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Abstract This paper considers a parallel system of queues fed by independent arrival
streams, where the service rate of each queue depends on the number of customers
in all of the queues. Necessary and sufficient conditions for the stability of the
system are derived, based on stochastic monotonicity and marginal drift properties of
multiclass birth and death processes. These conditions yield a sharp characterization
of stability for systems where the service rate of each queue is decreasing in the
number of customers in other queues, and has uniform limits as the queue lengths
tend to infinity. The results are illustrated with applications where the stability region
may be nonconvex.

Keywords Stability · Positive recurrence · Multiclass birth and death process ·
Foster–Lyapunov drift criterion · Stochastic comparison · Coupled processors

1 Introduction

We consider a parallel system of queues fed by independent arrival streams, where
the service rate of each queue depends on the number of customers in all of the
queues. This type of model is natural for manufacturing systems where a server is
capable to process other queues when its own buffer is empty, or for cellular radio
networks, where the available transmission rate for customers in a particular cell is
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decreasing in the number of customers in the neighboring cells (Bonald et al. 2004).
Another important category of applications consists of processor sharing models,
where several customer classes simultaneously use one or more servers, whose rate
allocations and total processing rates may depend on the number of customers in
each of the classes (Bonald et al. 2006). For example, in wireless data networks
employing channel-aware scheduling, the total service rate available to all customers
can be increasing in the total number of customers, due to multiuser diversity (Liu
et al. 2003).

Stability is arguably the most fundamental property of a queueing system, and
provides a crude yet useful first-order benchmark of the system performance. A
general framework for analyzing stochastic stability consists of the Foster–Lyapunov
criteria, which are based on finding a suitable test function having a positive or
negative mean drift in almost all states of the state space (Meyn and Tweedie 1993;
Fayolle et al. 1995). In the context of multiclass queueing systems with coupled
servers, these techniques have been successfully applied to systems with utility-based
service allocations (de Veciana et al. 2001). Fluid limit analysis is another powerful
method for finding necessary and sufficient stability conditions for a wide class of
multiclass queueing networks with work-conserving service disciplines (Dai 1995;
Meyn 1995).

The stability analysis of multiclass queueing systems with general state-dependent
service rates is difficult, because there is no systematic way of finding test functions
satisfying the Foster–Lyapunov criteria, and the fluid limit techniques are often
restricted to systems of work-conserving servers with fixed total rate. An alternative
means for deriving stability conditions is to study whether the system of interest is
stochastically comparable to a simpler system that is easier to analyze. This approach
was first used in the multiclass queueing context by Rao and Ephremides (1988) and
Szpankowski (1988), and later refined by Szpankowski (1994), to characterize the
stability of buffered random access systems.

In this paper we provide an extension of the above ideas (tentatively discussed in
Jonckheere and Borst 2006), by deriving marginal drift criteria for multiclass birth
and death processes that allow us to analyze the stability of a broad class of parallel
queueing systems. Moreover, we present conditions for partial stability, where only
some of the queues are stable, and give a sharp stability characterization for systems
where the service rate of each queue is decreasing in the number of customers in
other queues, and has uniform limits as the queue lengths tend to infinity. For systems
of at most three queues, where the service rates only depend on whether the queues
are empty or not, our results yield as special cases stability characterizations that
have earlier been found using transform methods (Fayolle and Iasnogorodski 1979;
Cohen and Boxma 1983) and the ergodic theory of deflected random walks (Fayolle
et al. 1995).

The paper is organized as follows. Section 2 describes the model details and
discusses a notion of stability that is convenient for the subsequent analysis. Section 3
presents a key coupling result and marginal drift criteria for the stability of multiclass
birth and death processes, while the main results regarding the stability of queueing
systems are given in Section 4, in decreasing level of generality. Section 5 illustrates
the results with two applications, and Section 6 concludes the paper.
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2 Model description

2.1 Parallel queueing system with coupled service rates

We consider a parallel system of N queues, where each queue i is fed by an
independent Poisson arrival process of rate λi, and served at rate φi(X1, . . . , XN)

that depends on the number of customers X j in each of the queues j = 1, . . . , N. We
assume that all customers require independent exponentially distributed amounts
of service with unit mean, and that the system has unlimited buffer space to
accommodate customers. The scheduling at each queue can be first-come first-
served, processor sharing, random order of service, or any discipline that does not
depend on the service requirements.

Under these assumptions, we can model X = (X1, . . . , XN) as a continuous-
time Markov process on Z

N+ , with transitions x �→ x + ei occurring at rate λi and
transitions x �→ x − ei ≥ 0 at rate φi(x), where ei denotes the i-th unit vector in
Z

N+ . We assume that the allocation function φ = (φ1, . . . , φN) is bounded, which
guarantees that the process X is nonexplosive. Hence we may assume that X and
all other stochastic processes treated in the sequel have paths in the space D =
D(R+, Z

N+ ) of right-continuous functions from R+ to Z
N+ with finite left limits. Recall

that a stochastic process with paths in D can be viewed as a random element on the
measurable space (D,D), where D denotes the Borel σ -algebra generated by the
standard Skorokhod topology (Kallenberg 2002).

Observe that this model also covers scenarios where the service requirements
of customers at queue i are exponentially distributed with parameter μi �= 1, via
replacing φi(x) by μiφi(x).

2.2 Stability notions

A stochastic process X taking values in a countable space S and having paths in
D(R+, S) is said to be stable, if for any ε > 0 there exists a finite set K such that

P(X(t) /∈ K) ≤ ε for all t, (2.1)

and otherwise X is said to be unstable. Further, the process X is called transient, if
X(t) → ∞ almost surely, that is, for any finite set K,

P

(⋃
s≥0

⋂
t≥s

{X(t) /∈ K}
)

= 1.

An alternative way to express Eq. 2.1 is to say that the family of distributions
{P ◦X(t)−1}t≥0 is tight. Observe that an irreducible Markov process is stable if and
only if it is positive recurrent (Kallenberg 2002, Theorem 12.25). The following
proposition illustrates an intuitively clear relation between transience and instability.

Proposition 1 Any transient stochastic process X having paths in D(R+, S) is
unstable.



450 Discrete Event Dyn Syst (2008) 18:447–472

Proof If X is transient, then for any finite set K there exists an s such that
P(∩t≥s{X(t) /∈ K}) > 1/2. Hence, supt P(X(t) /∈ K) > 1/2 for all finite K, so X cannot
be stable. ��

In most applications, it is natural to assume that the Markov process describing
the system is irreducible, in which case stability is equivalent to the existence of a
unique stationary distribution. In Section 4, where the service rates of the original
system are modified in various ways, it may happen that some of the modified
Markov processes are not irreducible. This is why we need the following result to
guarantee the existence of a stationary distribution for a stable multiclass birth and
death process under slightly weaker than usual assumptions on the reachability of
states. We denote by X[x] the version of a Markov process X started in state x.

Proposition 2 Let X be a N-class birth and death process with strictly positive birth
rates λi and bounded death rates φi(x). Then the following are equivalent:

1. X[x] is stable for some initial state x.
2. X[x] is stable for all initial states x.
3. X has a unique stationary distribution π supported on a set C such that

Px(X(t) ∈ ·) → π in total variation for all initial states x, and X[x] is irreducible
and positive recurrent for any x ∈ C.

Moreover, X is unstable if and only if X(t) → ∞ in probability, regardless of the
initial state.

Proof See Appendix. ��

The following stability characterization of vector-valued stochastic processes is
well-known. Because the proof is short, we give it here for completeness.

Proposition 3 A stochastic process X = (X1, . . . , XN) taking values in a countable
space S1 × · · · × SN is stable if and only if Xi is stable for each i.

Proof First assume that X is stable. Given ε > 0, let us fix a finite set K such that
supt P(X(t) /∈ K) ≤ ε, and choose a finite rectangle K1 × · · · × KN that contains K.
Then for any i and all t, P(Xi(t) /∈ Ki) ≤ P(X(t) /∈ K), so it follows that Xi is stable.

For the reverse direction, it suffices to observe that for an arbitrary finite set K =
K1 × · · · × KN , P(X(t) /∈ K) ≤ ∑

i P(Xi /∈ Ki). ��

3 Multiclass birth and death processes

3.1 Stochastic comparison

When X and Y are random elements taking values in a partially ordered measurable
space, we denote X ≤st Y and say that X is stochastically less than Y, if E f (X) ≤
E f (Y) for all positive increasing measurable functions. We use the terms increasing
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and positive in the weak sense, so that a function f is increasing, if f (x) ≤ f (y) for
all x ≤ y, and positive if f (x) ≥ 0 for all x. Moreover, we denote X =st Y, if the
distributions of X and Y are equal.

Let us endow the spaces Z
N+ and D

(
R+, Z

N+
)

with the usual coordinate-wise partial
orders, so that x ≤ y in Z

N+ if and only if xi ≤ yi for all i; and x ≤ y in D
(
R+, Z

N+
)

if and only if xi(t) ≤ yi(t) for all i and t. Recall that by Strassen’s theorem? (Kamae
et al. 1977, Theorem 1), the stochastic processes X and Y having paths in D

(
R+, Z

N+
)

satisfy X ≤st Y if and only if there exist processes X̃ and Ỹ defined on a common
probability space such that X̃ =st X, Ỹ =st Y, and X̃i(t) ≤ Ỹi(t) for all i and t almost
surely. The following result indicates a fundamental relation between stochastic
ordering and stability.

Proposition 4 Let X and Y be stochastic processes with paths in D(R+, Z
N+ ) and

assume that X ≤st Y.

1. If X is transient, then so is Y.
2. If Y is stable, then so is X.

Proof The first claim is a direct consequence of Strassen’s theorem, while the second
follows directly from the definition of stability, because P(|X(t)| > r) ≤ P(|Y(t)| > r)
for all r and t. ��

A Markov process having paths in D
(
R+, Z

N+
)

is called a multiclass birth and death
process, if its transitions are given by

x �→ x + ei at rate λi(x),

x �→ x − ei at rate φi(x)1(xi > 0),

where λi(x) and φi(x) are some positive functions on Z
N+ , called the class-i birth

rates and death rates, respectively. The following lemma, which is proved using a
direct coupling construction, gives a sufficient condition for the comparability of two
multiclass birth and death processes.

Lemma 1 Let X = (X1, . . . , XI) and Y = (Y1, . . . , YJ) be multiclass birth and death
processes such that X has birth rates λi(x) and death rates φi(x), and Y has birth rates
η j(y) and death rates ψ j(y). Assume that for all i = 1, . . . , I ∧ J, and all x ∈ Z

I+ and
y ∈ Z

J+ such that xi = yi and (x1, . . . , xI∧J) ≤ (y1, . . . , yI∧J),

λi(x) ≤ ηi(y), (3.1)

φi(x) ≥ ψi(y). (3.2)

Then for all x ∈ Z
I+ and y ∈ Z

J+ such that (x1, . . . , xI∧J) ≤ (y1, . . . , yI∧J),

(X1[x], . . . , XI∧J[x]) ≤st (Y1[y], . . . , YI∧J[y]),

where X[x] and Y[y] are versions of X and Y started in x and y, respectively.
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Proof Let (X̃, Ỹ) be the Markov process with paths in D(R+, U), where U =
{(x, y) ∈ Z

I+ × Z
J+ : (x1, . . . , xI∧J) ≤ (y1, . . . , yI∧J)}, having the upward transitions

(x, y) �→ (x + ei, y) at rate λi(x), i ≤ I ∧ J, xi < yi,

(x, y) �→ (x, y + ei) at rate ηi(y), i ≤ I ∧ J, xi < yi,

(x, y) �→ (x + ei, y + ei) at rate λi(x), i ≤ I ∧ J, xi = yi,

(x, y) �→ (x, y + ei) at rate ηi(y) − λi(x), i ≤ I ∧ J, xi = yi,

(x, y) �→ (x + ei, y) at rate λi(x), i > I ∧ J,

(x, y) �→ (x, y + ei) at rate ηi(y), i > I ∧ J,

and the downward transitions

(x, y) �→ (x − ei, y) at rate φi(x), i ≤ I ∧ J, 0 < xi < yi,

(x, y) �→ (x, y − ei) at rate ψi(y), i ≤ I ∧ J, 0 < xi < yi,

(x, y) �→ (x − ei, y − ei) at rate ψi(y), i ≤ I ∧ J, 0 < xi = yi,

(x, y) �→ (x − ei, y) at rate φi(x) − ψi(y), i ≤ I ∧ J, 0 < xi = yi,

(x, y) �→ (x − ei, y) at rate φi(x), i > I ∧ J,

(x, y) �→ (x, y − ei) at rate ψi(y), i > I ∧ J.

In light of Eqs. 3.1 and 3.2, we see that all transition rates described above are
positive. Moreover, because each of the transitions are mappings from U into U ,
we can be assured that the process (X̃, Ỹ) exists.

By studying the marginals of the transition rates, we see that both X̃ and Ỹ are
Markov, and that their intensity matrices coincide with those of X and Y, respec-
tively. Hence, for all x and y such that (x, y) ∈ U , we have constructed versions of
X[x] and Y[y] on a common probability space such that (X1[x](t), . . . , XI∧J[x](t)) ≤
(Y1[y](t), . . . , YI∧J[y](t)) for all t almost surely. ��

3.2 Marginal drift conditions

In this section, we develop necessary and sufficient conditions for the stability of a
multiclass birth and death process, given that each coordinate process except one
is known to be stable. The following proposition extends the classical Neuts’ mean
drift condition (Neuts 1978), see also Tweedie (1982). The proof follows closely the
principles in Section 19 of Meyn and Tweedie (1993).

Proposition 5 Let X = (X1, . . . , Xn+1) be an (n + 1)-class birth and death process
with strictly positive birth rates λi and bounded death rates φi(x) such that φi(x) =
φi(x1, . . . , xn) only depends on the first n input arguments for all i = 1, . . . , n. Assume
that:

1. The Markov process Xn = (X1, . . . , Xn) is stable and has the stationary
distribution π .
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2. The birth rate of Xn+1 satisfies the condition

λn+1 <
∑

xn∈Z
n+

{
lim inf
xn+1→∞ φn+1(xn, xn+1)

}
π(xn).

Then the process X = (Xn, Xn+1) is stable.
In particular, if φn+1(x) = φn+1(xn+1) only depends on xn+1, then

λn+1 < lim inf
xn+1→∞ φn+1(xn+1)

is sufficient for the stability of Xn+1, regardless of the initial state.

To prove the above proposition, we use the following lemma:

Lemma 2 Let (X, Y) be a stochastic process with values in S × Z+, where S is
countable. Assume that

1. Xt → π weakly for some probability distribution π on S,
2. Yt → ∞ in probability.

Then for all bounded f ,

lim sup
t→∞

E f (Xt, Yt) ≤
∑

x

{
lim sup

y→∞
f (x, y)

}
π(x). (3.3)

Proof Assume first that S is finite, and let f̄ (x) = lim supy→∞ f (x, y). Then for
any ε > 0 there exists an r such that f (x, y) ≤ f̄ (x) + ε for all x and all y > r. It
follows that

E f (Xt, Yt) ≤ E( f̄ (Xt) + ε)1(Yt > r) + E f (Xt, Yt)1(Yt ≤ r)

= E f̄ (Xt) + ε + E[ f (Xt, Yt) − f̄ (Xt) − ε]1(Yt ≤ r)

≤ E f̄ (Xt) + ε + 2|| f || P(Yt ≤ r),

where || f || = supx,y | f (x, y)|. By letting t → ∞ and recalling that ε is arbitrary, we
see that the claim holds for a finite set S.

If S is countably infinite, then for any finite set K, the claim holds for the function
fK(x, y) = f (x, y)1(x ∈ K). Hence, because f̄K(x) = f̄ (x)1(x ∈ K), we get

lim sup
t→∞

E f (Xt, Yt) ≤
∑

x

f̄ (x) π(x) + 2|| f ||π(Kc).

Thus the claim follows, because we can make π(Kc) arbitrarily small by choosing K
large enough. ��

Proof of Proposition 5 Let us define V(x) = xn+1 and denote the mean drift of V
with respect to X by

	V(x) = λn+1 − φn+1(x)1(xn+1 > 0).
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Let us also define VM(x) = V(x)1(xn+1 ≤ M) for M > 0. Then by Kolmogorov’s
forward equation (Kallenberg 2002, Theorem 19.6) we have∫ t

0
Ex 	VM(X(s)) ds = Ex VM(X(t)) − VM(x).

Because VM → V and 	VM → 	V pointwise as M → ∞, and because ||	VM|| ≤
λ + ||φ||, we see by applying dominated convergence on the left-hand side, and
monotone convergence on the right, that∫ t

0
Ex 	V(X(s)) ds = Ex V(X(t)) − V(x).

Because V is positive, this implies that

lim sup
t→∞

t−1
∫ t

0
Ex 	V(X(s)) ds ≥ 0,

and consequently,

lim sup
t→∞

Ex 	V(X(t)) ≥ 0.

Now assume that the process X is unstable. Then Proposition 2 implies that
X(t) → ∞ in probability. Because Xn is stable, it follows that Xn+1(t) → ∞ in
probability, and we may conclude by virtue of Lemma 2 that

∑
xn∈Z

n+

{
λn+1 − lim inf

xn+1→∞ φn+1(xn, xn+1)

}
π(xn) ≥ lim sup

t→∞
Ex 	V(X(t)) ≥ 0.

��

To prove the following converse of Proposition 5, we make the additional assump-
tion that φn+1 only depends on the first n input arguments. Hence (Xn, Xn+1) is a
Markov additive process, where the state space of the modulating process Xn is
countably infinite. For Markov additive processes where the modulating process only
takes on finitely many values, the following kind of result is well-known (Asmussen
2003, Proposition XI.2.11).

Proposition 6 Let X = (X1, . . . , Xn+1) be an (n + 1)-class birth and death process
with strictly positive birth rates λi and bounded death rates φi(x) such that φi(x) =
φi(x1, . . . , xn) only depends on the first n input arguments for all i = 1, . . . , n + 1.
Assume that:

1. The Markov process Xn = (X1, . . . , Xn) is stable and has the stationary distribu-
tion π .

2. The birth rate of Xn+1 satisfies the condition

λn+1 >
∑

xn∈Z
n+

φn+1(xn) π(xn).

Then the process Xn+1 is transient, regardless of the initial state.



Discrete Event Dyn Syst (2008) 18:447–472 455

Proof Let us define the free process
(

Xn, X f
n+1

)
as the Markov process with values

in Z
n+ × Z, so that Xn = (X1, . . . , Xn) is as before, and conditional on Xn, X f

n+1 is
a birth and death process on Z with birth rates λn+1 and time-varying death rates
φn+1(Xn(t)). Note first that conditional on Xn, the process X f

n+1 can be represented
as a difference of two independent Poisson processes with intensity functions λn+1

and φn+1(X(t)), respectively. Hence, by conditioning on Xn, we find that

Ex

[
X f

n+1(t) − X f
n+1(0)

]
= Ex

∫ t

0

[
λn+1 − φn+1(Xn(s))

]
ds.

The above equation together with the strong Markov property shows that

M(t) = X f
n+1(t) − X f

n+1(0) −
∫ t

0

[
λn+1 − φn+1(Xn(s))

]
ds (3.4)

is a martingale. Moreover, by conditioning on X again, one may verify that

Ex M(t)2 = Ex

∫ t

0

[
λn+1 + φn+1(Xn(s))

]
ds ≤ (λn+1 + ||φn+1||)t.

This shows that (1 + t)−1 M(t) is a supermartingale that converges to zero in L2.
Hence, (1 + t)−1 M(t) converges almost surely to zero as t → ∞ (Rogers and Williams
1994, Theorem 69.1). On the other hand, by the ergodic theorem for positive
recurrent Markov processes (Kallenberg 2002, Theorem 20.21),

t−1
∫ t

0
φn+1(Xn(s)) ds →

∑
xn∈Z

n+

φn+1(xn) π(xn) a.s.

Hence, by dividing both sides of Eq. 3.4 by t and taking t → ∞, we see that regardless
of the initial state, X f

n+1(t) → ∞ almost surely.

Finally, observe that whenever (Xn, Xn+1) and
(

Xn, X f
n+1

)
are started in the

same initial state, Xn+1 can be represented in terms of X f
n+1 via the Skorokhod map

(Robert 2003, Theorem D.1)

Xn+1(t) = X f
n+1(t) + sup

s≤t

[
−X f

n+1(s)
]+

.

Because X f
n+1(t) → ∞ almost surely, it follows that Xn+1 is transient. ��

4 Stability results for queueing systems

4.1 General service allocations

Let us return to the queueing system described in Section 2.1, so from now on
X = (X1, . . . , XN) describes the queue lenghts of the system, and φi(x) is the service
rate for queue i. The following result gives stability conditions valid for an arbitrary
bounded service allocation φ = (φ1, . . . , φN). Although these conditions are not
sharp in general, they may provide useful inner and outer bounds for stability regions
of complex systems that are not easy to analyze exactly.
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Theorem 1 Let X = (X1, . . . , XN) be the queue length process of the system with
strictly positive arrival rates λi and bounded service rates φi(x). Then, regardless of
the initial state, the process Xi is stable if

λi < lim inf
xi→∞ inf

x j: j�=i
φi(x), (4.1)

and transient, if

λi > lim sup
xi→∞

sup
x j: j�=i

φi(x). (4.2)

In particular, X is stable if Eq. 4.1 holds for all i.

Proof Assume that Eq. 4.1 holds for some i. By relabeling the queues if necessary, we
may assume without loss of generality that i = 1. Let Y1 be the one-class birth and
death process with constant birth rate λ1 and death rates ψ1(x1) = infx2,...,xN φ1(x).
Because λ1 < lim infx1→∞ ψ1(x1), it then follows from Proposition 5 that Y1 is stable,
regardless of the initial state. Moreover, because φ1(x) ≥ ψ1(x1) for all x, it follows
from Lemma 1 that X1[x] ≤st Y1[x1] for any initial state x. Hence, X1[x] is stable by
Proposition 4.

Analogously, if Eq. 4.2 holds, then it again suffices to consider i = 1. In that case,
we let Z1 be the one-class birth and death process with birth rate λ1 and death rates
χ1(x1) = supx2,...,xN

φ1(x) + ε, where ε > 0 is such that λ1 − ε is strictly larger than the
right-hand side of Eq. 4.2. Then Z1 is irreducible and λ1 > lim supx1→∞ χ1(x1), so it
follows from the classical theory of ordinary birth and death processes (Asmussen
2003, Proposition III.2.1) that Z1 is transient. Applying Lemma 1 once more, we see
that Z1[x1] ≤st X1[x] for any x ∈ Z

N+ . Hence, X1[x] is transient by Proposition 4.
Finally, if we assume that Eq. 4.1 holds for all i, then all Xi[x] are stable, regardless

of the initial state x, hence X is stable by Proposition 3. ��

4.2 Partially decreasing service allocations

For the service allocation φ, the following notion of monotonicity is fundamental in
comparing multiclass birth and death processes. A function φ = (φ1, . . . , φN) from
Z

N+ into R
N+ is said to be partially decreasing if for all i,

φi(x) ≥ φi(y) for all x ≤ y such that xi = yi. (4.3)

Note that a function φ = (φ1, . . . , φN) is partially decreasing, if each of the coordinate
functions φi is decreasing. Moreover, any function φ = (φ1, . . . , φN) such that φi only
depends on xi, is partially decreasing. Recall also that a continuous-time Markov
process X is said to be monotone, if the map x �→ Ex f (Xt) is increasing for all t and
for any bounded increasing function f . Using a result of Massey (1987, Theorem 5.2),
it can be checked that a multiclass birth and death process X with constant birth rates
and bounded state-dependent death rates φi is monotone if and only if φ is partially
decreasing.

We define Yn as the n-class birth and death process with birth rates λi and death
rates �nφi given by the lower partial limits

�nφi(x1, . . . , xn) = lim
r→∞ inf

xn+1,...,xN>r
φi(x1, . . . , xN). (4.4)



Discrete Event Dyn Syst (2008) 18:447–472 457

The process Yn may intuitively be viewed as a partially saturated version of the
queue length process X = (X1, . . . , XN), where queues 1, . . . , n are allocated
the asymptotically worst-case service rates as Xn+1, . . . , XN tend to infinity. We
also define

Ln
i (λ1, . . . , λn; φ) =

∑
x∈Z

n+

�nφi(x) πn(x), (4.5)

if Yn has a unique stationary distribution πn, and set Ln
i (λ1, . . . , λn; φ) = 0 otherwise.

Thus, the quantity Ln
i (λ1, . . . , λn;φ) can be interpreted as a worst-case average

service rate dedicated to queue i in a partially saturated system where the numbers
of customers in queues n + 1, . . . , N tend to infinity. For notational convenience, we
define Ln

i (λ1, . . . , λn;φ) = �0φi for n = 0.

Theorem 2 Let X = (X1, . . . , XN) be the queue length process of the system with
strictly positive arrival rates λi and a bounded partially decreasing service allocation
φ = (φ1, . . . , φN). Assume that there exists an n such that

λi < Li−1
i (λ1, . . . , λi−1; φ) (4.6)

for all i = 1, . . . , n. Then the processes X1, . . . , Xn are stable, regardless of the
initial state.

Before proving Theorem 2, we establish some auxiliary results, the latter of which
will also be used in Section 4.3.

Lemma 3 Let 1 ≤ n ≤ N. Then for all i and all x,

�n−1φi(x1, . . . , xn−1) ≤ lim inf
xn→∞ �nφi(x1, . . . , xn).

Proof Fix an x ∈ Z
n+ and denote α = �n−1φi(x1, . . . , xn−1). Then for any ε > 0 there

exists an r such that

α − ε ≤ inf
yn,...yN≥r

φi(x1, . . . , xn−1, yn, . . . , yN).

Hence, it follows that for all yn ≥ r and for all s ≥ r,

α − ε ≤ inf
yn+1,...yN≥r

φi(x1, . . . , xn−1, yn, . . . , yN)

≤ inf
yn+1,...yN≥s

φi(x1, . . . , xn−1, yn, . . . , yN).

By taking s → ∞, it follows that α − ε ≤ �nφi(x1, . . . , xn−1, yn) for all yn ≥ r, so the
claim follows because ε is arbitrary. ��

Lemma 4 Assume that the function φ = (φ1, . . . , φN) is bounded and partially
decreasing, and assume that λi are strictly positive and satisfy inequalities (4.6) for
i = 1, . . . , n. Then the n-class birth and death process Yn = (

Yn
1 , . . . , Yn

n

)
with birth

rates λi and death rates �nφi is stable.
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Proof To prove the claim for n = 1, let us assume that λ1 < �0φ1. Then Y1 is a one-
class birth and death process with birth rate λ1 and state-dependent death rates
�1φ1(x1). The stability of Y1 follows from Proposition 5, and Lemma 3,

λ1 < �0φ1 ≤ lim inf
x1→∞ �1φ1(x1).

To proceed by induction, suppose that the claim is true for n − 1, and assume
that the inequalities (4.6) hold for i = 1, . . . , n. Then Yn−1 is stable by the induction
assumption, and Proposition 2 shows that Yn−1 has a unique stationary distribution
πn−1. Let Z n = (

Z n
1 , . . . , Z n

n

)
be the n-class birth and death process with birth

rates λi and death rates

ψi(x1, . . . , xn) =
{

�n−1φi(x1, . . . , xn−1), i < n,

�nφi(x1, . . . , xn), i = n.

This choice of rates implies that the marginal process
(
Z n

1 , . . . , Z n
n−1

)
is Markov and

coincides with Yn−1. Now observe that the condition λn < Ln−1
n (λ1, . . . , λn−1; φ) is

equivalent to

λn <
∑

x∈Z
n−1+

�n−1φn(x1, . . . , xn−1) πn−1(x1, . . . , xn−1),

so using Lemma 3, we see that

λn <
∑

x∈Z
n−1+

{
lim inf
xn→∞ ψn(x1, . . . , xn−1, xn)

}
πn−1(x1, . . . , xn−1).

Hence, Proposition 5 shows that Z n is stable.
Because φ is partially decreasing, we have �n−1φi(x1, . . . , xn−1) ≤ φi(x) for all i < n,

and thus �n−1φi(x1, . . . , xn−1) ≤ �nφi(x1, . . . , xn) for all i < n. In particular, it follows
that ψi(x) ≤ �nφi(x) for all x and all i ≤ n. Further, because �nφ is also partially
decreasing, it follows that �nφi(x) ≥ ψi(y) for all x and y in Z

n+ such that x ≤ y and
xi = yi. Thus, Lemma 1 implies that Yn ≤st Z n, whenever Yn and Z n are started in
the same initial state. Hence, Yn is stable by Proposition 4. ��

Proof of Theorem 2 Assuming the inequalities (4.6) are valid for i = 1, . . . , n,
we see using Lemma 4 that Yn is stable. Moreover, φi(x1, . . . , xN) ≥ �nφi(x1, . . . , xn)

for all i ≤ n and all x ∈ Z
N+ , because φ is partially decreasing. Because �nφ

is also partially decreasing, it follows that φi(x) ≥ �nφi(y) for all x ∈ Z
N+ and

y ∈ Z
n+ such that (x1, . . . , xn) ≤ (y1, . . . , yn) and xi = yi. Hence, Lemma 1 shows

that (X1[x], . . . , Xn[x]) ≤st
(
Yn

1 [y], . . . , Yn
n [y]) for all initial states x ∈ Z

N+ and
y ∈ Z

n+ such that (x1, . . . , xn) ≤ (y1, . . . , yn). Proposition 4 thus implies that
(X1[x], . . . , Xn[x]) is stable. ��

4.3 Partially decreasing service allocations with uniform limits

In the following, we restrict ourselves to queueing systems where the service alloca-
tion φ = (φ1, . . . , φN) is such that each coordinate function φi has a uniform limit as
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some of the input variables tend to infinity. More precisely, we say that a function
f : Z

N+ → R has uniform limits at infinity, if the following conditions hold:

1. There exists a constant f 0 such that

sup
x∈Z

N+ :x1,...,xN>r
| f (x) − f 0| → 0, as r → ∞.

2. For any n = 1, . . . , N − 1 and any permutation σ on {1, . . . , N}, there exists a
function f n,σ : Z

n+ → R such that as r → ∞,

sup
x∈Z

N+ :xσ(n+1),...,xσ(N)>r
| f (x) − f n,σ (xσ(1), . . . , xσ(n))| → 0.

We will next show that the class of functions having uniform limits at infinity is
rich enough to be of interest. For example, assume that the allocation function φ is
of the form

φi(x) = gi(xi)h(x)

where gi has a limit at infinity and h is decreasing. Then gi obviously has uniform
limits at infinity, and hence the same applies for φi using the result below.

Proposition 7 Let f and g be bounded functions on Z
N+ .

1. If f is positive and decreasing, then it has uniform limits at infinity.
2. If f and g have uniform limits at infinity, then so do the functions f + g and fg.

Proof See Appendix. ��

If φ has uniform limits, then the partial lower limits �nφ defined in Eq. 4.4 become
true limits in the sense that

φ(x1, . . . , xN) → �nφ(x1, . . . , xn)

uniformly over x1, . . . , xn, as min(xn+1, . . . , xN) → ∞.

Theorem 3 Let X = (X1, . . . , XN) be the queue length process of the system with
strictly positive arrival rates λi and a partially decreasing service allocation φ =
(φ1, . . . , φN) having uniform limits at infinity. Assume that there is an index n
such that

λi < Li−1
i (λ1, . . . , λi−1;φ) for all i ≤ n, (4.7)

λi > Ln
i (λ1, . . . , λn; φ) for all i > n. (4.8)

Then the process (Xn+1, . . . , XN) is unstable, regardless of the initial state.

Proof Given ε ≥ 0, let Yn,ε be the n-class birth and death process with birth
rates λi and death rates �nφi(x1, . . . , xn) + ε, and let Yn = Yn,0. Then Yn is stable
by Lemma 4. Further, because �nφ is partially decreasing, it follows by Lemma 1 that
Yn,ε ≤st Yn, whenever Yn,ε and Yn are started in the same state. Hence, Lemma 4
implies that Yn,ε is stable for all ε > 0, and moreover πn,ε ≤st πn, where πn,ε and
πn denote the stationary distributions of Yn,ε and Yn, respectively. In particular, the



460 Discrete Event Dyn Syst (2008) 18:447–472

family {πn,ε}ε>0 is tight, and so by Lemma 6 (see Appendix), πn,ε → πn weakly, as
ε → 0. Because φ is bounded, it follows that for all i,

lim
ε→0

∑
x∈Z

n+

�nφi(x) πn,ε(x) = Ln
i (λ1, . . . , λn; φ).

Hence, by Eq. 4.8, we can choose an ε > 0 such that

λi >
∑
x∈Z

n+

�nφi(x) πn,ε(x) for all i > n. (4.9)

Let Z be the N-class birth and death process with birth rates λi and death rates
ψi(x1, . . . , xN) = �nφi(x1, . . . , xn) + ε. Then (Z1, . . . , Zn) is Markov and coincides
with Yn,ε as defined above. Moreover, inequality (4.9) implies that for all i > n, the
mean drift of Zi is strictly positive, so Proposition 6 implies that Zi is transient for
each i > n.

Next, observe that because φi has uniform limits, it follows that there exists an r0

such that ψi(x) ≥ φi(x) for all i = 1, . . . , N and for all x such that xn+1, . . . , xN ≥ r0.
Let us choose an r ≥ r0 and define Ar to be the complement of the set

Br = {
x ∈ Z

N
+ : xn+1, . . . , xN ≥ r

}
,

Because each of the processes Zn+1, . . . , Z N is transient, it follows that we can
choose an x ∈ Br such that

Px(τAr (Z ) = ∞) > 0, (4.10)

where τAr (Z ) = inf{t > 0 : Z (t) ∈ Ar} denotes the hitting time of Z into Ar. Because
φ is partially decreasing, it follows that ψi(x) ≥ φi(y) for all x and y in Br such that
x ≤ y and xi = yi. Using a similar coupling construction as in Lemma 1, it is then
straightforward to verify that τAr (Z [x]) ≤st τAr (X[x]) for all x ∈ Br. Hence using
Eq. 4.10 we may conclude that there exists an x ∈ Br such that

Px(τAr (X) = ∞) > 0. (4.11)

We now assume that X is stable and derive a contradiction. Using Proposition 2,
we know that there exists a set C such that X[x] is irreducible and positive recurrent
for all x ∈ C. Let us now choose an r ≥ r0 such that C ∩ Ar is nonempty. Using
Lemma 7 and standard properties of irreducible Markov processes (Kallenberg 2002,
Proposition 8.13), we then know that the hitting time of X[x] into C ∩ Ar is finite
almost surely for all x, which contradicts Eq. 4.11. Hence, X must be unstable.
In particular, because (X1, . . . , Xn) is stable, it follows from Proposition 3 that
(Xn+1, . . . , XN) is unstable. ��

We are now ready to present our main theorem. For any permutation σ on
{1, . . . , N}, we define λσ

i = λσ(i) and φσ
i (x) = φσ(i)

(
xσ−1(1), . . . , xσ−1(N)

)
. The vector

λσ and the function φσ will then correspond to the system where queues are relabeled
according to σ . Denote

SN(φ) =
{
λ ∈ (0,∞)N : λi < Li−1

i (λ1, . . . , λi−1; φ) ∀i = 1, . . . , N
}
,
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where Li−1
i (λ1, . . . , λi−1; φ) are given by Eq. 4.5, and define

S(φ) =
⋃
σ

{
λ ∈ (0,∞)N : λσ ∈ SN(φσ )

}
, (4.12)

where the union is taken over all permutations on {1, . . . , N}.

Theorem 4 Assume φ = (φ1, . . . , φN) is partially decreasing and has uniform limits
at infinity. Then the set S(φ) defined by Eq. 4.12 is open, and the queue length
process X = (X1, . . . , XN) of the system with arrival rates λ = (λ1, . . . , λN) and
service allocation φ is stable for all λ ∈ S(φ), and unstable for all λ outside the closure
of S(φ).

Note that it is not possible to characterize the stability of the system for arrival
rate vectors belonging to the boundary of S(φ) without more detailed information
on the allocation function φ. Consider for example the one-server system where
φ1(x1) = (1 + 1/x1)

α for some α ≥ 0. Then S(φ) = {λ1 : λ1 < 1}, and the system with
λ1 = 1 is positive recurrent if α > 1 and null recurrent otherwise (Asmussen 2003,
Section III.2).

Lemma 5 Let φ = (φ1, . . . , φN) be bounded and partially decreasing. Then for all
n = 1, . . . , N, the set

Sn(φ) = {
λ ∈ (0,∞)N : λi < Li−1

i (λ1, . . . , λi−1; φ) ∀i = 1, . . . , n
}

is open, and the function f n = (
f n
1 , . . . , f n

n

)
on (0,∞)N defined by

f n
i (λ1, . . . , λN) = Li−1

i (λ1, . . . , λi−1; φ) (4.13)

is continuous on Sn−1(φ).

Proof First observe that the function f 1, being a constant, is continuous on the open
set S0(φ) = (0,∞)N . To proceed by induction, let us next assume that Sn−1(φ) is open
and f n is continuous in Sn−1(φ) for some n. To show that Sn(φ) is open, assume that
Sn(φ) is nonempty, and choose a vector λ ∈ Sn(φ). Then

λn < Ln−1
n (λ1, . . . , λn−1; φ). (4.14)

Moreover, because Sn(φ) ⊆ Sn−1(φ), it follows that f n is continuous at λ, so in
particular the map η �→ Ln−1

n (η1, . . . , ηn−1; φ) is continuous at λ. This implies that
Eq. 4.14 remains valid in some open neighborhood Bλ of λ. Further, because Sn−1(φ)

is open, there is another open neighborhood B′
λ of λ such that B′

λ ⊆ Sn−1(φ). It
follows that Bλ ∩ B′

λ ⊆ Sn(φ), so we may conclude that Sn(φ) is open.
To complete the induction, we next prove the continuity of f n+1 on Sn(φ), under

the assumptions that Sn(φ) is open and f n is continuous on Sn−1(φ). If λ ∈ Sn(φ),
then f n is continuous at λ, because Sn(φ) ⊆ Sn−1(φ). Because the first n coordinate
functions of f n+1 coincide with f n, it is sufficient to prove that the function η �→
Ln

n+1(η1, . . . , ηn; φ) is continuous at λ. Thus, let λk be a sequence converging to λ.
Because Sn(φ) is open, we may assume without loss of generality that there exists
a vector λ′ ∈ Sn(φ) such that λk ≤ λ′ for all k. Let Y be the n-class birth and death
process with birth rates λi and death rates �nφi(x), i = 1, . . . , n, and let Yk and Y ′
be the corresponding processes with λ replaced by λk and λ′, respectively. Then
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by Lemma 4, all of the processes Y, Yk, and Y ′ are stable, so we denote their
stationary distributions by π , πk, and π ′, respectively. Moreover, because �nφ is
partially decreasing, Lemma 1 shows that πk ≤st π ′ for all k, so the family {πk}k≥0 is
tight. Hence, we can apply Lemma 6 to see that πk → π weakly, so it follows from the
boundedness of φ that Ln

n+1

(
λk

1, . . . , λ
k
n; φ

) → Ln
n+1(λ1, . . . , λn; φ). This shows that

f n+1 is continuous at λ. ��

Proof of Theorem 4 First, let us note that by using Lemma 5 and relabeling the
classes if necessary, we see that the set {λ : λσ ∈ SN(φσ )} is open for all σ . Hence,
the set S(φ) is open. Moreover, by again relabeling the classes if necessary, we find
using Theorem 2 that λ ∈ S(φ) implies the stability of the queueing system.

To study the instability of the system, let us define analogously to Eq. 4.12 the set

U(φ) =
⋃
σ

{
λ ∈ (0,∞)N : λσ ∈ UN(φσ )

}
,

where the union is taken over all permutations on {1, . . . , N}, and UN(φ) is defined
as the set of λ ∈ (0,∞)N such that the inequalities (4.7) and (4.8) are valid for some
n ∈ {0, . . . , N − 1}. Then by first relabeling the classes if necessary, and then using
Theorem 3, we see that the system is instable for all λ ∈ U(φ).

It remains to show the instability of the system under the assumption that λ

belongs to the complement of the closure of S(φ) in (0,∞)N , which we denote by
ext(S). We prove this by showing that for each λ ∈ ext(S) there exists a λ̃ ∈ U(φ)

such that λ̃ ≤ λ and then applying Proposition 4.
Let λ ∈ ext(S). Given a permutation σ , let us define n(λ, σ ) as the largest integer n

such that

λσ
i < Li−1

i

(
λσ

1 , . . . , λσ
i−1; φσ

)
for all i < n. (4.15)

Because λ /∈ S(φ), we know that n(λ, σ ) < N for each σ , and

λσ
i ≥ Li−1

i

(
λσ

1 , . . . , λσ
i−1; φσ

)
for i = n(λ, σ ). (4.16)

Let D be the set of σ for which Eq. 4.16 is strict, and assume σ ∈ D. Then by
Lemma 5 we see that the function(

λσ
1 , . . . , λσ

n−1

) �→ (
L0

1(φ
σ ), . . . , Ln−1

n

(
λσ

1 , . . . , λσ
n−1; φσ

))
(4.17)

is continuous in a neighborhood of
(
λσ

1 , . . . , λσ
n−1

)
. Thus we can choose an εσ ∈

(0, min j λ j) such that the inequalities (4.15) remain valid and the inequality (4.16)
remains strict when λ is replaced by λ̃ such that ||λ̃ − λ|| < εσ .

On the other hand, if σ /∈ D, then again by the continuity of the function in
Eq. 4.17, there exists an εσ ∈ (0, min j λ j) such that the inequalities (4.15) remain valid
when λ is replaced by λ̃ such that ||λ̃ − λ|| < εσ . Moreover, if we let λ̃ = λ − re for
some r ∈ (0, εσ ), then it can be checked using Lemma 1 that Ln−1

n (λσ
1 , . . . , λσ

n−1; φσ ) ≤
Ln−1

n

(
λ̃σ

1 , . . . , λ̃σ
n−1; φσ

)
, because the function �n−1φσ is partially decreasing, and in

particular, �n−1φσ
n is decreasing. Thus we see that for n = n(λ, σ ),

λ̃σ
n < λσ

n = Ln−1
n

(
λσ

1 , . . . , λσ
n−1; φσ

)
≤ Ln−1

n

(
λ̃σ

1 , . . . , λ̃σ
n−1;φσ

)
.
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Let ε = minσ εσ and choose a small enough r ∈ (0, ε) such that λ̃ = λ − re belongs
to ext(S). Then it follows from the above observations that for all σ ,

λ̃σ
i < Li−1

i

(
λ̃σ

1 , . . . , λ̃σ
i−1;φσ

)
, i < n(λ, σ ),

λ̃σ
i �= Li−1

i

(
λ̃σ

1 , . . . , λ̃σ
i−1; φσ

)
, i = n(λ, σ ).

Hence, either λ̃σ
n > Ln−1

n

(
λ̃σ

1 , . . . , λ̃σ
n−1; φσ

)
for all σ and all n = n(λ, σ ), which

implies that λ̃ ∈ U(φ); or else,

n(λ̃, σ ) ≥ n(λ, σ ) for all σ , (4.18)

and λ̃σ
n < Ln−1

n

(
λ̃σ

1 , . . . , λ̃σ
n−1;φσ

)
for at least some σ and n = n(λ, σ ), which implies

that Eq. 4.18 holds strictly for at least one σ .
Assuming λk ∈ ext(S) \ U(φ), we can apply the above procedure to λk to find a

λk+1 ∈ ext(S) such that λk+1 ≤ λk, and so that either λk+1 ∈ U(φ), or else

n(λk+1, σ ) ≥ n(λk, σ ) for all σ , (4.19)

where Eq. 4.19 holds strictly for at least one σ . The sequence λk started in λ1 = λ must
hit U(φ) for some k, because otherwise n(λk, σ ) = N + 1 eventually for some k and
some σ , which would imply that λk ∈ S(φ). Hence, λk ∈ U for some k, and λk ≤ λ.
Now by Proposition 4, it follows that the system is unstable. ��

5 Applications

5.1 Three weakly coupled queues

Consider a system of three queues where the service rates at each queue only depend
on whether the other queues are empty or not, so that for all i �= j �= k,

φi(x) =

⎧⎪⎪⎨
⎪⎪⎩

ai, x j = 0, xk = 0,

aij, x j > 0, xk = 0,

1, x j > 0, xk > 0.

Let us assume ai ≥ aij ≥ 1, so that φ = (φ1, φ2, φ3) is partially decreasing.
Theorem 4 shows that the stability region is a union of six regions corresponding to

the six possible permutations of the queues. The first of these regions corresponding
to the identity permutation is the set of (λ1, λ2, λ3) such that

λ1 < 1, (5.1)

λ2 < λ1 + a23(1 − λ1), (5.2)

λ3 < a3π00 + a31π10 + a32π01 + π11, (5.3)
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where

π00 = P(Y1 = 0, Y2 = 0),

π01 = P(Y1 = 0, Y2 > 0),

π10 = P(Y1 > 0, Y2 = 0),

π11 = P(Y1 > 0, Y2 > 0),

and Y = (Y1, Y2) is a random vector distributed according to the stationary number
of customers in queues 1 and 2 given that the length of queue 3 is infinite, which is
well-defined when inequalities (5.1) and (5.2) hold. To the best of our knowledge,
there are no closed-form expressions available for the probabilities π00, π01, π10, π11,
so they must be evaluated numerically.

The above result coincides with the stability characterization derived earlier by
Fayolle, Malyshev, and Menshikov using Foster–Lyapunov criteria for deflected
random walks in Z

3+ (Fayolle et al. 1995, Theorem 4.4.4).

5.2 Two interfering wireless base stations with channel-aware scheduling

We will now turn our attention to a system of two queues served at the state-
dependent rates

φi(x) = gi(xi)hi(x),

where gi is a bounded increasing function on Z+, and hi is a decreasing function on
Z

2+. This particular form of allocation function arises as a model for two interfering
wireless base stations operating according to a channel-aware scheduling discipline,
where the functions hi model the interference between the base stations, and
the functions gi represent the scheduling gain, which increases in the number of
customers due to multiuser diversity (Liu et al. 2003). Denote

g∗
i = lim

xi→∞ gi(xi),

h∗
i = lim

r→∞ sup
x1,x2≥r

hi(x),

h j
i (xi) = lim sup

x j→∞
hi(x), j �= i,

and let

h̄i
j(λi, φ) =

∑
xi

hi
j(xi) π i(xi), j �= i,

where π i is the probability distribution (c is a normalization constant) given by

π i(xi) = c
xi∏

z=1

λi

gi(z)h j
i (z)

, j �= i.
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Fig. 1 Stability regions for interference functions of the form (5.5) with γ = 0.05 (left) and γ = 2.0
(right)

The stability region can now be described using Theorem 4 as the set of (λ1, λ2) such
that either

λ1 < g∗
1h∗

1 and λ2 < g∗
2h̄1

2(λ1, φ),

or λ2 < g∗
2h∗

2 and λ1 < g∗
1h̄2

1(λ2, φ).

Figure 1 represents the full and partial stability regions of the system, where the
scheduling gains are given by

gi(xi) = min(3, log(1 + xi)), (5.4)

and the interference functions are of the form

hi(x j) = 1

6 − 4e−γ x j
, j �= i. (5.5)

The area S is the set of arrival rates such that both queues are stable, while the areas
Si correspond to the set of arrival rates so that only queue i is stable, and U is the set

0 0.5 1 1.5
0

0.5

1

1.5
Stability region
Partial stability region

λ1

λ 2

0 0.5 1 1.5
0

0.5

1

1.5
Stability region
Partial stability region

λ1

λ 2

Fig. 2 Stability regions for interference functions of the form (5.6) with γ = 0.4 (left) and γ = 2.0
(right)
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of arrival rates where both queues are unstable. Figure 2 illustrates the corresponding
stability regions when gi are as in Eq. 5.4 and

hi(x j) = 1

6 − 4(1 + x j)−γ
, j �= i. (5.6)

6 Conclusion

We provided sufficient and necessary conditions for the stability of a parallel
queueing system with coupled service rates, and showed that these conditions are
sharp when the service rate at each queue is decreasing in the number of customers in
other queues, and has uniform limits as the queue lengths tend to infinity. Moreover,
we presented conditions for partial stability, where only some of the queues are
stable. The most general stability conditions, although not sharp, may yield useful
inner and outer bounds for the stability region of systems that are too complex to
characterize exactly. An interesting and important direction for future research is to
study whether the given results extend to the case where the service allocation does
not have uniform limits, and the service times distributions are nonexponential.

Appendix 1

A1.1 Small perturbations of transition rates

Lemma 6 Let X and Xn be continuous-time Markov processes on a countable state
space having transition rates q(x, y) and qn(x, y), and unique stationary distributions π

and πn, respectively. Assume that

1. qn(x, y) → q(x, y) as n → ∞ for all x and y,
2. the set {x : qn(x, y) �= 0 for some n} is finite for all y,
3. {πn}n≥0 is a tight family of probability measures.

Then πn(x) → π(x) for all x.

Proof Let us assume that πn(z) does not converge to π(z) for some z. Then there
exists an ε > 0 and a subsequence Z

′+ ⊆ Z+ such that |πn(z) − π(z)| ≥ ε for all n ∈
Z

′+. Because {πn}n∈Z
′+ is tight, there exists a further subsequence Z

′′+ ⊆ Z
′+ such that

πn converges weakly to a probability measure π̃ as n → ∞ along Z
′′+ (Kallenberg

2002, Proposition 5.21). Observe that for all y and for all n,

∑
x

πn(x)qn(x, y) = 0.

By virtue of assumption 2, we can take n → ∞ along Z
′′+ on both sides of the above

equation, and bring the limit inside the sum, which shows that

∑
x

π̃(x)q(x, y) = 0.
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Because we assumed the stationary distribution of X to be unique, it follows that
π̃ = π , and hence πn → π weakly along Z

′′+. This is a contradiction, because |πn(z) −
π(z)| ≥ ε for all n ∈ Z

′+. ��

A1.2 Stable multiclass birth and death processes with strictly positive birth rates

Lemma 7 Let X be a N-class birth and death process with birth rates λi and bounded
death rates φi(x), and assume that λi > 0 for all i. Then the hitting time of X into an
arbitrary increasing set A is almost surely finite, regardless of the initial state.

Proof Let A be an increasing set. Then re ∈ A for some positive integer r, where
e = (1, . . . , 1) ∈ Z

N+ . Let X̂ be the discrete-time jump chain of X, with X̂(n) being
the value of X at its n-th jump. Then for all x,

Px(X̂(1) = x + ei) = λi∑
j λ j + ∑

j:x j>0 φ j(x)
,

and because X̂ can reach A from any state x by taking r upward jumps into all
coordinate directions, we see that Px(X̂(rN) ∈ A) ≥ δ, where

δ =
(

min j λ j∑
j λ j + N||φ||

)rN

> 0.

By induction, it then follows that for all x and all M,

Px

(
X̂

(
mrN)

/∈ A ∀m = 1, . . . , M
)

≤ (1 − δ)M.

Thus, by taking M → ∞, we may conclude that Px(τ̂A < ∞) = 1, which is equivalent
to Px(τA < ∞) = 1. ��

Proof of Proposition 2 We prove that (1) ⇒ (2) ⇒ (3), the reverse direction being
clear. Let us denote x → y if the process X started in x can reach y, and let C(x) =
{y : x → y and y → x} be the communicating class associated with x. Recall that a
set C is said to be absorbing if x → y implies y ∈ C for all x ∈ C. Observe first that
because all birth rates of X are strictly positive, it follows that for all x and y,

x ≤ y =⇒ x → y. (6.1)

From Eq. 6.1 we see that all absorbing sets are increasing. Moreover, if a communi-
cating class C is increasing, and if x → y for some x ∈ C, then there exists a z such
that x ≤ z and y ≤ z. Hence, y → z by Eq. 6.1 and z ∈ C, because C is increasing.
Because C is a communicating class, it follows that y ∈ C. We may thus conclude
that any communicating class C is absorbing if and only if it is increasing.

We next show that X has a unique absorbing communicating class. Assume first
that all communicating classes are nonabsorbing. Then none of the communicating
classes C(x) is increasing, and Lemma 7 implies that Px(τC(x)c < ∞) for all x. Because
Py(τC(x) = ∞) = 1 for all y /∈ C, it follows that with probability one, X eventually
leaves any finite set without ever returning, regardless of the initial state. Thus,
X(t) → ∞ almost surely, which contradicts the assumption that X started in some
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initial state, say x 0, is stable. Hence, X must have at least one absorbing communi-
cating class. To see that there is no more than one such class, it suffices to observe
that if C(x) and C(y) are disjoint sets, then they can not both be increasing.

Now let C be the unique absorbing communicating class of X, and assume
that X[x] is unstable for all x ∈ C. Then for any finite set K and any 0 ≤ s ≤ t
it follows that

Px 0(X(t) ∈ K, τC ≤ s) =
∑
x∈C

Px 0(X(s) = x, τC ≤ s) Px(X(t − s) ∈ K), (6.2)

because X(s) belongs to the absorbing set C on the event {τC ≤ s}. Hence, by
dominated convergence, limt→∞ Px 0(X(t) ∈ K, τC ≤ s) = 0 for all s. Furthermore,
because

Px 0(X(t) ∈ K) ≤ Px 0(τC > s) + Px 0(X(t) ∈ K, τC ≤ s),

and because τC is finite almost surely, we see by taking first t → ∞ and then s →
∞ that Px0(X(t) ∈ K) → 0, which contradicts the stability of X[x0]. Hence, we may
conclude that X[y] is stable for some y ∈ C. Moreover, because Px(X(1) = y) > 0
for all x, we see that for all finite sets K,

lim sup
t→∞

Px(X(t + 1) ∈ K) ≥ lim sup
t→∞

Px(X(1) = y) Py(X(t) ∈ K) > 0,

so X[x] is stable for all initial states x ∈ Z
N+ .

Finally, let XC be the Markov process on the state space C with the same transition
rates as X in C. Then XC is irreducible and stable, regardless of the initial state.
Hence, it follows (Kallenberg 2002, Theorem 12.25) that XC is positive recurrent,
and thus has a unique stationary distribution πC on C such that the distribution of
XC(t) converges to πC in total variation. By defining π(B) = πC(B ∩ C), it follows
that π is stationary for the unrestricted version of X, and because Px(τC < ∞) for
all x, one can verify using Eq. 6.2 that the distribution of X(t) converges to π in total
variation, regardless of the initial state.

Having proved the equivalence of (1)–(3), let now assume that X[x] is unstable for
all x and show that X(t) → ∞ in probability regardless of the initial state. We saw
above that if all communicating classes of X are nonabsorbing, then X(t) is transient,
so let us assume that X has the unique absorbing class C. Then X[x] is irreducible
and positive recurrent for all x ∈ C, so it follows from standard theory (Kallenberg
2002, Theorem 12.25) that for any finite set A, the function hA(x, t) = Px(X(t) ∈ A)

tends to zero as t → ∞ for all x ∈ C. Denoting the hitting time of X into C by τC, the
strong Markov property implies that for all x,

Px(X(t) ∈ A) = P(X(t) ∈ A, τC ≤ t) + P(X(t) ∈ A, τC > t)

= Ex hA(X(τC), t − τC)1(τC ≤ t) + Px(X(t) ∈ A, τC > t).

Because Px(τC < ∞) = 1, it then follows from dominated convergence that the right-
hand side in the above equality converges to zero as t → ∞. Thus, X(t) → ∞ in
probability.

To see that X(t) → ∞ implies the instability of X, let us assume that X is stable.
Then by choosing a finite set A such that π(A) > 0, we see that Px(X(t) ∈ A) > 0
for large t. This contradicts the fact that X(t) → ∞ in probability, so X must be
unstable. ��
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A1.3 Uniform limits of monotone functions

Proof of Proposition 7 (1) We show that when f is decreasing in all its input
variables, the uniform limits of f are given by

f 0 = inf
x

f (x),

f n,σ (xσ(1), . . . , xσ(n)) = inf
xσ(n+1),...,xσ(N)

f (x1, . . . , xN).

Observe first that given ε > 0, there exists y such that | f (y) − f 0| ≤ ε. Hence, by
defining r = max(y1, . . . , yN), it follows from the monotonicity of f that

sup
x:x1,...,xN>r

| f (x) − f 0| ≤ ε. (6.3)

This shows that the assertion holds for N = 1.
To proceed by induction, let us assume that the claim holds for all positive

decreasing functions on Z
N−1
+ . Let f be a positive and decreasing function on Z

N+ ,
let ε > 0, and choose a permutation σ . By symmetry, we assume without loss of
generality that σ is the identity permutation, and denote f n = f n,σ . Using Eq. 6.3, we
can first choose an r0 such that | f (x) − f 0| ≤ ε/2 when x1, . . . , xN > r0. Then by the
monotonicity of f , it follows that | f n(x1, . . . , xn) − f 0| ≤ ε/2 for all x1, . . . , xn > r0.
Thus,

| f (x) − f n(x1, . . . , xn)| ≤ ε (6.4)

for all x such that x1, . . . , xN > r0.
Let us next choose an i ∈ {1, . . . , n} and yi ∈ {0, . . . , r0}. Then the function

(x1, . . . , xi−1, xi+1, . . . , xN) �→ f (x1, . . . , xi−1, yi, xi+1, . . . , xN)

is decreasing on Z
N−1
+ . Hence, by the induction assumption we can choose a number

ri(yi) such that

| f (x) − inf
xn+1,...,xN

f (x)| ≤ ε

for all x such that xi = yi and xn+1, . . . , xN > r(yi). In particular, by defining ri =
max(ri(0), . . . , ri(r0)), it follows that

| f (x) − f n(x1, . . . , xn)| ≤ ε (6.5)

for all x such that xi ≤ r0 and xn+1, . . . , xN > ri. Finally, by defining r =
max(r0, r1, . . . , rn), we see by combining Eqs. 6.4 and 6.5 that

sup
x∈Z

N+ :xn+1,...,xN>r
| f (x) − f n(x1, . . . , xn)| ≤ ε,

which completes the induction step.
(2) To see that fg has uniform limits at infinity, it suffices to note that for any n

and any σ (omitting the arguments of the functions),

| fg − f n,σ gn,σ | ≤ || f |||g − gn,σ | + ||g||| f − f n,σ |,
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and the same obviously holds for f 0 and g0 in place of f n,σ and gn,σ . Hence, the claim
for fg follows by taking the supremum over x ∈ Z

N+ such that xσ(n+1), . . . , xσ(N) > r
on both sides of the above inequality, and then letting r tend to infinity. The proof
for f + g is analogous. ��

References

Asmussen S (2003) Applied probability and queues, 2nd edn. Springer
Bonald T, Borst S, Hegde N, Proutière A (2004) Wireless data performance in multi-cell scenarios.

In: Proc. ACM Sigmetrics/Performance 2004, pp 378–388
Bonald T, Massoulié L, Proutière A, Virtamo J (2006) A queueing analysis of max-min fairness,

proportional fairness and balanced fairness. Queueing Syst 53(1–2):65–84
Cohen J, Boxma OJ (1983) Boundary value problems in queueing system analysis. North-Holland,

Amsterdam
Dai JG (1995) On positive Harris recurrence of multiclass queueing networks: a unified approach via

fluid limit models. Ann Appl Probab 5(1):49–77
de Veciana G, Lee T-J, Konstantopoulos T (2001) Stability and performance analysis of networks

supporting elastic services. IEEE/ACM Trans Netw 9(1):2–14
Fayolle G, Iasnogorodski R (1979) Two coupled processors: the reduction to a Riemann–Hilbert

problem. Z Wahrsch Verw Gebiete 47(3):325–351
Fayolle G, Malyshev VA, Menshikov MV (1995) Topics in the constructive theory of countable

Markov chains. Cambridge University Press
Jonckheere M, Borst SC (2006) Stability of multi-class queueing systems with state-dependent

service rates. In: Proc. Valuetools’06
Kallenberg O (2002) Foundations of modern probability, 2nd edn. Springer
Kamae T, Krengel U, O’Brien GL (1977) Stochastic inequalities on partially ordered spaces. Ann

Probab 5(6):899–912
Liu X, Chong E, Shroff N (2003) A framework for opportunistic scheduling in wireless networks.

Comp Netw 41:451–474
Massey WA (1987) Stochastic orderings for Markov processes on partially ordered spaces. Math

Oper Res 12(2):350–367
Meyn SP (1995) Transcience of multiclass queueing networks with via fluid limit models. Ann Appl

Probab 5(4):946–957
Meyn SP, Tweedie RL (1993) Markov chains and stochastic stability. Springer.
Neuts MF (1978) Markov chains with applications in queueing theory, which have a matrix-geometric

invariant probability vector. Adv Appl Probab 10:185–212
Rao RR, Ephremides A (1988) On the stability of interacting queues in a multiple-access system.

IEEE Trans Inf Theory 34(5):918–930
Robert P (2003) Stochastic networks and queues. Springer
Rogers LCG, Williams D (1994) Diffusions, Markov processes, and martingales, vol I, 2nd edn. Wiley
Szpankowski W (1988) Stability conditions for multidimensional queueing systems with computer

applications. Oper Res 36(6):944–957
Szpankowski W (1994) Stability conditions for some distributed systems: buffered random access

systems. Adv Appl Probab 26(2):498–515
Tweedie RL (1982) Operator-geometric stationary distributions for Markov chains, with application

to queueing models. Adv Appl Probab 14:368–391



Discrete Event Dyn Syst (2008) 18:447–472 471

Sem Borst received the MSc degree in applied mathematics from the University of Twente, The
Netherlands, in 1990, and the PhD degree from the University of Tilburg, The Netherlands, in 1994.
During the fall of 1994, he was a visiting scholar at the Statistical Laboratory of the University of
Cambridge, England. In 1995, he joined the Mathematics of Networks and Systems department
of Bell Laboratories in Murray Hill, USA. He also holds a part-time appointment as a professor of
Stochastic Operations Research at Eindhoven University of Technology. Sem Borst is a member of
IFIP Working Group 7.3, and serves or has served as a member of several program committees and
editorial boards. His main research interests are in the area of performance evaluation and resource
allocation algorithms for communication networks.

Matthieu Jonckheere received the MSc degree from ENST Paris in 2002 and the PhD degree in
applied mathematics from the Ecole Polytechnique, France, in 2005. During 2006-2007, he was a
visiting scholar at Centrum voor Wiskunde en Informatica (CWI), Amsterdam and from January
2007 onwards, he has been appointed as an assistant professor in the mathematics and computer
science department at Eindhoven University of Technology. His main research interests are in the
area of applied probability and performance evaluation of communication networks.



472 Discrete Event Dyn Syst (2008) 18:447–472

Lasse Leskelä received the M.Sc. and D.Sc. degrees in mathematics from Helsinki University of
Technology, Finland, in 1999 and 2005, respectively. Afterwards he spent one and half years visiting
Columbia University, New York, USA, and Centrum voor Wiskunde en Informatica, Amsterdam,
The Netherlands. In 2007 he was appointed assistant professor in the Department of Mathematics
and Computer Science at the Eindhoven University of Technology, The Netherlands. His research
interests include the analysis, stability, and control of stochastic processes, dynamical systems, and
networks.


	Stability of Parallel Queueing Systems with Coupled Service Rates
	Abstract
	Introduction
	Model description
	Parallel queueing system with coupled service rates
	Stability notions

	Multiclass birth and death processes
	Stochastic comparison
	Marginal drift conditions

	Stability results for queueing systems
	General service allocations
	Partially decreasing service allocations
	Partially decreasing service allocations with uniform limits

	Applications
	Three weakly coupled queues
	Two interfering wireless base stations with channel-aware scheduling

	Conclusion
	Appendix 1
	A1.1 Small perturbations of transition rates
	A1.2 Stable multiclass birth and death processes with strictly positive birth rates
	A1.3 Uniform limits of monotone functions

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


