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Abstract
In this article, we identify certain instances of bent functions, constructed using the so-
called Pτ property, that are provably outside the completed Maiorana–McFarland (MM#)
class. This also partially answers an open problem in posed by Kan et al. (IEEE Trans
Inf Theory, https://doi.org/10.1109/TIT.2022.3140180, 2022). We show that this design
framework (using the Pτ property), can provide instances of bent functions that are
outside the known classes of bent functions, including the classes MM#, C,D and
D0, where the latter three were introduced by Carlet in the early nineties. We pro-
vide two generic methods for identifying such instances, where most notably one of
these methods uses permutations that may admit linear structures. For the first time,
a set of sufficient conditions for the functions of the form h(y, z) = T r(yπ(z)) +
G1(T rm

1 (α1y), . . . , T rm
1 (αk y))G2(T rm

1 (βk+1z), . . . , T rm
1 (βτ z)) + G3(T rm

1 (α1y), . . . ,

T rm
1 (αk y)) to be bent and outside MM# is specified without a strong assumption that

the components of the permutation π do not admit linear structures.
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amarbapic22@gmail.com

Fengrong Zhang
zhfl203@163.com

Yongzhuang Wei
walker_wyz@guet.edu.cn

1 University of Primorska, FAMNIT & IAM, Koper, Slovenia

2 Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of
Electronic Technology, Guilin, People’s Republic of China

3 School of Cyber Engineering, Xidian University, Xi’an 710071, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-024-01407-9&domain=pdf
https://doi.org/10.1109/TIT.2022.3140180


E. Pasalic et al.

1 Introduction

The concept of bent functions was introduced by Rothaus [22] as a family of Boolean func-
tions possessing several nice combinatorial properties, which allowed for their great range
of applications such as in design theory, coding theory, sequences, cryptography to mention
a few. An exhaustive survey on bent functions related to their design and properties can
be found in [6] and in the recent textbook [17]. For a detailed study of Boolean functions
in cryptography we refer to [5]. In general, the design methods of bent functions can be
divided into primary and secondary constructions. Whereas the two main primary classes
(the partial spread [9] and Maiorana–McFarland class [15]) specify bent functions directly
(without involving other bent functions), the known secondary constructions involve other
bent functions either on the same or on smaller variable spaces. A non-exhaustive list of
various secondary constructions can be found in the following works [3, 4, 7, 11, 16, 30].
However, the question regarding the class inclusion of bent functions stemming from these
secondary construction methods is commonly left open, apart from the following works [1–
3, 13, 14, 16, 18, 19, 21, 27–29], where some explicit families of bent functions provably
outside the completed MM class are given. Moreover, other combinatorial objects such
as bent-negabent and (vectorial) bent functions can also be specified using bent functions
outside MM#, see for instance [20, 26].

In this article, we consider one generic method of modifying bent functions in the MM
class based on the so-called Pτ property. More precisely, initially Mesnager [16] pro-
vided a necessary and sufficient condition for the function h(x) = f (x) ⊕ T r(ax)T r(bx)

to be bent, where f is a bent function. This approach has later been generalized to
involve more trace terms in [24, 25], whereas a more general form h(x) = f (x) ⊕∑

I⊆{1,...,τ } aI
( ∏

i∈I T r(μi x)
)
was considered in [23], where the bentness of h comes from

a certain linearity condition on duals, see [23] formore details. An equivalent characterization
of the bentness of h on Fn

2 was later stated in terms of the second order derivatives of the dual
function of f [30], in brief requiring that Dμi Dμ j f ∗ = 0, for 1 ≤ i < j ≤ τ , where the ele-
ments μi ∈ F

n
2 build a linear subspace Uτ = 〈μ1, . . . , μτ 〉. However, the question about the

class membership of derived new families of bent functions was mostly left open. In a recent
work [12], this approach was further elaborated and the authors provided an example of a
bent function outsideMM# specified using this method. In addition, an open problem con-
cerning the identification of all bent functions outsideMM# constructed using this method
was left open [12, Open problem 2]. We first identify several families of bent functions that
are provably outsideMM# and can be represented within the construction framework given
in [12]. Moreover, we provide an explicit design of such functions and thereby we partially
answer this open problem. We remark that the initial conditions (see Theorem 3.2) in our
main result are easily satisfied and many families of bent functions outside MM# can be
generated.

We then extend our approach and derive a more general framework of using Pτ property
through combining the so-called trivial and non-trivial defining sets. For instance, Example
3.2 demonstrates the fact that Pτ 	⊂ (C ∪ SC ∪ D0 ∪ D ∪ CD) and also Pτ 	⊂ MM#.
Most notably, we show that permutations with linear structures can be used for this purpose
assuming that the defining set is chosen properly. Theorem 4.1 provides a set of sufficient
conditions that ensure both bentness and outside MM# property of the proposed family
of bent functions, where the standard condition that for a permutation π over F2m satisfies
T rm

1 (aπ(y)) 	= const is absent.
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Using Pτ property for designing bent functions

The rest of this paper is organized as follows. In Sect. 2, we give some basic definitions
related to Boolean functions and in particular we recall certain characterizations related to
the completedMM class. One explicit construction of bent functions outsideMM#, based
on the so-called Pτ property, is presented in Sect. 3 which also partially answers an open
problem raised in [12]. In Sect. 4, we combine trivial and non-trivial defining sets Uτ to
provide a wider framework for specifying bent functions outside MM# using Pτ property.
In particular, we show that even permutations that admit linear structures can potentially be
employed in this method. The class exclusion from the known classes of bent functions is
discussed in Sect. 5. Some concluding remarks are given in Sect. 6.

2 Preliminaries

The vector space F
n
2 is the space of all n-tuples x = (x1, . . . , xn), where xi ∈ F2. For

x = (x1, . . . , xn) and y = (y1, . . . , yn) in F
n
2, the usual scalar (or dot) product over F2 is

defined as x · y = x1y1 ⊕ · · · ⊕ xn yn . The Hamming weight of x = (x1, . . . , xn) ∈ F
n
2 is

denoted and computed as wt(x) = ∑n
i=1 xi . By “

∑
" we denote the integer sum (without

modulo evaluation), whereas “
⊕

" denotes the sum evaluated modulo two. By 0n we denote
the all-zero vector with n coordinates, that is (0, 0, . . . , 0) ∈ F

n
2.

The set of all Boolean functions in n variables, which is the set of mappings from F
n
2 to

F2, is denoted by Bn . It is well-known that any f : Fn
2 → F2 can be uniquely represented by

its associated algebraic normal form (ANF) as follows:

f (x1, . . . , xn) =
⊕

u∈Fn
2

λu

(
n∏

i=1

xi
ui

)

, (1)

where xi , λu ∈ F2 and u = (u1, . . . , un) ∈ F
n
2. The algebraic degree of f , denoted by

deg( f ), is equal to the maximum Hamming weight of u ∈ F
n
2 for which λu 	= 0.

The Walsh–Hadamard transform (WHT) of f ∈ Bn , and its inverse WHT, at any point
ω ∈ F

n
2 are defined, respectively, by

W f (ω) =
∑

x∈Fn
2

(−1) f (x)⊕ω·x

and

(−1) f (x) = 2−n
∑

ω∈Fn
2

W f (ω)(−1)ω·x . (2)

A function f ∈ Bn, for even n, is called bent if W f (u) = 2
n
2 (−1) f ∗(u) for a Boolean function

f ∗ ∈ Bn which is also a bent function, called the dual of f .

2.1 The completedMaiorana–McFarland class

The Maiorana–McFarland class [15], denoted by MM, is the set of n-variable (n = 2m)
Boolean bent functions of the form

f (x, y) = x · π(y) ⊕ g(y), for all x, y ∈ F
m
2 ,

where g is an arbitrary Boolean function on F
m
2 , and π is a permutation on F

m
2 , i.e., π is a

bijective mapping from F
m
2 to F

m
2 .
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Definition 2.1 A class of bent functions Bn ⊂ Bn is complete if it is globally invariant under
the action of the general affine group (the group of all invertible affine transformations)
and under the addition of affine functions (i.e., Boolean functions of degree at most 1). The
completed class, denoted by MM# in the case of the Maiorana–McFarland class, is the
smallest possible complete class that contains the class under consideration.

The first-order derivative of a function f in the direction a ∈ F
n
2 is given by Da f (x) =

f (x) ⊕ f (x ⊕ a). If Da f (x) = const ∈ F2, for all x ∈ F
n
2, then a ∈ F

n
2 is said to be

a linear structure of f . Derivatives of higher order are defined recursively, i.e., the k-th
order derivative of a function f ∈ Bn is defined by DV f (x) = Dak Dak−1 . . . Da1 f (x) =
Dak (Dak−1 . . . Da1 f )(x), where V = 〈a1, . . . , ak〉 is a vector subspace of Fn

2 spanned by
elements a1, . . . , ak ∈ F

n
2. If a Boolean function f : F

n
2 → F2 satisfies deg(Dc f ) ≤

deg( f )− 2, then c is called a fast point (FP) of f [10]. The set of all fast points of a Boolean
function f , building a linear subspace of Fn

2, is denoted by FP f . We note the following useful
lemma.

Lemma 2.1 [10] Let f ∈ Bn, then deg( f ) + dim(FP f ) ≤ n.

The following lemma, due to Dillon [9], is of crucial importance for the discussion on
class inclusion.

Lemma 2.2 [9, p. 102] A bent function f in n variables belongs to MM# if and only if there
exists an n/2-dimensional linear subspace V of Fn

2 such that the second-order derivatives

Dα Dβ f (x) = f (x) ⊕ f (x ⊕ α) ⊕ f (x ⊕ β) ⊕ f (x ⊕ α ⊕ β)

vanish for any α, β ∈ V .

In the sequel, we call a subspace V ⊂ F
n
2 of dimension m ≤ n/2 a vanishing subspace for

f ∈ Bn (also called an M-subspace in [21]), whenever Dα Dβ f (x) = 0 for all α, β ∈ V .

Remark 2.1 Using the isomorphism between the vector space F
n
2 and the finite field F2n ,

for convenience and precision, we sometimes write vanishing subspaces in the vector space
notation even though the function f (x, y) = T rm

1 (xπ(y)) is defined for x, y ∈ F2m (cor-
responding to f (x, y) = x · π(y), with x, y ∈ F

m
2 ), with n = 2m. Here, T rm

1 (·) denotes
the absolute trace function T rm

1 : F2m → F2 defined as T rm
1 (x) = x + x2

1 + · · · + x2
m−1

.
Moreover, the all-zero vector 0 ∈ F

m
2 is denoted simply by 0 when considered as an element

of F2m .

3 Specifying bent functions outsideMM# using P� property

As already mentioned, apart from various initial works in [23–25], the bent property of
modified functions in the MM class through addition of certain indicators was analyzed
in [30] in terms of the second-order derivatives of the dual bent function. More precisely,
denotingby f ∗ the dual functionof a bent function f ∈ Bn , itwas deduced thath(x) = f (x)+∑

I⊆{1,...,τ } aI
( ∏

i∈I T rn
1 (μi x)

)
can preserve the bent property provided that Dμi Dμ j f ∗ =

0, for 1 ≤ i < j ≤ τ . This condition was sometimes called the Pτ property, referring to the
cardinality of the linearly independent vectors μi ∈ F

n
2 for which Dμi Dμ j f ∗ = 0. In the

sequel, we use the “+” sign to denote the addition of elements in the finite field F2n instead
of “⊕” reserved for the vector space notation in Fn

2.
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In this section, we will address this construction method more thoroughly in terms of the
class membership of the generated bent functions. In particular, we partially answer an open
problem stated recently in [12] that concerns a complete classification of bent functions given
in Proposition 3.1 below, with respect to the property of being outside MM#.

Proposition 3.1 (Proposition 1 in [12]) Let α ∈ F
∗
2m and ω ∈ F2n with ω + ω2m = 1, where

n = 2m. Let π be a permutation of F2m and g be a Boolean function over F2m . Then, the
Boolean function

f (x) = T rn
1 (αω2m

xπ(x + x2
m
)) + g(x + x2

m
), for all x ∈ F2n , (3)

is bent on F2n and the dual of f is given by

f ∗(x) = T rn
1 (ωxπ−1(α−1(x + x2

m
))) + g(π−1(α−1(x + x2

m
))).

Theorem 3.1 (Theorem 8 in [12]) Let f be a bent function on F2n generated by Proposition
3.1, which is in MM, and let μ1, μ2, . . . , μτ ∈ F2n be such that Dμi Dμ j f ∗ = 0 for any
1 ≤ i < j ≤ τ . Then, for any aI ∈ F2, the n-variable Boolean function

h(x) = f (x) + F(T rn
1 (μ1x), T rn

1 (μ2x), . . . , T rn
1 (μτ x)) (4)

is a bent function, where F(X1, X2, . . . , Xτ ) = ∑
I⊆[τ ] aI (

∏
i∈I Xi ).

We note that each product
∏

i∈I Xi , I ⊆ [τ ] = {1, 2, . . . , τ }, corresponds to the indi-
cator of some (n − |I |)-dimensional affine subspace of F2n . Hence, the function F can be
represented as a sum of indicator functions of affine subspaces not necessarily of the same
dimension.

The particular problem that was left open in [12] is stated as follows.

Open Problem 1 [12] Determine all the bent functions defined as in Theorem 3.1 which are
outside the completed Maiorana–McFarland class.

We now first identify certain families of bent functions that are outsideMM# and fall into
this framework. More precisely, we specify a new family of bent functions outside MM#

which also satisfies the above form and thereby provides a partial answer to the open problem
above.

Note that any x ∈ F2n , n = 2m, can be represented as x = y + zω, where y, z ∈ F2m and
ω ∈ F2n with ω + ω2m = 1. Thus, the function (3) can be written as

f (x) = f (y, z) = T rm
1 (αyπ(z)) + g(z), (5)

where α ∈ F
∗
2m . In [12], the authors provided one example of functions of the form (4) which

is provably outside MM#.
For simplicity, we will assume that α = 1 and g ∼= 0 in (5), i.e. we will consider

functions f ∈ B2m of the form f (y, z) = T rm
1 (yπ(z)) which belong toMM. Note that any

linear function from F2m × F2m → F2 can be written as (y, z) �→ T rm
1 (αy + βz), where

μ = (α, β) ∈ F2m × F2m . Hence, the function given by (4), with the above restrictions, can
be written in bivariate form as

h(y, z) = f (y, z) + F(T rm
1 (α1y + β1z), . . . , T rm

1 (ατ y + βτ z)), (6)

where f (y, z) = T rm
1 (yπ(z)) and F(X1, X2, . . . , Xτ ) = ∑

I⊆[τ ] aI (
∏

i∈I Xi ), with μi =
(αi , βi ) ∈ F2m × F2m and Dμi Dμ j f ∗ = 0 for any 1 ≤ i < j ≤ τ ≤ m. Notice that
Xi = T rm

1 (αi y + βi z), thus it represents a linear function.
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Remark 3.1 As mentioned above, we can consider the function h in bivariate form and con-
sequently, we can represent the elements μi in the form μi = (αi , βi ) ∈ F2m × F2m .
Note, that if we want our function h to be outside MM#, we cannot have αi = 0 for all
1 ≤ i ≤ τ . In this case, we would have h(y, z) = T rm

1 (yπ(z)) + G(z) ∈ MM, where
G(z) = F(T rm

1 (β1z), . . . , T rm
1 (βτ z)). Hence, to have h outside MM# a necessary condi-

tion is that the function F does not entirely depend on the variable z.

In the sequel,wewill useUτ to denote the set {μ1, . . . , μτ }. If f (y, z) = T rm
1 (yπ(z)), then

f ∗(y, z) = T rm
1 (zπ−1(y)) (see for instance [5]). It is easy to verify that Dμi Dμ j f ∗(y, z) = 0

forμi , μ j ∈ {0}×F2m . However, such a choice ofμi will result in h(y, z) = T rm
1 (yπ(z))+

G(z), and h ∈ MM as remarked above. Because of this, we will say that the set Uτ ⊂
{0} × F2m is a trivial defining set for f ∗, otherwise, it will be called non-trivial. Notice that
depending on the choice of π both f and its dual f ∗ may admit other vanishing subspaces
of maximal dimension m but also other ones of a smaller dimension.

For a Boolean function F ∈ Bm , let us for nonzero distinct elements αi , α j ∈ F2m , define

�(F) := {i : Dαi Dα j F 	= 0, 1 ≤ i < j ≤ 2m − 1}.

Remark 3.2 Any nonlinear function F on F
n
2 actually satisfies |�(F)| ≥ 2n−1, since there

must exist an a ∈ F
n
2 such that deg(Da F) ≥ 1. Now, if deg(Da F) = 1 then there are exactly

2n−1 vectors b ∈ F
n
2 such that Da Db F 	= 0. Otherwise, if deg(Da F) > 1 then there are at

least 2n−1 such vectors b.

With this notation, we give the following result which gives a partial answer to the Open
Problem 1.

Theorem 3.2 Let f be a bent function on F2n , n = 2m, defined with f (y, z) = T rm
1 (yπ(z)),

with y, z ∈ F2m , and let μi = (αi , 0) ∈ F2m × F2m for 1 ≤ i ≤ τ ≤ m be such that
Dμi Dμ j f ∗ = 0 for any i 	= j , thus constituting a non-trivial defining set for f ∗. Let h be
defined as in (6). If:

a. T rm
1 (λπ) has no non-zero linear structures for any λ ∈ F

∗
2m ,

b. |�(F)| ≥ 2,

then h is a bent function on F2n outside MM#.

Proof For simplicity, let G(y) = F(T rm
1 (α1y), . . . , T rm

1 (ατ y)). Let V be any m-
dimensional subspace of F2m × F2m . Let a = (a1, a2), b = (b1, b2) ∈ V be arbitrary.
The second-order derivative of h (see Lemma 2.2) with respect to a and b can be written as

D(a1,a2) D(b1,b2)h(y, z) = T rm
1

(
y Da2 Db2π(z) + a1Db2π(z + a2)

+b1Da2π(z + b2)
) + Da1 Db1G(y),

and we need to show that that there always exist a, b ∈ V such that Da Dbh 	= 0.
We denote the subspace {(x, 0) : x ∈ F2m } by �. We have the following two cases.

a. V = �. Then, we can find two vectors (a1, 0), (b1, 0) ∈ � such that

Da1 Db1G(y) 	= 0,

since |�(G)| = |�(F)| ≥ 2. Consequently,

Da Dbh(y, z) = Da1 Db1G(y) 	= 0.
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b. V 	= �. We split the proof into two cases, based on the size of V ∩ �. Let us denote the
elements of V with {(v1, u1), . . . , (v2m , u2m )}, where (vi , ui ) ∈ F2m × F2m .

(a) |V ∩ �| = 1. In this case, we have that ui 	= u j for i 	= j . Otherwise, if there
exist two vectors ui , u j such that ui = u j , then vi = v j because (vi + v j , 0) ∈
V ∩ � = {(0, 0)}. In other words, we would have that (vi , ui ) = (v j , u j ). Fur-
ther, |{u1, u2, . . . , u2m }| = |V | = 2m , that is, {u1, u2, . . . , u2m } = F2m . Now,
since T rm

1 (λπ) has no non-zero linear structures for any λ ∈ F
∗
2m , we have

deg(T rm
1 (λπ)) > 2. This is due to the fact that any quadratic balanced function

f : F2m → F2 always admits at least all-one linear structure, so that Da f = 1, for
all x ∈ F2m and for some a ∈ F2m , see [8, Theorem 6]. Thus, fromLemma 2.1,we can
select two vectors a = (a1, a2), b = (b1, b2) ∈ V such that Da2 Db2π(z) 	= const ,
since {u1, u2, . . . , u2m } = F2m .
Furthermore,

Da Dbh(y, z) = T rm
1

(
y Da2 Db2π(z) + a1Db2π(z + a2) + b1Da2π(z + b2)

)

+Da1 Db1G(y) 	= 0,

since the term T rm
1

(
y Da2 Db2π(z)

)
cannot vanish. Thus, Da Dbh 	= 0 if |V ∩�| = 1.

(b) For |V ∩ �| ≥ 2, without loss of generality, let (a1, 0) ∈ V ∗ ∩ � where
V ∗ = V \ {(0, 0)}. Set b ∈ V \{02m, a}, then b2 	= 0. Thus, setting a2 = 0 in
D(a1,a2) D(b1,b2)h(y, z) above, we get

Da Dbh(y, z) = T rm
1 (a1Db2π(z)) + Da1 Db1G(y) 	= 0, (7)

since T rm
1 (λπ) has no nonzero linear structure for any λ ∈ F

∗
2m .

Combining the cases V = � and V 	= �, we deduce that f does not belong to MM#. ��
Remark 3.3 Notice that the assumptions in Theorem 3.2 can be easily satisfied. For the
condition on the second-order derivatives of dual f ∗, see alsoRemark3.4 below.Permutations
whose components are without linear structures have been recently specified in [14]. On the
other hand, the condition that T rm

1 (λπ) has no nonzero linear structures is only sufficient but
not necessary. Notice that (7) implies that G can be chosen so that Da1 Db1G(y) 	= 0, unless
a1 = b1. Then, considering the choice a = (a1, 0) and b = (b1, b2), where a1 = b1, implies
that (0, b2) belongs to V . For these particular a = (a1, 0) and b = (0, b2), it is enough that
T rm

1 (a1Db2π(z)) 	= 0 so that f /∈ MM#.

Example 3.1 Let us consider the bent function f (y, z) = T r61 (yz38), y, z ∈ F26 . Using
Sage, we obtained that U2 = {ω6, ω27} × {0} = {α1, α2} × {0} is a non-trivial defining
set for f ∗, where ω is a primitive element in F26 such that ω6 + ω4 + ω3 + ω + 1 = 0.
We further confirmed that this was the maximal size for such a set of linearly independent
elements. Thus, the only function which can be constructed using Theorem 3.1 is of the form
h(y, z) = T r61 (yz38)+T r61 (ω6y)T r61 (ω27y),which belongs to the C class of bent functions,
see below. From [29], we know that it is also outsideMM# since π(z) = z38 is of degree 3
and its components do not admit linear structures.

Carlet [3] introduced the so-called C class of bent functions that contains all functions of
the form

f (x, y) = x · π(y) ⊕ 1L⊥(x), (8)

where L is any linear subspace of Fn
2, 1L⊥ is the indicator function of the space L⊥, and π

is any permutation on F
n
2 such that:

(C) φ(a + L) is a flat (affine subspace), for all a ∈ F
n
2, where φ := π−1.
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The permutation φ and the subspace L are then said to satisfy the (C) property, or for short
(φ, L) has property (C).

Let us also consider the following example, which gives functions of a different form than
those contained in the C class.

Example 3.2 Let us consider the bent function f (y, z) = T r91 (yz284), y, z ∈ F29 . The set
U3 = {1, ω73, ω146} × {0} = {α1, α2, α3} × {0} is a non-trivial defining set for f ∗, where
ω is a primitive element in F29 such that ω9 + ω4 + 1 = 0. Then, for any polynomial G ∈
F2[Y1, Y2, Y3] the function h(y, z) = T r91 (yz284)+G(T r91 (y), T r91 (ω73y), T r91 (ω146y)) is a
bent function in 18 variables. Specifically, if we take G(Y1, Y2, Y3) = Y1Y2Y3+Y1Y2+Y1Y3

then

G(Y1, Y2, Y3) = T r91 (y)T r91 (ω73y)T r91 (ω146y) + T r91 (y)T r91 (ω73y)

+T r91 (ω73y)T r91 (ω146y).

We note that |
(G)| ≥ 2 and since π(z) = z284 has no non-zero linear structures, from
Theorem 3.2, the function h is outsideMM#. Using Sage we observed that the function G,
as a 9-variable Boolean function, contains the value 1 exactly 192 times in its truth table.
This means that we have modified the values of f ∈ MM at 192 · 29 places. As 192 is not
a power of 2, then h is obviously not a function in the C class.

The following remark further clarifies the possibility of finding a set of linearly indepen-
dent vectors μ1, . . . , μτ ∈ F

n
2 satisfying the so-called Pτ property in Theorem 3.1.

Remark 3.4 Since the dual f ∗(y, z) = T rm
1 (zπ−1(y)) of f (y, z) = T rm

1 (yπ(z)) is also in
MM#, the dual f ∗ admits at least the canonical (trivial) defining set {0} × F2m . However,
depending on π , there might exist other non-trivial vanishing subspaces 〈μ1, . . . , μτ 〉 (see
also Remark 3.1 and the discussion after Remark 4.2) so that Dμi Dμ j f ∗ = 0 for all μi , μ j

in 〈μ1, . . . , μτ 〉. For instance, if the permutation π−1 on F5
2 is given as

π−1(y) =

⎛

⎜
⎜
⎜
⎜
⎝

y1
y2

y3 + y1y3 + y1y5
y1y3 + y2y3 + y4

y1y3 + y2y4 + y5 + y1y5

⎞

⎟
⎟
⎟
⎟
⎠

, (9)

then the only linear structure of π is s = 0 but π−1 has components that admit linear
structures. However, the function f ∗(y, z) = z · π−1(y) has exactly two M-subspaces of
maximal dimension 5: the canonicalM-subspace {05}×F

5
2 as well as V , which is given by:

V =
〈 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

〉

.

Consequently, the basis of V can be identified with 〈μ1, . . . , μ5〉which can be used to define
a non-trivial defining set, say U2 = {α1, α2} × {05} corresponding to the first two rows of V ,
see also Example 3.1.
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4 Extending non-trivial defining sets

In what follows, we extend the above result in a more generic way by combining a non-trivial
defining set as in Theorem 3.2with a defining set that uses both variables. That is, we consider
the function F in (6) to be of the form

F(X1, X2, . . . , Xτ ) = G1(T rm
1 (α1y), . . . , T rm

1 (αk y))G2(T rm
1 (βk+1z), . . . , T rm

1 (βτ z))

+ G3(T rm
1 (α1y), . . . , T rm

1 (αk y)), (10)

where G1, G3 and G2 are in F2[X1, . . . , Xr ] for r = k and r = τ −k, respectively. Because
the polynomials G1, G2, G3 are arbitrary, we would like to note that we do not need to
consider all variables. That is, the polynomials can depend on any subset of {X1, . . . , Xr }.
Nevertheless, we can still obtain bent functions outsideMM#, thus providing an additional
partial solution to Open Problem 1. With respect to f (y, z) = T rm

1 (yπ(z)) and its dual
f ∗(y, z) = T rm

1 (zπ−1(y)), we define

A = {ai = (αi , 0) : 1 ≤ i ≤ k, αi ∈ F2m }; B = {b j = (0, β j ) : k +1 ≤ j ≤ τ, β j ∈ F2m }
(11)

such that Dai Dai ′ f ∗ = Db j Db j ′ f ∗ = 0 for any ai , ai ′ ∈ A, b j , b j ′ ∈ B, where i 	= i ′ and
j 	= j ′.

The following result ensures the bentness of the function h defined by (6) if F is defined
by (10).

Lemma 4.1 Let f be a bent function on F2n , n = 2m, defined by f (y, z) = T rm
1 (yπ(z))

with the dual f ∗(y, z) = T rm
1 (zπ−1(y)). Let h be defined as in (6) with F as in (10), where

the functions Gi are defined using A and B in (11). The function h is bent if

{Dαi π
−1(y) : y ∈ F2m , (αi , 0) ∈ A} ⊆ 〈βi : (0, βi ) ∈ B〉⊥. (12)

Proof Suppose G1G2 = 0, i.e. at least one of the functions G1 and G2 is zero. Then F = G3

and the result follows from the property of the set A. Let G1G2 	= 0, i.e. we are now “mixing”
the elements from A and B. Let ai = (αi , 0) ∈ A and b j = (0, β j ) ∈ B be arbitrary. Then,

Dai Db j f ∗(y, z) = D(αi ,0) D(0,β j )(T rm
1 (zπ−1(y))) = T rm

1 (β j Dαi π
−1(y)) = 0,

for all y ∈ F2m as
{

Dαi π
−1(y) : y ∈ F2m , (αi , 0) ∈ A

} ⊆ 〈βi : (0, βi ) ∈ B〉⊥ .

The conclusion follows from Theorem 3.1. ��
Remark 4.1 Referring to Remark 3.4, the choice of A and B and the associated functions Gi

can be deduced from the non-trivial vanishing subspace V of f ∗. More precisely, the set A
can be potentially defined using (α1, 0) and (α2, 0) (corresponding to the first two rows of
V ) whereas B corresponds to the last three rows of V .

Even though the choice of A and B is relatively easy, the main difficulty in ensuring
the bentness of h in Lemma 4.1 is the condition given in Eq. (12) related to the first-order
derivatives of π−1, which is not easily satisfied.

Theorem 4.1 Let f be a bent function on F
n
2 , n = 2m, defined with f (y, z) = T rm

1 (yπ(z))
and let A and B be defined by (11) so that Dai Da j f ∗ = Dbi Db j f ∗ = 0, for any ai , a j ∈
A, bi , b j ∈ B for i 	= j , where ai = (αi , 0) and b j = (0, β j ) for αi , β j ∈ F2m . Assume that
{Dαi π

−1(x) : x ∈ F2m } ⊆ 〈B〉⊥ for all 1 ≤ i ≤ k and define h as in (6) with F as in (10).
If:
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(a) DaG1(y) 	= const, for all nonzero a ∈ F
m
2 ,

(b) deg(G2) > 2 and DaG2(y) 	= const, for all nonzero a ∈ F
m
2 ,

then h is a bent function outside MM#.

Proof FromLemma4.1,wehave that h is a bent function. For simplicity,wedenote F(y, z) =
G1(y)G2(z) + G3(y) using the dependency through the formal variables Xi as in (10). Let
V be any m-dimensional subspace of F2m × F2m . Let a = (a1, a2), b = (b1, b2) ∈ V be
arbitrary. The second-order derivative of h with respect to a and b can be written as:

D(a1,a2) D(b1,b2)h(y, z)

= T rm
1 (y

(
Da2 Db2π(z)

) + a1Db2π(z + a2) + b1Da2π(z + b2))

+Da DbG1(y)G2(z) + Da1 Db1G3(y)

= T rm
1 (y

(
Da2 Db2π(z)

) + a1Db2π(z + a2) + b1Da2π(z + b2))

+G1(y)Da2 Db2G2(z) + G2(z + a2)Da1G1(y)

+G2(z + b2)Db1G1(y) + G2(z + a2 + b2)Da1+b1G1(y)

+Da1 Db1G3(y). (13)

We denote the set {(y, 0) | y ∈ F2m } by �, and consider two cases V = � and V 	= �.

a. For V = �, there exist two vectors (a1, 0), (b1, 0) ∈ � such that Da1 Db1G1(y) 	=
0 since � = {(y, 0) | y ∈ F2m } and G1 has no nonzero linear structure. That is,
since Da1G1(y) 	= const , for all a1 ∈ F2m , then there must exist b1 ∈ F2m such that
Da1 Db1G1(y) 	= 0. From (13), we get:

D(a1,0) D(b1,0)h(y, z) = G2(z)[Da1G1(y) + Db1G1(y)

+Da1+b1G1(y)] + Da1 Db1G3(y)

= G2(z)Da1 Db1G1(y) + Da1 Db1G3(y) 	= 0, (14)

since Da1 Db1G1(y) 	= 0. Notice that in (14) we used the fact that Da1 Db1G1(y) =
G1(y) + G1(y + a1) + G1(y + b1) + G1(y + a1 + b1) = Da1G1(y) + Db1G1(y) +
Da1+b1G1(y).

b. For V 	= �, we split the proof into two cases depending on the cardinality of V ∩�. We

set V =
{
(v

(1)
1 , v

(1)
2 ), (v

(2)
1 , v

(2)
2 ), . . . , (v

(2m )
1 , v

(2m )
2

}
,

(a) For |V ∩�| = 1, we have v
(i)
2 	= v

( j)
2 for any i 	= j . As in the proof of Theorem 3.2,

we have that {v(1)
2 , v

(2)
2 , . . . , v

(2m )
2 } = F2m .

Thus, fromLemma2.1,we canfind twovectorsa, b ∈ V such that Da2 Db2G2(z) 	= 0,
since deg(G2) > 2.
From (13), we have

D(a1,a2) D(b1,b2)h(y, z) 	= 0,

since G1(y)Da2 Db2G2(z) 	= 0, deg(G1) > 1 and deg(G1) > deg(Dc(G1)), for any
c ∈ F2m .
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(b) For |V ∩ �| ≥ 2, without loss of generality, let a = (a1, 0) ∈ V ∗ ∩ �, where
V ∗ = V \(0). Select b ∈ V \ {0, a} such that b2 	= 0. Thus, (13) reduces to

Da Dbh(y, z) = T rm
1 (a1Db2π(z)) + G1(y)G2(z) + G1(y + a1)G2(z)

+G1(y + b1)G2(z + b2) + G1(y + a1 + b1)G2(z + b2)

+Da1 Db1G3(y)

= T rm
1 (a1Db2π(z)) + G2(z)Da1G1(y) + G2(z + b2)Da1G1(y + b1)

+Da1 Db1G3(y)

= T rm
1 (a1Db2π(z)) + G2(z)Da1G1(y) + G2(z + b2)Da1G1(y + b1)

+Da1 Db1G3(y) + G2(z + b2)Da1G1(y) + G2(z + b2)Da1G1(y)

= T rm
1 (a1Db2π(z)) + Db2G2(z)Da1G1(y) + G2(z + b2)Da1 Db1G1(y)

+Da1 Db1G3(y). (15)

Since deg(DcG1) > deg(Dc Dd(G1)), for any distinct c, d ∈ F2m , and G2

has no nonzero linear structure, we have that Db2G2(z)Da1G1(y) + G2(z +
b2)Da1 Db2G1(y) 	= 0 (the terms having different nonzero degrees in z and y which
cannot be cancelled by the two remaining terms) and thus from (15), we have

Da Dbh(y, z) 	= 0.

Summarizing all the cases, we conclude that h is outside MM#. ��
We emphasize that this is the first time a specific set of conditions for h to be outside

MM# has been given without requiring that the component functions of π do not admit
linear structures. A construction method of bent functions outside MM# that belong to the
C class, whose permutations admit linear structures, was considered for instance in [13].

Remark 4.2 Notice the absence of conditions on G3, which can also affect the property that
Da Dbh 	= 0. Essentially, the condition T rm

1 (a1Db2π(z)) + Db2G2(z)Da1G1(y) + G2(z +
b2)Da1 Db1G1(y) + Da1 Db1G3(y) for nonzero a1, b2 ∈ F

m
2 and any b1 ∈ F

m
2 in (15), can

be considered in terms of G3 as well, thus requiring that Da1 Db1G3(y) 	= 0. The condition
that Da1 Db1G3(y) 	= 0 can be easily satisfied if we specify G3(y) = ∏m

i=1(1+ yi ) = δ0(y),
unless b1 = 0 or a1 = b1. However, it is not clear whether the condition that Da1G1(y) 	=
const (alternatively that Db2G2(z) 	= const) in Theorem 4.1 can be then removed.

We notice that it is not necessary to consider the defining sets A and B using the canonical
decomposition (as a direct sum) of Fm

2 × F
m
2 into the disjoint subspaces Fm

2 × {0m} and
{0m}×F

m
2 , so that the elements ai = (αi , 0m) ∈ A and b j = (0m, β j ) ∈ B, see (11).We recall

that the initial condition on the sets A and B were that Da Da′ f ∗ = 0 and Db Db′ f ∗ = 0, for all
a, a′ ∈ A and all b, b′ ∈ B. Referring back to Remark 3.4, a non-trivial vanishing subspace V
of f ∗ can be used to define A = {(αi , 0m)} (taking the first two rows ofV ) and B = {(0m, β j )}
(taking the three last rows of V ). Nevertheless, by taking another basis of V for which we
do not necessarily have the above form for the elements in A and B, we can satisfy that
Da Da′ f ∗ = 0 and Db Db′ f ∗ = 0 even thoughai = (αi , ui ) andb j = (v j , β j ). In general,we
have D(αi ,ui ) D(v j ,β j ) f ∗(y, z) = T rm

1 (zDui Dβ j π
−1(y)+αi Dβ j π(y+ui )+v j Dui π(y+β j ))

and it is identically zero for any (αi , ui ), (v j , β j ) ∈ V , whenever V is a vanishing subspace
of f ∗.

On the other hand, the decomposition of F in Theorem 3.1 as F(y, z) = G1(y)G2(z) +
G3(y) is not possible any longer (due to the use of elements of the form ai = (αi , ui ) and
b j = (v j , β j )) and the related conditions for h to be outsideMM# cannot be stated through
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the properties of Gi . It is an interesting research challenge to provide a set of sufficient
conditions on F(y, z) in this general setting (if possible) so that h(y, z) = f (y, z)+ F(y, z)
is a bent function outside MM#.

4.1 Specifying non-trivial defining sets using permutations with linear structures

As already illustrated, a suitable selection of μi for a given permutation π is easily specified
using the vanishing subspaces for the dual f ∗. However, one generic method of specify-
ing non-trivial defining sets that stem from permutations with linear structures can also be
specified.

Theorem 4.2 Let π be a permutation of Fm
2 and assume that S = 〈s1, . . . , sk〉 (with 1 ≤

k ≤ m − 2) is a space of linear structures for π−1, so that π−1(y) + π−1(y + si ) =
vi = const ∈ F

m
2 , for all s ∈ S. Then, the dual of f (y, z) = y · π(z)), where y, z ∈ F

m
2 ,

defined by f ∗(y, z) = z · π−1(y), admits a non-trivial vanishing subspace V = 〈S ×
{0}, 〈(v1, 0), . . . , (vk, 0)〉⊥〉 of dimension m.

Proof As already mentioned, Da Db f ∗(y, z) = 0 for all a, b ∈ {0m} ×F
m
2 , which is a trivial

vanishing subspace of f ∗ of maximal dimension m. Now let S′ = S ×{0}, with dim(S′) = k,
and extend the basis of S′ to V by adjoining the basis of 〈(v1, 0m), . . . , (vk, 0m)〉⊥, thus
adjoining m −k linearly independent elements of the form (0m, ui ), where i = 1, . . . , m −k.
Then, dim(V ) = m. For two different non-zero vectors a = (a1, a2) and b = (b1, b2) in V ,
we compute

Da Db f ∗(y, z) = z · (
Da1 Db1π

−1(y)
) + a2 · Db1π

−1(y + a1) + b2 · Da1π
−1(y + b1).

It is clear that for any a, b ∈ S′ we have that Da Db f ∗(y, z) = 0, since a2 = b2 = 0m and
furthermore Da1 Db1π

−1(y) = 0. Selecting a, b to be of the form (0m, ui ) leads to the same
conclusion since a1 = b1 = 0m . Finally, if a ∈ S′ and b = (0m, ui ), then the only term
that may not be canceled is b2 · Da1π(y). However, since b ∈ 〈(v1, 0m), . . . , (vk, 0m)〉⊥ and
Da1π(y) = vi , we have that b2 · Da1π(y) = 0. ��

We notice that permutations π on F
m
2 , described in Theorem 4.2, need to satisfy the

conditions of Theorem 4.1 concerning the bentness of h, whereas the property of being
outside MM# can be achieved by a proper choice of G1, G2 and G3. More precisely, we
need to identify permutations π on F

m
2 for which the sets A and B in (11) satisfy that:

• Dai Dai ′ f ∗ = Db j Db j ′ f ∗ = 0 for any ai , ai ′ ∈ A, b j , b j ′ ∈ B, where i 	= i ′ and j 	= j ′;
• For any specific choice of A and B, Eq. (12) needs to be satisfied.

One possibility of defining (quadratic) permutations that admit more than one linear structure
is as follows.

Proposition 4.1 Assume that σ is a permutation of Fm
2 which admits a nonzero linear struc-

ture, so that σ(y) + σ(y + a) = v. Define

π(y, ym+1) = (σ (y), ym+1), ym+1 ∈ F2,

which is then a permutation over F
m+1
2 . Then, both (a, 0) and (a, 1) are non-zero linear

structures of π .

123



Using Pτ property for designing bent functions

Proof It is clear that π is a permutation if σ is a permutation. For the linear structures, we
check that (a, 1) is a nonzero linear structure of π . We have,

π(y, ym+1) + π(y + a, ym+1 + 1) = (σ (y) + σ(y + a), ym+1 + ym+1 + 1) = (v, 1),

and similarly one can verify the same for (a, 0). ��
Since, by Corollary 5 in [8], any quadratic permutation on F4

2 admits at least one nonzero
linear structure, the above result allows as to build larger spaces of linear structures for
permutations of Fm

2 , where m > 4.

Open Problem 2 Find generic methods for specifying permutations with or without linear
structures and the associated functions Gi so that the conditions in Theorem 4.1 are satisfied.

5 Class inclusion of bent functions obtained viaP� property

In the recent works [1, 2], the authors provided examples of functions outsideMM#, which
they denoted as functions in the SC and CD class. Furthermore, in [13], the authors provided
conditions for which functions inD0 are provably outsideMM#. We summarize the results
below and connect them with the representation of F given by (10):

• D0 case (Theorem 5 in [13]). Let m ≥ 4 be an integer and let π be a permutation on F2m

with algebraic degree deg(π) ≥ 3. Then the function h : F2m × F2m → F2 defined by

h(y, z) = T rm
1 (yπ(z)) +

m∏

i=1

(
T rm

1 (αi y) + 1
)

= T rm
1 (yπ(z)) + G3(y),

where α is a primitive element of F2m , is a bent function in D0 outside MM#.
• SC case (Proposition 7 in [2]). Let f : F2m × F2m → F2 be a bent function defined by

f (y, z) = T rm
1 (yzd) where d(2s + 1) ≡ 1(mod 2m − 1) and wt(d) ≥ 3, s is a positive

divisor of m such that m/s is odd. Let α be a primitive element of F2s and λ a primitive
element of F2m . Then the function

h(y, z) = f (y, z) +
s∏

i=1

(
T rm

1 (αi y) + 1
)

+
m∏

i=1

(
T rm

1 (λi y) + 1
)

= f (y, z) + G(1)
3 (y) + G(2)

3 (y)

is a bent function outside MM#.
• CD case ([2, Theorem 11]). Let f : F2m × F2m → F2 be a bent function defined by

f (y, z) = T rm
1 (yzd) where d(2s + 1) ≡ 1(mod 2m − 1) and wt(d) ≥ 3, s is a positive

divisor of m such that m/s is odd. Let E2 be a subfield of F2s (which corresponds to a
subspace of F2m ), E1 = E⊥

2 and L ⊂ E2 be any subspace of F2m . Then, the function

h(y, z) = f (y, z) +
∏

μ1∈b(E1)

(
T rm

1 (μ1y) + 1
) ∏

μ2∈b(E2)

(
T rm

1 (μ2z) + 1
)

+
∏

μ∈b(L)

(
T rm

1 (μy) + 1
)

= f (y, z) + G1(y)G2(z) + G3(y)

is a bent function outside MM#, where b(·) denotes the basis of a given subspace.
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Let us now discuss the relationship between the class Pτ (the class of all bent functions
obtained via Theorem 3.1) and the classesSC, CD, C,D andD0. First of all, we notice that the
so-called superclasses SC, CD are defined using the addition of exactly two very particular
indicators. On the other hand, Theorem 4.1 provides much more general framework since a
larger number of suitable indicators can be added to f (y, z) = T rm

1 (yz). In this context, we
observe the following differences and similarities between these classes.

Let us consider the function f ∈ B2m defined by f (y, z) = T rm
1 (yz) + δ0(y). It is easy

to note that f is contained in all of the above mentioned classes. In other words,

Pτ ∩ C ∩ SC ∩ D0 ∩ D ∩ CD 	= ∅.

From Example 3.2, we observed that the truth table of the function f (y, z) =
T r91 (yz284) ∈ MM on F

9
2 × F

9
2 was modified in 29 · 192 places. Thus, it was not mod-

ified on a subspace, which implies that h /∈ D0,D or C. On the other hand, functions in SC
modify a function inMM in 2m(2r −1) places [1] which does not correspond to this number
either. This is a consequence of the fact that the class SC uses the addition of two indicators
(of two suitable subspaces), whereas the function h in Example 3.2 is defined as

h(y, z) = T r91
(
yz284

) + T r91 (y)T r91
(
ω73y

)
T r91

(
ω146y

) + T r91 (y)

+T r91
(
ω73y

)
T r91

(
ω73y

)
T r91

(
ω146y

)
,

which corresponds to the addition of three different indicators. Thus, the function h /∈ SC.
By noting that h(y, z) = f (y, z) + G1(y) + G2(y) + G3(y) uses the indicators that do not
depend on the z variable, we conclude that h /∈ CD. In other words,

Pτ 	⊂ (C ∪ SC ∪ D0 ∪ D ∪ CD).

6 Conclusions

In this article, we have analyzed the properties of the so-called Pτ method of constructing
bent functions. We partially answer an open problem in [12] posed by Kan et al. (IEEE Trans
Inf Theory, https://doi.org/10.1109/TIT.2022.3140180, 2022) by identifying those instances
of bent functions that are provably outside MM# within this framework. We also demon-
strate that the family of bent functions obtained using the Pτ method is neither included
in the classes C,D,D0 nor in the recently introduced classes SC and CD. Even though we
have provided a theoretical framework for using permutations whose components do not
admit linear structures, it remains to specify some generic methods of identifying suitable
permutations π that satisfy (12) and the associated functions Gi that ensure both bentness
and the outside MM# property of the generated functions.
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