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Abstract In this paper we consider a single-server cyclic polling system consisting of
two queues. Between visits to successive queues, the server is delayed by a random
switch-over time. Two types of customers arrive at the first queue: high and low
priority customers. For this situation the following service disciplines are considered:
gated, globally gated, and exhaustive. We study the cycle time distribution, the
waiting times for each customer type, the joint queue length distribution at polling
epochs, and the steady-state marginal queue length distributions for each customer
type.

Keywords Polling · Priority levels · Queue lengths · Waiting times

1 Introduction

A polling model is a single-server system in which the server visits n queues
Q1, . . . , Qn in cyclic order. Customers that arrive at Qi are referred to as type
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i customers. The special feature of the model considered in the present paper is
that, within a customer type, we distinguish high and low priority customers. More
specifically, we study a polling system which consists of two queues, Q1 and Q2. The
first of these queues contains customers of two priority classes, high (H) and low (L).
The exhaustive, gated and globally gated service disciplines are studied.

Our motivation to study a polling model with priorities is that the performance of a
polling system can be improved through the introduction of priorities. In production
environments, e.g., one could give highest priority to jobs with a service requirement
below a certain threshold level. This might decrease the mean waiting time of an
arbitrary customer without having to purchase additional resources (Wierman et al.
2007). Priority polling models also can be used to study traffic intersections where
conflicting traffic flows face a green light simultaneously; e.g. traffic which takes
a left turn may have to give right of way to conflicting traffic that moves straight
on, even if the traffic light is green for both traffic flows. Another application is
discussed in Cicin-Sain et al. (2001), where a priority polling model is used to study
scheduling of surgery procedures in medical emergency rooms. In the computer
science community the Bluetooth and 802.11 protocols are frequently modelled
as polling systems, cf. Lam et al. (2006), Miorandi and Zanella (2004), Ni (2005),
Yaiz and Heijenk (2002). Many scheduling policies that have been considered or
implemented in these protocols involve different priority levels in order to improve
Quality-of-Service (QoS) for traffic that is very sensitive to delays or loss of data, such
as Voice over Wireless IP. The 802.11e amendment defines a set of QoS enhance-
ments for wireless LAN applications by differentiating between high priority traffic,
like streaming multimedia, and low priority traffic, like web browsing and email
traffic.

Although there is quite an extensive amount of literature available on polling
systems, only very few papers treat priorities in polling models. Most of these papers
only provide approximations or focus on pseudo-conservation laws. In Wierman
et al. (2007) exact mean waiting time results are obtained using the Mean Value
Analysis (MVA) framework for polling systems, developed in Winands et al. (2006).
The MVA framework can only be used to find the first moment of the waiting time
distribution for each customer type, and the mean residual cycle time. The main
contribution of the present paper is the derivation of Laplace Stieltjes Transforms
(LSTs) of the distributions of the marginal waiting times for each customer type;
in particular it turns out to be possible to obtain exact expressions for the waiting
time distributions of both high and low priority customers at a queue of a polling
system. Probability Generating Functions (PGFs) are derived for the joint queue
length distribution at polling epochs, and for the steady-state marginal queue length
distribution of the number of customers at an arbitrary epoch.

The present paper is structured as follows: Section 2 gathers known results of
nonpriority polling models which are relevant for the present study. Sections 3
(gated), 4 (globally gated), and 5 (exhaustive) give new results on the priority polling
model. In each of these sections we successively discuss the joint queue length
distribution at polling epochs, the cycle time distribution, the marginal queue length
distributions and waiting time distributions. The mean waiting times are given at the
end of each section. A numerical example is presented in Section 6 to illustrate some
of the improvements that can be obtained by introducing prioritisation in a polling
system.
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2 Notation and description of the nonpriority polling model

The model that is considered in this section, is a nonpriority polling model with two
queues (Q1 and Q2). We consider three service disciplines: gated, globally gated,
and exhaustive. The gated service discipline states that during a visit to Qi, the server
serves only those type i customers who are present at the polling epoch. All type i
customers that arrive during this visit will be served in the next cycle. In this respect, a
cycle is the time between two successive visit beginnings to a queue. The exhaustive
service discipline states that when the server arrives at Qi, all type i customers are
served until no type i customer is present in the system. We also consider the globally
gated service discipline, which means that during a cycle only those customers will be
served that were present at the beginning of that cycle.

Customers of type i arrive at Qi according to a Poisson process with arrival
rate λi (i = 1, 2). Service times can follow any distribution, and we assume that a
customer’s service time is independent of other service times and independent of
the arrival processes. The LST of the distribution of the generic service time Bi of
type i customers is denoted by βi(·). The fraction of time that the server is serving
customers of type i equals ρi := λi E(Bi). Switches of the server from Qi to Qi+1

(all indices modulo 2), require a switch-over time Si. The LST of this switch-over
time distribution is denoted by σi(·). The fraction of time that the server is working
(i.e., not switching) is ρ := ρ1 + ρ2. We assume that ρ < 1, which is a necessary and
sufficient condition for the steady state distributions of cycle times, queue lengths
and waiting times to exist.

Takács (1968) studied this model, but without switch-over times and only with the
exhaustive service discipline. Cooper and Murray (1969) analysed this polling system
for any number of queues, and for both gated and exhaustive service disciplines.
Eisenberg (1972) obtained results for a polling system with switch-over times (but
only exhaustive service) by relating the PGFs of the joint queue length distributions
at visit beginnings, visit endings, service beginnings and service endings. Resing
(1993) was the first to point out the relation between polling systems and Multitype
Branching Processes with immigration in each state. His results can be applied to
polling models in which each queue satisfies the following property:

Property 1 If the server arrives at Qi to find ki customers there, then during the
course of the server’s visit, each of these ki customers will effectively be replaced
in an i.i.d. manner by a random population having probability generating function
hi(z1, . . . , zn), which can be any n-dimensional probability generating function.

We use this property, and the relation to Multitype Branching Processes, to find
results for our polling system with two queues, two priorities in the first queue,
and gated, globally gated, and exhaustive service discipline. Notice that, unlike the
gated and exhaustive service disciplines, the globally gated service discipline does not
satisfy Property 1. But the results obtained by Resing also hold for a more general
class of polling systems, namely those which satisfy the following (weaker) property
that is formulated in Borst (1996):

Property 2 If there are ki customers present at Qi at the beginning (or the end) of
a visit to Qπ(i), with π(i) ∈ {1, . . . , n}, then during the course of the visit to Qi, each
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of these ki customers will effectively be replaced in an i.i.d. manner by a random
population having probability generating function hi(z1, . . . , zn), which can be any
n-dimensional probability generating function.

Globally gated and gated are special cases of the synchronised gated service
discipline, which states that only customers in Qi will be served that were present
at the moment that the server reaches the “parent queue” of Qi: Qπ(i). For gated
service, π(i) = i, for globally gated service, π(i) = 1. The synchronised gated service
discipline is discussed in Khamisy et al. (1992), but no observation is made that this
discipline is a member of the class of polling systems satisfying Property 2 which
means that results as obtained in Resing (1993) can be extended to this model.

Borst and Boxma (1997) combined the results of Resing (1993) and Eisenberg
(1972) to find a relation between the PGFs of the marginal queue length distribution
for polling systems with and without switch-over times, expressed in the Fuhrmann-
Cooper queue length decomposition form (Fuhrmann and Cooper 1985).

2.1 Joint queue length distribution at polling epochs

The probability generating function hi(z1, . . . , zn) which is mentioned in Property
1 depends on the service discipline. In a polling system with two queues and gated
service we have hi(z1, z2) = βi(λ1(1 − z1) + λ2(1 − z2)). For exhaustive service this
PGF becomes hi(z1, z2) = πi(

∑
j�=i λ j(1 − z j)), where πi(·) is the LST of a busy period

(BP) distribution in an M/G/1 system with only type i customers, so it is the root of
the equation πi(ω) = βi(ω + λi(1 − πi(ω))). We choose the beginning of a visit to Q1

as start of a cycle. In order to find the joint queue length distribution at the beginning
of a cycle, we relate the numbers of customers in each queue at the beginning of
a cycle to those at the beginning of the previous cycle. Customers always enter the
system during a switch-over time, or during a visit period. The first group is called
immigration, whereas a customer from the second group is called offspring of the
customer that is served at the moment of his arrival. We define the immigration PGF
for each switch-over time and the offspring PGF for each visit period analogous to
Resing (1993). The immigration PGFs are:

g(2)(z1, z2) = σ2(λ1(1 − z1) + λ2(1 − z2)),

g(1)(z1, z2) = σ1(λ1(1 − z1) + λ2(1 − h2(z1, z2))).

g(2)(z1, z2) is the PGF of the joint distribution of type 1 and 2 customers that arrive
during S2. For S1 things are slightly more complicated, since type 2 customers
arriving during S1 may be served before the end of the cycle, and generate offspring.
g(1)(z1, z2) is the joint PGF of the type 1 and 2 customers present at the end of the
cycle that either arrived during S1, or are offspring of type 2 customers that arrived
during S1. The total immigration PGF is the product of these two PGFs:

g(z1, z2) =
2∏

i=1

g(i)(z1, z2) = g(1)(z1, z2)g(2)(z1, z2).
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We define the offspring PGFs for each visit period in a similar manner:

f (2)(z1, z2) = h2(z1, z2),

f (1)(z1, z2) = h1(z1, h2(z1, z2)).

The term for Q1 is again slightly more complicated than the term for Q2, since type
2 customers arriving during a server visit to Q1 may be served before the end of the
cycle, and generate offspring.

Resing (1993) shows that the following recursive expression holds for the joint
queue length PGF at the beginning of a cycle (starting with a visit to Q1):

P1(z1, z2) = g(z1, z2)P1
(

f (1)(z1, z2), f (2)(z1, z2)
)
.

This expression can be used to compute moments of the joint queue length distri-
bution. Alternatively, iteration of this expression yields the following closed form
expression for P1(z1, z2):

P1(z1, z2) =
∞∏

n=0

g( fn(z1, z2)), (1)

where we use the following recursive definition for fn(z1, z2), n = 1, 2, . . . :

fn(z1, z2) = ( f (1)( fn−1(z1, z2)), f (2)( fn−1(z1, z2))),

f0(z1, z2) = (z1, z2).

Resing (1993) proves that this infinite product converges if and only if ρ < 1.
We can relate the joint queue length distribution at other polling epochs to

P1(z1, z2). We denote the PGF of the joint queue length distribution at a visit
beginning to Qi by Vbi(·), so P1(·) = Vb 1(·). The PGF of the joint queue length
distribution at a visit completion to Qi is denoted by Vci(·). The following relations
hold:

Vb 1(z1, z2) = Vc2(z1, z2)σ2(λ1(1 − z1) + λ2(1 − z2))

= Vb 2(z1, h2(z1, z2))σ2(λ1(1 − z1) + λ2(1 − z2))

= Vb 2(z1, f (2)(z1, z2))g(2)(z1, z2), (2)

Vb 2(z1, z2) = Vc1(z1, z2)σ1(λ1(1 − z1) + λ2(1 − z2))

= Vb 1(h1(z1, z2), z2)σ1(λ1(1 − z1) + λ2(1 − z2)). (3)

2.2 Cycle time

The cycle time, starting at a visit beginning to Q1, is the sum of the visit times to Q1

and Q2, and the two switch-over times which are independent of the visit times. Since
type 2 customers who arrive during the visit to Q1 or the switch from Q1 to Q2 will
be served during the visit to Q2, it can be shown that the LST of the distribution of
the cycle time C1, γ1(·), is related to P1(·) as follows:

γ1(ω) = σ1(ω + λ2(1 − φ2(ω))) σ2(ω) P1(φ1(ω + λ2(1 − φ2(ω))), φ2(ω)), (4)
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where φi(·) is the LST of the distribution of the time that the server spends at Qi

due to the presence of one type i customer there. For gated service φi(·) = βi(·), for
exhaustive service φi(·) = πi(·). A proof of Eq. 4 can be found in Boxma et al. (2008).

In some cases it is convenient to choose a different starting point for a cycle,
for example when analysing a polling system with exhaustive service. If we define
C∗

1 to be the time between two successive visit completions to Q1, the LST of its
distribution, γ ∗

1 (·), is:

γ ∗
1 (ω) =σ1(ω + λ1(1 − φ1(ω)) + λ2(1 − φ2(ω + λ1(1 − φ1(ω)))))

· σ2(ω + λ1(1 − φ1(ω))) Vc1(φ1(ω), φ2(ω + λ1(1 − φ1(ω)))), (5)

with Vc1(z1, z2) = P1(h1(z1, z2), z2).

2.3 Marginal queue lengths and waiting times

We denote the PGF of the steady-state marginal queue length distribution of Q1

at the visit beginning by Ṽb 1(z) = Vb 1(z, 1). Analogously we define Ṽb 2(·), Ṽc1(·),
and Ṽc2(·). It is shown in Borst and Boxma (1997) that the steady-state marginal
queue length of Qi can be decomposed into two parts: the queue length of the
corresponding M/G/1 queue with only type i customers, and the queue length at an
arbitrary epoch during the intervisit period of Qi, denoted by Ni|I . Borst and Boxma
(1997) show that by virtue of PASTA, Ni|I has the same distribution as the number
of type i customers seen by an arbitrary type i customer arriving during an intervisit
period, which equals

E(zNi|I ) = E(zNi|Ibegin ) − E(zNi|Iend )

(1 − z)(E(Ni|Iend) − E(Ni|Ibegin))
,

where Ni|Ibegin is the number of type i customers at the beginning of an intervisit period
Ii, and Ni|Iend is the number of type i customers at the end of Ii. Since the beginning
of an intervisit period coincides with the completion of a visit to Qi, and the end
of an intervisit period coincides with the beginning of a visit, we know the PGFs
for the distributions of these random variables: Ṽci(·) and Ṽbi(·). This leads to the
following expression for the PGF of the steady-state queue length distribution of Qi

at an arbitrary epoch, E[zNi ]:

E[zNi ] = (1 − ρi)(1 − z)βi(λi(1 − z))

βi(λi(1 − z)) − z
· Ṽci(z) − Ṽbi(z)

(1 − z)(E(Ni|Iend) − E(Ni|Ibegin))
. (6)

Keilson and Servi (1990) show that the distributional form of Little’s law can
be used to find the LST of the marginal waiting time distribution: E(zNi) =
E(e−λi(1−z)(Wi+Bi)), hence E(e−ωWi) = E[(1 − ω

λi
)Ni ]/βi(ω). This can be substituted

into Eq. 6:

E[e−ωWi ] = (1 − ρi)ω

ω − λi(1 − βi(ω))
·

Ṽci

(
1 − ω

λi

)
− Ṽbi

(
1 − ω

λi

)

(E(Ni|Iend) − E(Ni|Ibegin))ω/λi

=E[e−ωWi|M/G/1 ]E

[(

1 − ω

λi

)Ni|I
]

. (7)
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The interpretation of this formula is that the waiting time of a type i customer in a
polling model is the sum of two independent random variables: the waiting time of a
customer in an M/G/1 queue with only type i customers, Wi|M/G/1, and the remaining
intervisit time for a customer that arrives at an arbitrary epoch during the intervisit
time of Qi.

For gated service, the number of type i customers at the beginning of a visit to Qi is
exactly the number of type i customers that arrived during the previous cycle, starting
at Qi. In terms of PGFs: Ṽbi(z) = γi(λi(1 − z)). The type i customers at the end of a
visit to Qi are exactly those type i customers that arrived during this visit. In terms
of PGFs: Ṽci(z) = γi(λi(1 − βi(λi(1 − z)))). We can rewrite E(Ni|Iend) − E(Ni|Ibegin) as
λi E(Ii), because this is the number of type i customers that arrive during an intervisit
time. In Section 2.4 we show that λi E(Ii) = λi(1 − ρi)E(C). Using these expressions
we can rewrite Eq. 7 for gated service to:

E[e−ωWi ] = (1 − ρi)ω

ω − λi(1 − βi(ω))
· γi(λi(1 − βi(ω))) − γi(ω)

(1 − ρi)ωE(C)
. (8)

For exhaustive service, Ṽci(z) = 1, because Qi is empty at the end of a visit to Qi. The
number of type i customers at the beginning of a visit to Qi in an exhaustive polling
system is equal to the number of type i customers that arrived during the previous
intervisit time of Qi. Hence, Ṽbi(z) = Ĩi(λi(1 − z)), where Ĩi(·) is the LST of the
intervisit time distribution for Qi. Substitution of Ĩi(ω) = Ṽbi(1 − ω

λi
) in Eq. 7 leads

to the following expression for the LST of the steady-state waiting time distribution
of a type i customer in an exhaustive polling system:

E[e−ωWi ] = (1 − ρi)ω

ω − λi(1 − βi(ω))
· 1 − Ĩi(ω)

ωE(Ii)
. (9)

To the best of our knowledge, the following result is new.

Proposition 1 Let the cycle time C∗
i be the time between two successive visit comple-

tions to Qi. The LST of the cycle time distribution is given by Eq. 5. An equivalent
expression for E[e−ωWi ] if Qi is served exhaustively, is:

E[e−ωWi ] = 1 − γ ∗
i (ω − λi(1 − βi(ω)))

(ω − λi(1 − βi(ω)))E(C)

= E[e−(ω−λi(1−βi(ω)))C∗
i,res ], (10)

where C∗
i,res is the residual length of C∗

i .

Proof The cycle time is the length of an intervisit period Ii plus the length of a visit
Vi, which is the time required to serve all type i customers that have arrived during
Ii, and their type i descendants. Hence, the following equation holds:

γ ∗
i (ω) = Ĩi(ω + λi(1 − πi(ω))). (11)

We use this equation to find the inverse relation:

Ĩi(ω + λi(1 − πi(ω))) = γ ∗
i (ω)

= γ ∗
i (ω + λi(1 − πi(ω)) − λi(1 − πi(ω)))

= γ ∗
i (ω + λi(1 − πi(ω)) − λi(1 − βi(ω + λi(1 − πi(ω))))).
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If we substitute s := ω + λi(1 − πi(ω)), we find

Ĩi(s) = γ ∗
i (s − λi(1 − βi(s))). (12)

Substitution of Eq. 12 into Eq. 9 gives Eq. 10. ��

Remark 1 We can write Eqs. 11 and 12 as follows:

γ ∗
i (ω) = Ĩi(ψ(ω)), Ĩi(s) = γ ∗

i (φ(s)),

where φ(·) equals the Laplace exponent of the Lévy process
∑N(t)

j=1 Bi, j − t, with N(t) a
Poisson process with intensity λi, and with ψ(ω) = ω + λi(1 − πi(ω)), which is known
to be the inverse of φ(·).

2.4 Moments

The focus of this paper is on LST and PGF of distribution functions, not on their
moments. Moments can be obtained by differentiation, and are also discussed in
Wierman et al. (2007). In this subsection we will only mention some results that will
be used later.

First we will derive the mean cycle time E(C). Unlike higher moments of the cycle
time, the mean does not depend on where the cycle starts: E(C) = E(S1)+E(S2)

1−ρ
. This

can easily be seen, because 1 − ρ is the fraction of time that the server is not working,
but switching. The total switch-over time is E(S1) + E(S2).

The expected length of a visit to Qi is E(Vi) = ρi E(C). The mean length of an
intervisit period for Qi is E(Ii) = (1 − ρi)E(C). Notice that these expectations do
not depend on the service discipline used. The expected number of type i customers
at polling moments does depend on the service discipline. For gated service the
expected number of type i customers at the beginning of a visit to Qi is λi E(C).
For exhaustive service this is λi E(Ii). The expected number of type i customers at
the beginning of a visit to Qi+1 is λi(E(Vi) + E(Si)) for gated service, and λi E(Si) for
exhaustive service.

Moments of the waiting time distribution for a type i customer at an arbitrary
epoch can be derived from the LSTs given by Eqs. 8, 9 and 10. We only present the
first moment:

Gated: E(Wi) = (1 + ρi)
E(C2

i )

2E(C)
, (13)

Exhaustive: E(Wi) = E(I2
i )

2E(Ii)
+ ρi

1 − ρi

E(B2
i )

2E(Bi)
,

= (1 − ρi)
E(C∗

i
2)

2E(C)
. (14)

Notice that the start of Ci is the beginning of a visit to Qi, whereas the start of C∗
i is the

end of a visit. Equations 13 and 14 are in agreement with Eqs. 4.1 and 4.2 in Boxma
(1989). Although at first sight these might seem nice, closed formulas, it should be
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noted that the expected residual cycle time and the expected residual intervisit time
are not easy to determine, requiring the solution of a large set of equations. MVA is
an efficient technique to compute mean waiting times, the mean residual cycle time,
and also the mean residual intervisit time. We refer to Winands et al. (2006) for an
MVA framework for polling models.

3 Gated service

In this section we study the gated service discipline for a polling system with two
queues and two priority classes in the first queue: high (H) and low (L) priority
customers. All type H and L customers that are present at the moment when the
server arrives at Q1, will be served during the server’s visit to Q1. First all type H
customers will be served, then all type L customers. Type H customers arrive at Q1

according to a Poisson process with intensity λH , and have a service requirement
BH with LST βH(·). Type L customers arrive at Q1 with intensity λL, and have a
service requirement BL with LST βL(·). If we do not distinguish between high and
low priority customers, we can still use the results from Section 2 if we regard the
system as a polling system with two queues where customers in Q1 arrive according
to a Poisson process with intensity λ1 := λH + λL and have service requirement B1

with LST β1(·) = λH
λ1

βH(·) + λL
λ1

βL(·).
We follow the same approach as in Section 2. First we study the joint queue

length distribution at polling epochs, then the cycle time distribution, followed by the
marginal queue length distribution and waiting time distribution. The last subsection
provides the first moment of these distributions.

3.1 Joint queue length distribution at polling epochs

Equations 2 and 3 give the PGFs of the joint queue length distribution at visit
beginnings, Vbi(z1, z2). A type 1 customer entering the system is a type H customer
with probability λH/λ1, and a type L customer with probability λL/λ1. We can
express the PGF of the joint queue length distribution in the polling system with
priorities, Vbi(·, ·, ·), in terms of the PGF of the joint queue length distribution in the
polling system without priorities, Vbi(·, ·).

Lemma 1

Vbi(zH, zL, z2) = Vbi

(
λHzH + λLzL

λ1
, z2

)

. (15)

Proof Fix i. Let XH be the number of high priority customers present in Q1 at the
beginning of a visit to Qi. Similarly define XL to be the number of low priority
customers present in Q1 at the beginning of a visit to Qi. Let X1 = XH + XL.



520 Discrete Event Dyn Syst (2010) 20:511–536

Since the type H/L customers in Q1 are exactly those H/L customers that arrived
since the previous visit beginning at Q1, we know that

P(XH = i, XL = k − i|X1 = k) =
(

k
i

) (
λH

λ1

)i (
λL

λ1

)k−i

.

Hence

E
[
zXH

H zXL
L

∣
∣X1 = k

]
=

∞∑

i=0

∞∑

j=0

zi
Hz j

L P(XH = i, XL = j|X1 = k)

=
(

λHzH + λLzL

λ1

)k

.

Finally,

Vbi(zH, zL, z2) =
∞∑

i=0

∞∑

j=0

(
λHzH + λLzL

λ1

)i

z j
2 P(X1 = i, X2 = j)

= Vbi

(
1

λ1
(λHzH + λLzL), z2

)

.

��

3.2 Cycle time

The LST of the cycle time distribution is still given by Eq. 4 if we define λ1 := λH +
λL and β1(·) := λH

λ1
βH(·) + λL

λ1
βL(·), because the cycle time does not depend on the

order of service.
Equation 4 is valid for polling systems with queues having any branching type

service discipline. In the present section we can derive an alternative, shorter expres-
sion for γ1(·) by explicitly using the fact that Q1 receives gated service. The type 1
(i.e. both H and L) customers present at the visit beginning to Q1 are those that
arrived during the previous cycle: P1(z, 1) = γ1(λ1(1 − z)). By setting ω = λ1(1 − z),
this leads to the following expression for the LST of the distribution of C1 if service
in Q1 is gated:

γ1(ω) = P1

(

1 − ω

λ1
, 1

)

. (16)

3.3 Marginal queue lengths and waiting times

We first determine the LST of the waiting time distribution for a type L customer,
using the fact that this customer will not be served until the next cycle (starting
at Q1). The time from the start of the cycle until the arrival will be called “past
cycle time”, denoted by C1P. The residual cycle time will be denoted by C1R. The
waiting time of a type L customer is composed of C1R, the service times of all high
priority customers that arrived during C1P + C1R, and the service times of all
low priority customers that have arrived during C1P. Let NH(T) be the number of
high priority customers that have arrived during time interval T, and equivalently
define NL(T).
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Theorem 1

E
[
e−ωWL

] = γ1(λH(1 − βH(ω)) + λL(1 − βL(ω))) − γ1(ω + λH(1 − βH(ω)))

(ω − λL(1 − βL(ω)))E(C)
.

Proof

E
[
e−ωWL

]= E
[
e−ω(C1R+∑NH (C1P+C1R)

i=1 BH,i+∑NL(C1P)

i=1 BL,i)
]

=
∫ ∞

t=0

∫ ∞

u=0

∞∑

m=0

∞∑

n=0

E
[
e−ω

∑m
i=1 BH,i

]
E

[
e−ω

∑n
i=1 BL,i

]

· e−ωu (λH(t + u))m

m! e−λH(t+u) (λLt)n

n! e−λLt dP(C1P < t, C1R < u)

=
∫ ∞

t=0

∫ ∞

u=0
e−t(λH(1−βH(ω))+λL(1−βL(ω)))e−u(ω+λH(1−βH(ω))) dP(C1P < t, C1R <u)

= γ1(λH(1 − βH(ω)) + λL(1 − βL(ω))) − γ1(ω + λH(1 − βH(ω)))

(ω − λL(1 − βL(ω)))E(C)
. (17)

For the last step in the derivation of Eq. 17 we used

E[e−ωPC1P−ωRC1R ] = E[e−ωPC1 ] − E[e−ωRC1 ]
(ωR − ωP)E(C)

,

which is obtained in Boxma et al. (1992). ��

Remark 2 The Fuhrmann-Cooper decomposition (Fuhrmann and Cooper 1985) still
holds for the waiting time of type L customers, because Eq. 17 can be rewritten into

E
[
e−ωWL

] = (1 − ρL)ω

ω − λL(1 − βL(ω))

· γ1(λH(1 − βH(ω)) + λL(1 − βL(ω))) − γ1(ω + λH(1 − βH(ω)))

(1 − ρL)ωE(C)
. (18)

We recognise the first term on the right-hand side of Eq. 18 as the LST of the waiting
time distribution of an M/G/1 queue with only type L customers. An interpretation
of the other two terms on the right-hand side can be found when regarding the polling
system as a polling system with three queues (QH, QL, Q2) and no switch-over time
between QH and QL. The service discipline of this equivalent system is synchronised
gated, which is a more general version of gated. The gates for queues QH and QL

are set simultaneously when the server arrives at QH , but the gate for Q2 is still
set when the server arrives at Q2. In the following paragraphs we show that the
second and third term on the right-hand side of Eq. 18 together can be interpreted as

E[
(

1 − ω
λL

)NL|I ], where NL|I is the number of type L customers at a random epoch
during the intervisit period of QL.

The expression for the LST of the distribution of the number of type L customers
at an arbitrary epoch is determined by first converting the waiting time LST to
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sojourn time LST, i.e., multiplying expression (18) with βL(ω). Second, we apply the
distributional form of Little’s law (Keilson and Servi 1990) to Eq. 18. This law can
be applied because the required conditions are fulfilled for each customer class (H,
L, and 2): the customers enter the system in a Poisson stream, every customer enters
the system and leaves the system one at a time in order of arrival, and for any time t
the entry process into the system of customers after time t and the time spent in the
system by any customer arriving before time t are independent. The result is:

E
[
zNL

] = (1 − ρL)(1 − z)βL(λL(1 − z))

βL(λL(1 − z)) − z
· ṼcL(z) − Ṽb L(z)

(1 − z)(E(NL|Iend) − E(NL|Ibegin))
. (19)

In this equation Ṽb L(z) denotes the PGF of the distribution of the number of type
L customers at the beginning of a visit to QL, and ṼcL(z) denotes the PGF at the
completion of a visit to QL:

Ṽb L(z) = Vb 1(βH(λL(1 − z)), z, 1)

= γ1(λH(1 − βH(λL(1 − z))) + λL(1 − z)),

ṼcL(z) = Vb 1(βH(λL(1 − z)), βL(λL(1 − z)), 1)

= γ1(λH(1 − βH(λL(1 − z))) + λL(1 − βL(λL(1 − z)))).

The last term in Eq. 19 is the PGF of the distribution of the number of type L cus-
tomers at an arbitrary epoch during the intervisit period of QL, E[zNL|I ]. Substitution
of ω := λL(1 − z) in Eq. 19, and using (E(NL|Iend) − E(NL|Ibegin)) = λL E(IL), shows
that the second and third term at the right-hand side of Eq. 18 together indeed equal

E[
(

1 − ω
λL

)NL|I ].
The derivation of the LSTs of WH and W2 is similar and leads to the following

expressions:

E
[
e−ωWH

] = (1 − ρH)ω

ω − λH(1 − βH(ω))
· γ1(λH(1 − βH(ω))) − γ1(ω)

(1 − ρH)ωE(C)
, (20)

E
[
e−ωW2

] = (1 − ρ2)ω

ω − λ2(1 − β2(ω))
· γ2(λ2(1 − β2(ω))) − γ2(ω)

(1 − ρ2)ωE(C)
. (21)

Remark 3 Equations 20 and 21 are equivalent to the LST of Wi in a nonpriority
polling system (8), which illustrates that the Fuhrmann-Cooper decomposition also
holds for the waiting time distributions of high priority customers in Q1 and type 2
customers in a polling system with gated service.

Application of the distributional form of Little’s law to these expressions re-
sults in:

E
[
zNH

]= (1−ρH)(1 − z)βH(λH(1−z))

βH(λH(1−z)) − z
· γ1(λH(1−βH(λH(1−z)))) − γ1(λH(1 − z))

λH(1 − ρH)(1 − z)E(C)
,

E
[
zN2

]= (1 − ρ2)(1 − z)β2(λ2(1 − z))

β2(λ2(1 − z)) − z
· γ2(λ2(1 − β2(λ2(1 − z)))) − γ2(λ2(1 − z))

λ2(1 − ρ2)(1 − z)E(C)
.
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Remark 4 If the service discipline in Q2 is not gated, but another branching type
service discipline that satisfies Property 1, Eq. 21 should be replaced by the more
general expression (7).

3.4 Moments

As mentioned in Section 2.4, we do not focus on moments in this paper, and we only
mention the mean waiting times of type H and L customers. For a type H customer,
it is immediately clear that E(WH) = (1 + ρH)E(C1,res). The mean waiting time for a
type L customer can be obtained by differentiating Eq. 17. This results in:

E(WL) = (1 + 2ρH + ρL)E(C1,res).

These formulas can also be obtained using MVA, as shown in Wierman et al. (2007).

4 Globally gated service

In this section we discuss a polling model with two queues (Q1, Q2) and two priority
classes (H and L) in Q1 with globally gated service. For this service discipline, only
customers that were present when the server started its visit to Q1 are served. This
feature makes the model exactly the same as a nonpriority polling model with three
queues (QH, QL, Q2). Although this system does not satisfy Property 1, it does
satisfy Property 2 which implies that we can still follow the same approach as in the
previous sections.

4.1 Joint queue length distribution at polling epochs

We define the beginning of a visit to Q1 as the start of a cycle, since this is the moment
that determines which customers will be served during the next visits to the queues.
Arriving customers will always be served in the next cycle, so the three (i = H, L, 2)

offspring PGFs are:

f (i)(zH, zL, z2) = hi(zH, zL, z2)

= βi(λH(1 − zH) + λL(1 − zL) + λ2(1 − z2)).

The two (i = 1, 2) immigration functions are:

g(i)(zH, zL, z2) = σi(λH(1 − zH) + λL(1 − zL) + λ2(1 − z2)).

Using these definitions, the formula for the PGF of the joint queue length distribution
at the beginning of a cycle is similar to the one found in Section 2:

P1(zH, zL, z2) =
∞∏

n=0

g( fn(zH, zL, z2)). (22)

Notice that in a system with globally gated service it is possible to express the joint
queue length distribution at the beginning of a cycle in terms of the cycle time LST,
since all customers that are present at the beginning of a cycle are exactly all of the
customers that have arrived during the previous cycle:

P1(zH, zL, z2) = γ1(λH(1 − zH) + λL(1 − zL) + λ2(1 − z2)). (23)
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4.2 Cycle time

Since only those customers that are present at the start of a cycle, starting at Q1, will
be served during this cycle, the LST of the cycle time distribution is

γ1(ω) = σ1(ω)σ2(ω)P1(βH(ω), βL(ω), β2(ω)). (24)

Substitution of Eq. 23 into this expression gives us the following relation:

γ1(ω) = σ1(ω)σ2(ω)

·γ1(λH(1 − βH(ω)) + λL(1 − βL(ω)) + λ2(1 − β2(ω))).

Boxma et al. (1992) show that this relation leads to the following expression for the
cycle time LST:

γ1(ω) =
∞∏

i=0

σ(δ(i)(ω)),

where σ(·) = σ1(·)σ2(·), and δ(i)(ω) is recursively defined as follows:

δ(0)(ω) = ω,

δ(i)(ω) = δ(δ(i−1)(ω)), i = 1, 2, 3, . . . ,

δ(ω) = λH(1 − βH(ω)) + λL(1 − βL(ω)) + λ2(1 − β2(ω)).

4.3 Marginal queue lengths and waiting times

For type H and L customers, the expressions for E(e−ωWH ) and E(e−ωWL) are exactly
the same as the ones found in Section 3.3, but with γ1(·) as defined in Eq. 24.

The expression for E(e−ωW2) can be obtained with the method used in Section 3.3:

E
[
e−ωW2

] = σ1(ω) · γ1(
∑

i=H,L,2 λi(1 − βi(ω))) − γ1(ω + ∑
i=H,L λi(1 − βi(ω)))

(ω − λ2(1 − β2(ω)))E(C)

= σ1(ω) · (1 − ρ2)ω

ω − λ2(1 − β2(ω))

·γ1(
∑

i=H,L,2 λi(1 − βi(ω))) − γ1(ω + ∑
i=H,L λi(1 − βi(ω)))

(1 − ρ2)ωE(C)
.

We can use the distributional form of Little’s law to determine the LST of the
marginal queue length distribution of Q2:

E
[
zN2

] = σ1(λ2(1 − z))
(1 − ρ2)(1 − z)β2(λ2(1 − z))

β2(λ2(1 − z)) − z

·γ1
(∑

i=H,L,2 λi(1 − βi(λ2(1 − z)))
) − γ1

(
λ2(1 − z) + ∑

i=H,L λi(1 − βi(λ2(1 − z)))
)

λ2(1 − ρ2)(1 − z)E(C)
.

Remark 5 The Fuhrmann-Cooper queue length decomposition also holds for all
customer classes in a polling system with globally gated service.
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4.4 Moments

The expressions for E(WH) and E(WL) from Section 3.4 also hold in a globally gated
polling system, but with a different mean residual cycle time. We only provide the
mean waiting time of type 2 customers:

E(W2) = E(S1) + (1 + 2ρH + 2ρL + ρ2)E(C1,res).

5 Exhaustive service

In this section we study the same polling model as in the previous two sections, but
the two queues are served exhaustively. The section has the same structure as the
other sections, so we start with the derivation of the LST of the joint queue length
distribution at polling epochs, followed by the LST of the cycle time distribution.
LSTs of the marginal queue length distributions and waiting time distributions are
provided in the next subsection. In the last part of the section the mean waiting time
of each customer type is studied.

It should be noted that, although we assume that both Q1 and Q2 are served
exhaustively, a model in which Q2 is served according to another branching type
service discipline, requires only minor adaptations.

5.1 Joint queue length distribution at polling epochs

We can derive the joint queue length distribution at the beginning of a cycle for a
polling system with two queues and two priority classes in Q1, P1(zH, zL, z2), directly
from Eq. 1 for P1(z1, z2). Similar to the proof of Lemma 1, we can prove that

P1(zH, zL, z2) = P1

(
1

λ1
(λHzH + λLzL), z2

)

.

The same holds for Vb 2(·, ·, ·) and visit completion epochs Vci(·, ·, ·), for i = 1, 2.

5.2 Cycle time

For the cycle time starting with a visit to Q1, Eq. 4 is still valid. However, when
studying the waiting time of a specific customer type in an exhaustively served queue,
it is convenient to consider the completion of a visit to Q1 as the start of a cycle.
Hence, in this section the notation C∗

1 , or the LST of its distribution, γ ∗
1 (·), refers to

the cycle time starting at the completion of a visit to Q1. Equation 5 gives the LST of
the distribution of C∗

1 .
Using the fact that customers in Q1 are served exhaustively, we can find an alter-

native, compact expression for γ ∗
1 (·). The type 1 (i.e. both type H and L customers)

customers at the beginning of a visit to Q1 are exactly those type 1 customers that
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have arrived during the previous intervisit time: P1(z, 1) = Ĩ1(λ1(1 − z)). Hence, by
setting ω = λ1(1 − z), we get Ĩ1(ω) = P1(1 − ω

λ1
, 1), and thus by Eq. 11,

γ ∗
1 (ω) = P1

(

π1(ω) − ω

λ1
, 1

)

. (25)

5.3 Marginal queue lengths and waiting times

Analysis of the model with exhaustive service requires a different approach. The key
observation, made by Fuhrmann and Cooper (1985), is that a nonpriority polling
system from the viewpoint of a type i customer is an M/G/1 queue with multiple
server vacations. This implies that the Fuhrmann-Cooper decomposition can be
used, even though the intervisit times are strongly dependent on the visit times. The
M/G/1 queue with priorities and vacations can be analysed by modelling the system
as a special version of the nonpriority M/G/1 queue with multiple server vacations,
and then applying the results from Fuhrmann and Cooper. This approach has been
used by Kella and Yechiali (1988) who used the concept of delay cycles, and also
by Shanthikumar (1989) who used level crossing analysis; see also Takagi (1991).
We apply Kella and Yechiali’s approach to the polling model under consideration to
find the waiting time LST for type H and L customers. In Kella and Yechiali (1988)
systems with single and multiple vacations, preemptive resume and nonpreemptive
service are considered. In the present paper we do not consider preemptive resume,
so we only use results from the case labelled as NPMV (nonpreemptive, multiple
vacations) in Kella and Yechiali (1988). We consider the system from the viewpoint
of a type H and type L customer separately to derive E[e−ωWH ] and E[e−ωWL ].

From the viewpoint of a type H customer and as far as waiting times are con-
cerned, a polling system is a nonpriority single server system with multiple vacations.
The vacation can either be the intervisit period I1, or the service of a type L customer.
The LSTs of these two types of vacations are:

E[e−ωI1 ] = P1(1 − ω/λ1, 1),

E[e−ωBL ] = βL(ω). (26)

Equation 26 follows immediately from the fact that the number of type 1 (i.e. both H
and L) customers at the beginning of a visit to Q1 is the number of type 1 customers
that have arrived during the previous intervisit period: P1(z, 1) = E[e−(λ1(1−z))I1 ].

We now use the concept of delay cycles, introduced in Kella and Yechiali (1988),
to find the waiting time LST of a type H customer. The key observation is that an
arrival of a tagged type H customer will always take place within either an IH cycle,
or an LH cycle. An IH cycle is a cycle that starts with an intervisit period for Q1,
followed by the service of all type H customers that have arrived during the intervisit
period, and ends at the moment that no type H customers are left in the system.
Notice that at the start of the intervisit period, no type H customers were present in
the system either. An LH cycle is a similar cycle, but starts with the service of a type
L customer. This cycle also ends at the moment that no type H customers are left in
the system.
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The fraction of time that the system is in an LH cycle is ρL
1−ρH

, because type L
customers arrive with intensity λL. Each of these customers will start an LH cycle
and the length of an LH cycle equals E(BL)

1−ρH
:

E(LH cycle) = E(BL) + λH E(BL)E(BPH)

= E(BL) + λH E(BL)
E(BH)

1 − ρH

=
(

1 + ρH

1 − ρH

)

E(BL) = E(BL)

1 − ρH
,

where E(BPH) is the mean length of a busy period of type H customers.
The fraction of time that the system is in an IH cycle, is 1 − ρL

1−ρH
= 1−ρ1

1−ρH
. This

result can also be obtained by using the argument that the fraction of time that the
system is in an intervisit period is the fraction of time that the server is not serving Q1,
which is equal to 1 − ρ1. A cycle which starts with such an intervisit period and stops
when all type H customers that arrived during the intervisit period and their type
H descendants have been served, has mean length E(I1) + λH E(I1)E(BPH) = E(I1)

1−ρH
.

This also leads to the conclusion that 1−ρ1

1−ρH
is the fraction of time that the system is in

an IH cycle. A customer arriving during an IH cycle views the system as a nonpriority
M/G/1 queue with multiple server vacations I1; a customer arriving during an LH

cycle views the system as a nonpriority M/G/1 queue with multiple server vacations
BL.

Fuhrmann and Cooper (1985) showed that the waiting time of a customer in an
M/G/1 queue with server vacations is the sum of two independent quantities: the
waiting time of a customer in a corresponding M/G/1 queue without vacations, and
the residual vacation time. Hence, the LST of the waiting time distribution of a type
H customer is:

E[e−ωWH ]= (1−ρH)ω

ω−λH(1−βH(ω))
·
[

1 − ρ1

1 − ρH
· 1 − Ĩ1(ω)

ωE(I1)
+ ρL

1 − ρH
· 1 − βL(ω)

ωE(BL)

]

. (27)

Equation 27 is in accordance with the more general equation in Section 4.1 in Kella
and Yechiali (1988).

Remark 6 The LST of the distribution of the waiting time of a high priority customer
in a two priority M/G/1 queue without vacations is

E[e−ωWH|M/G/1 ] = (1 − ρ1)ω + λL(1 − βL(ω))

ω − λH(1 − βH(ω))
, (28)

see, e.g., Eq. 3.85 in Cohen (1982), Chapter III.3. Equation 28 can be rewritten to
Eq. 27, with 1− Ĩ1(ω)

ωE(I1)
replaced by 1. Hence, the waiting time distribution of a high

priority customer in a two priority M/G/1 queue equals the waiting time distribution
of a customer in a nonpriority M/G/1 queue with only type H customers, where the
server goes on a vacation BL with probability ρL

1−ρH
.



528 Discrete Event Dyn Syst (2010) 20:511–536

Remark 7 Substitution of Eq. 12 in Eq. 27 expresses E[e−ωWH ] in terms of the LST
of the cycle time distribution starting at a visit completion to Q1, γ ∗

1 (·):

E[e−ωWH ] = 1 − γ ∗
1 (ω − λH(1 − βH(ω)) − λL(1 − βL(ω))) + λL(1 − βL(ω))E(C)

(ω − λH(1 − βH(ω)))E(C)
.

(29)

The concept of cycles is not really needed to model the system from the perspective
of a type L customer, because for a type L customer the system merely consists
of IHL cycles. An IHL cycle is the same as an IH cycle, discussed in the previous
paragraphs, except that it ends when no type H or L customers are left in the system.
So the system can be modelled as a nonpriority M/G/1 queue with server vacations.
The vacation is the intervisit time I1, plus the service times of all type H customers
that have arrived during that intervisit time and their type H descendants. We will
denote this extended intervisit time by I∗

1 with LST

Ĩ∗
1 (ω) = Ĩ1(ω + λH(1 − πH(ω))).

The mean length of I∗
1 equals E(I∗

1 ) = E(I1)

1−ρH
.

We also have to take into account that a busy period of type L customers might
be interrupted by the arrival of type H customers. Therefore the alternative system
that we are considering will not contain regular type L customers, but customers still
arriving with arrival rate λL, whose service time equals the service time of a type L
customer in the original model, plus the service times of all type H customers that
arrive during this service time, and all of their type H descendants. The LST of the
distribution of this extended service time B∗

L is

β∗
L(ω) = βL(ω + λH(1 − πH(ω))).

This extended service time is often called completion time in the literature. In this
alternative system, the mean service time of these customers equals E(B∗

L) = E(BL)

1−ρH
.

The fraction of time that the system is serving these customers is ρ∗
L = ρL

1−ρH
= 1 −

1−ρ1

1−ρH
.

Now we use the results from the M/G/1 queue with server vacations (starting
with the Fuhrmann-Cooper decomposition) to determine the LST of the waiting time
distribution for type L customers:

E[e−ωWL ] = (1 − ρ∗
L)ω

ω − λL(1 − β∗
L(ω))

· 1 − Ĩ∗
1 (ω)

ωE(I∗
1 )

= (1 − ρ1)(ω + λH(1 − πH(ω)))

ω − λL(1 − βL(ω + λH(1 − πH(ω))))
· 1 − Ĩ1(ω + λH(1 − πH(ω)))

(ω + λH(1 − πH(ω)))E(I1)
.

(30)

The last term of Eq. 30 is the LST of the distribution of the residual intervisit time,
plus the time that it takes to serve all type H customers and their type H descendants
that arrive during this residual intervisit time. The first term of Eq. 30 is the LST of
the waiting time distribution of a low-priority customer in an M/G/1 queue with two
priorities, without vacations (see e.g. (3.76) in Cohen (1982), Chapter III.3).
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Remark 8 The M/G/1 queue with two priorities can be viewed as a nonpriority
M/G/1 queue with vacations, if we consider the waiting time of type L customers.
We only need to rewrite the first term of Eq. 30:

E[e−ωWL|M/G/1 ] = (1 − ρ1)(ω + λH(1 − πH(ω)))

ω − λL(1 − βL(ω + λH(1 − πH(ω))))

= (1 − ρ∗
L)ω

ω − λL(1 − β∗
L(ω))

· 1 − ρ1

1 − ρ∗
L

· ω + λH(1 − πH(ω))

ω

= E[e−ωW∗
L|M/G/1 ] ·

[

(1 − ρH) + ρH
1 − πH(ω)

ωE(BPH)

]

,

where E[e−ωW∗
L|M/G/1 ] is the LST of the waiting time distribution of a customer in an

M/G/1 queue where customers arrive at intensity λL and have service requirement
LST βL(ω + λH(1 − πH(ω))). So with probability 1 − ρH the waiting time of a cus-
tomer is the waiting time in an M/G/1 queue with no vacations, and with probability
ρH the waiting time of a customer is the sum of the waiting time in an M/G/1 queue
and the residual length of a vacation, which is a busy period of type H customers.

Remark 9 Substitution of Eq. 12 in Eq. 30 leads to a different expression for
E[e−ωWL ]:

E[e−ωWL ] = 1 − γ ∗
1 (ω − λL(1 − βL(ω + λH(1 − πH(ω)))))

(ω − λL(1 − βL(ω + λH(1 − πH(ω)))))E(C)

= E[e−(ω−λL(1−βL(ω+λH(1−πH(ω)))))C∗
1,res ]. (31)

The waiting time of type 2 customers is not affected at all by the fact that Q1 contains
multiple classes of customers, so Eq. 9 is still valid for E(e−ωW2).

We will refrain from mentioning the PGFs of the marginal queue length distri-
butions here, because they can be obtained by applying the distributional form of
Little’s law as we have done before.

5.4 Moments

The mean waiting times for high and low priority customers can be found by
differentiation of Eqs. 27 and 30:

E(WH) = ρH E(BH,res) + ρL E(BL,res)

1 − ρH
+ 1 − ρ1

1 − ρH
E(I1,res),

E(WL) = ρH E(BH,res) + ρL E(BL,res)

(1 − ρH)(1 − ρ1)
+ 1

1 − ρH
E(I1,res).
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Differentiation of Eqs. 29 and 31 leads to alternative expressions, that can also be
found in Wierman et al. (2007).

E(WH) = (1 − ρ1)
2

1 − ρH

E(C∗
1

2)

2E(C)
,

E(WL) = (1 − ρ1)
2

(1 − ρH)(1 − ρ1)

E(C∗
1

2)

2E(C)

=
(

1 − ρL

1 − ρH

)
E(C∗

1
2)

2E(C)
.

6 Example

Consider a polling system with two queues, and assume exponential service times
and switch-over times. Suppose that λ1 = 6

10 , λ2 = 2
10 , E(B1) = E(B2) = 1, E(S1) =

E(S2) = 1. The workload of this polling system is ρ = 8
10 . This example is extensively

discussed in Winands et al. (2006) where MVA was used to compute mean waiting
times and mean residual cycle times for the gated and exhaustive service disciplines.

In this example we show that the performance of this system can be improved
by giving higher priority to jobs with smaller service times. We define a threshold t
and divide the jobs into two classes: jobs with a service time less than t receive high
priority, the other jobs receive low priority. In Figs. 1 and 2 the mean waiting times of
customers in Q1 are shown as a function of the threshold t. The following four cases
are distinguished:

– the mean waiting time of the low priority customers in Q1 (indicated as “Type
L”);

– the mean waiting time of the high priority customers in Q1 (indicated as “Type
H”);

– a weighted average of the above two mean waiting times: λL
λ1

E(WL) + λH
λ1

E(WH)

(indicated as “Type 1 with priorities”). This can be interpreted as the mean
waiting time of an arbitrary customer in Q1;
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16

18
E(W)

Type H

Type 1 with priorities

Type 1 no priorities

Type L

Fig. 1 Mean waiting time of customers in Q1 in the gated polling system, versus threshold t
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Fig. 2 Mean waiting time of customers in Q1 in the exhaustive polling system, versus threshold t
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Fig. 3 Standard deviation of the waiting time of customers in Q1 in the gated polling system, versus
threshold t
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Fig. 4 Standard deviation of the waiting time of customers in Q1 in the exhaustive polling system,
versus threshold t
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– the mean waiting time of an arbitrary customer in Q1 if no priority rules would be
applied to this queue (indicated as “Type 1 no priorities”). In this situation there
is no such thing as high and low priority customers, so the mean waiting time does
not depend on t, and has already been computed in Winands et al. (2006).

The figures show that a unique optimal threshold exists that minimises the mean
weighted waiting time for customers in Q1. This value depends on the service
discipline used and is discussed in Wierman et al. (2007). In this example the
optimal threshold is 1 for gated, and 1.38 for exhaustive. Figure 1 confirms that
the mean waiting times for type H and L customers in the gated model only differ
by a constant value: E(WL) − E(WH) = ρ1 E(C1,res). For globally gated service no
figure is included, because we again have E(WL) − E(WH) = ρ1 E(C1,res). The mean
residual cycle time is different from the one in the gated model, but this does not
affect the optimal threshold which is still t = 1.

In the exhaustive model we have the following relation:

E(WL) − E(WH) = ρ1(1 − ρ1)

1 − ρH
E(C∗

1,res).

If we increase threshold t, the fraction of customers in Q1 that receive high priority
grows, and so does their mean service time. This means that ρH increases as t
increases, so E(WL) − E(WH) gets bigger, which can be seen in Fig. 2. Notice that
E(WH)

E(WL)
= 1 − ρ1, so it does not depend on t.

It is interesting to also consider the variance, or rather the standard deviation of
the waiting time. Figures 3 and 4 show the standard deviation of the type H and
L customers versus the threshold t. The figures also show the standard deviation of
an arbitrary customer in Q1, with and without priorities. The figures indicate that
the waiting times in the gated system have smaller standard deviations than in the
exhaustive case. In this example, the introduction of priorities affects the standard
deviation of an arbitrary type 1 customer only slightly. However, it is interesting
to zoom in to investigate the influence of threshold t. Figure 5 contains zoomed
versions of Figs. 3 and 4 and indicates that the threshold t that minimises the overall
mean waiting time of type 1 customers in the priority system does not minimise
the standard deviation. In fact, changing threshold t affects the entire service time
distributions BH and BL, which results in two local minima for the standard deviation
as function of threshold t.
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sd(W)
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t
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Fig. 5 Zoomed versions of Figs. 3 (left) and 4 (right)
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7 Possible extensions and future research

The polling system studied in the present paper leaves many possibilities for exten-
sions or variations. In this section we discuss some of them.

Multiple queues and priority levels Probably the most obvious extension of the
model under consideration, is a polling system with any number of queues and any
number of priority levels in each queue. In recent research (Boon et al. 2008a), we
have discovered that such a polling model can be analysed in detail. Each queue can
have its own service discipline, either exhaustive or (synchronised) gated.

Preemptive resume In the present paper, the service of low priority customers is
not interrupted by the arrival of a high priority customer. If we allow for service
interruptions, these would only take place in a queue with exhaustive service, since
(globally) gated service forces high priority customers to wait behind the gate.
We note that allowing service interruptions does not affect the joint queue length
distributions at polling instants, nor the cycle time. Also the waiting time of low
priority customers is unaffected (but they might have a longer sojourn time). It only
affects the waiting time of high priority customers, because they do not have to wait
for a residual service time of a low priority customer. The LST of the waiting time
distribution of a high priority customer if service is preemptive resume, is:

E[e−ωWH ] = (1 − ρH)ω

ω − λH(1 − βH(ω))
·
[

1 − ρ1

1 − ρH
· 1 − Ĩ1(ω)

ωE(I1)
+ ρL

1 − ρH

]

.

Mixed gated/exhaustive service In the present paper, customers in Q1 receive either
exhaustive or (globally) gated service. One may consider serving each priority level
according to a different service discipline. In Boon and Adan (2008), high priority
customers receive exhaustive service, whereas low priority customers receive gated
service. This gives high priority customers an additional advantage, but it turns out
that for low priority customers this strategy may be better than, e.g., gated service for
all priority levels. A mixture of globally gated service for low priority customers and
exhaustive service for high priority customers can be analysed similarly.

The “opposite” strategy, where low priority customers are served exhaustively and
high priority customers are served according to the gated service discipline is easier
to analyse, since we can model it as a nonpriority polling model with Q1 replaced by
two queues, QH and QL, containing the type H and type L customers and having
gated and exhaustive service respectively.

Partially gated A variant of the gated service discipline is partially gated service:
every customer, type H or L, standing in front of the gate is served during a visit
with a fixed probability p, and is not served with probability 1 − p. The probability p
might even depend on the customer type. Whether a rejected customer is eligible for
service in the next cycle, or leaves the system, does not matter. Both situations can
be analysed.

Different polling sequences We assume that the server alternates between Q1 and
Q2. A different way of introducing priorities to a polling system is by increasing the
frequency of visits to a queue within a cycle. One can, e.g., decide to visit Q1 two
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consecutive times if gated service is used. Or one can think of a system where the
server switches to Q j after completing a visit to Qi with probability pij.

Large setup times Winands (2007) establishes fluid limits for polling systems with
any branching type service discipline and deterministic switch-over times tending
to infinity. The scaled waiting time distribution is shown to converge to a uniform
distribution with bounds that can be computed explicitly. The results are relevant to
applications in production systems, where large setup times are common. These fluid
limits can also be computed for the polling model that is discussed in the present
paper and give explicit insight in when each of the discussed service disciplines is
optimal.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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