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Abstract
In this paper we study the number of special directions of sets of cardinality divisible by
p on a finite plane of order p, where p is a prime. We show that there is no such a set
with exactly two special directions. We characterise sets with exactly three special directions
which answers a question of Ghidelli in negative. Further we introduce methods to construct
sets of minimal cardinality that have exactly four special directions for small values of p.

Keywords Special direction · Equidistributed direction · Affine Galois plane · Lacunary
polynomials
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1 Introduction

Let S be a set of points in the affine plane over the finite field of p elements, where p is a
prime. A natural way of viewing points of the projective line is to consider the equivalence
classes of the nonzero vectors of F2

p . We write u ∼ v if u is a nonzero multiple of v and the
equivalence class of u which we call the direction of u is denoted by d(u). We say that a pair
of vectors w1 �= w2 ∈ F

2
p determines the direction d(u) if u ∼ w1 − w2. Finally, we denote

by D(S), the set of directions determined by the pair of points in S.
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By elementary pigeonhole argument one can see that every direction is determined by any
subset of F2

p of cardinality at least p + 1. It was proved by Rédei that if S is of cardinality

p, then either S is a line or S determines at least p+3
2 directions, see [12]. The same result

was independently proved by Dress et al. [3]. As a corollary of their argument they obtained
a new proof for Burnside’s classical theorem on permutation groups of prime degree.

Another interesting and heavily related result is a paper of Lev [10], whose approach is
more Fourier theoretic. Lev introduces an even more general version of directions and he
gives a new proof using a kind of uncertainty relation settled in an earlier paper of Bíró and
Lev [1].

The result of Megyesi and Rédei was generalised by Szőnyi [13], who proved that if
|S| < p and S is not contained in a line, then |D(S)| � |S|+3

2 . Lovász and Schrijver [11]

showed that if |D(S)| = |S|+3
2 for some |S| = p, then S is an affine transform of the graph

of the function f (x) = x
p+1
2 . In [5] Gács proved that the |D(S)| cannot be between p+5

2

and 2 p−1
3 and showed that the upper bound obtained is one less than the smallest known

example.
Another way of thinking of directions of p-element subsets of F2

p is the following. We say
that S is equidistributed in a direction if S intersects the lines having the corresponding fixed
slope in the same amount of points. Equidistributivity is one of the key tools in investigating
spectral sets of finite abelian groups, see [2, 7, 8]. One can also see that for sets |S| = p
we have that S is equidistributed in the direction m if and only if m /∈ D(S). In general,
equidistributivity of a set of a certain direction implies that p | |S|. This motivates that we
only study sets whose cardinality is a multiple of p in the remaining part of the paper.

The investigation of sets of cardinality larger than p was initiated by Ghidelli [6]. It was
proved that a set of cardinality np (1 � n � p, n ∈ Z) is either a set of parallel lines or is
not equidistributed in at least � p+n+2

n+1 � directions. From now on we call a direction special if
S is not equidistributed in that direction. Note that Ghidelli’s definition of special direction is
more general than this one and his results also handle sets whose cardinality is not divisible
by p. For sets of cardinality divisible by p the two definitions of special directions coincide.
It was asked by Ghidelli, whether the sets, which are not the union of a set of parallel lines,
determine at least p+3

2 special directions.
The main purpose of this paper is to construct an example to answer Ghidelli’s problem

in the negative. We prove the following theorem.

Theorem 1.1 Up to an affine transformation, there is a unique set S of size p(p−1)
2 in F

2
p,

which is equidistributed in p − 2 directions. Moreover, every set having exactly 3 special
directions can be transformed by an affine transformation (elements of AGL(2, p)) to either
S or Sc, where Sc is the complement of S in F

2
p.

This shows that for n = p−1
2 the result of Ghidelli is tight. A natural question arises here.

Is it possible to construct sets of cardinality np which have � p+n+2
n+1 � special directions?

The paper is organised as follows. In Sect. 2 we describe sets having at most two special
directions. Section3 is devoted to the analysis of the proof of Ghidelli in order to understand
the possible ways of describing examples for his problems. Then in Sect. 4 we describe sets
having three special directions while in Sect. 6 we present some examples for sets having
four special directions. Section5 contains a reformulation of the problem. Finally, we raise
some questions concerning the topic in Sect. 7.
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Special directions on the finite affine plane

2 Two special directions

From now on, let F2
p be identified with the set of pairs of integers (a, b), where a, b ∈

{0, 1, . . . , p − 1}. Let us assume that S is a subset of F2
p of cardinality np which is equidis-

tributed in at least p−1 directions. It has been proved by Fallon et al. [4] that in this case S is
the union of n parallel lines. This also means that a set having at most two special directions
has at most one. The original proof is short but uses techniques from Fourier analysis. We
present a combinatorial argument for the statement.

Let us assume that S is equidistributed along the lines l(x) = ax + b, where a ∈ F
∗
p ,

b ∈ Fp . We may assume that (y, c) ∈ S and (z, c) /∈ S for some c ∈ Fp and y �= z ∈ Fp . If
there is no such pair, then S is the union of n vertical lines. We may assume c = 0 and z = 0
since D(S) = D(S+t), where t ∈ F

2
p . Let �

j∞ = {( j, i) | i ∈ Fp} and �0 = {(i, 0) | i ∈ Fp}.
Clearly, we can assume that S is equidistributed in every direction except maybe along �∞
and �0.

Now we count the cardinality of S in three different ways. First, |S| = np since S is
equidistributed in at least one direction. It is equal to the number of points contained on the
lines containing (0, 0) /∈ S. We obtain

np = n(p − 1) + (a0 + b0), (1)

where a0 = |S ∩ �0| and b0 = |S ∩ �0∞|. This follows from the fact that besides the two
exceptional lines �0 and �0∞ each lines containing (0, 0) contains exactly n elements of S,
since S determines exactly p − 1 directions.

On the other hand we may count the number of elements contained in the lines going
through (y, 0) ∈ S.

np = 1 + (n − 1)(p − 1) + (a0 − 1) + (b1 − 1), (2)

where b1 = |S ∩ �
y∞|. It follows from Eq. (1) that a0 + b0 = n. In particular we get

a0 � n. Equation (2) shows n + p = a0 + b1. Plainly, b1 � p and we have seen a0 � n
so b1 = p, a0 = n and b0 = 0. This shows that �

y∞ is contained in S. This holds for every
y ∈ Fp with (y, 0) ∈ S. Since a0 = n we have n such y. We have found the np elements of
S and hence S is the union of parallel (vertical) lines.

3 Ghidelli’s proof

In this section we follow Ghidelli’s proof to obtain some extra information about sets having
few special directions.

Let S ⊆ F
2
p be anonempty set of cardinalitynp.Wedefine theRédei polynomial associated

with S as

HS(x, y) =
∏

(a,b)∈S⊆F2p

(x − ay + b).

One of the main properties of HS follows from the observation that

(x − ay + b) = (x − a′y + b′) ⇐⇒ b − b′

a − a′ = y.

In other words, if y = m is fixed, then am − b = c for a given c ∈ Fp holds for those
points (a, b) of F2

p which are contained in a line whose slope is m. Therefore if we pick a
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set of representatives {(ai , bi ) | i = 0, 1, . . . , p − 1} of the class of parallel lines of slope
m (one point from each line), then

∏p−1
i=0 (x − aim + bi ) = x p − x . It follows that if S is

equidistributed in the direction m, then HS(x,m) = (x p − x)n .
We may write

HS(x, y) = x |S| + xnp−1g1(y) + xnp−2g2(y) + . . . + gnp,

where gl ∈ Fp[y] (l = 1, . . . , np). It is easy to see that gl is of degree at most l and it is
equal to the l-th elementary symmetric polynomial1

gl(y) = σl(a1y − b1, a2y − b2, . . . , anp y − bnp)

of the polynomials ai y − bi (i = 1, . . . , np).
Now assume that S is equidistributed in k � p − 1 directions. Then gl(y) has at least k

roots since the coefficients of xa (a > (n− 1)p+ 1) in the polynomial (x p − x)n are 0. This
happens for at least k different values of y. Then we have gl ≡ 0 if i < k since the number of
its roots is larger than its degree. By Newton’s identities

∑np
i=1(ai y + bi )l = 0 if l < k and

so as the leading coefficients of these polynomials
∑np

i=0 a
l
i , these expressions should also

be 0.
Let w j be the number of indices i such that ai = j . Then

np∑

i=0

ali =
p−1∑

j=0

w j j
l .

This shows that the vector w = (w j ) j=0,1,...,p−1 is orthogonal to ( j l) j=0,1,...,p−1 in F
p
p for

l = 1, . . . , k − 1. Further w ∈ F
p
p is orthogonal to (1) j=0,1,...,p−1 since |S| is divisible

by p. Thus w is orthogonal to the first k rows of the Vandermonde matrix Mj,l = ( j l)
(0 � j, l � p − 1 ).

It is not hard to see that the i-th and j-th rows of M are orthogonal in F
p
p except if

i + j = p − 1. Thus we obtain that the orthogonal subspace for 〈1, x, x2, . . . , xk−1〉 is
〈1, x, x2, . . . , x p−1−k〉, i.e. deg(w) � p − 1 − k. As a corollary of this argument we obtain
the following.

Proposition 3.1 Let w be the projection function associated with S defined above. Assume S
has k � 2 special directions (i.e. S has p + 1 − k equidistributed directions). Then w as a
function from Fp to Fp can be expressed as a polynomial of degree at most k − 2.

As a corollary of this argument we obtain again that sets having exactly two special
directions do not exist since the projections are constant functions (after deleting lines) so
every direction is equidistributed or the set is the union of parallel lines. Both cases contradict
the fact that the set has two special directions.

Assume now that we have a set S, which is equidistributed in p− 2 directions but it is not
the union of lines. In this case ai is a function that is either constant or linear. We may write
it as αi + β.

The α = 0 case is realised when S is the union of parallel lines.
In the case when ai = αi + β with α �= 0, we obtain in particular that |S| = 0 + 1 +

. . . + p − 1 = p(p−1)
2 or |S| = 1 + . . . + p − 1 + p = p(p+1)

2 since linear polynomials are
permutation polynomials.

1 For each nonnegative integer l, the l-th elementary symmetric polynomial on n variables is the sum of all
distinct products of l distinct variables. We denote it by σk .
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Fig. 1 Set S which has three
special directions

4 Sets with three special directions

Using the result of the previous section we present a natural construction that fulfils the
required conditions to answer Ghidelli’s question in the negative. What is more, we prove
that the sets (and their images of AGL(2, p)) described in this section are the ones having
exactly three special directions. We emphasise the fact that we think of the coordinates as
elements of Z, which gives us the opportunity to compare them. However, the additive and
multiplicative operations are understood (mod p).

According to the observations in the previous section it seems reasonable to try to under-
stand the properties of the following set:

S = {(a, b) ∈ F
2
p | b < a}.

S has p(p−1)
2 elements. (See also Fig. 1.)

Clearly, S is not equidistributed in at least three directions since the lines having equation
ax + by = c, where (a, b, c) ∈ F

3
p is either (1, 0, p − 1), (0, 1, 0) or (1,−1, 1) intersects S

in p − 1 >
p−1
2 elements.

Let L be a line containing the origin. We show that if the equation determining L is
fL(x) = ax with 2 � a � p − 1, then |L ∩ S| = p−1

2 . Clearly, (0, 0) /∈ S and if i < ai for
some i ∈ {1, . . . , p − 1}, then −i > a(−i) since a �= 0. Note also that i �= ai since i �= 0
and a �= 1.

It remains to verify that if |S∩(L+i)| = p−1
2 , then |S∩(L+i+1)| = p−1

2 . Therefore, we
show there is exactly one j ∈ {0, . . . , p−1} such that fL( j)+ i > j and fL( j)+ i +1 < j .
This happens when fL( j) + i = aj + i = p − 1 and j �= 0. Since a �= 0, if i = p − 1 we
would get j = 0, which is excluded. If i �= p−1, then there is a unique j = p−1−i

a fulfilling
the equation. Thus, there is a unique column, when the intersection of S with the line L + i
increases by 1, when we replace the line L + i by L + i + 1.

On the other hand, if fL( j)+i = j−1 ( j �= 0), then ( j, fL( j)+i), which is an element of
L+i , is in S but ( j, fL( j)+i+1) /∈ S. The solution of the equation fL( j)+i = aj+i = j−1
is j = − i+1

a−1 . Note that a �= 1 so such a j exists.
The case j = 0 (i = p − 1) can be handled similarly.
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Theorem 4.1 Let T be a subset of F2
p which is equidistributed in p − 2 directions. Then

T = α(S), if |T | = p(p−1)
2 and T = α′(Sc) if |T | = p(p+1)

2 for some α, α′ ∈ AGL(2, p),
where Sc denotes the complement of S in F2

p.

Proof We have seen that |T | = p(p−1)
2 or p(p+1)

2 . As the complement of a set of size p(p−1)
2

is of size p(p+1)
2 and vice-versa, it is enough to prove the statement for the case |T | = p(p−1)

2 .
Since PGL(2, p) acts triply transitively on the elements of the projective line we may

assume that the three special directions are (1, 0), (0, 1), (1, 1). Moreover, it follows from
the argument in Sect. 3 that the set of intersections of T with the horizontal lines is expressed
by a linear function. Thus the set of the sizes of the intersections of S with the horizontal lines
is {0, 1, . . . , p− 1} (since |T | = p(p−1)

2 ) and the same holds for the vertical lines. Moreover
using a suitable affine transformations along the axis we may assume that the order can be
chosen to be (0, 1, . . . , p − 1) along the vertical and (p − 1, p − 2, . . . , 1, 0) along the
horizontal lines, respectively. Indeed the projection functions have to be linear functions (as
it was shown in Sect. 3) with root at 0, hence we may apply suitable affine transformations
(multiplication with fixed number in both direction) to get the corresponding sequences as
required.

This shows that the first column does not contain any element of T and since its first line
contains p − 1 elements we have {(0, i) | 0 < i � p − 1} ⊆ T . Using the same argument
recursively one can prove that T = S. ��

5 Weighted sum of lines

The number of special directions of the set S coincides with the number of non-Fourier roots
of the characteristic function of S. This allows us to give a construction of sets with a given
number of special directions. These sets are obtained as a linear combination of characteristic
functions of lines (determining the special directions of the set) with rational coefficients. It
is easy to see that if S is the weighted sum of lines of k directions, then S is equidistributed
in every direction not determined by any line appearing in the sum.

One further aim is to present an alternative proof for the results of Sects. 2 and 4 using the
following proposition. We say that a function f : F2

p → C is equidistributed in a direction d
if the sum of the values of f along the lines parallel to d is constant.

Proposition 5.1 Let f : F2
p → Q be a function. Assume f is equidistributed in all but the

following directions d1, . . . , dk (k � 1). Then f can be written as the weighted sum of lines
with rational weights:

f =
k∑

j=1

p−1∑

i=0

c j,i1l j,i ,

where c j,i ∈ Q and l j,i are lines determined by direction d j and for every j ∈ {1, . . . , k}
there is i ∈ {0, . . . , p − 1} c j,i �= 0.

Proof We proceed by induction. Let w1 be a function defined on the 〈d1〉-cosets such that
w1 takes the sum of the values of f for the elements on each 〈d1〉-coset. Let g1(x) be a
function of F2

p defined as g1(x) = w1(C)
p , where C is the 〈d1〉-coset containing x . Since f is

not equidistributed in direction d1, function g1(x) is not constant.
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Clearly, f1 := f −g1 is a function equidistributed in all but k−1 directions. If k = 1, then
f1 is equidistributed in every direction and the sums along every line is zero. Then we claim
that f1 is zero. This can be seen from the fact that the Fourier transform of f1 vanishes on
every character. Hence f = g1, so it is of the form

∑p−1
i=0 c1,i1l1,i , where l1,i are determined

by direction d1 and c1,i ′ �= 0 for some i ′ ∈ {0, . . . , p − 1}, since g1 is not constant.
For k �= 1 we get the statement for f = f1 + g by using the inductive hypothesis for f1.

��
• In particular we obtain the following explicit formula for the set discussed in the previous

Sect. 4.

Let c
p be the weight of lines defined by the equation x = c and −c

p the one of y = c.
Further let c

p be the weight of the vertical lines y = x + c. Now if a < b we obtain that
the sum of weight of these lines in this region is 1 and it is zero everywhere else.

• As a corollary of Proposition 5.1 one can see that there is no subset of F2
p , which is not

equidistributed in exactly 2 directions (see also Sect. 2). Similarly, one can also show the
following Lam–Leung type result [9], which is formulated for Fp × Fq , where p and q
are different primes. Let S be a multiset, i.e., each value of the characteristic function of
S is a nonnegative integer, and suppose that there are at most two special directions of S.
Then S is a sum of weighted lines with nonnegative integer coefficients. The proofs of
these results are analogous to the proof of Proposition 3.8 in [7].

6 Examples for four special directions

In this section we will try to find sets of smallest possible cardinality, having exactly four
special directions. For small prime p � 11 we construct such sets of minimal cardinality
according to Ghidelli’s lower bound [6].

For a matrix M ∈ R
a×b let M (r) denote the matrix defined by M (r)(l, k) = M(l, k − r),

where the indices in the second coordinate are taken modulo b. In particular for a row
vector v ∈ R

1×{0,1,...,p−1} and given i, j ∈ {0, 1, . . . , p − 1} let v(i j)(1, k) = v(1, k − i j),
where the product i j is taken mod p. Let 1 denote the all 1 row vector and let ei denote
the vector which is 1 at its i-th coordinate and zero everywhere else. For a row vector v let
L j (v) := ∑p−2

i=0
p−i−1

p v(i j)

Lemma 6.1 1. Let p be a prime and let v j ∈ R
1×{0,1,...,p−1} be a row vector whose first

coordinate is 1 and ( j + 1)-th coordinate is −1 everywhere else. Then

1

p
1 + L j (v j ) := 1

p
1 +

p−2∑

i=0

p − i − 1

p
v

(i j)
j = e1.

2. Let k ∈ Fp \ {0} with kl ≡ j (mod p). Then

l

p
1 + Lk(v j ) := l

p
1 +

p−2∑

i=0

p − i − 1

p
v

(ik)
j =

l−1∑

a=0

e(ak)
1 .

Proof 1. Easy calculation gives the result.
2. It is easy to see that v j = ∑l−1

a=0 v
(ak)
k . The result follows from the fact that L is additive

and Lk(v
(m)) = Lk(v)(m).

��
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Fig. 2 Two triangular sets with non-equidistributed directions (0,1), (1,0), (1,1) and (0,1), (1,0), (1,-1), respec-
tively

The way we are going to use this lemma is the following. We construct {±1, 0} valued
matrices whose row sums are all 0. The previous lemma will be used simultaneously for the
rows of these matrices.

We fix a k ∈ Fp \ {0} and we apply Lemma 6.1 (2). Lemma 6.1 treats {±1, 0} valued
rows, which contain exactly one 1’s and−1’s but since Lk are linear operators we may apply
it for some of these types of matrices. Now if we write a {±1, 0} valued row vector v, whose
row sum is zero, as the sum of {±1, 0} valued row vectors (v = ∑c

a=1 ua) where for each
1 � a � c, the vector ua has exactly one 1 and −1 entry, then Lk(v) = Lk(

∑c
a=1 ua).

Now for each 1 � a � c there is a ka such that ua = v
(ka)
ia

for some 1 � ia−1, ka � p−1.
Finally, let laka ≡ ia (mod p)Then it follows from the previous conversation andLemma6.1
that Lk(ua) will be a nonnegative integer valued vectors such that 1t Lk(ua) = ∑c

a=1 la .
The four directions used in the remainder of the section are (1, 0), (0, 1), (1, 1), (1,−1).

We build up sets, which are not equidistributed in these directions only. It is clear that the
sets presented in Fig. 2 can be constructed using weighted sums of lines in these directions.

Now the difference of these two sets is also a weighted sum of suitable lines. This is
presented in Fig. 3 and we denote it by M11.

Now let N11 = M11 + M (5)
11 +C11, where C11 is the matrix whose entries are all 0 except

in the second and seventh columns which are constant 1 and the fifth and last columns, which
are constant −1. An easy calculation shows that N11 is the following matrix.

Now we apply the operator L−2 simultaneously for the rows of N11. Note that this can
be realised as the sum of lines of the chosen directions. One essential thing is that for those
rows which contain more than one 1’s (and−1’s) we have to find a pairing of these elements,
which is indicated with colours.

We obtain the following {0, 1} matrix, which corresponds to the set we were looking for
(Figs. 4, 5, 6).

A similar algorithm gives us the following sets for p = 5, 7 and 13.
Note that if we fix the prime p and the number of special directions n, then Ghidelli’s

result gives us a lower bound for the subsets of F2
p having exactly k special directions. The

previous examples for p = 5, 7, 11 meet this lower bound. However this is not the case for
the next example p = 13, which seems to be optimal using this method.
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Fig. 3 M11

Fig. 4 The coloured pairs of 1’s and −1’s in N11 on the left, and the corresponding set given by the process
on the right (Color figure online)

Fig. 5 Examples for sets of smallest cardinality that have four special directions for p = 7 (on the left) and
p = 5 (on the right)
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Fig. 6 Example of 65-element set
with four special directions in
F
2
13

The original method only gives us a multiset, where the sum of the weights is 65, which
can easily be modified by subtracting 1 from those lines which contain weight 2 as well and
adding 1t to those columns which are currently empty. This does not modify the sum of the
values but makes the following matrix to a {0, 1}-matrix.

The question remains whether there exists 4∗13 = 52-element subset of F2
13 determining

exactly four special directions.

7 Open problems

1. Is there a set in F
2
p that is equidistributed in exactly d directions for every d � p − 2?

We have seen that this is not the case for d = p − 1 since sets which are equidistributed
in p− 1 directions are unions of parallel lines so these are equidistributed in p directions
at least.

It follows from the result of Rédei [12] that there is a gap in the possible number of special
directions for subsets of F2

p of cardinality p. Further, the result of Gács [5] shows that

this is not a unique gap since sets of cardinality p determining more than p+3
2 special

directions determine at least �2 p−1
3 + 1� special directions.

However, it is not hard to see that for p = 3, 5, 7 there is no such a gap if the cardinality
of the set is divisible by p.

2. What is the minimal size of a set in F
2
p , which is equidistributed in at most k directions?

In particular, is it true that Ghidelli’s bound is tight [6], i.e., is it possible to construct sets
of cardinality np which have � p+n+2

n+1 � special directions?

Even for p = 13 this question is still open.
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