df , cf), we want to compute
the representation Rg = (Sg, Tg, dg, cg) of g(t) = f (t + τ). Quite intuitively, it is Tg =
[Tf − τ]+, dg = df , cg = cf . Moreover, the valid domain D where we need to define
sequence SD

f for the by-sequence algorithm is D = [
τ,max{τ, Tf } + df

[
. We leave it to

the interested reader the straightforward (yet tedious) task of deriving sequence Sg from SD
f ,

i.e., of figuring out the by-sequence algorithm for this operator.
Works (Bouillard and Thierry 2008; Bouillard et al. 2018) provided such computational

descriptions for fundamental NC operators such as minimum, sum, convolution, and many
others. In this paper, we extend the above toolbox by adding the lower pseudo-inverse,
upper pseudo-inverse, and composition operators. To the best of our knowledge, no compu-
tational description of the above has been formalized before, despite their relevance in the
NC literature.

Before presenting our contribution, we introduce two more definitions that will be used
throughout the paper.

Definition 6 (Ultimately Affine Function) Let f be a function Q+ → Q ∪ {+∞,−∞}.
Then, f is Ultimately Affine (UA), if either there exist T a

f ∈ Q+, ρf ∈ Q such that

f (t) = f (T a
f) + ρf ·

(
t − T a

f

)
, ∀t ≥ T a

f , (4)

or f (t) = +∞, or f (t) = −∞ for all t ≥ T a
f .

Note that this definition differs from the one in the literature (Bouillard and Thierry
2008), but we prove their equivalence in Appendix A. UA functions are (obviously) UPP
as well, their period being a single segment of slope ρf and arbitrary length starting at T a

f .
They occur quite often in NC, e.g., the arrival curve of a leaky-bucket shaper or a rate-
latency service curve are both UA. An Ultimately Constant (UC) function is UA with ρf =
0. Similarly, an Ultimately Infinite (UI) function is UA with f (t) = +∞, or f (t) = −∞
for all t ≥ T a

f .
Unlike UPP, the class of UA functions is not closed with respect to NC operations. For

instance, Zippo and Stea (2022b) shows that flow-controlled networks with rate-latency
(hence UA) service curves yield closed-loop service curves that are UPP, but not necessarily
UA again. Moreover, in many cases, the service curves of individual flows served by Round-
Robin schedulers are UPP, but not UA either (see, e.g., Boyer et al. 2012; Tabatabaee et al.
2021; Tabatabaee and Le Boudec 2022). However, there are cases when simpler algorithms
for NC operations can be derived if one assumes that operands are UA. For this reason,

5The same process applies also, with minor adjustments, to binary operators.

188

Discrete Event Dynamic Systems (2023) 33:181–219

there are NC toolboxes that only consider UA functions, e.g., Bondorf and Schmitt (2014).
A possible approach to NC analysis is thus to approximate UPP (non-UA) functions with
UA lower/upper bounds, trading some accuracy for computation time (Guan and Yi 2013;
Lampka et al. 2017). Throughout this paper, we provide general algorithms for UPP func-
tions. However, we also show what is to be gained – in terms of domain compactness and/or
algorithmic efficiency – when we can make stronger assumptions on the operands.

4 Lower and upper pseudo-inverse of UPP functions

In this section, we discuss the lower and upper pseudo-inverse operators for UPP functions.
Henceforth, we will omit the lower or upper attribute when the discussion applies to both.

First, we provide formal definitions.

Definition 7 (Lower and Upper Pseudo-Inverse) Let f ∈ U be non-decreasing. Then its
lower pseudo-inverse is defined as

f −1
↓ (y) := inf {t ≥ 0 | f (t) ≥ y} ,

and its upper pseudo-inverse is defined as

f −1
↑ (y) := sup {t ≥ 0 | f (t) ≤ y} .

We can find an equivalent definition as follows.

Proposition 8 Let f εU be non-decreasing. For all y > f (0), its lower pseudoinverse is
equal to

f −1
↓ (y) = sup {t ≥ 0 | f (t) < y} , (5)

and for all y ≥ f (0), its upper pseudo-inverse is equal to

f −1
↑ (y) = inf {t ≥ 0 | f (t) < y} , (6)

Note that Liebeherr (2017) reports a slightly different definition, because functions are
defined in R → R. Our functions in U are defined in Q+ → Q, hence our domain is
lower bounded. The consequences of this difference are discussed in Appendix B, which
also contains a proof of Proposition 8.

Note that the lower pseudo-inverse is left-continuous and the upper pseudo-inverse is
right-continuous (Liebeherr 2017, p. 64). Moreover, we have in general that (Liebeherr
2017, p. 61)

f −1
↓ ≤ f −1

↑ .

An example of these operators is shown in Fig. 5.
Figure 5 shows a UPP function and its lower and upper pseudo-inverses. In NC, both

pseudo-inverses are useful to switch from min-plus to max-plus algebra and vice versa
(Liebeherr 2017). Later on, in Section 5, we provide the examples of Eq. 15 which uses
the lower pseudo-inverse in conjunction with the composition operator, and of Algorithm 3
which shows that the lower pseudo-inverse is required to compute the composition between
two UPP curves.

The rest of this section is organized as follows. In Section 4.1 we show that the pseudo-
inverse of a UPP function is still UPP, and provide expressions to compute its UPP
parameters a priori. In Section 4.2 we discuss, first through a visual example and then via

189

Discrete Event Dynamic Systems (2023) 33:181–219

Fig. 5 Example of lower and upper pseudo-inverse of a function f

pseudocode, how to algorithmically compute the pseudo-inverse. In Section 4.3 we con-
clude with a summary of the by-curve algorithm, some observations on the algorithmic
complexity of this operator. In Section 4.4 we discuss corner cases.

4.1 Properties of pseudo-inverses of UPP functions

We discuss our properties for a generic function f , excluding the cases of UC and UI
functions. These two cases are treated separately for ease of presentation. At the end of
this section, we report the necessary information for the alert reader to retrace the steps
exposed hereafter to include these two corner cases. We remark that the Nancy software
library (Zippo and Stea 2022a) computes pseudo-inverses of generic (non-decreasing) UPP
functions, including UC and UI ones.

190

Discrete Event Dynamic Systems (2023) 33:181–219

Theorem 9 Let f ∈ U be a non-decreasing function that is neither UC nor UI. Then, its
lower pseudo-inverse f −1

↓ (x) = inf {t | f (t) ≥ x} is again a function ∈ U with

T
f −1

↓
= f

(
Tf + df

)
, (7)

d
f −1

↓
= cf , (8)

c
f −1

↓
= df . (9)

Proof Let t1 ≥ Tf + df and x := f (t1). Moreover, we define

t0 := f −1
↓ (x) = inf {t | f (t) ≥ x} = inf {t | f (t) ≥ f (t1)} .

By definition, it is clear that t0 ≤ t1 (t1 satisfies the condition inside the infimum, and t0 is
its largest lower bound). Moreover, since it holds that f (t +df) = f (t)+cf for all t ≥ Tf ,
we can conclude that, for all τ ≥ Tf + df ,

f (τ) = f
(
(τ − df) + df

) = f (τ − df) + cf .

Thus,
f (τ − df) = f (τ) − cf . (10)

Since f is non-UC (i.e., cf > 0), and we have by definition t1 ≥ Tf + df , it follows that

f (Tf) ≤ f (t1 − df)
(10)= f (t1) − cf < f (t1) = f (t0),

where we used in the strict inequality that f is not UC and thus t0 > Tf . Therefore, for any
k ∈ N,

f −1
↓

(
x + k · d

f −1
↓

)
= inf

{
t | f (t) ≥ x + k · d

f −1
↓

}
(8)= inf

{
t | f (t) ≥ x + k · cf

}
= inf

{
t | f (t) ≥ f (t1) + k · cf

}
= inf

{
t | f (t) ≥ f (t0) + k · cf

}
= inf

{
t | f (t) ≥ f (t0 + k · df)

}
= t0 + k · df

(9)= f −1
↓ (x) + k · c

f −1
↓

.

It follows from Theorem 9 that, in order to compute a representation R
f −1

↓
, we need only

to compute SD′
f −1

↓
where

D′ =
[
0, T

f −1
↓

+ d
f −1

↓

[
= [

0, f (Tf + df) + cf

[
.

If there is no left-discontinuity in Tf + 2 · df , it follows that

SD′
f −1

↓
=
(
SD

f

)−1

↓ ,

where
D = [

0, Tf + 2 · df

[
. (11)

191

Discrete Event Dynamic Systems (2023) 33:181–219

Otherwise, let x1 = f
(
(Tf + 2 · df)−

)
and x2 = f

(
Tf + 2 · df

)
, then x1 < x2, and

therefore SD′
f −1

↓
must end with a constant segment defined in]x1, x2[with ordinate Tf +2·df .

Such segment must be added manually at the end of
(
SD

f

)−1

↓ .

A similar result can be derived for the upper pseudo-inverse.

Theorem 10 Let f ∈ U be a non-decreasing function that is neither UC nor UI. Then, the
upper pseudo-inverse f −1

↑ (x) = sup {t | f (t) ≤ x} is again a function ∈ U with

T
f −1

↑
= f

(
Tf

)
, (12)

d
f −1

↑
= cf , (13)

c
f −1

↑
= df . (14)

Proof The proof follows the same steps as the one for the lower pseudo-inverse. Let t0 ≥ Tf

and x := f (t0). Moreover, we define

t1 := f −1
↑ (x) = sup {t | f (t) ≤ x} = sup {t | f (t) ≤ f (t0)} .

By definition, it is clear that t0 ≤ t1 (t0 satisfies the condition in the supremum, and t1 is the
largest to satisfy it). Since f is non-UC, and we have by definition t0 ≥ Tf , it follows that

f (t0 + df)
(3)= f (t0) + cf > f (t0) = f (t1),

where we used in the strict inequality that f is not ultimately constant and thus t1 < t0 +
df < ∞. Therefore, for any k ∈ N,

f −1
↑

(
x + k · d

f −1
↑

)
= sup

{
t | f (t) ≤ x + k · d

f −1
↑

}
(13)= sup

{
t | f (t) ≤ x + k · cf

}
= sup

{
t | f (t) ≤ f (t0) + k · cf

}
= sup

{
t | f (t) ≤ f (t1) + k · cf

}
= sup

{
t | f (t) ≤ f (t1 + k · df)

}
= t1 + k · df

(14)= f −1
↑ (x) + k · c

f −1
↑

.

Similar to the previous theorem, it follows from Theorem 10 that, in order to compute a
representation R

f −1
↑

, we need only to compute SD′
f −1

↑
, where

D′ =
[
0, T

f −1
↑

+ d
f −1

↑

[
= [

0, f (Tf) + cf

[
.

If there is no left-discontinuity in Tf + df , it follows that

SD′
f −1

↑
=
(
SD

f

)−1

↑ ,

where
D = [

0, Tf + df

[
.

192

Discrete Event Dynamic Systems (2023) 33:181–219

Otherwise, let x1 = f
(
(Tf + df)−

)
and x2 = f

(
Tf + df

)
, then x1 < x2, and therefore

SD′
f −1

↑
must end with a constant segment defined in]x1, x2[with ordinate Tf + df . Such

segment must be added manually at the end of
(
SD

f

)−1

↑ . The alert reader will notice that

T
f −1

↓
and T

f −1
↑

differ, for which we can provide the following intuitive explanation. Consider

a function f so that f (t) = k, ∀t ∈]a, T + b[with a < T, b > 0. Then f −1
↓ (k) = a, as the

lower pseudo-inverse “goes backwards” to the start of the constant segment. However, since
a < T , the pseudo-periodic property does not apply for f (a), i.e., we cannot say anything
about f (a + d). So, in general, we cannot say f −1

↓ is pseudo-periodic from f (T), and we
instead need to “skip” to the second pseudo-period so that, as in the proof, T < a < T + d .
The same does not apply for f −1

↑ , however, since f −1
↑ (k) = T + b as the upper pseudo-

inverse “goes forward” to the end of the constant segment and T + b > T , thus we can rely
on the pseudo-periodic property of f .

An interesting consequence of this discussion is that the representation Rf may change
when we do not expect it to. From (Liebeherr 2017, p. 64), (Bouillard et al. 2018, p. 48), we
know the following properties:

• if f is left-continuous,
(
f −1

↓
)−1

↓ =
(
f −1

↑
)−1

↓ = f ,

• if f is right-continuous,
(
f −1

↑
)−1

↑ =
(
f −1

↓
)−1

↑ = f .

Thus, one may expect that applying the pseudo-inverse twice would lead to a function with

the same representation, i.e., that
((

Rf

)−1
↓
)−1

↓ = Rf . However, as per the discussion above,

the start of the pseudo-period of the result would wove from an initial Tf to Tf + df + cf .
This is unavoidable – the above example shows that there exists one case when Tf would
not be the correct starting point. However, in other cases, Tf would be the correct starting
point for the pseudo-periodic behavior.

This is an instance of a general issue encountered with algorithms for UPP curves – also
discussed in Zippo and Stea (2022b). Generic algorithms, that make no assumptions on
the shape of the operands (such as the ones presented here for the pseudo-inverse), may in
general yield non-minimal representations of the result. Generally speaking, minimal repre-
sentations are preferable, since the number of elements in a sequence affects the complexity
of the algorithms. However, addressing the issue of representation minimization a priori
when implementing NC operators is too hard (if doable at all), since one would need to
make a comprehensive list of subcases, and, of course, as many formal proofs of correct-
ness. It is instead considerably more efficient to devise a generic algorithm for an operator,
neglecting minimization, and then use a simple algorithm a posteriori that minimizes the
representation of the result – see Zippo and Stea (2022b).

4.2 By-sequence algorithm for pseudo-inverses

In this section we discuss the by-sequence algorithms for pseudo-inverses. We recall that
with “by-sequence” we mean that the operand, and thus its result, is defined on a limited
domain. Without loss of generality, we will focus on a sequence S representing a function
f over an interval [0, t[, with f (0) = 0. Then, S−1

↓ is the sequence representing f −1
↓ over

interval
[
0, f (t−)

[
. The same applies to S−1

↑ .

193

Discrete Event Dynamic Systems (2023) 33:181–219

Fig. 6 Example of lower pseudo-inverse of a sequence S. Since S is left-continuous, S =
(
S−1

↓
)−1

↓

The simplest case is when S is continuous and strictly increasing, hence bijective. In this
case, both S−1

↓ and S−1
↑ are the classic inverse of S, and the algorithm consists of drawing,

for each point and segment of S, its reflection over the line y = x. However, when S includes
discontinuities and/or constant segments, the algorithm becomes slightly more complicated:
a discontinuity in S “maps” to a constant segment in both S−1

↓ and S−1
↑ , while a constant

segment in S “maps” to a right-discontinuity in S−1
↓ and a left-discontinuity in S−1

↑ . This is
exemplified in Fig. 6.

We describe Algorithm 1 for the lower pseudo-inverse (the one for the upper pseudo-
inverse differs in few details which we briefly discuss later). Algorithm 1 linearly scans S

considering one element at a time. Based on the type of element (point or segment), as well
as on its topological relationship with its predecessor, it decides what to add to S−1

↓ .

194

Discrete Event Dynamic Systems (2023) 33:181–219

Table 1 Cases to be considered in the by-sequence algorithm to compute S−1
↓

More in detail, there are eight possible cases, shown in Table 1, which require zero,
one, two, or three elements to be added to S−1

↓ . These are reported in the same order in
Algorithm 1. The rigorous (though cumbersome) mathematical justification for each case is
instead postponed to Appendix C for the benefit of the interested reader.

195

Discrete Event Dynamic Systems (2023) 33:181–219

We exemplify the above algorithm with reference to the example in Fig. 6. For each of
the considered steps, we will reference the case in Table 1, the line of Algorithm 1, and the
relevant equations from Appendix C proving the result. Processing each element from left
to right, we calculate:

• The origin (t1, f (t1)) = (0, 0) for f −1
↓ (0).

• For the segment s1 and its predecessor point p1 = (t1, f (t1)): this corresponds to Line
22 of the algorithm. Since s1 has a positive slope, we continue in Line 31. As the
function is right-continuous at t1, we are in case c8. We go to Line 36 and add a segment
s = (

f (t+1), f (t−2), t1, t2
)
to O. It can be verified that this follows Eq. 43.

• For the point p2 = (t2, f (t2)) and its preceding segment s1, we are in case c4, corre-
sponding to Line 18 and we therefore append the point p := (f (t2), t2) to O. It can be
verified that this follows Eq. 35.

• For the constant segment s2 with preceding point p2 = (t2, f (t2)), we are in case c6,
corresponding to Line 28, and no element is added. This follows Eq. 39.

• For the point p3 = (t3, f (t3)) with preceding constant segment s2, we are in case c2,
corresponding to Line 10, and no element is added. This follows Eq. 31.

• For a segment s3 with preceding point (t3, f (t3)), we are in case c8, Line 36, and
append s := (

f (t+3), f (t−4), t3, t4
)
to O (verified in Eq. 43).

We note that, since S−1
↓ is left-continuous, when a continuous sequence of a point, a

constant segment, and a point is encountered in S, they all “map” to the inverse of the first
(leftmost) point of this sequence. This justifies the fact that nothing has to be added to S−1

↓
in these cases (e.g., 2 and 6).

The algorithm for S−1
↑ , that we omit here for brevity, differs from the one provided only

in how constant segments are handled, that is, by appending the inverse of the last (right-
most) point instead of the first (recall that the upper pseudo-inverse is right-continuous).
This requires the algorithm for S−1

↑ to look ahead to the next element during the linear scan.
We leave the (tedious, but simple) task of spelling out the minutiae of this algorithm to the
interested reader.

4.3 By-curve algorithm for pseudo-inverses

We can now discuss the by-curve algorithm by combining the results presented in
Sections 4.1 and 4.2. In Algorithm 2, we show the pseudocode to compute f −1

↓ for a UPP
function f . The analogous for upper pseudo-inverse, which we omit for brevity, can be
similarly derived from the results in the sections above.

Regarding the complexity of Algorithm 2, we note that the main cost is computing(
SD

f

)−1

↓ . Since Algorithm 1 is a linear scan of the input sequence, the resulting complexity

is O
(
n
(
SD

f

))
.

4.4 Corner cases: UC and UI functions

We conclude this section by discussing the two corner cases that we had initially left out,
i.e., those when f is either Ultimately Constant (UC) or Ultimately Infinite (UI).

196

Discrete Event Dynamic Systems (2023) 33:181–219

Algorithm 1 Pseudocode for lower pseudo-inverse of a finite sequence.

197

Discrete Event Dynamic Systems (2023) 33:181–219

Algorithm 2 Pseudocode for lower pseudo-inverse of a UPP function.

To obtain a representation of a UC or UI function, it is enough to find any Tf for which
f (t) = C, C ∈ Q, (UC) or f (t) = +∞ (UI) for any t ≥ Tf . 6 However, as we show in this
section, the infima of the infinitely many points that verify the above play an important role
in computing their pseudo-inverses. We provide formal definitions below:

Definition 11 Let f ∈ U be UC, and let C := limt→+∞ f (t), C ∈ Q, be its (ultimately)
constant value. Then, we define

TC := inf{T | f (t) = C, ∀t ≥ T }
to be the infimum of its pseudo-periodic starts.

Note that we use an infimum, instead of a minimum, because f may not be right-
continuous in TC . In that case f (t) = C, ∀t > TC , but f (TC) �= C.

Definition 12 Let f ∈ U be UI. Then, we define:

TI := inf{T | f (t) = +∞, ∀t ≥ T },
and

L =
⎧⎨
⎩

f (TI), if f (TI) < +∞,

f (T −
I), if f (TI) = +∞ and TI > 0,

0, otherwise,

i.e., L is the rightmost finite value of f .

Again, we use the infimum to include functions such that f (t) = +∞, ∀t > TI , but
f (TI) = L < +∞.

6The definition of UI includes also f (t) = −∞ for all t ≥ Tf . However, since the pseudo-inverse operations
only apply to non-decreasing functions, we do not consider such case here.

198

Discrete Event Dynamic Systems (2023) 33:181–219

As we assume in this section all functions to be non-decreasing, using Definition 11 we
have that a UC function is such that

f (t) < C, ∀t < TC,

f (t) = C, ∀t > TC,

whereas using Definition 12 a UI function is such that

f (t) < +∞, ∀t < TI ,

f (t) = +∞, ∀t > TI .

For these, some mathematical inconsistencies need be resolved first. For example:

• if f is UC, Algorithm 2 would yield d
f −1

↓
= 0,

• if f is UI, it would yield T
f −1

↓
= +∞.

We treat these two cases in the following propositions.

Proposition 13 Let f ∈ U be a non-decreasing, UC function with TC ∈ Q+. If f (TC) < C,
its lower pseudo-inverse f −1

↓ (y) is

f −1
↓ (y) =

⎧⎪⎨
⎪⎩
inf {x | f (x) ≥ y} = TC, if f (TC) < y < C,

inf {x | f (x) ≥ y} = TC, if y = C,

sup {x | f (x) < y} = +∞, if y > C,

and its upper pseudo-inverse f −1
↑ (y) is

f −1
↑ (y) =

⎧⎪⎨
⎪⎩
inf {x | f (x) > y} = TC, if f (TC) < y < C,

sup {x | f (x) ≤ y} = +∞, if y = C,

sup {x | f (x) ≤ y} = +∞, if y > C.

Otherwise, i.e., if f (TC) = C, its lower pseudo-inverse f −1
↓ (y) is

f −1
↓ (y) =

⎧⎪⎨
⎪⎩
inf {x | f (x) ≥ y} ≤ TC, if y < C,

inf {x | f (x) ≥ y} = TC, if y = C,

sup {x | f (x) < y} = +∞, if y > C,

and its upper pseudo-inverse f −1
↑ (y) is

f −1
↑ (y) =

⎧⎪⎨
⎪⎩
sup {x | f (x) ≤ y} ≤ TC, if y < C,

sup {x | f (x) ≤ y} = +∞, if y = C,

sup {x | f (x) ≤ y} = +∞, if y > C.

In other words, both pseudo-inverses are UI with TI = C.

Proposition 14 Let f ∈ U be a non-decreasing, UI function with TI ∈ Q+. Then, its lower
pseudo-inverse f −1

↓ (y) is

f −1
↓ (y) =

⎧⎪⎨
⎪⎩
inf {x | f (x) ≥ y} < TI , if y < L,

inf {x | f (x) ≥ y} ≤ TI , if y = L,

inf {x | f (x) ≥ y} = TI , if y > L,

199

Discrete Event Dynamic Systems (2023) 33:181–219

and its upper pseudo-inverse f −1
↑ (y) is

f −1
↑ (y) =

⎧⎪⎨
⎪⎩
sup {x | f (x) ≤ y} < TI , ify < L,

sup {x | f (x) ≤ y} = TI , ify = L,

sup {x | f (x) ≤ y} = TI , ify > L.

In other words, both pseudo-inverses are UC with TC = L.7

Starting from the above results, one can derive the few modifications to the algorithms
described so far in this section to include these two corner cases. We leave this simple (yet
tedious) task to the interested reader.

5 Composition of UPP functions

In this section, we discuss the composition operator for UPP functions, i.e., (f ◦ g)(t) =
f (g(t)).

Some explanations are due regarding the physical meaning of the above operation. In
NC, functions are usually meant to map time to bits, hence one might legitimately wonder
what the physical meaning of composition is in this setting. The answer largely depends
on the object of a particular study. For instance, in the already quoted literature examples
that employ composition (e.g., Tabatabaee et al. 2021; Tabatabaee and Le Boudec 2022),
g maps bits to bits. Specifically, f is the (strict) service curve of a link managed by a
round-robin-like scheduler, and g carves out from f the (strict) service curve for the flow
under analysis. As another example, (Le Boudec and Thiran 2001, p. 128) shows that the
horizontal deviation in Eq. 2 can be computed as:

h(α, β)= sup
t≥0

{
β−1

↓ (α(t)) − t
}
. (15)

In the above, α maps time to bits, whereas β−1
↓ maps bits to time. Note that the above exam-

ple also requires pseudo-inverses. We will show later on that pseudo-inversion is required
in the algorithm for the composition operator.

This section is organized as follows. In Section 5.1 we show that the composition of UPP
functions is again UPP, and provide expressions to compute its UPP parameters a priori. In
Section 5.2 we discuss, first via an example and then via pseudocode, how to compute the
composition algorithmically. In Section 5.3 we conclude with a summary of the by-curve
algorithm and some observations on the algorithmic complexity of this operator.

5.1 Properties of composition of UPP functions

We assume that the inner function g is not UI.8 We initially provide the result for generic
f and g. Later on, we show that, if either or both are UA or UC, we can improve upon this
result.

7 The only exception being the (uninteresting) case of f such that f (0) > 0 and TI = 0, for which f −1
↓ (y) =

f −1
↑ (y) = 0 ∀y ≥ 0.

8 If, for t > TI , g(t) = +∞ then f (g(t)) = limy→+∞ f (y). The fact that f is UPP does not guarantee that
such limit exists, e.g., when f is periodic.

200

Discrete Event Dynamic Systems (2023) 33:181–219

Theorem 15 Let f and g be two functions ∈ U with g being non-negative, non-decreasing
and not UI. Then, their composition h := f ◦ g is again a function ∈ U with

Th = max
{
g−1

↓ (Tf), Tg

}
, (16)

dh = pdf
· dg · qcg , (17)

ch = qdf
· pcg · cf , (18)

where pdf
, pcg ∈ N0, and qdf

, qcg ∈ N such that df = pdf

qdf
, and cg = pcg

qcg
. Note that

cg ≥ 0 as g is non-decreasing.

Proof Let kh ∈ N be arbitrary but fixed. Since g is UPP, it holds for all t ≥ Tg that

h(t + kh · dh) = f (g(t + kh · dh))

= f

(
g

(
t + kh · dh

dg

· dg

))
(3)= f

(
g(t) + kh · dh

dg

· cg

)
,

where we used the UPP property of g in the last line. Note that kg := kh · dh

dg
∈ N, since

dh

dg

(17)= pdf
· qcg ∈ N, where we used the fact that df > 0. Moreover, since f is UPP, too,

we have under this additional assumption of g(t) ≥ Tf that

h(t + kh · dh) = f

(
g(t) + kh · dh

dg

· cg

)

= f

(
g(t) + kh · dh · cg

dg · df

· df

)
(3)= f (g(t)) + kh · dh · cg

dg · df

· cf

= h(t) + kh · dh · cg · cf

dg · df

(18)= h(t) + kh · ch.

Note that kf := kh · dh·cg

dg ·df
∈ N0, since

dh·cg

dg ·df

(17)= pdf

df
· qcg · cg = qdf

·pcg ∈ N0 and we used
that cg ≥ 0.

We set t ≥ Tg and g(t) ≥ Tf , thus ensuring that both f and g are in their periodic
part. Exploiting the notion of a lower pseudo-inverse and g being non-decreasing, the latter
expression implies that t ≥ g−1

↓ (Tf) (Liebeherr 2017, p. 62). Therefore, we require

t ≥ Th
(16)= max

{
g−1

↓ (Tf), Tg

}
.

This concludes the proof.

Remark 16 Note that the above is also true for the particular case in which df ∈ N, cg ∈ N0.
In fact, it follows that pdf

= df and qcg = 1 and thus

dh
(17)= pdf

· qcg · dg = df · dg,

201

Discrete Event Dynamic Systems (2023) 33:181–219

and the properties are then verified since dh

dg
= df ∈ N0 and dh·cg

dg ·df
= cg ∈ N0. The

corresponding ch is cf · cg .

It follows from Theorem 15 that, in order to compute the representation Rh, we only
need to compute S

Dh

h , where

Dh = [0, Th + dh[=
[
0,max

{
g−1

↓ (Tf), Tg

}
+ pdf

· dg · qcg

[
.

It follows that
S

Dh

h = S
Df

f ◦ S
Dg
g ,

where
Dg = [0, Th + dh[,

Df = [
g(0), g

(
(Th + dh)

−)] . (19)

The reason Df needs to be right-closed is that S
Dg
g may end with a constant segment.

If this happens, ∃t ∈ Dg such that g(t) = g
(
(Th + dh)

−), thus we will need to compute
f
(
g
(
t
)) = f

(
g
(
(Th + dh)

−)), and that is in fact the right boundary of Df . On the other

hand, if S
Dg
g ends with a strictly increasing segment, it is safe to have Df right-open.

Hereafter, we show that the above result can be improved when either or both functions
are UA. First, we consider the case when only g is UA.

Proposition 17 Let f and g be two functions ∈ U that are not UI, with g being non-
negative, non-decreasing, UA, with ρg > 0 (hence not UC). Then, their composition h :=
f ◦ g is again a function ∈ U with

Th = max
{
g−1

↓ (Tf), Tg

}
,

dh = df

ρg

, (20)

ch = cf . (21)

Proof Let kh ∈ N be arbitrary but fixed. Since g is assumed to be UA, it holds for all t ≥ Th

that

h(t + kh · dh) = f (g(t + kh · dh))

(4)= f
(
g(Th) + ρg · (t + kh · dh − Th)

)
= f

(
ρg · t + g(Th) − ρg · Th + kh · df

)
(3)= f

(
ρg · t + g(Th) − ρg · Th

)+ kh · cf

= f
(
g(Th) + ρg · (t − Th)

)+ kh · cf

(4)= f (g(t)) + kh · cf

= h(t) + kh · ch.

202

Discrete Event Dynamic Systems (2023) 33:181–219

Again, in order to compute the representation Rh, we only need S
Dh

h , where

Dh = [0, Th + dh[=
[
0,max

{
g−1

↓ (Tf), Tg

}
+ df

ρg

[
.

It follows that

S
Dh

h = S
Df

f ◦ S
Dg
g ,

where

Dg = [0, Th + dh[

(20)=
[
0, Th + df

ρg

[
,

Df = [
g(0), g

(
(Th + dh)

−)[
(20)=

[
g(0), g

(
Th + df

ρg

)[
= [

g(0), g (Th) + df

[
. (22)

Here, we observe that domain Df is smaller than the one obtained by applying directly
Theorem 15, due to the disappearance of a factor qdf

· pcg ≥ 1. In fact, with Theorem 15
we would have:

Dg = [0, Th + dh[
(17)= [

0, Th + pdf
· dg · qcg

[
=

[
0, Th + qdf

· pcg · df

ρg

[
,

Df = [
g(0), g

(
(Th + dh)

−)[
(17)=

[
g(0), g

((
Th + pdf

· dg · qcg

)−)[
= [

g(0), g(Th) + qdf
· pcg · df

[
.

As specified in the statement of Proposition 17, we exclude the case when g is UC. This
is because of Eq. 20 where ρg is in the denominator, hence cannot be zero. However, if g is
UC, a stronger proposition can be found as reported in Appendix D.

Next, we consider the case when only f is UA.

Proposition 18 Let f ∈ U be UA and g ∈ U be non-negative, non-decreasing and not UI.
Then, their composition h := f ◦ g is again ∈ U with

Th = max
{
g−1

↓ (Tf), Tg

}
,

dh = dg, (23)

ch = cg · ρf . (24)

203

Discrete Event Dynamic Systems (2023) 33:181–219

Proof Let kh ∈ N be arbitrary but fixed. Since f is assumed to be UA, it holds for all t ≥ Th

that

h(t + kh · dh) = f (g(t + kh · dh))

(3)= f
(
g(t) + kh · cg

)
(4)= f (g(Th)) + ρf · (g(t) + kh · cg − g(Th)

)
= f (g(Th)) + ρf · (g(t) − g(Th)) + kh · cg · ρf

(4)= f (g(t)) + kh · cg · ρf

= h(t) + kh · ch.

Again, for representation Rh, we only compute S
Dh

h , where

Dh = [0, Th + dh[=
[
0,max

{
g−1

↓ (Tf), Tg

}
+ dg

[
.

It follows that
S

Dh

h = S
Df

f ◦ S
Dg
g ,

where

Dg = [0, Th + dh[
(23)= [

0, Th + dg

[
,

Df = [
g(0), g

(
(Th + dh)

−)]
(23)=

[
g(0), g

((
Th + dg

)−)] . (25)

Again, domain Dg is smaller than the one that Theorem 15 would yield, due to the
disappearance of a factor pdf

· qcg ≥ 1. For comparison, Theorem 15 yields

Dg = [0, Th + dh[
(17)= [

0, Th + pdf
· qcg · dg

[
,

Df = [
g(0), g

(
(Th + dh)

−)]
(17)=

[
g(0), g

((
Th + pdf

· dg · qcg

)−)] .
When both functions are UA, we obtain a stronger result by showing that the composition

is UA again.

Proposition 19 Let f ∈ U and g ∈ U be UA functions with g being non-negative, non-
decreasing and not UI. Then, their composition h := f ◦ g is again UA with

T a
h = max

{
g−1

↓ (T a
f), T a

g

}
,

ρh = ρf · ρg . (26)

204

Discrete Event Dynamic Systems (2023) 33:181–219

Proof If f is UI, the result is trivial. Let us assume that f is not UI. Define T a
h

:=
max

{
g−1

↓ (T a
f), T a

g

}
. Then we have that, for any t ≥ T a

h ,

h(t + T a
h) = f

(
g(t + T a

h)
)

(4)= f
(
g(T a

h) + ρg · (t − T a
h)
)

(4)= f (g(T a
h)) + ρf · ((g(T a

h) + ρg · (t − T a
h)
)− g(T a

h)
)

= f (g(T a
h)) + ρf · ρg · (t − T a

h)

= h(T a
h) + ρf · ρg · (t − T a

h).

Considering Eq. 19, we observe how taking these results into account will yield tighter
Df , Dg than what we obtain with Theorem 15.

Finally, we mention that, if either or both f and g are UC, then the composition can
be simplified further, even with respect to the above properties. We report the results in
Appendix D.

5.2 By-sequence algorithm for composition

In this section, we discuss the by-sequence algorithm for the composition. Without loss
of generality, we focus on sequences Sg , representing a non-negative and non-decreasing
function g over an interval [0, t[, and Sf , representing a function f defined over the interval[
g(0), g(t−)

]
.9 Then, Sh = Sf ◦Sg is the sequence representing h = f ◦g over the interval

[0, t[. We use the example shown in Fig. 7, where t = 6 and g(t−) = 4.
First, we consider the shape of f ◦ g on an interval]a, b[⊂ [0, t[, a, b ∈ Q+. Consider

the case in which, for this interval, there exist ρg, ρf ∈ Q+ so that

g(x) = g(a+) + ρg · (x − a), ∀x ∈]a, b[,

f (x) = f
(
g(a+)+

)+ ρf · (x − g(a+)
)
, ∀x ∈]g(a+), g(b−)

[
,

(27)

where we use the shorthand notation

f
(
g(a+)+

) = lim
x→a+ f (g(x)) = lim

y→y0
f (y),

with y0 := limx→a+ g(x).
More broadly speaking, we have segment of g mapping to a segment of f . In the example

of Fig. 7,]4, 6[is such an interval. Then, in this interval we can apply the chain rule and find
that h′(x) = f ′(g(x)) ·g′(x) = ρg ·ρf for all x ∈]a, b[. Thus, h is also a segment on]a, b[.

If either of the equations in Eq. 27 does not apply, it means that one function has
one or more breakpoints over this interval. Assume initially that this is g. Let this finite
sets of breakpoints be t0, . . . , tn, with a < t0 < · · · < tn < b. Then, the inter-
vals]a, t0[, . . . ,]tn, b[verify the properties in Eq. 27 while for any breakpoint ti we can
just compute f (g(ti)). A similar reasoning can be done for f : consider the finite set
of breakpoints y0, . . . , ym, with g(a+) < y0 < · · · < ym < g(b−). Then, we can

9We consider Df to be always right-closed since it yields the correct result for both cases discussed in the
previous section. The right boundary ofDf is never used as a breakpoint in the algorithm anyway, as imposed
by the condition ym < g(b−) discussed below.

205

Discrete Event Dynamic Systems (2023) 33:181–219

Fig. 7 Example of composition of two sequences

use the lower pseudo-inverse of g to find the corresponding t i = g−1
↓ (yi).10 The set

{t1, . . . , tn} ∪ {
t1, . . . , tm

}
, preserving the ascending order, defines a finite set of break-

points for f ◦ g. Then, we have again a finite set of points (ti , f (g(ti))), and open intervals
for which we compute h as a segment with ρh = ρf · ρg . In the example of Fig. 7,]0, 4[is
such an interval:

• for Sg we find the set {t1 = 1};
• for Sf we find the set {y1 = 1} →

{
t1 = 1

2

}
;

• the combined set of breakpoints is then
{
1
2 , 1

}
, and the open intervals that verify Eq. 27

is
{]

0, 1
2

[
,
]
1
2 , 1

[
,]1, 4[

}
.

10Following the discussion in Section 4,
(
Sg

)−1
↓ is sufficient for this computation.

206

Discrete Event Dynamic Systems (2023) 33:181–219

By generalizing this reasoning, we obtain Algorithm 3.

Algorithm 3 Pseudocode for the composition of finite sequences.

5.3 By-curve algorithm for composition

We can now discuss the by-curve algorithm, by combining the results presented in
Sections 5.1 and 5.2. In Algorithm 4 we show the pseudocode to compute the composition
h = f ◦ g of UPP functions f and g, in the most general case. The analogous for the more
specialized cases, i.e., ultimately affine or ultimately constant operands, which here we omit
for brevity, can be similarly derived by adjusting the parameter and domain computations.

Regarding the complexity of Algorithm 4, we note that the main cost is computing

Sh ← S
Df

f ◦ S
Dg
g . Since Algorithm 3 is a linear scan of S

Df

f and S
Dg
g , the resulting com-

plexity is O
(
n
(
S

Df

f

)
+ n

(
S

Dg
g

))
. Note that given the expressions in Theorem 15, this

computational cost highly depends on the numerical properties of the operands, i.e., numer-
ators and denominators of UPP parameters, rather than simply the cardinalities of Rf and
Rg . Thus, using the specialized properties of Propositions 17 to 19 yields performance
improvements, since Df and Dg are smaller.

We remark again that the result of the composition may have a non-minimal representa-
tion (see the discussion at the end of Section 4.1).

6 Proof of concept

In this section, we show how the algorithms presented in this paper allow one to replicate
the result appeared in a recent NC paper (Tabatabaee et al. 2021).

207

Discrete Event Dynamic Systems (2023) 33:181–219

Algorithm 4 Pseudocode for composition of UPP functions.

The algorithms described in this paper, including variants and corner cases omitted
for brevity, are implemented in the publicly available Nancy NC library (Zippo and Stea
2022a). Nancy is a C# library implementing the UPP model and its operators, as described
in Bouillard and Thierry (2008) and Bouillard et al. (2018). Moreover, it implements state-
of-the-art algorithms that improve the efficiency of NC operators, described in Zippo and
Stea (2022b), and lower pseudo-inverse, upper pseudo-inverse and composition opera-
tors, described in this paper. Nancy makes extensive use of parallelism. However, the NC
operators described in this paper are implemented as sequential.

As a notable example, we implemented the results from (Tabatabaee et al. 2021, Theo-
rem 1), which uses the composition operator, using the same parameters of the example in
(Tabatabaee et al. 2021, Fig. 3). The above theorem allows us to compute the service curve
for a flow served by an Interleaved Weighted Round-Robin scheduler, once a) the weight
of the flow; b) the minimum and maximum packet length for each flow, and c) the (strict)
service curve for the entire aggregate of flows β(t) are known. The complete formulation
of the theorem – which is rather cumbersome – is postponed to Appendix E. For the pur-
pose of this proof of concept, the important bit is that computing the service curve of the
flow involves computing a function γi that takes into account flow i’s characteristics (e.g.,
weight, packet lengths), and then, given β as the (strict) service curve of the server regu-
lated by IWRR, computing the (strict) per-flow service curve for flow i as βi = γi ◦ β.11

In the example in (Tabatabaee et al. 2021, Fig. 3), β is a constant-rate service curve, thus
UA, while γi is, in general, a UPP function. On the one hand, this confirms that limiting
NC algorithms to UA curves only is severely constraining – in this example, one could not
compute flow i’s service curve without an algorithm that handles UPP curves. On the other

11Recall that composition requires the lower pseudo-inverse of the inner function to be computed, hence this
example makes use of both the algorithms presented in this paper.

208

Discrete Event Dynamic Systems (2023) 33:181–219

Table 2 Performance
comparison of composition with
and without UA optimization

Runtime Not optimized Optimized

75th percentile 1117.72 ms 0.67 ms

median 1105.01 ms 0.55 ms

25th percentile 1088.61 ms 0.50 ms

hand, it means that we can obtain the same result by applying both Theorem 15 and its spe-
cialized version for UA inner functions Proposition 17, and that we can expect the latter to
be more efficient due to the tighter Df , as explained below Eq. 22.

Our experiments confirm the above intuition. We run the computation on a laptop com-
puter (i7-10750H, 32 GB RAM). As shown in Table 2, when using Theorem 15, computing
the result took a median of 1.11 seconds. On the other hand, using Proposition 17 the same
result is obtained in 0.55 milliseconds in the median, an improvement of three orders of
magnitude. Listing 1 and Fig. 8 report, respectively, the code used and the resulting plot.

It is worth noting that (Tabatabaee and Le Boudec 2022, Theorem 1) describes a similar
result for the Deficit Round-Robin scheduler, under similar hypotheses, still making use of
composition, with the outer curve being non-UA. The derivations in this section apply to
this case as well, with minimal obvious modifications. Several other results in (Tabatabaee
and Le Boudec 2022) make use of composition as well.

7 Conclusions

Automated computation of Network Calculus operations is necessary to carry out analyses
of non-trivial network scenarios. Therefore, algorithms that transform representations of
operand functions into result functions are required for each “useful” NC operator. Recently,

Listing 1 Code used to replicate the results of (Tabatabaee et al. 2021, Theorem 1)

209

Discrete Event Dynamic Systems (2023) 33:181–219

Fig. 8 Plot of the resulting service curve βi

pseudo-inverses and composition operators have been repeatedly used in NC papers. To the
best of our knowledge, these operators lacked an algorithmic description that would allow
their implementation in software.

This paper fills the above gap, by providing algorithms for lower and upper pseudo-
inverses and composition of operators. We have presented algorithms that work under
general assumptions (i.e., UPP operands), as well as specialized ones that leverage the fact
that operands are UA (or UC) to compute results faster. We have discussed the complexity
of these algorithms, as well as corner cases, with a rigorous mathematical exposition. Beside
the theoretical contribution, we provided a practical one by including the above algorithms
(together with the others known from the literature) in an open-source free library called
Nancy. This allows researchers to experiment with our results to study complex scenarios,
or support the generation of novel theoretical insight.

Future work on this topic will include studying the computational and numerical proper-
ties of NC operators. As the example in Section 6 shows (not to mention those in (Zippo and
Stea 2022b), by the same authors), exploiting more knowledge on the operands allows one
to compute the same results via specialized versions of the algorithms, often in considerably
shorter times (some by orders of magnitude). We believe that this is an avenue of research
worth pursuing, with the aim of enabling larger-scale real-world performance studies.

Appendix A: Properties of Ultimately Affine (UA) Functions

Proposition 20 A function f ∈ U is Ultimately Affine (UA) (defined in Eq. 4) iff there exist
T ∈ Q+, σ, ρ ∈ Q such that either

f (t) = ρt + σ ∀t ≥ T (28)

or if f (t) = −∞ or f (t) = +∞ for all t ≥ T .

Proof The proof is trivial for f being −∞ or +∞ for all t ≥ T . Therefore, we limit
ourselves to the cases of f being finite.

210

Discrete Event Dynamic Systems (2023) 33:181–219

“⇒”
Let f be UA. Define T := T a

f , σ := f
(
T a

f

)
− ρf · T a

f and ρ := ρf . Then, it holds for all

t ≥ T that

f (t)
(4)=
(
f
(
T a

f

)
− ρf · T a

f

)
+ ρf · t = σ + ρ · t .

“⇐” Assume f to verify the condition in Eq. 28. Therefore, assume that f (t) = ρt + σ

for all t ≥ T . Define T a
f

:= T , ρf := ρ. Then for all t ≥ T a
f

f (t) = f
(
(t − T a

f) + T a
f

)
(28)= σ + ρf

(
(t − T a

f) + T a
f

)
=

(
ρf T a

f + σ
)

+ ρf · (t − T a
f)

(28)= f (T a
f) + ρf (t − T a

f).

This concludes the proof.

Appendix B: Differences in pseudo-inverses definitions

In Liebeherr (2017, p. 60), which considers functions from R → R, lower and upper
pseudo-inverses are introduced as

f −1
↓ (y) = inf {t | f (t) ≥ y} = sup {t | f (t) < y} ,

f −1
↓ (y) = sup {t | f (t) ≤ y} = inf {t | f (t) > y} .

However, when one considers a domain bounded from below by 0, such as in our case,
the rightmost equalities do not hold for y ≤ f (0). As a counterexample, consider y = f (0).
Then,

f −1
↓ (y) = inf {x ≥ 0 | f (x) ≥ y} = 0,

f −1
↓ (y) = sup {x ≥ 0 | f (x) < y} = sup {∅} = −∞.

Proposition 8 states a weaker form of equivalence for functions in U . We provide here a
proof.

Proof The proof follows mostly along the lines of Lemma 3.2 in Bouillard et al. (2018,
pp. 46).12

1. Lower pseudo-inverse: first, note that {t ≥ 0 | f (t) < y} and {t ≥ 0 | f (t) ≥ y} form
a partition of Q+. Moreover, as f is non-decreasing and y > f (0), {t ≥ 0 | f (t) ≥ y}
is a non-empty interval of the form [b,+∞[or]b, +∞[for some b > 0. As a con-
sequence, {t ≥ 0 | f (t) < y} is a non-empty interval of the form [0, b] or [0, b]. Thus,
we have b = inf {t ≥ 0 | f (t) ≥ y} = sup {t ≥ 0 | f (t) < y}.

2. Upper pseudo-inverse: for y > f (0), the proof is the almost same as in 1.,
we just replace {t ≥ 0 | f (t) < y} by {t ≥ 0 | f (t) ≤ y} and {t ≥ 0 | f (t) ≥ y} by
{t ≥ 0 | f (t) > y}. Then, b = sup {t ≥ 0 | f (t) ≤ y} = inf {t ≥ 0 | f (t) > y}.

12We note however that Lemma 3.2 in Bouillard et al. (2018, pp. 46) is incomplete, since it does not account
for the case y ≤ f (0) – see our counterexample above.

211

Discrete Event Dynamic Systems (2023) 33:181–219

Next, consider the case y = f (0). Let us define t1 := sup {t ≥ 0 | f (t) = f (0)} ∈
Q+ ∪ {+∞}. It holds that

sup {t ≥ 0 | f (t) ≤ y} = sup {t ≥ 0 | f (t) ≤ f (0)}
= t1

as well as

inf {t ≥ 0 | f (t) > y} = inf {t ≥ 0 | f (t) > f (0)}
= inf {t ≥ t1 | f (t) > f (0)}
= t1,

where we used in the second line that t1 is a lower bound for the set
{t ≥ 0 | f (t) > f (0)}.

Appendix C: Calculation of lower and upper pseudo-inverses

We report here the rigorous mathematical derivations for cases c1-c8 in Table 1.

C.1: Point after segment (cases c1-c4)

In these cases we have, in general, an f such that

f (x) =

⎧⎪⎨
⎪⎩

b1 + ρ (x − t1) , if t1 < x < t2,

b2, if x → t−2 ,

b3, if x = t2.

Since f is non-decreasing, b1 + ρ (x − t1) ≤ b2 ≤ b3 for all x ∈]t1, t2[.
We then distinguish four cases based on two properties:

• Whether or not the segment is constant, i.e., ρ = 0 → b1 = b2;
• Whether or not there is a discontinuity at t2, i.e., b2 < b3.

Case c1: ρ = 0 and b1 = b2 < b3 (constant segment followed by a discontinuity). It
holds that

f −1
↓ (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
inf {x | f (x) ≥ y} = t2, if b1 < y < f (t2) = b2,

inf

⎧⎪⎨
⎪⎩x | f (x) ≥ y︸︷︷︸

=b2

⎫⎪⎬
⎪⎭ = t2, if y = f (t2) = b2,

(29)

212

Discrete Event Dynamic Systems (2023) 33:181–219

and

f −1
↑ (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup

⎧⎨
⎩x | f (x) ≤

=b1︷︸︸︷
y

⎫⎬
⎭ = t2, if y = b1 = f (t+1),

sup {x | f (x) ≤ y} = t2, if b1 = f (t+1) < y < f (t2),

inf

⎧⎪⎨
⎪⎩x | f (x)︸︷︷︸

=b2

> y

⎫⎪⎬
⎪⎭ = sup {x | f (x) ≤ y} = t2, if y = f (t2) = b2.

(30)

Case c2: ρ = 0 and b1 = b2 = b3 (constant segment without any discontinuity). It
holds that

f −1
↓ (y) = inf

⎧⎨
⎩x |

=b1︷︸︸︷
f (x) ≥ y

⎫⎬
⎭ = t1, if y = b1. (31)

However, we do not add a value as it is processed in the “segment after point” section.
Moreover,

f −1
↑ (y) := sup

⎧⎪⎨
⎪⎩x | f (x)︸︷︷︸

=b1

≤ y

⎫⎪⎬
⎪⎭ = t2, if y = b1. (32)

Case c3: ρ > 0 and b2 < b3 (non-constant segment followed by a discontinuity).

f −1
↓ (y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf {x | f (x) ≥ y} = t2, if y = b1 + r (t2 − t1) = f (t−2),

inf {x | f (x) ≥ y} = t2, if f (t−2) < y < f (t2) = b3,

inf

⎧⎪⎨
⎪⎩x | f (x) ≥ y︸︷︷︸

=b3

⎫⎪⎬
⎪⎭ = t2, y = f (t2) = b3,

(33)

and

f −1
↑ (y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf {x | f (x) > y} = t2, if y = b1 + r (t2 − t1) = f (t−2),

inf {x | f (x) > y} = t2, if f (t−2) < y < f (t2) = b3,

inf

⎧⎪⎨
⎪⎩x | f (x) > y︸︷︷︸

=b3

⎫⎪⎬
⎪⎭ = t2, y = f (t2) = b3.

(34)

Case c4: ρ > 0 and b2 = b3 (non-constant segment without any discontinuity).

f −1
↓ (y) = inf

⎧⎪⎨
⎪⎩x | f (x) ≥ y︸︷︷︸

=b2

⎫⎪⎬
⎪⎭ = t2, y = f (t2) = b2, (35)

and

f −1
↑ (y) = inf

⎧⎪⎨
⎪⎩x | f (x) > y︸︷︷︸

=b2

⎫⎪⎬
⎪⎭ = t2, y = f (t2) = b2. (36)

213

Discrete Event Dynamic Systems (2023) 33:181–219

C.2: Segment after point (cases 5-8)

In these cases we have, in general, an f such that

f (x) =

⎧⎪⎨
⎪⎩

b1, x = t1,

b2, x → t+1 ,

b2 + ρ (x − t1) , t1 < x < t2.

We then distinguish four cases based on two properties:

• Whether or not the segment is constant, i.e., ρ = 0 → b2 = b3;
• Whether or not there is a discontinuity at t1, i.e., b1 �= b2.

Case c5: b1 < b2 = b3 and ρ = 0 (discontinuity followed by a constant segment). It
holds that

f −1
↓ (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
inf {x | f (x) ≥ y} = sup {x | f (x) < y} = t1, if b1 < y < f (t+1) = b2,

inf

⎧⎪⎨
⎪⎩x | f (x) ≥ y︸︷︷︸

=b2

⎫⎪⎬
⎪⎭ = t1, if y = f (t+1) = b2,

(37)
and

f −1
↑ (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
inf {x | f (x) > y} = sup {x | f (x) ≤ y} = t1, if b1<y <f (t+1) = b2,

inf {x | f (x) > y} = sup

⎧⎪⎨
⎪⎩x | f (x) ≤ y︸︷︷︸

=b2

⎫⎪⎬
⎪⎭ = t2, if y = f (t+1) = b2.

(38)

Case c6: b1 = b2 = b3 and ρ = 0 (no discontinuity and a constant segment). Then it
holds that

f −1
↓ (y) = inf

⎧⎨
⎩x |

=b1︷︸︸︷
f (x) ≥ y

⎫⎬
⎭ = t1, if y = b1. (39)

However, we do not add a value as it is processed in the “point after segment” section.
Moreover,

f −1
↑ (y) := sup

⎧⎪⎨
⎪⎩x | f (x)︸︷︷︸

=b1

≤ y

⎫⎪⎬
⎪⎭ = t2, if y = b1. (40)

Case c7: b1 < b2 and ρ > 0 (discontinuity followed by a non-constant segment). We
have

f −1
↓ (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf {x | f (x) ≥ y} = t1, if b1 < y < f (t−1) = b2,

inf

⎧⎪⎨
⎪⎩x | f (x) ≥ y︸︷︷︸

=b2

⎫⎪⎬
⎪⎭ = t1, if y = f (t−1) = b2,

inf {x | b2 + ρ (x − t1) ≥ y} = t1 + y−b2
ρ

, if b2 < y < b3,

(41)

214

Discrete Event Dynamic Systems (2023) 33:181–219

and

f −1
↑ (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf {x | f (x) > y} = t1, if b1 < y < b2,

inf {x | f (x) > y} = sup

⎧⎪⎨
⎪⎩x | f (x) ≤ y︸︷︷︸

=b2

⎫⎪⎬
⎪⎭ = t1, if y = b2,

inf {x | b2 + ρ (x − t1) > y} = t1 + y−b2
ρ

, if b2 < y < b3.

(42)

Case c8: b1 = b2 and ρ > 0 (no discontinuity and non-constant segment). We have

f −1
↓ (y) = inf {x | b1 + ρ (x − t1) ≥ y} = t1 + y − b1

ρ
,

if b1 = f (t+1) < y < f (t−2) = b2,

(43)

and

f −1
↑ (y) = inf {x | b1 + ρ (x − t1) > y} = t1 + y − b1

ρ
,

if b1 = f (t+1) < y < f (t−2) = b2.
(44)

Appendix D: Composition of Ultimately Constant (UC) functions

Proposition 21 Let f and g be two functions ∈ U that are not UI, with g being non-
negative, non-decreasing and UC. Then, their composition h := f ◦ g is again UC with

Th = Tg . (45)

Proof For t ≥ Tg , it holds that

h(t) = f (g(t)) = f (g(Tg)) = h(Th).

Proposition 22 Let f be UC and g be a function ∈ U that is non-negative and
non-decreasing. Then, their composition h := f ◦ g is again UC with

Th = g−1
↓ (Tf). (46)

Proof For t ≥ g−1
↓ (Tf), it holds that

h(t) = f (g(t)) = f (Tf) = h(Th).

Proposition 23 Let f and g be UC functions, with g being non-negative and non-
decreasing. Then, their composition h := f ◦ g is again UC with

Th = min
{
Tf , g−1

↓ (Tf)
}
. (47)

Proof The proof is simply a combination of the previous two propositions.

215

Discrete Event Dynamic Systems (2023) 33:181–219

Appendix E: Service curve of a flow in interleaved weighted
round robin

We report here the statement of Theorem 1 in Tabatabaee et al. (2021), for ease of reference.
We slightly rephrased it to aid comprehension.

Theorem 24 (Strict Per-Flow Service Curves for IWRR) Assume n flows arriving at a
server performing interleaved weighted round robin (IWRR) with weights w1, . . . , wn. Let
lmin
i and lmax

j denote the minimum and maximum packet size of the respective flow. Let this
server offer a super-additive strict service curve β to these n flows. Then,

βi(t) := γi (β(t))

is a strict service curve for flow fi , where

γi(t) := β1,0 ⊗ Ui (t),

Ui(t) :=
wi−1∑
k=0

νlmin
i ,Ltot

([
t − ψ

(
klmin

i

)]+)
,

Ltot := wil
min
i +

∑
j :j �=i

wj l
max
j ,

ψi(x) := x +
∑
j �=i

φij

(⌊
x

lmin
i

⌋)
lmax
j ,

φij (p) :=
⌊

p

wi

⌋
wj + [

wj − wi

]+ + min
{
(p mod wi) + 1, wj

}
,

β1,0 is a constant-rate function with slope 1, and the stair function νh,P (t) is defined as

νh,P (t) := h

⌈
t

P

⌉
, for t ≥ 0.

Acknowledgements This work was partially supported by the Italian Ministry of Education and Research
(MIUR) in the framework of the FoReLab project (Departments of Excellence), and by the University of
Pisa, through grant “Analisi di reti complesse: dalla teoria alle applicazioni” - PRA 2020.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Funding Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

216

http://creativecommons.org/licenses/by/4.0/

Discrete Event Dynamic Systems (2023) 33:181–219

References

Andreozzi M, Conboy F, Stea G, Zippo R (2020) Heterogeneous systems modelling with adaptive traffic
profiles and its application to worst-case analysis of a DRAM controller. In: 2020 IEEE 44th annual
computers, software, and applications conference (COMPSAC). IEEE, pp 79–86

Bauer H, Scharbarg J-L, Fraboul C (2010) Worst-case end-to-end delay analysis of an avionics AFDX net-
work. In: 2010 design, automation & test in Europe conference & exhibition (DATE 2010). IEEE,
pp 1220–1224

Bennett JC, Benson K, Charny A, Courtney WF, Le Boudec J-Y (2002) Delay jitter bounds and packet scale
rate guarantee for expedited forwarding. IEEE/ACM Trans Network 10(4):529–540

Bondorf S, Schmitt JB (2014) The DiscoDNC v2 – A comprehensive tool for deterministic network calculus.
In: Proc. of the international conference on performance evaluation methodologies and tools. ValueTools
’14, pp 44–49. https://dl.acm.org/citation.cfm?id=2747659

Bouillard A, Boyer M, Le Corronc E (2018) Deterministic network calculus: from theory to practical
implementation. Wiley, Hoboken

Bouillard A, Cottenceau B, Gaujal B, Hardouin L, Lagrange S, Lhommeau M, Thierry E (2009) COINC
library: a toolbox for the network calculus. In: Proceedings of the 4th international conference on
performance evaluation methodologies and tools, ValueTools (Vol. 9, p. 01).

Bouillard A, Thierry É (2008) An algorithmic toolbox for network calculus. Discrete Event Dynamic Systems
18(1):3–49

Boyer M, Graillat A, de Dinechin BD, Migge J (2020) Bounding the delays of the MPPA
network-on-chip with network calculus:models and benchmarks. Perform Evaluation 143:102–124.
https://doi.org/10.1016/j.peva.2020.102124

Boyer M, Stea G, Sofack WM (2012) Deficit Round Robin with network calculus. In: 6Th international
ICST conference on performance evaluation methodologies and tools, cargese, corsica, france, october
9-12, 2012, pp 138–147. https://doi.org/10.4108/valuetools.2012.250202

Chang C-S (2000) Performance guarantees in communication networks. Springer, New York
Charara H, Scharbarg J-L, Ermont J, Fraboul C (2006) Methods for bounding end-to-end delays on an AFDX

network. In: 18th Euromicro conference on real-time systems (ECRTS’06). IEEE, p 10
Cruz RL (1991) A calculus for network delay, part I: network elements in isolation. IEEE Trans Inform

Theory 37(1):114–131
Cruz RL (1991) A calculus for network delay, part II: network analysis. IEEE Trans Inform Theory

37(1):132–141
Fidler M, Sander V (2004) A parameter based admission control for differentiated services networks. Comput

Netw 44(4):463–479
Firoiu V, Le Boudec J-Y, Towsley D, Zhang Z-L (2002) Theories and models for internet quality of service.

Proc IEEE 90(9):1565–1591
Guan N, Yi W (2013) Finitary real-time calculus: efficient performance analysis of distributed embedded

systems. In: 2013 IEEE 34Th real-time systems symposium, pp 330–339
IEEE: Time-sensitive networking (TSN) task group (2020) [Online]. https://1.ieee802.org/tsn/. Accessed:

2022-05-16
Lampka K, Bondorf S, Schmitt JB, Guan N, Yi W (2017) Generalized finitary Real-Time calculus. In: Proc.

of the 36th IEEE international conference on computer communications (INFOCOM 2017)
Le Boudec J-Y (1998) Application of network calculus to guaranteed service networks. IEEE Trans Inf

Theory 44(3):1087–1096. https://doi.org/10.1109/18.669170
Le Boudec J-Y (1998) Application of network calculus to guaranteed service networks. IEEE Trans Inform

Theory 44(3):1087–1096
Le Boudec J-Y, Thiran P (2001) Network calculus: a theory of deterministic queuing systems for the internet.

Springer, Berlin
Liebeherr J (2017) Duality of the max-plus and min-plus network calculus. Foundations and Trends in

Networking 11(3-4):139–282. https://doi.org/10.1561/1300000059
Maile L, Hielscher K-S, German R (2020) Network Calculus results for TSN: an introduction. In: 2020

information communication technologies conference (ICTC). IEEE, pp 131–140
Mohammadpour E, Stai E, Boudec J-YL (2019) Improved delay bound for a service curve element with

known transmission rate. IEEE Netw Lett 1(4):156–159
Mohammadpour E, Stai E, Boudec J-YL (2022) Improved network calculus delay bounds in time-sensitive

networks. IEEE/ACM Transactions on Networking, https://doi.org/10.1109/TNET.2023.3275910
Pollex V, Lipskoch H, Slomka F, Kollmann S (2011) Runtime improved computation of path latencies with

the real-time calculus. In: Proceedings of the 1st international workshop on worst-case traversal time, pp
58–65

217

https://dl.acm.org/citation.cfm?id=2747659
https://doi.org/10.1016/j.peva.2020.102124
https://doi.org/10.4108/valuetools.2012.250202
https://1.ieee802.org/tsn/
https://doi.org/10.1109/18.669170
https://doi.org/10.1561/1300000059
https://doi.org/10.1109/TNET.2023.3275910

Discrete Event Dynamic Systems (2023) 33:181–219

RealTime-at-Work: RTaW-Pegase (min +) library (2022) https://www.realtimeatwork.com/rtaw-pegase-
libraries/. Accessed: 2022-04-05

Rehm F, Seitter J, Larsson J-P, Saidi S, Stea G, Zippo R, Ziegenbein D, Andreozzi M, Hamann A (2021) The
road towards predictable automotive high-performance platforms. In: 2021 design, automation & test in
europe conference & exhibition (DATE). IEEE, pp 1915–1924

Schmitt JB, Roedig U (2005) Sensor network calculus–a framework for worst case analysis. In: International
conference on distributed computing in sensor systems. Springer, pp 141–154

Tabatabaee SM, Le Boudec J-Y (2022) Deficit round-robin: A second network calculus analysis. IEEE/ACM
Transactions on Networking

Tabatabaee SM, Le Boudec J-Y, Boyer M (2021) Interleaved weighted Round-Robin: a network calculus
analysis. IEICE Trans Commun 104(12):1479–1493

Zhang J, Chen L, Wang T, Wang X (2019) Analysis of TSN for industrial automation based on network
calculus. In: 2019 24th IEEE international conference on emerging technologies and factory automation
(ETFA). IEEE, pp 240–247

Zhao L, Pop P, Zheng Z, Daigmorte H, Boyer M (2021) Latency analysis of multiple classes of AVB traffic
in TSN with standard credit behavior using Network Calculus. IEEE Trans Ind Electron 68(10):10291–
10302. https://doi.org/10.1109/TIE.2020.3021638

Zippo R, Stea G (2022a) Nancy: an efficient parallel Network Calculus library. SoftwareX, https://doi.org/10.
1016/j.softx.2022.101178

Zippo R, Stea G (2022b) Computationally efficient worst-case analysis of flow-controlled networks with Net-
work Calculus. IEEE Transactions on Information Theory, https://doi.org/10.1109/TIT.2023.3244276

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Raffaele Zippo is a PhD student at the Universities of Pisa and
Florence. His research interests cover worst-case analysis of hetero-
geneous systems and algorithms for NC computations. In these fields
he has already coauthored several papers appeared in journals and
conferences. He is the primary author of Nancy, an open-source Net-
work Calculus library. He has been involved in industrial research
projects, and is the coauthor of one patent.

PaulNikolaus is currently a postdoctoral researcher at the Distributed
Computer Systems Lab (disco), TU Kaiserslautern, Germany, where
he also obtained his M.Sc (2016) in business mathematics and his
PhD in computer science (2022). His research interests are in the
area of performance in distributed systems, in particular Network
Calculus.

218

https://www.realtimeatwork.com/rtaw-pegase-libraries/
https://www.realtimeatwork.com/rtaw-pegase-libraries/
https://doi.org/10.1109/TIE.2020.3021638
https://doi.org/10.1016/j.softx.2022.101178
https://doi.org/10.1016/j.softx.2022.101178
https://doi.org/10.1109/TIT.2023.3244276

Discrete Event Dynamic Systems (2023) 33:181–219

Giovanni Stea is Full Professor at the Department of Information
Engineering of the University of Pisa, Italy, where he also got his
PhD in 2003. His current research interests include Quality of Ser-
vice and resource allocation in networks, performance evaluation,
Multi-access Edge Computing. In these fields he has coauthored more
than 120 peer-reviewed papers and 17 patents. He has been involved
in national and EU research projects, and he has led joint research
projects with industrial partners. He has served as a member of the
technical and/or organization committees for several international
conferences, including SIGCOMM and VTC, and he has served on
the editorial board of the Wireless Networks journal.

Affiliations

Raffaele Zippo1,2,3 ·Paul Nikolaus3 ·Giovanni Stea2

Paul Nikolaus
nikolaus@cs.uni-kl.de

Giovanni Stea
giovanni.stea@unipi.it

1 Dipartimento di Ingegneria dell’Informazione, Università di Firenze,
Via di S. Marta 3, Firenze, 50139, Italy

2 Dipartimento di Ingegneria dell’Informazione, Università di Pisa,
Largo Lucio Lazzarino 1, Pisa, 56122, Italy

3 Distributed Computer Systems Lab (DISCO), TU Kaiserslautern,
Paul-Ehrlich-Straße 34, Kaiserslautern, 67663, Germany

219

http://orcid.org/0000-0001-9111-7471
http://orcid.org/0000-0001-5277-0267
http://orcid.org/0000-0001-5310-6763
mailto: nikolaus@cs.uni-kl.de
mailto: giovanni.stea@unipi.it

	Extending the network calculus algorithmic toolbox for ultimately pseudo-periodic functions: pseudo-inverse and composition
	Abstract
	Introduction
	Network calculus basics
	Mathematical background and notation
	Lower and upper pseudo-inverse of UPP functions
	Properties of pseudo-inverses of UPP functions
	By-sequence algorithm for pseudo-inverses
	By-curve algorithm for pseudo-inverses
	Corner cases: UC and UI functions

	Composition of UPP functions
	Properties of composition of UPP functions
	By-sequence algorithm for composition
	By-curve algorithm for composition

	Proof of concept
	Conclusions
	Appendix A A: Properties of Ultimately Affine (UA) Functions
	 B: Differences in pseudo-inverses definitions
	Appendix B B: Differences in pseudo-inverses definitions
	 C: Calculation of lower and upper pseudo-inverses
	Appendix C C: Calculation of lower and upper pseudo-inverses
	C.1: Point after segment (cases c1-c4)
	Case c1: =0 and b1=b2<b3 (constant segment followed by a discontinuity).
	Case c2: =0 and b1=b2=b3 (constant segment without any discontinuity).
	Case c3: >0 and b2<b3 (non-constant segment followed by a discontinuity).
	Case c4: >0 and b2=b3 (non-constant segment without any discontinuity).

	C.2: Segment after point (cases 5-8)
	Case c5: b1<b2=b3 and =0 (discontinuity followed by a constant segment).
	Case c6: b1=b2=b3 and =0 (no discontinuity and a constant segment).
	Case c7: b1<b2 and >0 (discontinuity followed by a non-constant segment).
	Case c8: b1=b2 and >0 (no discontinuity and non-constant segment).

	 D: Composition of Ultimately Constant (UC) functions
	Appendix D D: Composition of Ultimately Constant (UC) functions
	 E: Service curve of a flow in interleaved weighted round robin
	Appendix E E: Service curve of a flow in interleaved weighted round robin
	Declarations
	References
	Affiliations

