
https://doi.org/10.1007/s10626-020-00314-0

Modeling for supervisor synthesis – a lock-bridge
combination case study

Ferdie F. H. Reijnen1 ·Martijn A. Goorden1 · Joanna M. van de Mortel-Fronczak1 ·
Jacobus E. Rooda1

Received: 23 July 2018 / Accepted: 25 February 2020 /
© The Author(s) 2020

Abstract
Designing supervisory controllers for high-tech systems is becoming increasingly complex
due to demands for verified safety, higher quality and availability, and extending function-
ality. Supervisor synthesis is a method to automatically derive a supervisor from a model of
the plant and a model of the control requirements. While supervisor synthesis is an active
research topic, only a few reports exist on industrial applications. One of the reasons for
this is the lack of acquaintance of control engineers with modeling and specifying in the
framework of automata. In addition to this, there are no clear guidelines for obtaining the
necessary models for synthesis. In this paper, we describe a general way of modeling for
the plant and the requirements in order to contribute towards the acceptance of supervisor
synthesis in industry. This way of modeling is illustrated with an industrial case study in
which a supervisory controller is synthesized for the Algera complex. The Algera complex
consists of a waterway lock and a movable bascule bridge. The supervisor has to control
80 actuators based on the observations from 96 discrete sensors, in response to 63 control
commands available from the operator. We show how to model the plant as a collection
of extended finite-state automata, how to model the requirement as a collection of event
conditions, how to synthesize the monolithic supervisor, and how to validate the resulting
supervisor using continuous-time simulation.

Keywords Supervisor synthesis · Extended finite-state automata · Industrial application ·
Infrastructural systems

1 Introduction

High-tech systems have become increasingly complex due to the high demands from the
market in terms of functionality, quality, and safety. As a result, supervisory controllers

This work is supported by Rijkswaterstaat, part of the Ministry of Infrastructure and Water
Management of the Government of the Netherlands.

� Ferdie F.H. Reijnen
F.F.H.Reijnen@tue.nl

1 Department of Mechanical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Published online: 30 March 2020

Discrete Event Dynamic Systems (2020) 30:499–532

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-020-00314-0&domain=pdf
mailto: F.F.H.Reijnen@tue.nl

(or supervisors) for these systems are getting more complex as well. At the same time, for
the development process, it is desired to decrease time-to-market and costs. Model-based
development methods can help in overcoming these difficulties. The use of formal models
has advantages over the traditional engineering process. Models can help in verifying and
validating the supervisor design early in the process, resulting in a reduction of design errors
found during the testing and integration phase, where error repair is more time-consuming
and costly.

Supervisor synthesis of Ramadge and Wonham (1987) is a method to automatically
derive a minimally restrictive supervisor from a discrete-event model of the plant (what
can the system do) and a model of the control requirements (what may the system do).
The synthesized supervisor controls the system, by disabling controllable events, such that
the controlled system adheres to the requirements by construction, and is guaranteed to be
nonblocking.

Even though supervisory control theory has been a subject of research since the mid 80s,
reports on realistic industrial applications are few in numbers. As is stated in Wonham et al.
(2018), this is partly due to the lack of acquaintance of control engineers with modeling
and specifying in the framework of automata, the lack of adequate tooling, and the com-
putational complexity when synthesizing supervisors for industrial systems. Moreover, in
Zaytoon and Riera (2017) and Grigorov et al. (2011) it is noted that obtaining the neces-
sary models for supervisor synthesis is difficult, as there exist no clear guidelines on how to
develop them.

In the literature, there are a few reports on applications of supervisor synthesis. The first
application was the rapid thermal multiprocessor, described in Balemi et al. (1993). By far,
most cases described in the literature focus on the domain of manufacturing systems; e.g.,
Leduc and Wonham (1995), Brandin (1996), Lauzon et al. (1996), Kim et al. (2001), de
Queiroz and Cury (2002), Chandra et al. (2003), Nourelfath and Niel (2004), Ljungkrantz
et al. (2007), Pétin et al. (2007), Hasdemir et al. (2008), Moor et al. (2010), Silva et al.
(2011), van der Sanden et al. (2015), and Pena et al. (2016). Other application domains
are theme park vehicles (Forschelen et al. 2012), chemical process control (Rawlings et al.
2014), patient support table for an MRI scanner (Theunissen et al. 2014), smart homes ded-
icated to disabled people (Guillet et al. 2014), mobile robots (Lopes et al. 2016), computer
science (Liao et al. 2013; Auer et al. 2014; Atampore et al. 2016), and driver assistance sys-
tems (von Bochmann et al. 2015; Korssen et al. 2018). In Reijnen et al. (2017), we reported
on an application related to a lock control system in Tilburg. With a few exceptions, many
of these case studies were based on experimental set-ups to show the feasibility of using
supervisor synthesis.

A small industrial application is the control of a patient support table for an MRI scanner
(Theunissen et al. 2014). For this application, 3 actuators are controlled based on obser-
vations of 8 sensors, resulting in a plant state space of 5 × 104 states. Here, finite-state
automata are used to model the plant and the requirements. A second small industrial appli-
cation is the control of the oxide growth process on a silicon wafer (Balemi et al. 1993).
The plant model, consisting of 8 components, has a state space of 106 states. The plant and
requirements are modeled with finite-state automata. The driver assistance system, consid-
ered in Korssen et al. (2018), consists of 28 components, modeled by finite-state automata,
leading to a plant state space of 3.4 × 109 states. Differently from the previous examples,
event conditions are used to represent the requirements. Another application is the control
of a theme park vehicle, described in Forschelen et al. (2012). Here, 6 actuators are con-
trolled by a supervisor based on the observations of 11 sensors. The plant state space of
the theme park vehicle is 1.7 × 1010 states. The requirement models are represented by a

500 Discrete Event Dynamic Systems (2020) 30:499–532

combination of finite-state automata and event conditions. While for most of these appli-
cations the necessary synthesis models are shown, they do not provide guidelines on how
these models should be obtained. Also, the number of components involved in the cases is
relatively low compared to systems encountered in industrial practice.

Modeling of the plant is discussed in Balemi et al. (1993), Chandra and Kumar (2002),
and Grigorov et al. (2011). In Balemi et al. (1993) an input-output perspective is proposed.
They show how the plant components can be modeled based on the inputs and outputs
of the control unit. In Chandra and Kumar (2002), a modeling formalism for the plant is
proposed. Here, the models also follow the input-output perspective of Balemi et al. (1993).
Furthermore, they provide a method that derives conditions on the occurrence of events in
the plant. These conditions represent the interactions between components in the system.
In Grigorov et al. (2011), the use of templates is introduced. Templates allow to model a
plant consisting of many similar components in a relatively straightforward way, greatly
decreasing the modeling time and effort.

Modeling of the requirements is discussed in Markovski et al. (2010), Göbe et al. (2016),
and Theunissen (2015). Originally, for supervisor synthesis, requirements are modeled
with finite-state automata. In Ma and Wonham (2006) and Markovski et al. (2010), this
is extended with the introduction of event-condition requirements, which are stated to be
more intuitive and efficient. Event-condition requirements specify conditions for an event to
be enabled, based on propositional logic. The advantages of using event-condition require-
ments is further shown in Göbe et al. (2016), where the authors reported improvements in
terms of modeling time and the clarity of the resulting models. In Theunissen (2015), a
supervisor has been synthesized for the control of a patient support table for an MRI scan-
ner based on automata models of the requirements and based on event-condition models
of the requirements. When comparing the two collections of models, it was concluded that
the event-condition requirements are more concise and more intuitive to understand. These
papers do not provide guidelines on how a requirement model can be derived.

The contribution of this paper is twofold. Firstly, it proposes guidelines to obtain the
plant model and the requirement model, necessary for supervisor synthesis. Secondly, it
reports on a real infrastructural system, the Algera complex, for which a supervisor has been
synthesized. This case study illustrates the proposed guidelines and shows the feasibility of
using supervisor synthesis for large industrial system.

For modeling the plant, we choose the abstraction level of inputs and outputs of the
control unit. This has two advantages. Firstly, the models can be used for the generation
of implementation code. Secondly, this leads to many small loosely-coupled (component)
models for the sensors, actuators, and operator commands in the system. This way of mod-
eling has a close resemblance to component-based modeling, frequently applied in software
engineering, see e.g., Gössler and Sifakis (2005). The similarity between many of these
component models can be exploited such that they can be modeled using templates. Fur-
thermore, we show that this abstraction level, along with event-condition models, leads to
requirement models that relate closely to the specifications control engineers are acquainted
with in practice. Finally, we show how the plant model can be augmented with continu-
ous behavior such that it can be used for simulation-based validation, further aiding the
supervisor design process.

To demonstrate the way of modeling, we report on an industrial application for which
a supervisor has been synthesized: the Algera complex located in the Netherlands. The
system consists of a waterway lock together with a movable bascule bridge over the lock.
The supervisor has to control 80 actuator based on the observations from 96 sensors, and in
response to 63 operator commands. Even though the plant state space consists of 2.3×1057

501Discrete Event Dynamic Systems (2020) 30:499–532

states and the supervisor has to adhere to 491 requirements, it is shown that a monolithic
synthesis algorithm is able to solve the synthesis problem. The design description and the
models for the Algera complex are available in a repository, see Reijnen et al. (2020).

This paper is structured as follows. Section 2 describes the Algera complex. In Section 3,
the preliminaries of discrete-event system modeling, requirement modeling, and supervi-
sor synthesis are provided. In Section 4, guidelines for obtaining the necessary models for
synthesis are given. The models developed for the Algera complex and the synthesized
supervisor are discussed in Section 5. Section 6 discusses how the synthesized supervisor is
validated. Finally, Section 7 concludes this paper.

2 Case study: the Algera complex

The Algera complex, shown in Fig. 1, is located in the Hollandse IJssel, a river in the
Netherlands. The system is part of the Delta Works: a series of locks, storm surge barriers,
levees, and dams that protect the Netherlands from the sea. The building of these works was
initiated after the North Sea flood of 1953.

The Algera complex consists of a lock, a bascule bridge, and two storm surge barriers. In
case of an extremely high sea-water level, the storm surge barriers (80 m x 12 m) are closed
to protect the inlands. The complex is located close to Rotterdam, between Krimpen aan den
IJssel and Capelle aan den IJssel. Because of its location close to Rotterdam, it is a part of
an important shipping route. Whenever the storm surge barriers are closed, the adjacent lock
is used to raise or lower vessels (up to 24 m in width) between the different water heights.
The lock gates are strong enough to withstand the extremely high water level. Additionally,
in case the storm surge barriers are open, the lock in combination with the bascule bridge is
used as a route for vessels that are too high to pass under the storm surge barriers. When the
bridge is open, tall sailing ships can pass the Algera complex.

N

Fig. 1 The Algera complex consisting of a lock (encircled in black), a bascule bridge (encircled in red), and
two storm surge barriers (encircled in blue) [https://beeldbank.rws.nl, Rijkswaterstaat / Joop van Houdt]

502 Discrete Event Dynamic Systems (2020) 30:499–532

https://beeldbank.rws.nl

A human operator controls the Algera complex from a nearby control center, where the
complex can be viewed via camera images. The operator is responsible for communicating
with arriving vessels, giving commands via a control panel to the system, and monitoring
the system.

In the remainder of this section, the functions of the lock, of the bascule bridge, and of the
control panel are described in more detail. The storm surge barriers operate independently
of the lock and of the bridge, and are not considered further in this paper.

2.1 Description and functionality of the Algera lock

The Algera lock, schematically depicted in Fig. 2, is used to facilitate raising and lowering
of vessels between different water heights. To this end, a chamber is used that can be sepa-
rated from the rest of the river by watertight mitre gates. The water level inside the chamber
can be varied by opening paddles in the gates.

Because of the tide, the water height outside the lock varies. As a result, the water level
at the sea side is sometimes higher and sometimes lower than the water level at the river
side. Because the gates are kept closed by the force generated from the difference in water
height, at least two types of gate sets are used at each side, flood gates and ebb gates. When
the sea-side water level is higher than the river-side water level, the flood gates are used.
Opposite, when the river-side water level is higher, the ebb gates are used. At the sea side,
additional gates are used for safety in case of a storm flood.

The water level inside the chamber can be regulated. Each gate is equipped with a paddle
that covers a hole in the gate. By opening this paddle, water can flow into or out of the lock
chamber, filling or emptying the chamber, respectively.

To communicate with vessels outside the lock, two lock traffic lights (red-green-red) are
used per side (i.e., river side and sea side). A lock traffic light can display four different

Chamber

Sea side / DownstreamRiver side / Upstream

Ebb

gate

Flood

gate

Ebb

gate

Flood

gate

Storm flood

gate

N

Fig. 2 A schematic representation of the Algera lock when all gates are closed, all paddles are open, and the
sea side is the high-water side. View from above (top) and view from the side (bottom)

503Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 3 The aspects of the lock traffic light: double-red, red, red-green, and green (left), and the aspects of the
bridge traffic light: red and green (right)

aspects, shown in Fig. 3 on the left-hand side. The double-red aspect indicates that the lock
is out-of-service. The red, red-green, and green aspects indicate that entering the lock is not
allowed, almost allowed, and allowed, respectively.

Inside the lock, two bridge traffic lights (red-green) are used to communicate with ves-
sels. These traffic lights are positioned in front of the bridge at the sea side of the lock.
They have two functions: to communicate whether it is safe to pass under the bridge and to
communicate whether it is safe to exit the lock. At the river side, no bridge traffic light is
present. This traffic light can display a red or green aspect, shown on the right-hand side of
Fig. 3, having a similar meaning as for the lock traffic light.

To safely open the gates, the water height is measured at three different locations: at the
river side, inside the lock, and at the sea side. This information is combined to determine if
there is an (almost) equal water level over a set of gates. When water heights are equal, it is
safe to open a set of gates.

2.1.1 Desired controlled behavior

The desired behavior of the system is as follows. Consider a vessel intending to pass from
the sea side to the river side of the lock, while the flood gates at both sides are closed. The
current tide is flood, meaning the sea side is the high-water side (as shown in Fig. 2). First,
the chamber is filled by opening the paddles in the flood gates at the sea side of the lock.
Subsequently, when there is equal water, the flood gates are opened. During opening, the
lock traffic lights are set to the red-green aspect. When the gates reach the open position, the
lock traffic lights are set to the green aspect, allowing the vessel to enter. Once the vessel
has entered the lock, the lock traffic lights are set to the red aspect and the gates and paddles
are closed. The water level is then lowered by opening the paddles in the flood gate at the
river side of the lock. Finally, when there is equal water at the river sea, the flood gates are
opened and the vessel can leave. Whenever the vessel is too high to pass under the bridge,
the bridge has to be open before the vessel can enter the lock. For vessels traveling in the
opposite direction, the process is similar.

2.2 Description and functionality of the Algera bridge

The Algera bridge, schematically depicted in Fig. 4, is used by land traffic, e.g., motorized
traffic, cyclists, and pedestrians, to cross the Hollandse IJssel river. It consists of four lanes:
a slow-traffic lane (for cyclists and pedestrians), two lanes for motorized traffic, and an
additional rush-hour lane for motorized traffic. The rush-hour lane reverses traffic directions
during the evening rush-hours. Whenever high vessels have to pass the bridge, the bridge
deck is swung upwards to provide clearance. To safely open the bridge, land traffic has to
be warned and stopped first.

504 Discrete Event Dynamic Systems (2020) 30:499–532

N

Motorized-traffic lane

Cyclists lane

Pedestrian lane

Rush-hour lane

100 m200 m500 m

150 m 300 m

Fig. 4 A schematic representation of the Algera bridge. Orange lights represent approach signs and red lights
represent stop signs. White triangles display the traffic direction

To warn motorized traffic in advance, approach signs are positioned before the bridge,
visualized by orange circles in Fig. 4. At the west side, approach signs are positioned at 100
m, 200 m, and 500 m before the bridge. At the east side, two approach signs are located
at 150 m and 300 m before the bridge. At both sides, approach signs are shared between
the standard lane and the rush-hour lane. Additionally, at both sides, stop signs are located
close to the bridge, visualized by red circles in Fig. 4. Each traffic lane has a set of two stop
signs. The rush-hour lane and slow-traffic lane both have a set of two stop signs at each side
of the bridge. Eight boom barriers are used to close the bridge for land traffic. The boom
barriers are opened and closed by electric motors. To warn the slow traffic, an extra buzzer
is installed near the boom barriers. Another, more powerful, motor is used to open and
close the bridge deck. An additional feature of the bridge is its connection to the emergency
service center. The center can request to keep the bridge closed if there is an emergency.

2.2.1 Desired controlled behavior

The desired behavior of the system is as follows. Consider a sailing ship intending to pass
under the bridge. First, on the bridge, the approach signs are activated, and after 15 seconds
the stop signs are activated. The buzzer to warn slow traffic activates 20 seconds after the
approach signs. When traffic is safely stopped, the operator gives a command to close the
boom barriers for the motorized traffic. This is done in two steps, first the entering boom
barriers (i.e., the boom barriers that block the motorized traffic from entering the bridge)
are closed. Subsequently, the leaving boom barriers (i.e., the boom barriers that block the
motorized traffic from leaving the bridge) are closed. Once these boom barriers are closed,
both slow-traffic boom barriers are closed by the operator. At the same time, the boom
barriers of the rush-hour lane are closed. The order depends on the direction of traffic at that
moment. When the land traffic has safely been stopped, the bridge deck can be opened. The
bridge is closed in the reversed order.

2.3 Description and functionality of the control panel

The Algera complex is operated from a control center nearby, where human operators mon-
itor the complex using camera images. For communication with vessels and bridge users,
marine radios and loudspeakers are available, respectively. An operator controls the lock
and the bridge from a graphical user interface (GUI) implemented on a PC. The PC is con-
nected via an optical fiber connection to the controller at the Algera complex. The important
part of the GUI for the Algera complex is shown in Fig. 5. Clickable buttons (e.g., start

505Discrete Event Dynamic Systems (2020) 30:499–532

SeaRiver

4.50 4.502.50

Capelle aan den IJssel

Krimpen aan den IJssel

Gate and paddle

Stop

Open gate

Stop levelling

Bridge

Stop

Open bridge

Stop traffic

Gate and paddle

Stop

Open gate

Start levelling 1 32

4

5

1

Fig. 5 Part of the graphical user interface of the Algera complex

leveling and open gate) are used to give commands to the supervisor. In total, there are 63
commands available to the operator. Not all of these commands are visualized in Fig. 5,
some windows will only show when that specific component is clicked (e.g., clicking on a
gate or barrier). The state of the system is also visually displayed as feedback for the opera-
tors. For example, the position of the gates, the position of the barriers, the aspect shown to
the vessels, and the water heights are visualized.

3 Preliminaries

In this section, the concepts and notations of supervisory control theory used in this paper
are summarized. First, modeling of discrete-event systems is discussed. Second, mod-
eling of requirements is discussed. Finally, supervisor synthesis and implementation of
supervisors is discussed.

3.1 Modeling of discrete-event systems

In the context of supervisor synthesis, systems are usually modeled by (extended) finite-
state automata (FAs) or Petri nets. Both formalisms are used to represent event-driven
behavior. In this paper, extended finite-state automata (EFAs) (Sköldstam et al. 2007) are
used as the modeling formalism. First FAs are introduced, followed by EFAs.

3.1.1 Finite-state automata

An FA is formally defined as a 5-tuple:

A = (L,Σ, δ, l0, Lm) (1)

where L is a finite set of locations, � a finite set of events, δ ⊆ L × � × L the transition
relation, l0 ∈ L the initial location, and Lm ⊆ L the set of marked locations. The event set
can be partitioned into controllable events �c and uncontrollable events �u, which denote
actions that can and cannot be disabled by the supervisor, respectively. The number of states

506 Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 6 Graphical representation of FAs (left and middle) and their synchronous product (right)

in an FA is equal to the number of locations that can be reached from the initial location,
usually equal to |L|.

For large systems, it is not feasible to model their behavior by a single FA, as the state
space is often too large. Instead, a system can be modeled as a set of several interact-
ing automata Ai (referred to as component models). The behavior of the combined set
of automata is given by the synchronous product A = A1 ‖ . . . ‖ An (Cassandras and
Lafortune 2008), which requires simultaneous execution of transitions labeled by the same
event.

Automata can be displayed graphically as well. Here, a (labeled) circle denotes a
location, an unconnected incoming arrow indicates the initial location, and a filled cir-
cle indicates a marked location. Controllable and uncontrollable events are visualized by
(labeled) solid and dashed arrows, respectively. An example is shown in Fig. 6. The right-
hand side automaton is the synchronous product of the other two automata. The automata
synchronize over the 1to2 event.

3.1.2 Extended finite-state automata

In Chen and Lin (2000) and Sköldstam et al. (2007), extended-finite state automata are used
for modeling systems. EFSs are FAs parameterized by bounded discrete variables. Formally,
an EFA is defined as E = (L, V,Σ, →, l0, v0, Lm), where V is the set of variables with
initial valuation v0, → the extended transition function, and the other elements are equal to
those for FAs. For an EFA, a state is a combination of a location and a valuation of the vari-
ables. The number of states in an EFA is equal to the number of combinations of locations
and variable valuations that can be reached from the initial location. In this paper, we only
consider Boolean variables, but in general bounded integers can also be used. Furthermore,
EFAs extend the transition relation with guard expressions (conditions) and variable assign-
ments (updates). Formally, the transition relation is defined as →⊆ L × C × Σ × U × L,
where C is the set of all conditions and U is the set of all updates. A transition is only
enabled when the associated condition evaluates to true. Whenever a transition is taken,
some of the variables may be updated. A condition is defined by the following grammar in
Backus-Naur Form:

〈cond〉 ::= T | F |vb | vl |〈cond〉 ∧ 〈cond〉|〈cond〉 ∨ 〈cond〉|¬〈cond〉 (2)

where T and F are true and false, respectively, vb is a Boolean variable, vl is a location
variable, ∧ is the AND operator, ∨ is the OR operator, and ¬ is the NOT operator. A location
variable is a reference to a location, denoted by <automaton> . <location>. It evaluates to
T if and only if the automaton is in that location.

507Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 7 Graphical representation of EFAs (left and middle) and their synchronous product (right)

An update consists of zero or more variable assignments of the form vb := c, where ‘:=’
denotes an assignment of the value of c to variable vb. It is not allowed for an update to have
multiple assignments for the same variable.

Two EFAs can be combined by computing the synchronous product. Let Ek =
(Lk, V k,Σk, →k, lk0 , vk

0, Lk
m), k = 1, 2 be EFAs. The synchronous product of E1 and E2

is
E1 ‖ E2 = (L1 × L2, V 1 × V 2,Σ1 ∪ Σ2, →, (l1

0 , l2
0), (v1

0, v2
0), L1

m × L2
m) (3)

where the transition relation → is defined as:

– ((l1
1 , l2

1), c1 ∧ c2, σ, (u1, u2), (l1
2 , l2

2)) ∈→ if σ ∈ Σ1 ∩ Σ2, and there exist
(l1

1 , c1, σ, u1, l1
2) ∈→1 and (l2

1 , c2, σ, u2, l2
2) ∈→2, and u1 and u2 do not have multiple

assignments for the same variable;
– ((l1

1 , l2
1), c1, σ, u1, (l1

2 , l2
1)) ∈→ if σ ∈ Σ1 \ Σ2 and (l1

1 , c1, σ, u1, l1
2) ∈→1;

– ((l1
1 , l2

1), c2, σ, u2, (l1
1 , l2

2)) ∈→ if σ ∈ Σ2 \ Σ1 and (l2
1 , c2, σ, u2, l2

2) ∈→2.

In case u1 and u2 have multiple assignments for the same variable, the synchronous product
is undefined. A location variable for a location l′ ∈ L1 ∪ L2 in a transition condition is
substituted by T if for that transition l′ = l1

1 or l′ = l2
1 , and to F otherwise.

An example of synchronization is shown in Fig. 7. The keywords when and do are used
to denote conditions and updates, respectively. In this example, the event lamp on is only
enabled when automaton X is in location Pushed. Q is a Boolean variable. The synchronous
product is shown on the right-hand side. Transitions with condition F are not displayed.

3.2 Modeling of requirements

For supervisor synthesis, the desired behavior of a system is given by a requirement model.
Requirement models can be defined, just like plants, using a collection of EFAs. EFAs are
especially useful when the order of events is of importance. Typically, other requirements,
such as safety requirements, can be formulated more concisely using state-based require-
ments (Ma and Wonham 2006; Markovski et al. 2010). State-based requirements come in
two types, event conditions and state exclusions.

Event-condition requirements provide conditions for an event to be enabled. For event
e and condition c, e needs c defines that e may only occur whenever c evaluates to T. A
condition is defined as in Eq. 2. Event-condition requirements can also be represented as
an EFA, such that the synchronous product with another EFA can be computed. The EFA
representation of an event-condition requirement is as shown in Fig. 8.

State-invariant requirements restrict the behavior of the plant by prohibiting combina-
tions of states. For condition Y over the (location) variables of the plant, all states where Y

evaluates to F are prohibited. A condition is defined as in Eq. 2. The synchronous product

508 Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 8 EFA representation of an
event-condition requirements e

needs c

of an EFA and a state-invariant requirement can be computed by removing in the EFA all
transitions to states where Y evaluates to F.

3.3 Supervisor synthesis

Supervisory control theory, initiated by Ramadge and Wonham (1987), provides a method
to derive a supervisor for a system. Given a model of the plant and a model of the control
requirements, a supervisor can be synthesized automatically. The supervisor restricts the
behavior of the system such that the following properties are always satisfied:

Safety The system cannot reach states or enable events that are forbidden by the
requirements.

Controllability Only controllable events are restricted by the supervisor.
Nonblockingness The system is always able to reach a marked state.
Maximal permissiveness The supervisor imposes the minimal restriction on the system

to satisfy safety, controllability, and nonblockingness.

By applying monolithic supervisor synthesis (see, e.g., Ouedraogo et al. (2011)), a single
supervisor is synthesized to control the plant. Traditionally, a single (E)FA is returned that
represents this supervisor.

As an example, consider automata V and W from Fig. 6 and requirement R: ‘process
needs A’. The synchronous product of V, W, and R is shown on the left-hand side of Fig. 9.
As can be seen, location (B,D) is a blocking state. Applying monolithic supervisor synthesis
on V ‖ W and R results in the right-hand side automaton in Fig. 9. As can be seen, event
produce is disabled in state (A,D), to resolve the blocking issue.

For large state spaces, returning a supervisor represented by a single automaton becomes
infeasible. The method of Miremadi et al. (2011) allows for a compact representation of
the synthesis result. It characterizes the restrictions of the supervisor as guards, extracted

Fig. 9 Synchronous product of V, W, and R (left) and a supervisor synthesized for V ‖ W and R (right)

509Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 10 The synthesis result for
V ‖ W and R, using the the
method of Miremadi et al. (2011)

during the synthesis procedure. The result is then an EFA with a single location and for each
controllable event in the plant a selfloop with the derived guard. The derived guards can
further help modelers to understand why some events become disabled after synthesis. The
supervisor is then represented by the original collection of component models, the original
collection of requirement models, and the extracted guards.

As an example, consider the right-hand side supervisor from Fig. 9. Instead of returning
the EFA in Fig. 9, the method of Miremadi et al. (2011) returns the EFA as shown in Fig. 10.
The supervisor is now represented by V ‖ W ‖ R ‖ G.

As already noted in Fabian et al. (2014), representing the synthesis result as guards has
further advantages when analyzing the supervisor. Often, for many events, synthesis does
not introduce additional guards. This implies that the supervisor does not have to impose
extra restrictions on these events to satisfy nonblockingness and controllability. Similarly,
sometimes events have guards that always evaluate to F, which indicates that these events
are never enabled. This is useful information when the behavior of the supervisor has to be
validated.

3.4 Implementation of supervisors

One of the main motivations of using supervisor synthesis is the possibility to generate
implementation code from the synthesized supervisor. This allows the supervisor to be
implemented on, e.g., a PLC controller or a microcontroller. Tools exist that can automati-
cally generate controller code given a discrete-event model of the supervisor. Examples of
such tools are CompileDES for libFAUDES (Moor et al. 2008), Supremica (Malik et al.
2017; Prenzel and Provost 2018), and CIF (van Beek et al. 2014). A detailed description of
code generation from discrete-event models is provided in Zaytoon and Riera (2017).

4 Modelingmethod

In this section, a method to obtain the necessary models for supervisor synthesis is
described. The focus is on obtaining models that can be used to synthesize a supervisor.
Based on this supervisor, controller code can be generated. The task of the supervisor is to
achieve the specified system’s behavior by turning on or off actuators, based on the value
of the sensors.

For modeling the plant, we apply ideas from component-based modeling. More specifi-
cally, we use (small) models for the components and glue the models by interaction models,
to obtain a model of the plant. For the requirements, we identify textual formats that can
straightforwardly be translated into models. This method produces models that show sim-
ilarities to the models of a theme park vehicle (Forschelen et al. 2012), a patient support
table for an MRI scanner (Theunissen et al. 2014), a FESTO production line (Reijnen et al.
2018), and a driver assistance system (Korssen et al. 2018). While these papers all present
their models in detail, none of them discusses a method to obtain those models. In this

510 Discrete Event Dynamic Systems (2020) 30:499–532

section, firstly component-based modeling is discussed. Secondly, a method for obtaining
a plant model is given. Finally, different types of textual formats are discussed that can
straightforwardly be modeled.

4.1 Component-basedmodeling

Component-based modeling is a modeling paradigm that uses the fact that large systems
can be obtained by assembling smaller components, i.e., building blocks. Each component
can be modeled separately. These components can be reused in different parts of the system.
This way of modeling has proven to be successful for software-engineering applications
(Crnkovic 2001). The advantages of component-based modeling are observed to be useful
for modeling for supervisor synthesis as well, as discussed in Kovács and Piétrac (2009),
Kovács et al. (2012), and Huang et al. (2015). However, they do not discuss how these
component models can be obtained for other applications.

In Gössler and Sifakis (2005), composition of component-based models is discussed.
There, behavioral models and interaction models are used. Behavioral models describe the
dynamics of components. Interaction models describe the constraints on the behavior of
components caused by other components. In this way, large systems can be composed. In
the rest of this paper, we refer to physical relation models instead of interaction models.

In supervisory control papers, e.g., Balemi et al. (1993) and Roussel and Giua (2005),
it is shown that it is advantageous to model the plant based on the inputs and outputs
(IOs) of the control unit of the system. As the interface is already present in the model,
the implementation of the supervisor is straightforward. The inputs correspond to sensors
and (digital) commands, and the outputs correspond to actuators. These models also fit the
component-based modeling framework: each sensor, command, and actuator can be mod-
eled as a separate (reusable) component, and the physical relations between the components
can be modeled as interaction models. Subsequently, these models can be composed to
obtain the plant model.

This way of modeling produces loosely-coupled component models for all sensors, com-
mands, and actuators in the plant. This is advantageous, as there is a lot of similarity between
these component models, allowing for the re-use of models via templates. In Grigorov et al.
(2011), it is shown that the use of templates greatly reduces modeling time and effort for the
plant. This reduced effort is even more noticeable when component templates are reused in
different projects.

4.2 The plant model

When modeling the plant, the first step is to make component models for all sensors, com-
mands, and actuators in the plant. The IO signals can be divided in four groups: Boolean
input and output signals, and integer input and output signals (originating from analog
signals).

4.2.1 Boolean input and output signals

For Boolean signals, a component model can be obtained by modeling the value of the
signal as a location and the change of the value as an event. Uncontrollable and control-
lable events are used to represent changes in the values of inputs (i.e., sensors) and outputs
(i.e., actuators), respectively. Secondly, the initial location and marked locations should be

511Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 11 Component models for a Boolean input (left) and a Boolean output (right)

chosen. Typically, the marked locations are all ‘safe’ locations. In Fig. 11, examples of
models for Boolean signals are shown.

Sometimes, it is desired to have one event that changes two signals at once. For example,
for a traffic light, an event can be used to represent a switch between aspects, instead of
separate events for switching individual lamps. In that case, multiple signals can be modeled
as one component. An example of this is provided in Section 5.1.3.

4.2.2 Integer input and output signals

For integer sensor signals, the values of the signals are mapped to a set of discrete states.
Which states to choose depends on the requirements that are modeled later. Events relate
to changes between the states. For example, consider a water tank with an integer signal
from a water-height sensor. The signal value ranges between 0 and 100. Assume that two
requirements are defined. The first requirement states that a pump may only start when
the value drops below a lower threshold (< 20). The second states that a pump may only
stop when the value exceeds an upper threshold (> 80). Consequently, three states can be
identified, below the lower threshold, above the upper threshold, and nominal. The mapping
between the signal value and the state set is as shown on the left-hand side of Fig. 12. The
component model is as shown on the right-hand side of Fig. 12.

For integer actuator signals, the states of the component model are mapped to signal
values. For example, consider an integer signal for a filling pump. The signal value ranges
between 0 and 100. For the requirements, it is necessary to distinguish between no flow (0),
low flow rate (30), and high flow rate (100). The mapping between the states and the signal
value is then as shown on the left-hand side of Fig. 13. The component model is as shown
on the right-hand side of Fig. 13.

4.2.3 Physical relation models

Aside from modeling the behavior of the individual components, the physical relations (or
interaction models in Gössler and Sifakis (2005)) between the different components need
to be modeled as well. In Zaytoon and Carré-Ménéatrier (2001), it has been shown that
not including these physical relations may lead to deadlocks in real systems that have been

Fig. 12 Mapping between signal value and states (left) and component model for the sensor (right)

512 Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 13 Mapping between states and signal value (left) and component model for the actuator (right)

proven to be deadlock-free in the model. That is because the modeled behavior contains
actions that cannot occur in the real system. These relations are present if a sensor measures
the behavior of a certain actuator, or between two sensors that measure the same actuator.

As an example, consider the filling pump and the water-height sensor from Section 4.2.2.
For this example, it is only possible to measure an increase in water height whenever the
filling pump is on. This physical relation has to be modeled explicitly in order to correctly
capture the behavior of the plant. In this method, we choose to model the physical relations
as guards. In Fig. 14, this physical relation model is shown. Here, S and A refer to the
previous sensor and actuator model, respectively.

In many cases, deriving the physical relations between components is straightforward,
as they are often simple. Alternatively, the physical relations between components can be
derived via the method of Chandra and Kumar (2002). There, they derive the relations from
a hybrid model, similar to the hybrid model we use for simulation, see Section 6.

4.3 The requirement model

To model the requirements, the notions used in the textual requirements should relate to
events and locations in the plant model. Because of the component-based modeling, this
means that the requirements should relate to sensors, commands, or actuators. While this
might seem restrictive, this is also how control engineers program PLCs in practice. Fur-
thermore, observers can be used to do state reconstruction, such that information that is
not directly available from the sensors can be used. For example, in Sampath et al. (1995),
observers are used to diagnose whether a fault has occurred.

To ease the requirement modeling process, we identify textual requirements formats
that can straightforwardly be modeled. The requirement model can then be obtained
by reformulating requirements in design documents to these formats. We consider four
forms: event-condition requirements, event-order requirements, timer-based requirements,
and state-in-variant requirements. Experience with case studies, for example, in Markovski
et al. (2010), Forschelen et al. (2012), and Reijnen et al. (2018), has shown that in gen-
eral requirements can be reformulated in this way. In the following subsections, for each
requirement type it is discussed which textual requirement it represents and how it can be

Fig. 14 The physical relation model

513Discrete Event Dynamic Systems (2020) 30:499–532

modeled. The textual requirement formats, directly leading to formal models, are given in
the Backus-Naur Form (BNF) notation.

4.3.1 Event-condition requirements

Event-condition requirements are expressions that specify when an event is allowed to
occur, based on a condition in the form of propositional logic. The textual form of these
requirements in BNF is:

<component> may only | may not <event> when <condition>

where <component> refers to a component model, <event> to an event in this component
model, and <condition> to a propositional logic formula over the variables and locations
in the plant. This textual requirement can be modeled with event-condition requirements as
defined in Section 3.2. A may only requirement is modeled as in Eq. 4, whereas a may not
requirement is modeled as in Eq. 5.

component.event needs condition (4)

component.event needs¬condition (5)

An example of a textual requirement in this form is: The gate may only close when the
traffic light shows a red aspect. Here, the gate is the component, close is the event, and
the traffic light shows a red aspect is the condition. This condition can be expressed by
variables from the plant models: the current location of the red and green sensor should be
on and off, respectively.

4.3.2 Event-order requirements

Event-order requirements specify in which order events are allowed to occur. The textual
forms of these requirements in BNF is:

First, <component> may <event> [when <condition>]{, then, <component> may
<event> [when <condition>]}

Here, [] and { } denote an optional argument and a (zero or more) repeating argument,
respectively. This textual requirement can be modeled with an EFA requirement, where each
step is a transition with an (optional) condition. An example of a textual requirement in this
form is: First, the traffic light may show a red-green aspect when the gate is open, then the
traffic light may show a green sign aspect, then the traffic light may show a red sign aspect.
Modeling of this event-order requirement is as shown in Fig. 15.

Fig. 15 Example of an event-order requirement

514 Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 16 Model of a timer for condition condition

4.3.3 Timer-based requirements

Timer-based requirements are expressions specifying that an event may only occur after a
certain condition holds for a minimum time interval. The textual form of this requirement
in BNF is:

<component> may only <event> x time units after <condition>

Above, the definitions of <component>, <event>, and <condition> are similar to the
event-condition requirements.

To model a timer-based requirement, a timer is introduced. A timer measures how long
a condition condition holds. The timer can start when the condition is satisfied and
can stop when the condition is no longer satisfied. If the timer is running, a timeout event
represents that the condition holds long enough. A model of this timer is shown in Fig. 16.
The requirement is modeled as shown in Eq. 6. Note that in this model, the time is not
explicitly modeled. This is included later, see Section 6.1.

component.event needs condition ∧ T.Finished (6)

An example of a textual requirement in this form is: The boom barrier may only close
10 seconds after the warning signs are enabled. Here, The boom barrier is the component,
close is the event, and the warning signs are enabled is the condition.

4.3.4 State-invariant requirements

State-invariant requirements are expressions that specify conditions that must always hold.
The textual form of this requirement in BNF is:

<condition>

An example of a textual requirement in this form is Gate 1 and gate 2 may not be open
simultaneously. This condition can be expressed in terms of elements of a plant model like:
‘not (gate1.sensor.open and gate2.sensor.open)’.

5 Model development

To synthesize a supervisor for the Algera complex, a model of the plant and a model of
the control requirements are required. For the plant model, a set of component templates is
used, as recommended in Section 4. In Section 5.1, the templates for the plant models are

515Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 17 Template of single output actuator A (left), single input sensor S (right), and the actuator-sensor
physical relations (bottom)

introduced. The plant and requirement models for the Algera lock and the Algera bridge are
described in Sections 5.2 through 5.6. In Section 5.7, the synthesis result is discussed.

5.1 Plant component templates

The modeling of the plant is based on the inputs and the outputs of the Algera (PLC) control
unit. The full list of control inputs and outputs, on which the templates are based, can be
found in the repository, see Reijnen et al. (2020). Based on this list, a set of templates has
been defined. These templates are re-usable for different components in the system. For the
Algera complex, in total 16 templates are used to represent the behavior of 176 actuators
and sensors and 63 commands. The templates are provided in the subsequent subsections.

5.1.1 Single input - single output template

An often encountered combination is a single actuator (output) with a single sensor (input)
for feedback, for example, an approach sign. Both the actuator and the sensor are mod-
eled by an automaton consisting of two locations, On and Off, shown in the upper left
and upper right of Fig. 17, respectively. As is usual, the actuator events are controllable
(denoted by c) and the sensor events are uncontrollable (denoted by u). The physical
relation between those components is that the sensor can only switch on (or off) after the
actuator has been activated (or deactivated). These physical relations are modeled as the
bottom EFA in Fig. 17.

5.1.2 Double input - double output template

Another often encountered combination is an actuator that can move in two directions (two
outputs) together with two end-position sensors (two inputs), for example, an electric cylin-
der actuating a lock gate. Since it is never desired to actuate in both directions, this behavior
is blocked by a low-level controller. Instead, only the Closing, Rest, and Opening
behavior is included in the actuator template, shown in the upper left of Fig. 18. There are
two stop events: c emrgStop and c endStop, to distinguish between an emergency stop
and a regular end-position stop. The two end-position sensors (S Closed and S Open) are
modeled as the sensor from Fig. 17. There is a physical restriction that both sensors cannot
be on simultaneously; this is modeled as the upper-right automaton in Fig. 18. The relation
between the actuator and the sensors is that the sensors can only switch on or switch off
when the actuator is moving in a certain direction, represented by the bottom automaton in
Fig. 18.

516 Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 18 Template of double output actuator A (left), the sensor-sensor physical relations (right), and the
actuator-sensor physical relations (bottom)

5.1.3 Traffic light template

The traffic light templates are used to represent the behavior of the lock traffic light and
the behavior of the bridge traffic light. The lock traffic light consists of three outputs (an
output for each individual lamp), whereas the bridge traffic light consists of two outputs.
Each lamp is equipped with a sensor for feedback. Only a few output combinations are
allowed, such that only legal aspects can be displayed. For the lock traffic light these are:
RedRed, Red, RedGreen, and Green. For the bridge traffic light these are: Red and
Green. Furthermore, some transitions are not allowed, such as switching from the Red
aspect directly to the Green aspect for the lock traffic light.

A low-level controller makes sure that only legal aspects can be displayed. For the events,
it is chosen to model an aspect switch as an event (instead of switching a lamp on or off).
This is advantageous when specifying requirements as they also refer to aspect switches.
Still, aspect switches can directly be related to control outputs. An additional event is used
to represent the switch to the red aspect, in case of an emergency. The templates for the lock
traffic light actuator and the bridge traffic light are shown in Figs. 19 and 20, respectively.
The template for the sensors is similar to the sensor template in Fig. 17 (one for each lamp);
the differences are in the initial and marked location for the red lamp sensor (which is the

Fig. 19 Template of the lock traffic light actuator A (top), the top red lamp sensor-actuator physical relations
(middle left), the green lamp sensor-actuator physical relations (middle right), and the bottom red lamp
sensor-actuator physical relations (bottom)

517Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 20 Template of the bridge traffic light actuator A (top), the red lamp sensor-actuator physical relations
(bottom left), and the green lamp sensor-actuator physical relations (bottom right)

On location). The interaction between the sensor and the actuator is that the sensor can only
switch on or off when the lamp is activated or deactivated in the current aspect, respectively.
For the lock traffic light sensors (S Red, S Green, and S Red2) and the bridge traffic
light sensors (S Red and S Green), the physical relation models are shown in Figs. 19
and 20, respectively.

5.1.4 User-interface template

Commands from an operator are given via buttons, and are implemented in the graphical
user interface. A variety of commands is available, for example, opening a boom barrier,
changing traffic light aspects, or activating the emergency stop. There are different types of
commands per component. Moving components (e.g., gates, paddles, and boom barriers)
can be opened, closed, and stopped, whereas others are more specific, e.g., the lock and
bridge traffic lights. The commands available for the moving components are modeled as
the automaton on the upper left-hand side of Fig. 21. Here, the behavior is such that different
commands can never be active simultaneously. Instead, a new command overrules the old
command, which is how the GUI is implemented. The emergency stop is modeled as the
automaton on the upper right-hand side of Fig. 21. The commands for the lock and bridge
traffic light are shown on the bottom left-hand side and bottom right-hand side of Fig. 21,
respectively.

Fig. 21 Template for the movable components commands (top left), for the emergency stop (top right), for
the lock traffic light commands (bottom left), and for the bridge traffic light commands (bottom right)

518 Discrete Event Dynamic Systems (2020) 30:499–532

Table 1 Component models for the Algera lock

Component type Component template Number States

Gate Double input - double output 10 9

Paddle Double input - double output 10 9

Lock traffic light Lock traffic light 4 32

Bridge traffic light Bridge traffic light 2 8

Equal water sensor Single input sensor 2 2

Gate command Movable component command 5 3

Paddle command Movable component command 5 3

Lock traffic light command Lock traffic light command 2 4

Bridge traffic light command Bridge traffic light command 1 2

Emergency stop Emergency stop 1 2

5.2 Plant model of the Algera lock

The plant model for the Algera lock is based on the IO of the control unit that controls the
lock, the commands available from the GUI, and the functional description of the compo-
nents. The components of the lock can be divided into five distinct types: gates, paddles,
lock traffic lights, bridge traffic lights, and equal water sensors. The behavior of the gates
and paddles is modeled as the double input - double output template. In total, there are ten
gates and ten paddles, all controlled individually. At both sides, there are two lock traf-
fic lights. There are two bridge traffic lights inside the lock. The three analog water-height
sensors are modeled as two discrete equal-water sensors. If the analog value of two water-
height sensors differs by at most a specified margin, the equal-water sensor is on, otherwise
it is off. The commands available to the operator relate to opening and closing a set of gates
or paddles, or switching aspects. For each component, Table 1 lists the model template, the
number of instantiations, and the number of states. The number of states in the synchronous
product of all the component models equals 1.2 × 1034.

5.3 Requirement model of the Algera lock

For the lock to function in a safe and desired manner, a set of textual requirements has
been specified by Rijkswaterstaat. These requirements, as given in the design documents
(available in the repository, see Reijnen et al. (2020)), are listed below. In the requirements,
downstream and upstream refer to the sea side and the river side of the lock, respectively.

1. The lock traffic lights may only display a green aspect when:

(a) the gates at that side are open, and
(b) the bridge traffic lights at that side display a red aspect (downstream only).

2. The bridge traffic lights may only display a green aspect when:

(a) the gates at the downstream side are open, and
(b) the lock traffic lights at that side display a red or a double-red aspect.

3. The gates may only close when:

(a) the lock traffic lights at that side display a red or double-red aspect, and

519Discrete Event Dynamic Systems (2020) 30:499–532

(b) the bridge traffic lights at that side display a red aspect (downstream only).

4. The gates may only open when:

(a) at least one set of gates and its paddles at the other side is closed, and
(b) there is equal water at that side.

5. The paddles may only open when at least one set of gates and its paddles at the other
side is closed.

6. Whenever a gate is not closed, its paddles are open.
7. When the emergency stop is active:

(a) the red aspect has to be displayed, and
(b) no other aspect can be displayed.

8. When the emergency stop is active:

(a) the moving components have to stop via the emergency stop, and
(b) the moving components cannot start opening or closing.

9. Actuators have to stop when they reach their end position.
10. Actuators may only start when the operator gives the corresponding command.
11. Aspects may only be displayed when the operator gives the corresponding command.

Requirements 1-5, and 7-11 are modeled as event-condition requirements, which are given
in Table 2. The events listed in the left column are only enabled when the condition in the
right column is satisfied. Some requirements are listed twice, as they are imposed on both
sides of the lock (e.g., Requirement 1a.). For brevity, abbreviations are used, these are listed
in the table’s caption. Note that Requirements 7 and 11 are imposed on every traffic light and
Requirements 8, 9, and 10 are imposed on every gate and paddle. Requirement 6 is modeled
as a state-invariant requirement, where Gate.Closed ∨ Paddle.Open should always
be satisfied, for all ten sets of gates and paddles. As can be seen, almost all requirements are
of one of the forms defined in Section 4.3. Exceptions are Requirements 7a, 8a, and 9 that
state that something should happen. For this, each component model contains an emergency
event, which is only enabled when the emergency stop is activated.

There are two advantages of using event-condition requirements instead of automata-
based requirement models. The first advantage is size. All the event-condition requirements
can also be modeled using FAs. This is done by taking the synchronous product of all the
FAs related to a condition, and adding a selfloop of the event in the locations where the
condition evaluates to T. For Requirement 5 this would result in an FA with 2.8 × 1011

locations. The second advantage is the similarity to concepts used by PLC control engineers,
such as ladder diagrams and function block diagrams, that also utilize propositional logic.

5.4 Plant model of the Algera bridge

The components of the Algera bridge can be divided into approach signs, stop signs, boom
barriers, bridge deck, sound signals, and light signals. There are two control outputs to
switch on the five approach signs: one control output for the two outer most, and one control
output for the remaining three. Each approach sign is equipped with a sensor for feedback.
The stop signs are controlled by two outputs: one control output for the rush-hour lane
stop signs, and a second one for the other stop signs. Each stop sign is again equipped
with a sensor for feedback. All the boom barriers are actuated with an electric motor that
is controlled by two outputs, for moving upwards and for moving downwards. Each boom

520 Discrete Event Dynamic Systems (2020) 30:499–532

Table 2 Event-condition requirements for the Algera lock. Abbreviations: A: Actuator, S: Sensor, LTL:
Lock traffic light, BTL: Bridge traffic light, .U/.D: every gate, paddle, or traffic light at the upstream or
downstream side, respectively, E/F/SF: every gate/paddle from the ebb, flood, or storm flood gate type,
respectively. State abbreviations: Open: S Open.On ∧ A.Rest, Closed: S Closed.On ∧ A.Rest,
Red: S Red.On ∧ S Green.Off ∧ S Red2.Off ∧ A.Red, RedRed: S Red.On ∧ S Green.Off ∧
S Red2.On ∧ A.RedRed

Req. Event(s) Condition

1a LTL.U.A.c g Gates.U.Open

1a LTL.D.A.c g Gates.D.Open

1b LTL.D.A.c g BTL.D.Red

2a BTL.D.A.c g Gates.D.Open

2b BTL.D.A.c g LTL.D.Red ∨ LTL.D.RedRed

3a Gates.D.A.c close LTL.D.Red ∨ LTL.D.RedRed

3b Gates.D.A.c close BTL.D.Red

3a Gates.U.A.c close LTL.U.Red ∨ LTL.U.RedRed

4a Gates.D.A.c open (Gates.UE.Closed ∧ Paddles.UE.Closed) ∨
(Gates.UF.Closed ∧ Paddles.UF.Closed)

4b Gates.D.A.c open EqualWater.D.On

4a Gates.U.A.c open (Gates.DE.Closed ∧ Paddles.DE.Closed) ∨
(Gates.DF.Closed ∧ Paddles.DF.Closed) ∨
(Gates.DSF.Closed ∧ Paddles.DSF.Closed)

4b Gates.U.A.c open EqualWater.U.On

5 Paddles.D.A.c open (Gates.UE.Closed ∧ Paddles.UE.Closed) ∨
(Gates.UF.Closed ∧ Paddles.UF.Closed)

5 Paddles.U.A.c open (Gates.DE.Closed ∧ Paddles.DE.Closed) ∨
(Gates.DF.Closed ∧ Paddles.DF.Closed) ∨
(Gates.DSF.Closed ∧ Paddles.DSF.Closed)

7a A.c emrg EmrgStop.Activated

7b {A.c rr, A.c rg, A.c g} EmrgStop.Deactivated

8a A.c emrgStop EmrgStop.Activated ∨ Command.Stop

8b {A.c close, A.c open} EmrgStop.Deactivated

9 A.c endStop (A.Opening ∧ S Open.On) ∨
(A.Closing ∧ S Closed.On)

10 A.c open Command.Open

10 A.c close Command.Close

11 A.c rr Command.RedRed

11 A.c r Command.Red

11 A.c rg Command.RedGreen

11 A.c g Command.Green

barrier has two end-position sensors. The bridge deck is actuated in a similar way, and also
contains two end-position sensors. Furthermore, there is a buzzer close to the cyclists lane
that can be activated and there are light signals on the boom barriers. Finally, sometimes
emergency services request the bridge to be kept closed, which is an additional control input.
For each component, Table 3 lists for each component, the model template, the number of

521Discrete Event Dynamic Systems (2020) 30:499–532

Table 3 Plant models for the Algera bridge

Component type Component template Number States

Approach sign actuator Single output 2 2

Approach sign sensor Single input 5 2

Stop sign actuator Single output 2 2

Stop sign sensor Single input 12 2

Boom barrier Double input - double output 8 9

Bridge deck Double input - double output 1 9

Sound signal Single output 1 2

Light signal Single output 1 2

Close request Single input 1 2

Land traffic stop command Movable component command 1 3

Barrier command Movable component command 5 3

Bridge deck command Movable component command 1 3

Emergency stop Emergency stop 1 2

Timer Timer 8 3

instantiations, and the number of states. The number of states in the synchronous product of
all the component models equals 1.9 × 1023.

5.5 Requirement model of the Algera bridge

Similar to the Algera lock, a set of textual requirements for the bridge has been specified
by Rijkswaterstaat. These requirements, as given in the design documents (available in the
repository, see Reijnen et al. (2020)), are listed below. Furthermore, Requirements 8-10
from Section 5.3 are also imposed on the bridge, but are not repeated in this subsection, for
brevity.

1. The stop signs may only turn on 15 s after the approach signs are on.
2. The sound signal may only turn on 20 s after the approach signs are on.
3. The entering barriers may only close 15 s after the stop signs are on.
4. The leaving barriers may only close 1 s after the entering barriers are closed.
5. The rush-hour and slow-traffic barriers may only close when the leaving barriers are

closed.
6. The slow-traffic barriers may only close 6 s after the sound signal is on.
7. The bridge may only open when all barriers are closed.
8. The barriers may only open when the bridge is closed.
9. The entering barriers may only open 1 s after the leaving barriers are open.

10. The stop signs may only turn off when the barriers are open.
11. The near approach signs may only turn off 60 s after the stop signs are off.
12. The far approach signs may only turn off 60 s after the near approach signs are off.
13. The barriers may not close and the bridge may not open when the close request has

been given.

Requirements 1-13 are modeled as event-condition requirements, shown in Table 4. The
events listed in the left column are only enabled when the condition in the right column is
satisfied. The index i is used to distinguish between the different boom barriers. Entering

522 Discrete Event Dynamic Systems (2020) 30:499–532

Table 4 Event-condition requirements for the Algera bridge. Abbreviations: A: Actuator, S: Sensor, LTAS:
land traffic approach signs, LTSS: land traffic stop signs. State abbreviations: LTAS.On: every approach
sign sensor and actuator in state On, LTSS.Off/On: every stop sign sensor and actuator in state Off/On,
Barriers.Closed/ Open: every barrier sensor in state S Closed.On/S Open.On and every actuator
in state Rest

Req. Event(s) Condition

1 {LTSS.MainLane.A.c on, LTAS.On ∧
LTSS.SwitchLane.A.c on, LTAS.On15Timer.Finished

Barriers.Light.A.c on}
2 Barriers.Sound.c on LTAS.On ∧

LTAS.On20Timer.Finished

3 Barriers.Bi.A.c close LTSS.On ∧
i ∈ {3, 6} LTSS.On15Timer.Finished

4 Barriers.Bi.A.c close Barriers.B3.Closed ∧ Barriers.B6.Closed ∧
i ∈ {2, 7} Barriers.B3B6Closed1Timer.Finished

5 Barriers.Bi.A.c close Barriers.B2.Closed ∧ Barriers.B7.Closed

i ∈ {1, 4, 5, 8}
6 Barriers.Bi.A.c close Barriers.Sound.On ∧

i ∈ {4, 8} Barriers.SoundOn6Timer.Finished

7 Deck.A.c open Barriers.Closed

8 Barriers.Bi.A.c open Deck.Closed

i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
9 Barriers.Bi.A.c open Barriers.B2.open ∧ Barriers.B7.open ∧

i ∈ {3, 6} Barriers.B2B7Open1Timer.Finished

10 {LTSS.MainLane.A.c off Barriers.Open

LTSS.SwitchLane.A.c off,

Barriers.Light.c off}
11 LTAS.Near.A.c off LTSS.Off ∧ LTSS.Off60Timer.Finished

12 LTAS.Far.A.c off LTAS.Near.Off ∧ LTAS.NearOff60Timer.Finished

13 Barriers.Bi.A.c close ¬CloseRequest.On

i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
13 Deck.A.c open ¬CloseRequest.On

boom barriers, leaving boom barriers, slow-traffic boom barriers, and rush-hour boom bar-
riers are denoted by 3 and 6, 2 and 7, 4 and 8, and 1 and 5, respectively. As can be seen, all
requirements can be expressed as defined in Section 4.3.

5.6 Requirement model of the Algera lock-bridge combination

For the Algera lock and Algera bridge combination to function properly, there are four
requirements that express interaction between the two subsystems. These requirements are
as follows:

1. The bridge may only move when:

(a) the gates are not moving, and
(b) the bridge traffic lights display a red aspect, and

523Discrete Event Dynamic Systems (2020) 30:499–532

Table 5 Event-condition requirements for the lock-bridge combination. Requirement 2 for the gates is
imposed on every gate (ten in total)

Req. Event(s) Condition

1a {Deck.A.c open, Deck.A.c close} Gates.D.Rest ∧ Gates.U.Rest

1b {Deck.A.c open, Deck.A.c close} BTL.D.Red

1c {Deck.A.c open, Deck.A.c close} LTL.U.Red ∨ LTL.RedRed

2 {Gate.A.c open, Gate.A.c close} Deck.A.Rest

3 BTL.D.A.c g Deck.Closed ∨ Deck.Open

4 LTL.U.A.c g Deck.Closed ∨ Deck.Open

(c) the lock traffic lights display a red or double-red aspect.

2. The gates may only open or close when the bridge is not moving.
3. The bridge traffic lights may only display a green aspect when the bridge is fully open

or fully closed.
4. The lock traffic lights may only display a green aspect when the bridge is fully open or

fully closed.

In Table 5, these requirements are defined formally.

5.7 Supervisor synthesis

A supervisor has been synthesized from the plant and requirement models. For synthesis, the
CIF 3 toolset (van Beek et al. 2014) has been used. The synthesis algorithm implemented in
CIF 3 is based on the algorithm proposed in Ouedraogo et al. (2011). The implementation of
the synthesis algorithm in CIF 3 uses the (BDD-based) method of Miremadi and Lennartson
(2016) to represent the models symbolically during synthesis. BDDs can be used to com-
pactly and effectively represent a large state space (Vahidi et al. 2006). Even if the number of
states is large, the number of nodes in its corresponding BDD can still be manageable. The
results of the synthesis procedure for the lock, the bridge, and the lock-bridge combination
are shown in Table 6. ‘Plant state space’ denotes the number of states in the synchronous
product of all component models. ‘Supervisor state space’ denotes the number of states in
the synthesized supervisor. For this case study, the supervisor state space is smaller than
the plant state space, as the supervisor restricts the plant from reaching undesired or unsafe
states.

When analyzing the synthesized supervisor (available in the repository, see Reijnen et al.
(2020)), i.e., the guards returned by the synthesis algorithm, it is observed that extra guards
are imposed on opening the gates and closing the paddles. These guards are imposed to
satisfy the state-invariant requirement (Requirement 6 of Section 5.3). There are no extra

Table 6 State-space sizes, numbers of requirements, and computation times

System Plant state space Number of Requirements Supervisor state space Computation time [s]

Lock 1.2 × 1034 306 1.1 × 1022 2

Bridge 1.9 × 1023 155 4.2 × 1012 114

Lock-bridge 2.3 × 1057 491 4.5 × 1034 2,080

524 Discrete Event Dynamic Systems (2020) 30:499–532

guards on the other events to satisfy nonblockingness or controllability. In this case, the
computation time for the three supervisors is reasonable, considering the state-space sizes.

6 Simulation-based validation of the synthesized supervisor

Although the system is guaranteed to behave according to the requirements, the resulting
controlled behavior might not be as expected. This can be caused by the fact that beforehand
it is not known whether the textual requirements are complete and correct. For example,
requirements could be too strict and as a result, the supervisor could prevent reaching parts
of the desired behavior. Hence, the behavior of the controlled system has to be validated.
Simulation with visualization is used to validate whether the behavior of the controlled
system is consistent with the intended behavior. The separate modeling of the Algera lock
and the Algera bridge is advantageous for validation. For this, both controlled systems have
first been simulated independently, before being combined.

While it is possible to simulate the discrete-event model, it is easier to validate the behav-
ior using a more advanced simulation model in which hybrid behavior is included. For this,
the discrete-event plant model is enriched with continuous behavior, using hybrid automata
as defined in Henzinger (2000). The model of the hybrid plant is discussed in the next
subsection and the validation in the subsection thereafter.

6.1 Hybrid plant model

A hybrid plant model is obtained by extending the discrete-event model used for synthesis
with continuous behavior. Continuous behavior is modeled by introducing continuous vari-
ables that change their values due to the passing of time. How the value of a continuous
variable evolves is defined by a differential equation that can depend, for example, on the
current location of a component model (i.e., a location variable). Additionally, continuous
variables may change their values during a state transition, which is modeled by an update.

For the components that move in two directions, such as boom barriers, which are rep-
resented by the double input - double output template of Section 5.1.2, the hybrid model
is shown in Fig. 22. Only the model of the physical relation between sensor and actuator
is different from the discrete model. The left-hand side depicts this relation. The continu-
ous variable α represents the angle of movement. Here, the sensor events occur depending
on the value of α compared to a constant value, representing the fully closed or fully open
movement angle, αclosed and αopen, respectively. The right-hand side lists the differential

Fig. 22 Hybrid model of the two input - two output physical relation. A. denotes a reference to actuator A

525Discrete Event Dynamic Systems (2020) 30:499–532

Fig. 23 Hybrid model of a timer with duration T

equations of continuous variable α. It states that α increases if the actuator is in the state
Opening and the value of α is smaller than αopen. When the actuator is in the Closing
location and larger than αclosed, the value of α decreases. In all other situations, the value of
α remains constant.

The discrete-event model of the timer, see Section 4.3.3, is extended with continuous
behavior as well. The hybrid model is shown in Fig. 23. On the left-hand side, the automaton
model is shown. A continuous variable y is introduced to represent the remaining time of the
timer. On the right-hand side, the differential equation of continuous variable y is shown.
The value of y decreases when the timer is in the running location. The event c start
updates (denoted by the keyword do) the value of y to the desired timer value T . When
y ≤ 0, a transition to the Finished state occurs.

6.2 Visualization

The hybrid plant model is connected to a visualization of the system, shown in Figs. 2, 4,
and 5. The properties of the objects in this image, e.g., color, visibility, rotation, and dimen-
sions, are connected to the locations of automata and the values of continuous variables in
the model. Here, we animate the behavior of the gates, the traffic lights, the boom barri-
ers, and the bridge deck. The use of a simulation-based validation allows to visualize the
behavior of the system, and, in turn, makes validation more straightforward.

6.3 Validation steps

The behavior of the (hybrid) plant model with respect to the real system has been validated
as follows. Firstly, we derived all functionalities of the sensors and actuators from the design
documentations. In these documents, the function of each actuator and sensor is described.
Secondly, we consulted both the control engineers who maintain the current control system
of the complex and the mechanical engineers that built the civil part.

The validation of the controlled system is accomplished by performing Factory Accep-
tance Tests (FAT) on the simulation model. The FAT protocols were obtained from
Rijkswaterstaat. The protocols describe operator scenario’s (e.g., which commands to give)
and the required system’s response. Typically, responses are starting a process when a
command is given, or not executing a command when it is unsafe to do so. By sub-
jecting the simulation to these tests, it can be checked whether the supervisor adheres
to the requirements that Rijkswaterstaat specified for the control systems. Furthermore,
for Rijkswaterstaat, supervisor synthesis provides an analysis of the completeness of their
requirements. In other words, it answers the question whether the set of specified require-
ments leads to desired controlled behavior described in the protocols. This can be checked
as the supervisor is synthesized from these requirements.

526 Discrete Event Dynamic Systems (2020) 30:499–532

The FAT focuses on three categories: 1) the behavior under normal conditions, 2) the
behavior when the emergency stop is pushed, and 3) the behavior under component mal-
functions. In this project, we focused on the first two categories. All tests showed the
behavior as described in the FAT protocols, except one test. This was due to a missing
requirement in the original specification. This requirement is related to the safe functioning
of the gates in combination with the bridge traffic lights. We proposed a new require-
ment to obtain the correct behavior (Requirement 3b, of Section 5.3). In the meantime,
Rijkswaterstaat has added this requirement to their set of safety requirements.

6.4 Discussion

While simulating the test scenario’s increases the confidence in the correct behavior of the
controlled system, it is not exhaustive, because only parts of the state space are explored.
Although synthesis guarantees the absence of unsafe behavior in the other parts, it cannot
guarantee the presence of desired behavior. For example, in general, it cannot be guaranteed
that something should always happen. The validation could further be improved by verifying
the desired behavior with properties from modal logic. For example, it would be useful
to determine if the actuators always stop when the emergency button is pushed. Another
approach would be to synthesize the supervisor such that it guarantees these properties by
construction. For example, in Rawlings et al. (2014), synthesis is extended to work with
CTL specifications, which makes specifying that something should happen possible.

Furthermore, it is known that the resulting controlled behavior is conform the require-
ments; yet, it is not always known if the requirements are correct and complete. For instance,
in this case study we found a missing requirement and, therefore, the behavior of the con-
trolled system was unsafe. In this case, we found this requirement because the test protocols
described this behavior. However, that is not always the case. It would be beneficial to have
a more systematic approach to validate the requirements beforehand.

7 Concluding remarks

The complexity and size of infrastructural systems in combination with the required func-
tionality and demands on verified safety makes designing supervisors for these systems a
challenging task. Supervisor synthesis is a useful method to obtain a supervisor that adheres
to the specified requirements. However, control engineers lack acquaintance with modeling
and specifying in the framework of automata. Besides this, in the related literature, no clear
guidelines for obtaining the necessary models for synthesis are found.

In this paper, guidelines for obtaining the plant and the requirement models are proposed.
A case study on the Algera complex illustrates this way of modeling. The plant model has
been obtained by representing all the sensors, actuators, commands, and physical relations
as small component models. On the abstraction level of control inputs and outputs, many
of these component models are similar. These similarities allow for the use of templates,
which greatly increases the quality of the models, while decreasing the modeling time. For
this case study, 16 templates are used to model 239 components.

For the requirement model, the textual requirements are represented by event-condition
models. This type of models allows for a straightforward translation of the textual require-
ments to logic-based expressions. Furthermore, the logic-based expressions relate closely
to the way control engineers are acquainted with in practice. Aside from their similarity

527Discrete Event Dynamic Systems (2020) 30:499–532

to the textual requirements, the size of the models is also considerably smaller than when
automata models are used.

Simulation-based visualization is used to validate the resulting supervisors. Simulation
allows to compare the behavior of the supervisor with the expected behavior that is, for
example, described in FAT protocols. In this specific case study, we were able to identify a
missing requirement by comparing the behavior of the controlled system with the expected
behavior described in the FAT protocols. In the meantime, Rijkswaterstaat has added this
requirement to the set of safety requirements.

The results described in the case study show that supervisor synthesis is applicable to
systems of an industrial scale. Even though the plant model consists of 239 components, and
is subjected to 491 requirements, a monolithic BDD-based synthesis procedure was able to
derive the supervisor in about 35 minutes.

Acknowledgements We thank the following Rijkswaterstaat employees: Han Vogel, Maria Angenent,
Gerrit Bruggink, Leendert-Jan Deurloo, John van Dinther, Robert de Roos, and Bert van der Vegt for the
support they provided for this project. We thank Bart van Willigen for assisting with the case study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

Atampore F, Dingel J, Rudie K (2016) Automated service composition via supervisory control theory. In:
Proceedings of workshop on discrete event systems. IEEE, pp 28–35

Auer A, Dingel J, Rudie K (2014) Concurrency control generation for dynamic threads using discrete-event
systems. Sci Comput Program 82:22–43

Balemi S, Hoffmann GJ, Gyugyi P, Wong-Toi H, Franklin GF (1993) Supervisory control of a rapid thermal
multiprocessor. IEEE Trans Autom Control 38(7):1040–1059

Brandin BA (1996) The real-time supervisory control of an experimental manufacturing cell. IEEE Trans
Robot Autom 12(1):1–14

Cassandras CG, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer, New York
Chandra V, Kumar R (2002) A event occurrence rules based compact modeling formalism for a class of

discrete event systems. Mathematical and Computer Modelling of Dynamical Systems 8(1):49–73
Chandra V, Huang Z, Kumar R (2003) Automated control synthesis for an assembly line using discrete event

system control theory. IEEE Trans Syst Man Cybern, Part C (Appl Rev) 33(2):284–289
Chen YL, Lin F (2000) Modeling of discrete event systems using finite state machines with parameters. In:

Proceedings of conference on decision and control. IEEE, pp 941–946
Crnkovic I (2001) Component-based software engineering – new challenges in software development. Softw

Focus 2(4):127–133
de Queiroz MH, Cury (2002) Synthesis and implementation of local modular supervisory control for

a manufacturing cell. In: Proceedings of workshop on discrete event systems. IEEE, pp 377–
382

Fabian M, Fei Z, Miremadi S, Lennartson B, Åkesson K (2014) Supervisory control of manufacturing
systems using extended finite automata. In: Formal Methods in Manufacturing. CRC Press, pp 295–314

528 Discrete Event Dynamic Systems (2020) 30:499–532

http://creativecommonshorg/licenses/by/4.0/

Forschelen STJ, Van de Mortel-Fronczak JM, Su R, Rooda JE (2012) Application of supervisory control
theory to theme park vehicles. Discrete Event Dynamic Systems 22(4):511–540

Göbe F, Ney O, Kowalewski S (2016) Reusability and modularity of safety specifications for supervisory
control. In: IEEE 21st international conference on emerging technologies and factory automation, IEEE,
pp 1–8

Gössler G, Sifakis J (2005) Composition for component-based modeling. Sci Comput Program 55(1-3):161–
183

Grigorov L, Butler BE, Cury JE, Rudie K (2011) Conceptual design of discrete-event systems using
templates. Discrete Event Dynamic Systems 21(2):257–303

Guillet S, Bouchard B, Bouzouane A (2014) Designing smart homes dedicated to disabled people using
modular discrete controller synthesis. In: Proceedings of workshop on discrete event systems, IFAC,
pp 54–59

Hasdemir IT, Kurtulan S, Gören L (2008) An implementation methodology for supervisory control theory.
The International Journal of Advanced Manufacturing Technology 36(3):373–385

Henzinger TA (2000) The theory of hybrid automata. In: Verification of digital and hybrid systems, Springer,
pp 265–292

Huang Y, Seck MD, Verbraeck A (2015) Component-based light-rail modeling in discrete event systems
specification. Simulation 91(12):1027–1051

Kim S, Park J, Leachman RC (2001) A supervisory control approach for execution control of an FMC. Int J
Flex Manuf Syst 13(1):5–31

Korssen T, Dolk VS, Van de Mortel-Fronczak JM, Reniers MA, Heemels WPMH (2018) Systematic model-
based design and implementation of supervisors for advanced driver assistance systems. IEEE Trans
Intell Transp Syst 19(2):533–544

Kovács G, Piétrac L (2009) Multi-face modeling for rapid prototyping of discrete event control systems. In:
Proceedings of european control conference, IEEE, pp 1463–1468

Kovács G, Piétrac L, Bálint K (2012) A component-based approach for supervisory control. In: Proceedings
of mediterranean conference on control & automation, IEEE, pp 800–805

Lauzon SC, Ma AKL, Mills JK, Benhabib B (1996) Application of discrete-event-system theory to flexible
manufacturing. IEEE Control Syst 16(1):41–48

Leduc RJ, Wonham WM (1995) Discrete event systems modeling and control of a manufacturing testbed. In:
Proceedings of canadian conference on electrical and computer engineering, vol 2. IEEE, pp 793–796

Liao H, Wang Y, Stanley J, Lafortune S, Reveliotis S, Kelly T, Mahlke S (2013) Eliminating concurrency
bugs in multithreaded software: A new approach based on discrete-event control. IEEE Trans Control
Syst Technol 21(6):2067–2082

Ljungkrantz O, Åkesson K, Richardsson J, Andersson K (2007) Implementing a control system framework
for automatic generation of manufacturing cell controllers. In: Proceedings of conference on robotics
and automation, IEEE, pp 674–679

Lopes YK, Trenkwalder SM, Leal AB, Dodd TJ (2016) Supervisory control theory applied to swarm robotics.
Swarm Intelligence 10(1):65–97

Ma C, Wonham WM (2006) Nonblocking supervisory control of state tree structures. IEEE Trans Autom
Control 51(5):782–793

Malik R, Åkesson K, Flordal H, Fabian M (2017) Supremica–An efficient tool for large-scale discrete event
systems. IFAC-PapersOnLine 50(1):5794–5799

Markovski J, van Beek DA, Theunissen RJM, Jacobs KGM, Rooda JE (2010) A state-based framework for
supervisory control synthesis and verification. In: Proceedings of conference on decision and control,
IEEE, pp 3481–3486

Miremadi S, Lennartson B (2016) Symbolic on-the-fly synthesis in supervisory control theory. IEEE Trans
Control Syst Technol 24(5):1705–1716

Miremadi S, Åkesson K, Lennartson B (2011) Symbolic computation of reduced guards in supervisory
control. IEEE Trans Autom Sci Eng 8(4):754–765

Moor T, Schmidt K, Perk S (2008) libFaudes–An open source C++ library for discrete event systems. In:
Proceedings of workshop on discrete event systems, IEEE, pp 125–130

Moor T, Schmidt K, Perk S (2010) Applied supervisory control for a flexible manufacturing system. In:
Proceedings of workshop on discrete event systems, IFAC, pp 253–258

Nourelfath M, Niel E (2004) Modular supervisory control of an experimental automated manufacturing
system. Control Eng Pract 12(2):205–216

Ouedraogo L, Kumar R, Malik R, Ȧkesson K (2011) Nonblocking and safe control of discrete-event systems
modeled as extended finite automata. IEEE Trans Autom Sci Eng 8(3):560–569

529Discrete Event Dynamic Systems (2020) 30:499–532

Pena PN, Costa TA, Silva RS, Takahashi RH (2016) Control of flexible manufacturing systems under model
uncertainty using supervisory control theory and evolutionary computation schedule synthesis. Inf Sci
329:491–502

Pétin JF, Gouyon D, Morel G (2007) Supervisory synthesis for product-driven automation and its application
to a flexible assembly cell. Control Eng Pract 15(5):595–614

Prenzel L, Provost J (2018) PLC implementation of symbolic, modular supervisory controllers. IFAC-
PapersOnLine 51(7):304–309

Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM journal
on control and optimization 25(1):206–230

Rawlings BC, Christenson B, Wassick JM, Ydstie BE (2014) Supervisor synthesis to satisfy safety and
reachability requirements in chemical process control. In: Proceedings of workshop on discrete event
systems, IFAC, pp 195–200

Reijnen FFH, Goorden MA, van de Mortel-Fronczak JM, Rooda JE (2017) Supervisory control synthe-
sis for a waterway lock. In: Proceedings of conference on control technology and applications, IEEE,
pp 1562–1568

Reijnen FFH, Goorden MA, van de Mortel-Fronczak JM, Reniers MA, Rooda JE (2018) Application
of dependency structure matrices and multilevel synthesis to a production line. In: Proceedings of
conference on control technology and applications, IEEE, pp 458–464

Reijnen FFH, Goorden MA, Van de Mortel-Fronczak JM, Rooda JE (2020) Models and documentation for
the Algera complex. www.github.com/ffhreijnen/AlgeraComplex

Roussel JM, Giua A (2005) Designing dependable logic controllers using the supervisory control theory.
IFAC Proceedings 38(1):56–61

Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D (1995) Diagnosability of discrete-
event systems. IEEE Trans Autom Control 40(9):1555–1575

Silva DB, Vieira AD, Loures EFR, Busetti MA, Santos EAP (2011) Dealing with routing in an automated
manufacturing cell: A supervisory control theory application. Int J Prod Res 49(16):4979–4998

Sköldstam M, Åkesson K, Fabian M (2007) Modeling of discrete event systems using finite automata with
variables. In: Proceedings of conference on decision and control, IEEE, pp 3387–3392

Theunissen RJM (2015) Supervisory control in health care systems. PhD thesis, Eindhoven University of
Technology

Theunissen RJM, Petreczky M, Schiffelers RRH, van Beek DA, Rooda JE (2014) Application of supervisory
control synthesis to a patient support table of a magnetic resonance imaging scanner. IEEE Trans Autom
Sci Eng 11(1):20–32

Vahidi A, Fabian M, Lennartson B (2006) Efficient supervisory synthesis of large systems. Control Eng Pract
14(10):1157–1167

van Beek DA, Fokkink WJ, Hendriks D, Hofkamp AT, Markovski J, van de Mortel-Fronczak JM, Reniers
MA (2014) CIF 3: Model-based engineering of supervisory controllers. In: Proceedings of conference
on tools and algorithms for the construction and analysis of systems. Springer, Berlin, pp 575–580

von Bochmann G, Hilscher M, Linker S, Olderog ER (2015) Synthesizing controllers for multi-lane traffic
maneuvers. In: Proceedings of international symposium on dependable software engineering: theories,
tools, and applications. Springer, Berlin, pp 71–86

van der Sanden, Reniers MA, Geilen MCW, Basten AA, Jacobs J, Voeten JPM, Schiffelers RRH (2015)
Modular model-based supervisory controller design for wafer logistics in lithography machines. In:
Proceedings of conference on model driven engineering languages and systems, IEEE, pp 416–
425

Wonham WM, Cai K, Rudie K (2018) Supervisory control of discrete-event systems: a brief history. Annu
Rev Control 45:250–256

Zaytoon J, Carré-Ménéatrier V (2001) Synthesis of control implementation for discrete manufacturing
systems. Int J Prod Res 39(2):329–345

Zaytoon J, Riera B (2017) Synthesis and implementation of logic controllers–A review. Annual reviews in
control 43:152–168

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

530 Discrete Event Dynamic Systems (2020) 30:499–532

www.github.com/ffhreijnen/AlgeraComplex

Ferdie F. H. Reijnen received the M.Sc. degree in mechanical engi-
neering from Eindhoven University of Technology, Eindhoven, The
Netherlands, in 2016. He is currently working towards the Ph.D.
degree in mechanical engineering. His research interests include
discrete-event system modeling, supervisory control synthesis, and
implementation of supervisory controllers.

Martijn A. Goorden received the M.Sc. degree (cum laude) in
systems and control from Eindhoven University of Technology, Eind-
hoven, The Netherlands, in 2015, and the Ph.D. degree in mechanical
engineering from Eindhoven University of Technology, Eindhoven,
The Netherlands, in 2019. His current research interests are in the
area of model-based systems engineering and supervisory control
synthesis.

Joanna M. van de Mortel-Fronczak received the M.Sc. degree in
computer science from AGH University of Science and Technology,
Cracow, Poland, in 1982 and the Ph.D. degree in computer science
from Eindhoven University of Technology, Eindhoven, The Nether-
lands, in 1993. Since 1997, she has been with the Department of
Mechanical Engineering, Eindhoven University of Technology. Her
research interests include model-based engineering and synthesis of
supervisory control systems.

531Discrete Event Dynamic Systems (2020) 30:499–532

Jacobus E. Rooda received the M.Sc. degree from Wageningen
University of Agricultural Engineering, Wageningen, The Nether-
lands, and the Ph.D. degree from Twente University, Enschede, The
Netherlands. Since 1985, he has been a Professor of (Manufacturing)
Systems Engineering at the Department of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven, The Netherlands.
Since 2010, he is a Professor Emeritus. He is still active in the
research fields of engineering design for industrial systems, and of
supervisory control thereof.

532 Discrete Event Dynamic Systems (2020) 30:499–532

	Modeling for supervisor synthesis – a lock-bridge combination case study
	Abstract
	Introduction
	Case study: the Algera complex
	Description and functionality of the Algera lock
	Desired controlled behavior

	Description and functionality of the Algera bridge
	Desired controlled behavior

	Description and functionality of the control panel

	Preliminaries
	Modeling of discrete-event systems
	Finite-state automata
	Extended finite-state automata

	Modeling of requirements
	Supervisor synthesis
	Implementation of supervisors

	Modeling method
	Component-based modeling
	The plant model
	Boolean input and output signals
	Integer input and output signals
	Physical relation models

	The requirement model
	Event-condition requirements
	Event-order requirements
	Timer-based requirements
	State-invariant requirements

	Model development
	Plant component templates
	Single input - single output template
	Double input - double output template
	Traffic light template
	User-interface template

	Plant model of the Algera lock
	Requirement model of the Algera lock
	Plant model of the Algera bridge
	Requirement model of the Algera bridge
	Requirement model of the Algera lock-bridge combination
	Supervisor synthesis

	Simulation-based validation of the synthesized supervisor
	Hybrid plant model
	Visualization
	Validation steps
	Discussion

	Concluding remarks
	References

