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Abstract
Martínez-Peñas and Kschischang (IEEE Trans. Inf. Theory 65(8):4785–4803, 2019) pro-
posed lifted linearized Reed–Solomon codes as suitable codes for error control in multishot
network coding. We show how to construct and decode lifted interleaved linearized Reed–
Solomon (LILRS) codes. Compared to the construction by Martínez-Peñas–Kschischang,
interleaving allows to increase the decoding region significantly and decreases the overhead
due to the lifting (i.e., increases the code rate), at the cost of an increased packet size. We
propose two decoding schemes for LILRS that are both capable of correcting insertions
and deletions beyond half the minimum distance of the code by either allowing a list or a
small decoding failure probability. We propose a probabilistic unique Loidreau–Overbeck-
like decoder for LILRS codes and an efficient interpolation-based decoding scheme that
can be either used as a list decoder (with exponential worst-case list size) or as a proba-
bilistic unique decoder. We derive upper bounds on the decoding failure probability of the
probabilistic-unique decoders which show that the decoding failure probability is very small
for most channel realizations up to the maximal decoding radius. The tightness of the bounds
is verified by Monte Carlo simulations.
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1 Introduction

Network coding [1] is a powerful approach to achieve the capacity of multicast networks.
Unlike the classical routing schemes, network coding allows to mix (e.g. linearly combine)
incoming packets at intermediate nodes. Kötter and Kschischang proposed codes in the
subpsace metric as a suitable tool for error correction in (random) linear network coding [18]
and defined the corresponding operator channel model. In an operator channel two type
of errors, namely insertions and deletions, can occur. Insertions correspond to additional
dimensions that are not contained in the transmitted space whereas deletions correspond to
dimensions that are removed from the transmitted space.

The single-shot scenario from [18]was extended to themultishot case, i.e. the transmission
over several instances of the operator channel, in [30]. It was shown in [27] that lifted
linearized Reed–Solomon (LLRS) codes provide reliable and secure coding schemes for
noncoherent multishot network coding, a scenario where the in-network linear combinations
are not known or used at the receiver, under an adversarial model in the sum-subspace metric.

An s-interleaved code is a direct sum of s codes of the same length (called constituent
codes). This means that if the constituent codes are over Fq , then the interleaved code can be
viewed as a (not necessarily linear) code over Fqs . In the Hamming and rank metric, there
are various decoders that can significantly increase the decoding radius of a constituent code
by collaboratively decoding in an interleaved variant thereof. Such decoders are known in
the Hamming metric for Reed–Solomon [8, 10, 13, 14, 19, 28, 34, 35, 37, 42, 43, 51, 52]
and in general algebraic geometry codes [9, 17, 41], and in the rank metric for Gabidulin
codes [7, 24, 39, 40, 44–46, 50]. All of these decoders have in common that they are either
list decoders with exponential worst-case and small average-case list size, or probabilistic
unique decoders that fail with a very small probability.

Interleavingwas suggested in [48] as amethod to decrease the overhead in liftedGabidulin
codes for error correction in noncoherent (single-shot) network coding, at the cost of a larger
packet size while preserving a low decoding complexity. It was later shown [6, 46, 50] that
it can also increase the error-correction capability of the code using suitable decoders for
interleaved Gabidulin codes.

1.1 Our contributions

In this paper, we define and analyze lifted interleaved linearized Reed-Solomon (LILRS)
codes that are obtained by lifting interleaved linearized Reed–Solomon (ILRS) codes as
considered in [4]. We propose and analyze two decoding schemes that both allow for decod-
ing insertions and deletions beyond the unique decoding region by allowing a (potentially
exponential) list or a small decoding failure probability.

First, we propose a Loidreau–Overbeck-like probabilistic unique decoder and derive an
upper bound on the decoding failure probability. The upper bound shows the the decoder suc-
ceeds with an overwhelming probability close to one for random realizations of the multishot
operator channel that stay within the decoding region.

The second decoding approach is a novel interpolation-based list decoder that is based
on the list decoder by Wachter-Zeh and Zeh [50] for interleaved Gabidulin codes. We derive
a decoding region for the codes in the sum-subspace metric, analyze the complexity of the
decoder and give an exponential upper bound on the list size. We derive an upper bound on
the decoding failure probability of the interpretation as a probabilistic-unique decoder by
relating the success conditions to the Loidreau–Overbeck-like decoder.
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Table 1 Overview of new decoding regions and computational complexities

Code class/
(decoder)

Decoding region List size |L| Failure
prob. Pf

Complexity
(over Fqm )

Reference(s)

LLRS codesa

(unique)
γ +δ<nt −k+1 — O

(
n2r
)

[27]

LILRS codes (list) γ +sδ<s(nt −k+1) |L|≤qm(k(s−1)) Õ(sωM(nr )) Thm. 3 Sect. 4.3.3

LILRS codes
(prob. unique)

γ +sδ ≤ s(nt −k) Pf ≤3.5�+1q−m Õ(sωM(nr )) Thms. 1 and 4
Sect. 4.2/4.3

Parameters: interleaving parameter s (usually s � nt ), nt resp. nr is the dimension of the transmitted resp. received
subspace, γ and δ the overall number of insertions resp. deletions. M(n) ∈ O

(
n1.635

)
is the cost (in operations in

Fqm ) of multiplying two skew-polynomials of degree at most n and ω < 2.373 is the matrix multiplication exponent
aThe decoder from [27] has the restriction that nt = nr . Therefore, the proposed decoder for s = 1 is a more general
decoder for LLRS codes compared to the decoder in [27]

Compared to [27], we decrease the relative overhead introduced by lifting (or equivalently,
increase the rate for the same code length and block size) and at the same time extend the
decoding region, especially for insertions, significantly. These advantages come at the cost
of a larger packet size of the packets within the network and a supposedly small failure
probability. By considering the decoding problem in the complementary code, we show
how the proposed LILRS coding schemes can be used to improve the decoding region w.r.t.
deletions significantly.

Moreover, for the case s = 1 (no interleaving), our algorithm does not require the assump-
tion from [27, Sec. V.H] that nr ≤ nt , where nt and nr denotes the sum of the dimensions of
the transmitted and received subspaces, respectively. Hence, the proposed decoder works in
cases in which [27] does not work.

Compared to the conference version [3], which mainly considers interpolation-based
decoding of LILRS codes, this work contains several new results. Apart from providing
proofs that were omitted in [3] due to space restrictions, we propose and analyze a new
Loidreau–Overbeck-like decoder for LILRS codes that allows for deriving a strict upper
bound on the decoding failure probability. Compared to the heuristic upper bound provided
in [3] the new upper bound takes into account the distribution of insertions in the multishot
operator channel. Another novelty compared to the conference version is the definition and
analysis of complementary LILRS codes which allows for an improved deletion-correction
capability in the interleaved setting. We also provide tools that allow for an efficient imple-
mentation of the multishot operator channel that were also not considered in [3].

The main results of this paper, in particular the improvements upon the existing noninter-
leaved variants, are illustrated in Table 1.

1.2 Structure of the paper

In Sect. 2 the notation as well as basic definitions on vector spaces and skew polynomials
are introduced. Section 3 is dedicated to a brief introduction to multishot network coding. In
Sect. 4 we consider decoding of LILRS codes in the sum-subspace metric for error-control
in noncoherent multishot network coding. In particular, we derive a Loidreau–Overbeck-like
and an interpolation-based decoding scheme for LILRS codes, that can correct errors beyond
the unique decoding radius in the sum-subspace metric. Section 5 concludes the paper.
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2 Preliminaries

We now give some definitions and notation related to multishot network coding and LLRS
codes. Since the notation for multishot network coding is quite involved, we tried to stick to
common notation as much as possible such that readers familiar with the topic can skip parts
of this section.

2.1 Notation

A set is a collection of distinct elements and is denoted by S = {s1, s2, . . . , sr }. The car-
dinality of S, i.e. the number of elements in S, is denoted by |S|. By [i, j] with i < j we
denote the set of integers {i, i + 1, . . . , j}. We denote the set of nonnegative integers by
Z≥0 = {0, 1, 2, . . . }.

Let Fq be a finite field of order q and denote by Fqm the extension field of Fq of degree
m with primitive element α. The multiplicative group Fqm \ {0} of Fqm is denoted by F

∗
qm .

Matrices and vectors are denoted by bold uppercase and lowercase letters like A and a,
respectively, and indexed starting from one. Under a fixed basis of Fqm over Fq any element
a ∈ Fqm can be represented by a corresponding column vector a ∈ F

m×1
q . For a matrix

A ∈ F
M×N
qm the Fq -rank rkq(A) of A is defined as the maximum number of Fq -linearly

independent columns of A. Let σ : Fqm → Fqm be a finite field automorphism given by
σ(a) = aq

r
for all a ∈ Fqm , where we assume that 1 ≤ r ≤ m and gcd(r ,m) = 1. For

a matrix A and a vector a we use the notation σ(A) and σ(a) to denote the element-wise
application of the automorphism σ , respectively. For A ∈ F

M×N
qm we denote by 〈A〉q the Fq -

linear rowspace of the matrix Aq ∈ F
M×Nm
q obtained by row-wise expanding the elements

in A over Fq . The left and right kernel of a matrix A ∈ F
M×N
qm is denoted by kerl(A) and

kerr (A), respectively.
For a set I ⊂ Z>0 we denote by [A]I (respectively [a]I ) the matrix (vector) consisting

of the columns (entries) of the matrix A (vector a) indexed by I.

2.2 Vector spaces and subspacemetrics

Vector spaces are denoted by calligraphic letters such as e.g. V . By Pq(N ) we denote the
set of all subspaces of F

N
q . The Grassmannian is the set of all l-dimensional subspaces in

Pq(N ) and is denoted by Gq(N , l). The cardinality of the Grassmannian |Gq(N , l)|, i.e. the
number of l-dimensional subspace of F

N
q is given by the Gaussian binomial

[
N
l

]

q
which is

defined as [
N

l

]

q
=

l∏

i=1

qN−l+i − 1

qi − 1
.

The Gaussian binomial satisfies (see e.g. [18])

q(N−l)l ≤
[
N
l

]

q
≤ κqq(N−l)l ,

where κq := ∏∞
i=1(1 − q−i )−1. Note that κq is monotonically decreasing in q with a limit

of 1, and e.g. κ2 ≈ 3.463, κ3 ≈ 1.785, and κ4 ≈ 1.452.
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The subspace distance between two subspaces U,V ∈ Pq(Ni ) is defined as (see [18])

dS(U,V) := dim(U + V) − dim(U ∩ V).

For N = (N1, N2, . . . , N�) and l = (l1, l2, . . . , l�)wedefine the �-foldCartesian products

Pq(N) := ∏�
i=1 Pq(Ni ) = Pq(N1) × · · · × Pq(N�)

and
Gq(N, l) := ∏�

i=1 Gq(Ni , li ) = Gq(N1, l1) × · · · × Gq(N�, l�).

For any tuple of subspaces V ∈ Pq(N) we define its sum-dimension as

dim	(V) :=
�∑

i=1

dim(V(i))

and call the tuple (
dim(V(1)), dim(V(2)), . . . , dim(V(�))

)

the sum-dimension partition of V .
We extend fundamental operators on subspaces to tuples of subspaces by considering their

application in an element-wise manner, i.e. for V,U ∈ Pq(N, l) we define

V⊥ :=
(
V(1)⊥,V(2)⊥, . . . ,V(�)⊥) ,

V ∩ U :=
(
V(1) ∩ U (1),V(2) ∩ U (2), . . . ,V(�) ∩ U (�)

)
,

V ⊕ U :=
(
V(1) ⊕ U (1),V(2) ⊕ U (2), . . . ,V(�) ⊕ U (�)

)
.

We conclude this subsection considering the extension of the subspace distance to the
multishot case [30].

Definition 1 (Sum-Subspace Distance [30]) GivenU = (U (1),U (2), . . . ,U (�)) ∈ Pq(N) and
V = (V(1),V(2), . . . ,V(�)) ∈ Pq(N) the sum-subspace distance betweenU andV is defined
as

d	S(U,V) :=
�∑

i=1

dS(U (i),V(i)) =
�∑

i=1

(
dim(U (i) + V(i)) − dim(U (i) ∩ V(i))

)
. (1)

In [29, 30] the sum-subspace distance is also called the extended subspace distance. Note, that
there exists other metrics for multishot network coding like e.g. the sum-injection distance
(see [27, Definition 7]) which are related to the sum-subspace distance and are not considered
in this work.

2.3 Skew polynomials

Skew polynomials are a special class of non-commutative polynomials that were introduced
by Ore [31]. A skew polynomial is a polynomial of the form

f (x) = ∑
i fi x i

with a finite number of coefficients fi ∈ Fqm being nonzero. The degree deg( f ) of a skew
polynomial f is defined as max{i : fi �= 0} if f �= 0 and −∞ otherwise.
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The set of skew polynomials with coefficients in Fqm together with ordinary polynomial
addition and the multiplication rule

xa = σ(a)x, a ∈ Fqm

forms a non-commutative ring denoted by Fqm [x; σ ].
The set of skew polynomials inFqm [x; σ ] of degree less than k is denoted byFqm [x; σ ]<k .

For any a, b ∈ Fqm we define the operator

Da (b) := σ(b)a.

For an integer i ≥ 0, we define (see [26, Proposition 32])

Di+1
a (b) = Da

(
Di
a(b)

)
= σ i+1(b)Ni+1(a)

whereD0
a(b) = b andNi (a) = σ i−1(a)σ i−2(a) . . . σ (a)a is the generalized power function

(see [21]). The generalized operator evaluation of a skew polynomial f ∈ Fqm [x; σ ] at an
element b w.r.t. a, where a, b ∈ Fqm , is defined as (see [22, 26])

f (b)a =
∑

i

fiDi
a(b).

For any fixed evaluation parameter a ∈ Fqm the generalized operator evaluation forms an
Fq -linear map, i.e. for any f ∈ Fqm [x; σ ], β, γ ∈ Fq and b, c ∈ Fqm we have that

f (βb + γ c)a = β f (b)a + γ f (c)a .

For two skew polynomials f , g ∈ Fqm [x; σ ] and elements a, b ∈ Fqm the generalized
operator evaluation of the product f · g at b w.r.t a is given by (see [25])

( f · g)(b)a = f (g(b)a)a .

An important notion for the generalized operator evaluation is the concept of conjugacy,
which is defined as follows.

Definition 2 (Conjugacy [20]) For any two elements a ∈ Fqm and c ∈ F
∗
qm define

ac := σ(c)ac−1.

• Two elements a, b ∈ Fqm are called σ -conjugates, if there exists an element c ∈ F
∗
qm

such that b = ac.
• Two elements that are not σ -conjugates are called σ -distinct.

The notion of σ -conjugacy defines an equivalence relation on Fqm and thus a partition of
Fqm into conjugacy classes [21]. The set

C(a) :=
{
ac : c ∈ F

∗
qm

}

is called conjugacy class of a. A finite field Fqm has at most � ≤ q − 1 distinct conjugacy
classes. For � ≤ q − 1 the elements 1, α, α2, . . . , α�−2 are representatives of all (nontrivial)
disjoint conjugacy classes of Fqm .

Let a1, . . . , a� be representatives from different conjugacy classes of Fqm and let

b(i)
1 , . . . , b(i)

ni be elements fromFqm for all i = 1, . . . , �. Then for any nonzero f ∈ Fqm [x; σ ]
satisfying

f (b(i)
j )ai = 0, ∀i = 1, . . . , �, j = 1, . . . , ni
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we have that deg( f ) ≤ ∑�
i=1 ni where equality holds if and only if the b(i)

1 , . . . , b(i)
ni are

Fq -linearly independent for each i = 1, . . . , � (i.e. for each evaluation parameter ai , see [12]).
The existence of a (generalizedoperator evaluation) interpolationpolynomial is considered

in Lemma 1 (see e.g. [12]).

Lemma 1 (Lagrange Interpolation (Generalized Operator Evaluation)) Let b(i)
1 , . . . , b(i)

ni be

Fq -linearly independent elements fromFqm for all i = 1, . . . , �. Let c(i)
1 , . . . , c(i)

ni be elements
from Fqm and let a1, . . . , a� be representatives for different conjugacy classes of Fqm . Define

the set of tuples B := {(b(i)
j , c(i)

j , ai ) : i = 1, . . . , �, j = 1, . . . , ni }. Then there exists a

unique interpolation polynomial Iop
B ∈ Fqm [x; σ ] such that

Iop
B (b(i)

j )ai = c(i)
j , ∀i = 1, . . . , �, ∀ j = 1, . . . , ni ,

and deg(Iop
B ) <

∑�
i=1 ni .

For an element a ∈ Fqm , a vector b ∈ F
n
qm and a skew polynomial f ∈ Fqm [x; σ ] we

define
f (b)a := ( f (b1)a, f (b2)a, . . . , f (bn)a).

The set of all skew polynomials of the form

Q(x, y1, . . . , ys) = Q0(x) + Q1(x)y1 + · · · + Qs(x)ys,

where Q j ∈ Fqm [x; σ ] for all j = 0, . . . , s is denoted by Fqm [x, y1, . . . , ys; σ ].

Definition 3 (w-weighted Degree) Given a vector w ∈ Z
s+1
≥0 , the w-weighted degree of a

multivariate skew polynomial Q ∈ Fqm [x, y1, . . . , ys; σ ] is defined as
degw(Q) = max

j
{deg(Q j ) + w j }.

For an element a ∈ Fqm and a vector b = (b1, b2, . . . , bn) ∈ F
n
qm we define the vector

D j
a(b) :=

(
D j
a(b1),D j

a (b2), . . . ,D j
a(bn)

)

and the matrix

V d(b)a :=

⎛

⎜⎜⎜⎜⎜
⎝

b
D1
a(b)

D2
a(b)
...

Dd−1
a (b)

⎞

⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎝

b1 b2 . . . bn
D1
a(b1) D1

a(b2) . . . D1
a(bn)

D2
a(b1) D2

a(b2) . . . D2
a(bn)

...
...

. . .
...

Dd−1
a (b1) Dd−1

a (b2) . . . Dd−1
a (bn)

⎞

⎟⎟⎟⎟⎟
⎠

∈ F
d×n
qm .

For a vector x = (
x(1) | x(2) | · · · | x(�)

) ∈ F
n
qm with x(i) ∈ F

ni
qm for all i = 1, . . . , �,

a length partition n = (n1, n2, . . . , n�) ∈ Z
�≥0 such that

∑�
i=1 ni = n and a vector a =

(a1, a2, . . . , a�) ∈ F
�
qm we define the vector1

Di
a(x) := (

Di
a1(x

(1))
∣∣ Di

a2(x
(2))

∣∣ . . .
∣∣ Di

a�
(x(�))

) ∈ F
n
qm .

1 To simplify the notation we omit the length partition n from the vector operator Di
a(x) since it will be

always clear from the context (i.e. as the length partition of the vector x).
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By the properties of the operator Di
a(·), we have that
Di+ j

a (x) = D j
a(Di

a(x))

and
Di

a(ξ x) = σ i (ξ)Di
a(x) ∀ ξ ∈ Fqm .

For a matrix

X =

⎛

⎜
⎜
⎜
⎝

x1
x2
...

xd

⎞

⎟
⎟
⎟
⎠

∈ F
d×n
qm ,

an integer j and a vector a = (a1, a2, . . . , a�) ∈ F
�
qm we define D j

a(·) applied to X as

D j
a(X) :=

⎛

⎜
⎜
⎜
⎜
⎝

D j
a(x1)

D j
a(x2)
...

D j
a(xd)

⎞

⎟
⎟
⎟
⎟
⎠

.

The element-wise application of the operator to matrices does not affect the rank, i.e. we
have that rkqm (D j

a(X)) = rkqm (X) (see [4, Lemma 3]).

Definition 4 (σ -Generalized Moore Matrix) For an integer d ∈ Z>0, a length partition n =
(n1, n2, . . . , n�) ∈ Z

�≥0 such that
∑�

i=1 ni = n and the vectors a = (a1, a2, . . . , a�) ∈ F
�
qm

and x = (
x(1) | x(2) | · · · | x(�)

) ∈ F
n
qm with x(i) ∈ F

ni
qm for all i = 1, . . . , �, the σ -

Generalized Moore matrix is defined as

�d(x)a :=

⎛

⎜⎜⎜
⎝

D0
a(x)

D1
a(x)
...

Dd−1
a (x)

⎞

⎟⎟⎟
⎠

= (
V d(x(1))a1 V d(x(2))a2 · · · V d(x(�))a�

) ∈ F
d×n
qm .

Similar as for ordinary polynomials andVandermondematrices, there is a relation between
the generalized operator evaluation and the product with a σ -Generalized Moore matrix. In
particular, for a skew polynomial f (x) = ∑k−1

i=0 fi x i ∈ Fqm [x; σ ]<k and vectors a =
(a1, a2, . . . , a�) ∈ F

�
qm and x = (

x(1) | x(2) | · · · | x(�)
) ∈ F

n
qm we have that

f (a)x = ( f0, f1, . . . , fk−1) · �k(x)a.

The rank of a σ -Generalized Moore matrix satisfies rkqm (�d(x)a) = min{d, n} if and
only if wt	R(x) = n (see e.g. [21, Theorem 4.5]).

Remark 1 To simplify the notation we omit the rank partition n in � j (·)a since it will be
always clear from the context (i.e. the length partition of the considered vector).

3 Multishot network coding

As a channel model we consider the multishot operator channel from [30] which consists of
multiple independent channel uses of the operator channel from [18]. The operator channel
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is a discrete channel that relates the input V ∈ Pq(N ) with nt := dim(V) to the output
U ∈ Pq(N ) by

U = Hnt−δ(V) ⊕ E (2)

where Hnt−δ(V) is an erasure operator that returns an (nt − δ)-dimensional subspace of V
and E ∈ Gq(N , γ ) is a γ -dimensional subspace with V ∩ E = {0}. The dimension of the
received space nr := dim(U) is then

nr = nt − δ + γ

where δ is called the number of deletions and γ is called the number of insertions. Observe
that the subspace distance between the input V and the output U is dS(V,U) = γ + δ.

3.1 Multishot operator channel

A multishot (or �-shot) operator channel [30] with overall γ insertions and δ deletions is a
discrete channel with input and output alphabet Pq(N). Consider the partitions of insertions
γ = (γ (1), γ (2), . . . , γ (�)) and deletions δ = (δ(1), δ(2), . . . , δ(�)) such that γ = ∑�

i=1 γ (i)

and δ = ∑�
i=1 δ(i). The input is a tuple of subspaces V ∈ Pq(N) with sum-dimension

dim	(V) = nt and sum-dimension partition nt . The output U ∈ Pq(N) is related to the
input V ∈ Pq(N) by

U = Hnt−δ(V) ⊕ E, (3)

where Hnt−δ(V) returns a tuple with sum-dimension nt − δ and sum-dimension partition
nt − δ and E ∈ Gq(N, γ ) is a tuple of error spaces with dim	(E) = γ and V ∩ E = {0}.
The multishot operator channel can be considered as � instances of the (single-shot) operator
channel defined in (2) such that an overall number of γ insertions and δ deletions occurs.

The output U of the multishot operator channel has sum-dimension

nr = nt − δ + γ

with sum-dimension partition
nr = nt − δ + γ . (4)

The multishot operator channel is illustrated in Figure 1.
In [27, 29] a sum-rank-metric representation of the multishot operator channel in the

spirit of [47, 48] was considered. This equivalent channel representation is more suitable for
decoding of LILRS codes in the sum-rank metric. In this work, we consider the interpretation
as a multishot operator channel that is more closely related to the sum-subspace metric.

Remark 2 By the term “random instance of the �-shot operator channel with overall γ inser-
tions and δ deletions” we mean, that we draw uniformly at random an instance from all
instances of the �-shot operator channel (3), i.e. we draw uniformly at random from all par-
titions of the insertions γ and deletions δ, and for fixed V , γ and δ, the error space is chosen

Fig. 1 Illustration of the �-shot operator channel
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uniformly at random from the set

E(γ ) :=
{
E ∈ Gq(N, γ ) : V(i) ∩ E(i) = {0},∀i ∧ dim	(E) = γ

}
. (5)

In Appendix 1 we propose an efficient procedure to implement random instances of the
multishot operator channel for parameters N = (N , . . . , N ) and nt = (nt , . . . , nt ) by
adapting the dynamic-programming routine in [36, Appendix A] for drawing an error of
given sum-rank weight uniformly at random to the sum-subspace case (see Algorithm 5).

We now extend the definition of (γ, δ) reachability for the operator channel [7] to the
multishot operator channel (see also [3, Definition 2]).

Definition 5 ((γ, δ) Reachability)Given two tuples of subspaces U,V ∈ Pq(N) we say that
V is (γ, δ)-reachable fromU if there exists a realization of the multishot operator channel (3)
with γ insertions and δ deletions that transforms the input V to the output U .

Next, we relate the (γ, δ)-reachability with the sum-subspace distance (see also [3, Propo-
sition 2]).

Proposition 1 Consider U ∈ Pq(N) and V ∈ Pq(N). If V is (γ, δ)-reachable from U , then
we have that d	S(U,V) = γ + δ.

Similar as in [18] we now define normalized parameters for codes in the sum-subspace
metric. The normalized weight λ, the code rate R and the normalized minimum distance η

of a sum-subspace code C with parameters N = ∑�
i=1 Ni and nt = ∑�

i=1 n
(i)
t is defined as

λ :=
�∑

i=1

n(i)
t

N
= nt

N
, R := logq(C)

∑�
i=1 n

(i)
t Ni

and η := d	S(C)

2nt
= d	S(C)

2λN
, (6)

respectively. The normalized parameters λ, R and η defined in (6) lie naturally within the
interval [0, 1]. Define nt := nt/�. For n

(i)
t = nt for all i = 1, . . . , � we can write the code

rate as

R = logq(|C|)
∑�

i=1 nt Ni
= � logq(|C|)

nt N
= � logq(|C|)

λN 2 .

A sum-subspace code C is a non-empty subset of Pq(N), and has minimum subspace
distance d	S(C) when all subspaces in the code have distance at least d	S(C) and there is
at least one pair of subspaces with distance exactly d	S(C). In the following we consider
constant-shot-dimension codes2, i.e. codes that inject the same number of (linearly indepen-
dent) packets n(i)

t in a given shot. In this setup, we transmit a tuple of subspaces

V =
(
V(1),V(2), . . . ,V(�)

)
∈ Gq(N, nt )

and receive a tuple of subspaces

U =
(
U (1),U (2), . . . ,U (�)

)
∈ Gq(N, nr ),

where

U (i) =
〈(

ξ (i)� u(i)�
1 u(i)�

2 . . . u(i)�
s

)〉

q
=

〈⎛
⎜⎜
⎝

ξ
(i)
1 u(i)

1,1 u(i)
1,2 . . . u(i)

1,s
...

...
...

. . .
...

ξ
(i)

n(i)
r

u(i)

n(i)
r ,1

u(i)

n(i)
r ,2

. . . u(i)

n(i)
r ,s

⎞

⎟⎟
⎠

〉

q

(7)

2 In [27] these codes are called sum-constant-dimension codes.
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for all i = 1, . . . , �.
Similar as for subspace codes in [18] we now define complementary sum-subspace codes.

For any V ∈ Pq(N ) the dual space V⊥ is defined as

V⊥ := {u ∈ F
N
q : uv� = 0, ∀v ∈ V}

where dim(V⊥) = N − dim(V). For a tuple V = (V(1),V(2), . . . ,V(�)) ∈ Pq(N) we define
the dual tuple as

V⊥ :=
(
(V(1))⊥, (V(2))⊥, . . . , (V(�))⊥

)
∈ Pq(N).

Note, that if V ∈ Gq(N, nt ), then we have that V⊥ ∈ Gq(N, N − nt ). By applying [18,
Eq. 4] to the subspace distance between each component space of two tuples U,V ∈ Pq(N)

in (1) we get that
d	S(V⊥,U⊥) = d	S(V,U).

Consider a constant-shot-dimension sum-subspace code C ⊆ Gq(N, nt ). Then the com-
plementary constant-shot-dimension sum-subspace code C⊥ is defined as

C⊥ := {V⊥ : V ∈ C} ⊆ Gq(N, N − nt ).

The complementary code C⊥ has cardinality |C⊥| = |C|, minimum sum-subspace distance
d	S(C⊥) = d	S(C) and code rate

R⊥ = logq(|C⊥|)
∑�

i=1(Ni − n(i)
t )Ni

.

3.2 Lifted linearized Reed–Solomon codes

Lifted linearized Reed–Solomon (LRS) codes [27] are constant-shot-dimension multishot
network codes for error-control in noncoherent multishot network coding. The main idea
behind the construction of LLRS codes is to lift codewords of an LRS code in a block-wise
manner by augmenting each (transposed) codeword block by the corresponding Fq -linearly
independent code locators. For the special case of � = 1 the construction coincides with the
Kötter–Kschischang subspace codes [18].

Let a = (a1, a2, . . . , a�) be a vector containing representatives from different conjugacy

classes of Fqm . Let the vectors β(i) = (β
(i)
1 , β

(i)
2 , . . . , β

(i)

n(i)
t

) ∈ F
n(i)
t

qm contain Fq -linearly inde-

pendent elements from Fqm for all i = 1, . . . , � and define β =
(
β(1) | β(2) | · · · | β(�)

)
∈

F
nt
qm and nt = (n(1)

t , n(2)
t , . . . , n(�)

t ). Then an LLRS code LLRS[β, a, �; nt , k] of sum-

subspace dimension nt = n(1)
t +n(2)

t +· · ·+n(�)
t , sum-dimension partition nt and dimension

k ≤ nt is defined as
{
V( f ) :=

(
V(1)( f ), . . . ,V(�)( f )

)
: f ∈ Fqm [x; σ ]<k

}
⊆ Gq(N, nt )

where N = (N1, . . . , N�) with Ni = n(i)
t + m, and, for f ∈ Fqm [x; σ ]<k , we have

V(i)( f ) := 〈(
β(i)� f (β(i))�ai

)〉
q

∈ Gq(Ni , n
(i)
t ), ∀i = 1, . . . , �.

The lifting operation corresponds to augmenting each transposed codeword block of an LRS
codeword by the corresponding (transposed) code locators and considering the Fq -linear
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rowspace thereof (see [27, 29, 48]). The lifting operation causes a rate-loss since the code
locators do not carry information since they are common for all codewords.

The minimum sum-subspace distance of LLRS[β, a, �; nt , k] equals (see [27])
d	S(LLRS[β, a, �; nt , k]) = 2(nt − k + 1) (8)

and the code rate is

R = mk
∑�

i=1 n
(i)
t (n(i)

t + m)
.

In [27] an efficient interpolation-based decoding algorithm that can correct an overall
number of γ insertions and δ deletions up to

γ + δ < nt − k + 1

was presented. However, the decoder from [27] has the restriction that the dimension of
the received spaces and the dimension of the transmitted spaces must be the same (c.f. [27,
Sect. V.H]).

4 Decoding of lifted interleaved LRS codes for error-control in
multishot network coding

In this section, we consider the application of lifted ILRS codes for error control in multishot
network coding. In particular, we focus on noncoherent transmissions, where the network
topology and/or the coefficients of the in-network linear combinations at the intermediate
nodes are not known (or used) at the transmitter and the receiver. Therefore, we define and
analyze lifted interleaved linearized Reed–Solomon (LILRS) codes. We derive a Loidreau–
Overbeck-like decoder [24, 32, 33] for LILRS codes which is capable of correcting insertions
and deletions beyond the unique decoding region at the cost of a (very) small decoding failure
probability. Although the Loidreau–Overbeck-like decoder is not the most efficient decoder
in terms of computational complexity, it allows to analyze the decoding failure probability and
gives insights about the decoding procedure. We derive a tight upper bound on the decoding
failure probability of the Loidreau–Overbeck-like decoder for LILRS codes, which, unlike
simple heuristic bounds, considers the distribution of the error spaces caused by insertions.

Wepropose an efficient interpolation-based decoding scheme,which can correct insertions
and deletions beyond the unique decoding region and which can be used as a list decoder
or as a probabilistic unique decoder. We derive upper bounds on the worst-case list size and
use the relation between the interpolation-based decoder and the Loidreau–Overbeck-like
decoder to derive an upper bound on the decoding failure probability for the interpolation-
based probabilistic unique decoding approach. Unlike the interpolation-based decoder in [27,
Sect. V.H], the proposed decoding schemes do not have the restriction that the dimension of
the received spaces and the dimension of the transmitted spaces must be the same.

4.1 Lifted interleaved linearized Reed–Solomon codes

In this section we consider LILRS codes for transmission over a multishot operator chan-
nel (3). We generalize the ideas from [27] to obtain multishot subspace codes by lifting the
ILRS codes defined in [4] (see also [3]).

123



Fast decoding of LILRS codes

Definition 6 (Lifted Interleaved Linearized Reed–Solomon Code) Let a = (a1, a2, . . . , a�)

be a vector containing representatives from different conjugacy classes of Fqm . Let the vec-

tors β(i) = (β
(i)
1 , β

(i)
2 , . . . , β

(i)

n(i)
t

) ∈ F
n(i)
t

qm contain Fq -linearly independent elements from

Fqm for all i = 1, . . . , � and define β =
(
β(1) | β(2) | · · · | β(�)

)
∈ F

nt
qm and nt =

(n(1)
t , n(2)

t , . . . , n(�)
t ).Ahomogeneous lifted s-interleaved linearizedReed–Solomon (LILRS)

code LILRS[β, a, �, s; nt , k] of sum-subspace dimension nt = n(1)
t + n(2)

t + · · · + n(�)
t and

dimension k ≤ nt is defined as
{
V( f ) :=

(
V(1)( f ), . . . ,V(�)( f )

)
: f ∈ Fqm [x; σ ]s<k

}
⊆ Gq(N, nt )

where N = (N1, . . . , N�) with Ni = n(i)
t + sm, and, for f = ( f1, . . . , fs), we have

V(i)( f ) := 〈(
β(i)� f1(β

(i))�ai . . . fs(β
(i))�ai

)〉
q

∈ Gq(Ni , n
(i)
t ).

Remark 3 In order to not further complicate the notation, we consider homogeneous LILRS
codes, i.e. codes where each component code has the same code dimension k, only. Note that
the proposed results and concepts can be adapted to inhomogeneous codeswith different code
dimension k1, . . . , ks in a straight forward manner (analog to single-shot subspace codes in
e.g. [5, 6, 49]).

Observe, that compared to LLRS codes the relative overhead due to lifting decreases in s
since the evaluations are performed at the same code locators and thus have to be appended
only once. The reduction of the relative overhead comes at the cost of an increased packet
size Ni for each shot i = 1, . . . , �.

The definition of LILRS codes generalizes several code families. For s = 1 we obtain
the lifted linearized Reed–Solomon codes from [27, Sect. V.III]. For � = 1 we obtain lifted
interleaved Gabidulin codes as considered in e.g. [6, 50] with Kötter–Kschischang codes [18]
as special case for s = 1.

Proposition 2 shows that interleaving does not increase the minimum sum-subspace dis-
tance of the code.

Proposition 2 (Minimum Distance) The minimum sum-subspace distance of a LILRS code
LILRS[β, a, �, s; nt , k] as in Definition 6 is

d	S (LILRS[β, a, �, s; nt , k]) = 2 (nt − k + 1) .

Proof Consider two distinct codewords

V1 := V( f 1), V2 := V( f 2) ∈ LILRS[β, a, �, s; nt , k]
constructed by the polynomial vectors f 1 = ( f1, 0, . . . , 0) and f 2 = ( f2, 0, . . . , 0) with

f1 �= f2. Then the corresponding tuples of subspaces are V j =
(
V(1)
j , . . . ,V(�)

j

)
with

V(i)
j := 〈(

β(i)� f j (β
(i))�ai 0 . . . 0

)〉
q

(9)

for j = 1, 2. Observe that the � − 1 rightmost zero matrices in the component spaces in (9)
do not contribute to the sum-subspace distance between V1 and V2. Therefore we have that

d	S(V1,V2) = d	S(Ṽ1, Ṽ2)

123



H. Bartz, S. Puchinger

where Ṽ j =
(
Ṽ(1)
j , . . . , Ṽ(�)

j

)
with

Ṽ(i)
j := 〈(

β(i)� f j (β
(i))�ai

)〉
q

(10)

for j = 1, 2. Since Ṽ1, Ṽ2 ∈ LLRS[β, a, �; nt , k] we have that (see (8))
d	S(Ṽ1, Ṽ2) ≥ 2(nt − k + 1).

Now assume that there exist two codewords V ′
1,V ′

2 ∈ LILRS[β, a, �, s; nt , k] with com-
ponent spaces of the form (9) such that d	S(V ′

1,V ′
2) < 2(nt − k + 1). This would imply

that the corresponding (truncated) spaces Ṽ ′
1, Ṽ ′

2 of the form (10) which are codewords
in LLRS[β, a, �; nt , k] also satisfy d	S(Ṽ ′

1, Ṽ ′
2) < 2(nt − k + 1), which contradicts that

LLRS[β, a, �; nt , k] has minimum sum-subspace distance 2(nt − k + 1). Therefore, we
conclude that d	S (LILRS[β, a, �, s; nt , k]) = 2 (nt − k + 1). ��

For a LILRS code C = LILRS[β, a, �, s; nt , k] we have that Ni = n(i)
t + sm for all

i = 1, . . . , � and therefore the code rate is

R = logq(|C|)
∑�

i=1 n
(i)
t Ni

= smk
∑�

i=1 n
(i)
t (n(i)

t + sm)
. (11)

Note, that there exist other definitions of the code rate for multishot codes that are not
considered in this paper (see e.g. [30, Sect. IV.A]).

The normalized weight λ and the normalized distance η of an LILRS code LILRS[β, a,
�, s; nt , k] is

λ = nt
N

and η = nt − k + 1

nt
.

For n(i)
t = nt for all i = 1, . . . , � the code rate of an LILRS code LILRS[β, a, �, s; nt , k]

in (11) becomes

R = �smk

nt N
.

For n(i)
t = nt for all i = 1, . . . , � the Singleton-like upper bound for constant-shot-

dimension sum-subspace codes [27, Theorem 7] evaluated for the parameters of LILRS
codes becomes

|C| ≤ κ�
qq

sm(nt−(d	S(C)/2−1)) = κ�
qq

smk

which shows, that a Singleton-like bound achieving code can be at most κ�
q < 3.5� times

larger than the corresponding LILRS code. Equivalently, the code rate is therefore upper-
bounded by

R ≤ �(logq(κq) + smk)

nt N
.

The benefit of the decreased relative overhead due to interleaving is illustrated in Figure 2.
The figure shows, that the rate loss due to the overhead introduced by the lifting is reduced
significantly, even for small interleaving orders. Further, we see that LILRS codes approach
the Singleton-like bound for sum-subspace codes (see [27])with increasing interleaving order
while preserving the extension field degree m3.

3 The Singleton-like depends on the sum-dimension N of the ambient space and thus changes in s.
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Fig. 2 Normalized distance η over the code rate R for an LILRS code LILRS[β, a, � = 2, s; nt = (8, 8), k =
4] over F38 for interleaving orders s ∈ {1, 3, 10} with the corresponding (average) normalized weight λ. The
case s = 1 corresponds to the LLRS codes from [27]

Fig. 3 Qualitative illustration of the structure of the tuple Û containing transformed basis matrices. The green
parts form a basis for the non-corrupted spaces whereas the red parts indicate a basis for the erroneous spaces.
The green part is used to reconstruct the message polynomials

4.2 Loidreau–Overbeck-like decoder for LILRS codes

Loidreau and Overbeck proposed the first efficient decoder for interleaved Gabidulin codes
in the rank metric [24, 32, 33]. The main idea behind the Loidreau–Overbeck decoder is
to compute an Fq -linear transformation matrix from a decoding matrix (which depends on
the code and the received word) that allows to transform the received word into a corrupted
part and a noncorrupted part. The noncorrupted part is then used to recover the message
polynomials e.g. via Lagrange interpolation.

The concept of the Loidreau–Overbeck decoder was generalized to decoding ILRS codes
in the sum-rank metric [4]. In the sum-rank-metric case an Fq -linear transformation matrix
is obtained for each block.

Based on the previous decoders for the rank and sum-rank metric, we derive a Loidreau–
Overbeck-like decoder for LILRS codes. Similar to the original decoder and its sum-rank-
metric analogue we set up a decoding matrix that allows to compute Fq -linear transformation
matrices for each shotU (i). The obtained transformationmatrices allow to compute particular
bases for the received subspaces U (i) that can be split into a basis for the corrupted part
(corresponding to the error space E(i)) and a noncurrupted part (i.e. a basis for V(i) ∩ U (i))
for each shot. The noncorrupted part is then used to reconstruct the message polynomials via

Lagrange interpolation. The qualitative structure of the tuple Û = (Û
(1)

, Û
(2)

, . . . , Û
(�)

)

containing transformed basis matrices is illustrated in Figure 3.
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The main motivation to derive the Loidreau–Overbeck-like decoder is to obtain an upper
bound on the decoding failure probability that incorporates the distribution of the error
spaces in E . In Sect. 4.3 we will reduce the interpolation-based decoder for LILRS codes
to the Loidreau–Overbeck-like decoder in order to obtain an upper bound on the decoding
failure probability of the interpolation-based probabilistic unique decoder.

Up to our knowledge, this is the first Loidreau–Overbeck-like decoding scheme in the
(sum-) subspace metric. It includes lifted interleaved Gabidulin (or interleaved Kötter–
Kschischang) codes [5, 6] as special case for � = 1. Hence, the results give a strict upper
bound4 on the decoding failure probability of the decoders in [5, 6].

Suppose we transmit the tuple of subspaces

V( f ) =
(
V(1)( f ), . . . ,V(�)( f )

)
∈ LILRS[β, a, �, s; nt , k]

over an �-shot operator channel with overall γ insertions and δ deletions and receive the tuple
of subspaces

U =
(
U (1), . . . ,U (�)

)
∈ Gq(N, nr ),

where the received subspaces U (i) are as defined in (7) and nr = nt +γ − δ (see (4)). Define
the vectors

ξ =
(
ξ (1) | ξ (2) | · · · | ξ (�)

)
∈ F

nr
qm and u j =

(
u(1)
j | u(2)

j | · · · | u(�)
j

)
∈ F

nr
qm ,

for all j = 1, . . . , s and consider the matrix

L :=

⎛

⎜⎜⎜
⎝

�nt−δ−1(ξ)a
�nt−δ−k (u1)a

...

�nt−δ−k (us)a

⎞

⎟⎟⎟
⎠

∈ F
((s+1)(nt−δ)−sk−1)×nr
qm . (12)

Lemma 2 (Transformed of Decoding Matrix) Consider the transmission of a tuple of sub-
spaces V( f ) ∈ LILRS[β, a, �, s; nt , k] over an �-shot operator channel with overall γ

insertions and δ deletions and receive the tuple of subspacesU . Let L be as in (12). Then there

exist invertible matrices W (i) ∈ F
n(i)
r ×n(i)

r
q such that for W = diag(W (1),W (2), . . . ,W (�))

we have that
L =

(
L

(1)
, . . . , L

(�)
)

= L · W ∈ F
((s+1)(nt−δ)−sk−1)×nr
qm (13)

consists of component matrices of the form

L
(i) =

⎛

⎜⎜⎜⎜
⎝

V nt−δ−1(ξ
(i)
1 )ai V nt−δ−1(ξ

(i)
2 )ai 0

0 V nt−δ−k (̃e
(i)
1 )ai V nt−δ−k(ê

(i)
1 )ai

...
...

...

0 V nt−δ−k (̃e
(i)
s )ai V nt−δ−k(ê

(i)
s )ai

⎞

⎟⎟⎟⎟
⎠

∈ F
((s+1)(nt−δ)−sk−1)×n(i)

r
qm

where ξ
(i)
1 ∈ F

n(i)
t −δ(i)

qm , ξ
(i)
2 , ẽ(i)

l ∈ F
t (i)
qm , ê(i)

l ∈ F
κ

(i)

qm and

rkq(ξ
(i)
1 ) = n(i)

t − δ(i), rkq(ξ
(i)
2 ) = t (i)

4 In [5, 6] a heuristic upper bound on the decoding failure probability, which does not incorporate the distri-
bution of the error spaces, was derived.
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rkq (̃e
(i)
l ) = t (i), rkq(ê

(i)
l ) = κ

(i)

rkq((̃e
(i)
l | ê(i)

l )) = t (i) + κ
(i),

for all i = 1, . . . , � such that rkqm (L) = rkqm (L).

The proof of Lemma 2 is based on particular bases for the received spaces in U and
properties of the intersection and error spaces inV ∩U and E , respectively, and can be found
in Appendix 1.

Lemma 3 (Properties of Decoding Matrix) Consider the notation and definitions as in
Lemma 2 and define the vectors

el :=
(
(̃e(1)

l | ê(1)
l ) | · · · | (̃e(�)

l | ê(�)
l )

)
∈ F

γ
qm , ∀l = 1, . . . s,

and the matrix

Z =
(
Z

(1) | · · · | Z(�)
)

:=
⎛

⎜
⎝

�nt−δ−k(e1)a
...

�nt−δ−k(es)a

⎞

⎟
⎠ ∈ F

s(nt−δ−k)×γ
qm . (14)

Let h = (h(1) | h(2) | · · · | h(�)) ∈ F
nr
qm with h(i) ∈ F

n(i)
r

qm for all i = 1, . . . , � be a nonzero

vector in the right kernel of the decoding matrix L and suppose that Z has Fqm -rank γ . Then:

1. We have rkqm (L) = nr − 1.

2. We have rkq(h(i)) = n(i)
t − δ(i) for all i = 1, . . . , �, i.e., h has sum-rank weight

wt(nr )	R (h) = nt − δ.

3. There are invertible matrices T (i) ∈ F
n(i)
r ×n(i)

r
q , for all i = 1, . . . , �, such that the last

(rightmost) γ (i) positions of h(i)T (i) are zero.

4. The first (upper) n(i)
t − δ(i) rows of Û

(i) = (
T (i)

)−1
U (i) form a basis for the non-

corrupted received space U (i) ∩ V(i) for all i = 1, . . . , �.
5. The l-thmessage polynomial fl can be uniquely reconstructed from the transformed basis

Û
(i)

for the received space U (i) by Lagrange interpolation on the first n(i)
t − δ(i) rows of

Û
(i)

for all l = 1, . . . , s and i = 1, . . . , �.

We now provide a sketch of the proof. The full proof of Lemma 3 can be found in
Appendix 1.

Sketch of the Proof. – Ad1.): Thematrix L can be rearranged into an upper block-triangular
matrix whose rank is determined by the two blocks on the diagonal, which have rank
nt−δ−1andγ and thus imply that theFqm -rankof thewholematrix equalsnt−δ−1+γ =
nr − 1. The statement follows since by Lemma 2 we have that rkqm (L) = rkqm (L).

– Ad 2.): By assumption the Fqm -rank of Z equals γ which implies that rkqm (Z
(i)

) = γ (i)

for all i = 1, . . . , �. Thus, for any h ∈ kerr (L) \ {0} the γ (i) rightmost entries of h
(i)

must be zero which implies that rkq(h
(i)

) ≤ n(i)
t − δ(i) for all i = 1, . . . , �. On the other

hand h is contained in a code with minimum sum-rank distance nt − δ which is the dual
of the code spanned by the first nt −δ−1 rows of L. The statement follows by combining
these two facts.
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– Ad 3.): By 2.) the Fq -rank of h(i) ∈ F
n(i)
r

qm equals n(i)
t − δ(i) for all i = 1, . . . , �. Hence

there exist matrices T (i) ∈ F
n(i)
r ×n(i)

r
q such that the n(i)

r − (n(i)
t − δ(i)) = γ (i) rightmost

entries of h(i)T (i) are equal to zero.

– Ad 4.): Define the matrices D(i) = (
T (i)−1

)�
for all i = 1, . . . , � and observe that

hT ∈ kerr (L · diag(D(1), . . . , D(�))). By using the Fqm -rank condition on Z one can

show that the span of the γ (i) rightmost columns of the matrices L
(i)

and L(i)D(i)

coincides. These columns correspond to the insertions which in turn implies that the last

γ (i) rows of Û
(i) = (D(i))�U (i) form a basis for E(i). The statement follows since by

the definition of the operator channel we have that V(i) ∩ E(i) = {0} for all i = 1, . . . , �.

– Ad 5.): By 4.) the first n(i)
t − δ(i) rows of the transformed basis Û

(i)
form a basis for the

noncorrupted intersection space V(i) ∩ U (i) for all i = 1, . . . , �. Due to the Fq -linearity
of the generalized operator evaluation for a fixed evaluation parameter (i.e. per shot), the
message polynomials can be reconstructed by constructing the corresponding Lagrange
interpolation polynomials (see Figure 4).

The complete procedure for theLoidreau–Overbeck-like decoder for LILRS codes is given

in Algorithm 1. The structure of the transformed basis matrices Û
(i)

for all i = 1, . . . , � is
illustrated in Figure 4.

Algorithm 1 Loidreau−Overbeck- like Decoder for LILRS Codes

Input: A tuple containing the basis matrices U = (U(1),U(2), . . . ,U(�)) ∈ ∏�
i=1 F

n(i)
r ×(s+1)

qm for the

output U = (U (1),U (2), . . . ,U (�)) ∈ Gq (N, nr ) of an �-shot operator channel with overall γ insertions
and δ deletions for input V( f ) ∈ LILRS[β, a, �, s; nt , k]
Output: Message polynomial vector f = ( f1, . . . , fs ) ∈ Fqm [x; σ ]s

<k or “decoding failure”

1: Set up the matrix L as in (12)
2: Compute right kernel H = kerr (L)

3: if dim(H) > 1 then
4: return “decoding failure”
5: else
6: Compute an element h =

(
h(1) | · · · | h(�)

)
∈ H \ {0}

7: for i = 1, . . . , � do
8: Compute n(i)

t − δ(i) ← rkq
(
h(i)

)

9: Compute full-rank matrix T (i) ∈ F
n(i)
r ×n(i)

r
q s.t.

the rightmost γ (i) = n(i)
r − (n(i)

t − δ(i)) entries of h(i)T (i) are zero.

10: Û
(i) ←

(
T (i)

)−1
U(i) =

(
ξ̂
(i)�

û(i)�
1 . . . û(i)�

s

)
∈ F

n(i)
r ×(s+1)

qm

11: end for
12: for l = 1, . . . , s do
13: fl ← IopBl

where Bl =
{
(ξ̂

(i)
μ , û(i)

l,μ, ai ) : i = 1, . . . , �, μ = 1, . . . , n(i)
t − δ(i)

}

14: end for
15: return f = ( f1, . . . , fs )
16: end if

An execution of the Loidreau–Overbeck-like decoder for LILRS codes is illustrated in
Example 1.
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Fig. 4 Illustration of the structure of the transformed basis matrices Û
(i)

. The green part forms a basis for the
non-corrupted space U (i) ∩ V(i) whereas the red part forms a basis for the error space E(i)

Example 1 (Loidreau–Overbeck-like Decoder) Consider the finite field F32 with primitive
element α defined by the primitive polynomial x2 + 2x + 2. Consider the LILRS code
LILRS[β, a, �, s; nt , k] over F32 with code locators β = ((1, α) | (1, α)), evaluation param-
eters a = (1, α), number of shots � = 2, interleaving order s = 2, sum-dimension
partition nt = (2, 2) and dimension k = 2. Consider the transmission of a codeword
V( f ) = (V(1)( f ),V(2)( f )) ∈ ILRS[β, a, �, s; n, k] with

V(1)( f ) =
〈(

1 α + 2 2
α 2α + 2 2

)〉

q
and V(2)( f ) =

〈(
1 α 1
α α α + 1

)〉

q
(15)

that corresponds to the message polynomial vector f = ( f1, f2) with

f1 = αx + 2 and f2 = 2αx + α + 2

over a multishot operator channel (3) with an overall number of γ = 2 insertions and δ = 1
deletion. Note, that a bounded minimum distance (BMD) decoder could only correct γ = 1
insertions and δ = 1 deletion.

Suppose we receive the tuple of subspaces U = (U (1),U (2)) with

U (1) =
〈⎛

⎝
α + 2 α 0
1 1 1

2α + 2 2 2

⎞

⎠
〉

q

and U (2) =
〈(

2α + 1 0 2
2α + 2 α α + 2

)〉

q
(16)

where nr = (3, 2) and nr = 5.
According to (12) the Loidreau–Overbeck-like decoding matrix is

L =

⎛

⎜⎜
⎝

α + 2 1 2α + 2 2α + 1 2α + 2
2α 1 α + 1 α + 1 2α + 1
α 1 2 0 α

0 1 2 2 α + 2

⎞

⎟⎟
⎠ .

The decoding matrix L has Fqm -rank nr − 1 = 4 implying the right F32 -kernel of L has
dimension one. We pick

h = (h(1) | h(2)) = ((α, 0, 2) | (α + 1, α + 1)) ∈ kerr (L)

as nonzero element from the right Fqm -kernel of L and recover the partition of insertions γ

as
γ =

(
n(1)
r − rkq(h(1)) | n(2)

r − rkq(h(2))
)

= (1 | 1).
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Next we compute the transformation matrices

T (1) =
⎛

⎝
0 1 0
2 1 1
2 1 0

⎞

⎠ and T (2) =
(
2 1
0 2

)

such that the γ (1) = γ (2) = 1 rightmost entry of h(1)T (1) and h(2)T (2) is zero, i.e. we have

h(1)T (1) = (1, α + 2, 0) and h(2)T (2) = (2α + 2, 0).

Now we can compute the transformed bases for the received spaces U (1) and U (2) as

Û
(1) =

(
T (1)

)−1
U (1) =

⎛

⎝
2α α + 1 1

α + 2 α 0
α + 2 2 2

⎞

⎠ ,

Û
(2) =

(
T (2)

)−1
U (2) =

(
2α 2α 2α + 2

α + 1 2α 2α + 1

)
,

where U (1) and U (2) are bases for U (1) and U (2), respectively. Then the upper n(1)
t − δ(1) = 2

rows of Û
(1)

form a basis for the noncorrupted space V(1) ∩U (1) and the upper n(2)
t −δ(2) = 1

rows of Û
(2)

form a basis for the noncorrupted space V(2) ∩ U (2).

Applying Lagrange interpolation to the rows of Û
(1)

and Û
(2)

corresponding to the non-
corrupted spaceswe can recover themassage polynomials f1 = αx+2 and f2 = 2αx+α+2.

Lemma 4 (Decoding Failure Probability) Suppose that a tuple of subspaces

V( f ) =
(
V(1)( f ), . . . ,V(�)( f )

)
∈ LILRS[β, a, �, s; nt , k]

is transmitted over a random instance of the �-shot operator channel (see Remark 2) with
overall γ insertions and δ deletions, where γ and δ satisfy γ ≤ γmax := s(nt − δ − k). Let
Z be defined as in (14) (see Lemma 3). Then, we have

Pr
(
rkqm (�nt−δ−k(Z)a) < γ

) ≤ κ�+1
q q−m(γmax−γ+1).

Proof Let γ = (γ (1), . . . , γ (�)) ∈ Z
�≥0 and δ = (δ(1), . . . , δ(�)) ∈ Z

�≥0 be the partition of
the insertions and deletions of the �-shot operator channel, respectively. By assumption, the
tuple of error spaces E ∈ Gq(N, γ ) is chosen uniformly at random from the set E(γ ) as
defined in (5). Each instance of the �-shot operator channel yields a decoding matrix L of
the form (13) for some t = (t1, . . . , t�) ∈ Z

�≥0, κ = (κ1, . . . , κ�) ∈ Z
�≥0. Now let us fix γ

and δ, which yields a particular instance of t and κ. By Lemma 3 the decoder succeeds if
the Fqm -rank of the matrix

Z :=
⎛

⎜
⎝

�nt−δ−k(e1)a
...

�nt−δ−k(es)a

⎞

⎟
⎠ ∈ F

s(nt−δ−k)×γ
qm ,

equals γ given that

wt	R

(
Ẽ

(1)
Ê

(1) | · · · | Ẽ(�)
Ê

(�)
)

= t + κ = γ. (17)
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Drawing E uniformly at random with a fixed rank partition γ from E(γ ) corresponds to
drawing Ẽ and Ê uniformly at random from all matrices that satisfy (17). This implies that
the probability

Pr(rkqm (�nt−δ−1(Z)a) < γ )

depends on γ and not on t and κ. Hence, we can use [4, Lemma 7] with t = γ , t = γ ,
n = nr and get

Pr(rkqm (�nt−δ−1(Z)a) < γ ) ≤ κ�+1
q q−m(γmax−γ+1).

Note that this expression is independent of the rank partition γ , so it is also an upper bound
for Pr

(
rkqm (�nt−δ−k(Z)a) < γ

)
with E drawn according to Remark 2. ��

Theorem 1 (Loidreau–Overbeck-like Decoder for LILRS Codes) Suppose we transmit the
tuple of subspaces

V( f ) =
(
V(1)( f ), . . . ,V(�)( f )

)
∈ LILRS[β, a, �, s; nt , k]

over a random instance of the �-shot operator channel (see Remark 2)

U = Hnt−δ(V) ⊕ E,

with overall γ insertions and δ deletions, where

γ ≤ γmax := s(nt − δ − k). (18)

Then, Algorithm 1 with input V( f ) returns the correct message polynomial vector f with
success probability at least

Pr(success) ≥ 1 − κ�+1
q q−m(γmax−γ+1).

Furthermore, the algorithm has complexity O(snω
r ) operations in Fqm plus O(mnω−1

r ) oper-
ations in Fq .

Proof Due to Proposition 3, the algorithm returns the correct message polynomial vector f
if the Fqm -rank of�nt−δ−k(Z)a is at least γ . Hence, the success probability is lower bounded
by the probability that rkqm (�nt−δ−k(Z)a) = γ , which is given in Lemma 4.

The lines of the algorithm have the following complexities:

• Lines 3 and 6: This can be done by solving the linear system of equations Lh� = 0.
Since L ∈ F

((s+1)(nt−δ)−sk−1)×nr
qm , it costs O

(
snω

r

)
operations in Fqm .

• Line 8 can be implemented by transforming the matrix representation of h(i), which is an

m × n(i)
r matrix over Fq , into column echelon form. For each i , this costs O

(
mn(i)

r
ω−1)

operations in Fq . In total, all � calls of this line cost O
(
�m

∑
i n

(i)
r

ω−1) ⊆ O
(
mnω−1

r

)

operations in Fq .
• Line 9 can be implemented by transforming the matrix representation of h(i) into column

echelon form, which was already accomplished in Line 8.

• Line 10 requires O
(
sn(i)

r
2)

multiplications over Fqm and thus O
(
s
∑

i n
(i)
r

2) ⊆ O
(
sn2r

)

operations in Fqm in total.
• Line 13 computes s interpolation polynomials of degree less than k ≤ nt point tuples.

This costs in total Õ(sM(nt )) operations in Fqm (c.f. [11, 38]).

This proves the complexity statement.

The decoding region of theLoidreau–Overbeck-like decoder for LILRScodes is illustrated
in Figure 5.

123



H. Bartz, S. Puchinger

4.3 An interpolation-based decoding approach

We now derive an interpolation-based decoding approach for LILRS codes. The decoding
principle consists of an interpolation step and a root-finding step. In [27], (lifted) linearized
Reed–Solomon codes are decoded using the isometry between the sum-rank and the skew
metric. In this work we consider an interpolation-based decoding scheme in the general-
ized operator evaluation domain. The new decoder is a generalization of [50] (interleaved
Gabidulin codes in the rankmetric) and [6] (lifted interleavedGabidulin codes in the subspace
metric). Compared to the Loidreau–Overbeck-like decoder from Sect. 4.2, which requires
O
(
sωn2r

)
operations in Fqm , the proposed interpolation based decoder has a reduced compu-

tational complexity in the order of Õ(sωM(nr )) operations in Fqm .

4.3.1 Interpolation step

Suppose we transmit the tuple of subspaces

V( f ) =
(
V(1)( f ), . . . ,V(�)( f )

)
∈ LILRS[β, a, �, s; nt , k]

over an �-shot operator channel (3) with γ insertions and δ deletions and receive the tuple of
subspaces

U =
(
U (1),U (2), . . . ,U (�)

)
∈ Gq(N, nr )

where the received subspaces U (i) are represented as in (7). We describe U by the tuple
containing the basis matrices of the received subspaces as

U :=
(
U (1),U (2), . . . ,U (�)

)
∈

�∏

i=1

F
n(i)
r ×(s+1)

qm

where

U (i) :=
(
ξ (i)� u(i)�

1 u(i)�
2 . . . u(i)�

s

)
∈ F

n(i)
r ×(s+1)

qm

has Fq -rank rkq(U (i)) = n(i)
r and satisfies U (i) = 〈

U (i)
〉
q for all i = 1, . . . , �.

Remark 4 In contrast to [27, Sect. V.H] we do not need the assumption that theFq -rank of ξ
(i)

equals n(i)
r for all i = 1, . . . , �, which is not the case in general (see also [47, Sect. 5.1.2]).

For a multivariate skew polynomial of the form

Q(x, y1, . . . , ys) = Q0(x) + Q1(x)y1 + · · · + Qs(x)ys

where Ql(x) ∈ Fqm [x; σ ] for all l ∈ [0, s] define the nr generalized operator evaluation
maps

Fqm [x, y1, . . . , ys; σ ] × F
s+1
qm → Fqm

(
Q, (ξ

(i)
j , u(i)

1,l , . . . , u
(i)
s,l)

)
�→ E

(i)
j (Q) := Q0(ξ

(i)
j )ai + ∑s

l=1 Ql(u
(i)
j,l)ai . (19)

for all j = 1, . . . , n(i)
r and i = 1, . . . , �. Now consider the following interpolation problem

in Fqm [x; σ ] (see also [3, Problem 1]).
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Problem 1 (LILRS Interpolation Problem) Given the integers D, s, � ∈ Z≥0, a set

E =
{
E

(i)
j : i = 1, . . . , �, j = 1, . . . , ni

}

containing the generalized operator evaluation maps defined in (19) and a vector w =
(0, k − 1, . . . , k − 1) ∈ Z

s+1
≥0 , find a nonzero polynomial of the form

Q(x, y1, . . . , ys) = Q0(x) + Q1(x)y1 + · · · + Qs(x)ys

with Ql(x) ∈ Fqm [x; σ ] for all l ∈ [0, s] that satisfies:
1. E

(i)
j (Q) = 0, ∀i = 1, . . . , �, j = 1, . . . , n(i)

r ,
2. degw(Q(x, y1, . . . , ys)) < D.

Define the skew polynomials

Q0(x) =
D−1∑

i=0

q0,i x
i and Q j (x) =

D−k∑

i=0

q j,i x
i ,

and the vectors

ξ =
(
ξ (1) | ξ (2) | · · · | ξ (�)

)
∈ F

nr
qm and u j =

(
u(1)
j | u(2)

j | · · · | u(�)
j

)
∈ F

nr
qm

for all j = 1, . . . , s. Then a solution of Problem 1 can be found by solving the Fqm -linear
system

R I q = 0 (20)

for

q = (
q0,0, q0,1, . . . , q0,D−1 | q1,0, q1,1, . . . , q1,D−k | · · · | qs,0, qs,1, . . . , qs,D−k

)
(21)

where the interpolation matrix R I ∈ F
nr×D(s+1)−s(k−1)
qm is given by

R I = (
�D(ξ)�a �D−k+1(u1)�a . . . �D−k+1(us)�a

)
. (22)

Problem1canbe solved by the skewKötter interpolation [23]with the generalized operator
evaluation maps E (i)

j as defined in (19) requiring O
(
s2n2r

)
operations in Fqm . A solution of

Problem 1 can be found efficiently requiring only Õ(sωM(nr )) operations in Fqm using a
variant of the minimal approximant bases approach from [4]. Another approach yielding
the same computational complexity of Õ(sωM(nr )) operations in Fqm is given by the fast
divide-and-conquer Kötter interpolation from [2].

Lemma 5 (Existence of Solution [3, Lemma 2]) A nonzero solution of Problem 1 exists if
D = ⌈ nr+s(k−1)+1

s+1

⌉
.

Proof Problem 1 corresponds to a system of nr Fqm -linear equations in D(s + 1) − s(k − 1)
unknowns (see (20)) which has a nonzero solution if the number of equations is less than the
number of unknowns, i.e. if

nr < D(s + 1) − s(k − 1) ⇐⇒ D ≥ nr+s(k−1)+1
s+1 . (23)

The Fqm -linear solution space Q of Problem 1 is defined as

Q := {Q ∈ Fqm [x, y1, . . . , ys; σ ] : q(Q) ∈ kerr (R I )}
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where q(Q) ∈ F
D(s+1)−s(k−1)
qm denotes the coefficient vector of Q as defined in (21). The

dimension of the Fqm -linear solution space Q of Problem 1 (i.e. the dimension of the right
kernel of R I in (22)) is denoted by

dI := dim(Q) = dim(kerr (R I )).

4.3.2 Root-finding step

The goal of the root-finding step is to recover the message polynomials f1, . . . , fs ∈
Fqm [x; σ ]<k from the multivariate polynomial constructed in the interpolation step. We
now derive a condition for the recovery of the message polynomials (see also [3, Lemma 3,
Theorem 1]).

Lemma 6 (Roots of Polynomial) Let

P(x) := Q0(x) + Q1(x) f1(x) + · · · + Qs(x) fs(x).

Then there exist elements ζ
(i)
1 , . . . , ζ

(i)

n(i)
t −δ(i)

in Fqm that are Fq -linearly independent for each

i = 1, . . . , � such that
P(ζ

(i)
j )ai = 0

for all i = 1, . . . , � and j = 1, . . . , n(i)
t − δ(i).

Proof In each shot the non-corrupted intersection space has dimension dim(U (i) ∩ V(i)) =
n(i)
t −δ(i) for all i = 1, . . . , �. A basis for each intersection spaceU (i)∩V(i) can be represented

as {(
ζ

(i)
j , f1(ζ

(i)
j )ai ,. . . , fs(ζ

(i)
j )ai

)
: j ∈[1, n(i)

t −δ(i)]
}

where ζ
(i)
1 , . . . , ζ

(i)

n(i)
t −δ(i)

are (n(i)
t − δ(i)) Fq -linearly independent elements from Fqm for all

i = 1, . . . , �. Since each intersection space U (i) ∩ V(i) is a subspace of the received space
U (i) we have that

P(ζ
(i)
j )ai := Q0(ζ

(i)
j )ai +

s∑

l=1

Ql( fl(ζ
(i)
j )ai )ai = 0

for all i = 1, . . . , �, j = 1, . . . , n(i)
t − δ(i).

Theorem 2 (Decoding Region) Let U ∈ Gq(N, nr ) be the tuple containing the received
subspaces and let Q(x, y1, . . . , ys) �= 0 fulfill the constraints in Problem 1. Then for all
codewords V( f ) ∈ LILRS[β, a, �, s; nt , k] that are (γ, δ)-reachable from U , where γ and
δ satisfy

γ + sδ < s(nt − k + 1), (24)

we have that
P(x)=Q0(x) + Q1(x) f1(x) +. . .+ Qs(x) fs(x)=0. (25)

Proof By Lemma 6 there exist elements ζ
(i)
1 , . . . , ζ

n(i)
t −δ(i) in Fqm that are Fq -linearly inde-

pendent for each i = 1, . . . , � such that

P(ζ
(i)
j )ai = 0
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Fig. 5 Decoding region for Martínez-Peñas–Kschischang [27] codes (s = 1) and for decoding of lifted
(s = 4)-interleaved linearized Reed–Solomon codes. The decoding region for insertions increases with the
interleaving order s

for all i = 1, . . . , � and j = 1, . . . , n(i)
t − δ(i). By choosing

D ≤ nt − δ (26)

the degree of P(x) exceeds the degree bound from [12]) which is possible only if P(x) = 0.
Combining (23) and (26) we get

nr + s(k − 1) < D(s + 1) ≤ (s + 1)(nt − δ)

⇐⇒ γ + sδ < s(nt − k + 1).

The decoding region in (24) shows and improved insertion-correction performance due
to interleaving. The resulting improvement is illustrated in Figure 5.

In the root-finding step, all polynomials f1, . . . , fs ∈ Fqm [x; σ ]<k that satisfy (25) need to
be found. Instead of using only one solution of Problem 1 to set up the root-finding systemwe
use a basis for the dI -dimensionalFqm -linear solution spaceQ (see also [5, 50]. Alternatively,
a degree-restricted subset of a Gröbner basis for the interpolation module of cardinality at
most s can be used to set up the root-finding system and find the minimal number of solutions
(see [4]).

To set up the root-finding system set up with a basis for Q define the matrices

σ i (Q j ) :=

⎛

⎜⎜⎜
⎝

σ i
(
q(1)
1, j

)
σ i

(
q(1)
2, j

)
. . . σ i

(
q(1)
s, j

)

...
...

. . .
...

σ i
(
q(dI )
1, j

)
σ i

(
q(dI )
2, j

)
. . . σ i

(
q(dI )
s, j

)

⎞

⎟⎟⎟
⎠

∈ F
dI×s
qm

and the vectors
σ i ( f j ) :=

(
σ i

(
f (1)
j

)
, . . . , σ i

(
f (s)
j

))
∈ F

s
qm

and
σ i (q0, j ) :=

(
σ i

(
q(1)
0, j

)
, . . . , σ i

(
q(dI )
0, j

))
∈ F

dI
qm .
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Defining the root-finding matrix

QR :=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0
σ−1(Q1) σ−1(Q0)

... σ−2(Q1)
. . .

σ−(D−k)(QD−k)
...

. . . σ−(k−1)(Q0)

σ−(D−k−1)(QD−k)
. . . σ−k(Q1)

. . .
...

σ−(D−1)(QD−k)

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ F
DdI×sk
qm (27)

and the vectors

f R :=
(
f 0, σ

−1( f 1), . . . , σ
−(k−1)( f k−1)

)� ∈ F
sk
qm (28)

and

q0 :=
(
q0,0, σ

−1(q0,1), . . . , σ
−(D−1)(q0,D−1)

)�
y ∈ F

DydI
qm (29)

as in [4] we can write the root-finding system (25) as

QR · f R = −q0. (30)

The root-finding system can be solved efficiently by the minimal approximant bases
method in [7, Algorithm 7] (see also [4, Sect. IV.C]) requiring atmost Õ(sωM(n)) operations
in Fqm .

4.3.3 List decoding

In general, the root-finding matrix QR in (30) can be rank deficient. In this case we obtain
a list of potential message polynomials f1, . . . , fs . By [4, Proposition 4] the root-finding
system in (25) has at most qm(k(s−1)) solutions f, . . . , fs ∈ Fqm [x; σ ]<k . In general, we have

that k ≤ nt , where nt ≤ �m. Hence, form ≈ nt/�we get a worst-case list size of q
nt
�

(k(s−1)).

Algorithm 2 List Decoding of LILRS Codes

Input: A tuple containing the basis matrices U = (U(1),U(2), . . . ,U(�)) ∈ ∏�
i=1 F

n(i)
r ×(s+1)

qm for the

output U = (U (1),U (2), . . . ,U (�)) ∈ Gq (N, nr ) of an �-shot operator channel with overall γ insertions
and δ deletions for input V( f ) ∈ LILRS[β, a, �, s; nt , k]
Output: A list L containing message polynomial vectors f = ( f1, . . . , fs ) ∈ Fqm [x; σ ]s

<k that sat-
isfy (25)

1: Find left Fqm [x; σ ]-linearly independent Q(1), . . . , Q(s′) ∈ Q \ {0} whose left Fqm [x; σ ]-span contains
the Fqm -linear solution space Q of Problem 1

2: Using Q(1), . . . , Q(s′), find the list L ⊆ Fqm [x; σ ]s
<k of all f = ( f1, . . . , fs ) ∈ Fqm [x; σ ]s

<k that
satisfy (25)

3: return L
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Theorem 3 (List Decoding of LILRS Codes) Let U ∈ Gq(N, nr ) be a tuple of received
subspaces of a transmission of a codeword V ∈ LILRS[β, a, �, s; nt , k] over an �-shot
operator channel with overall γ insertions and δ deletions. If the number of overall insertions
γ and deletions δ satisfy

γ + sδ < s(nt − k + 1),

then a list L of size
|L| ≤ qm(k(s−1))

containing all message polynomial vectors f ∈ Fqm [x; σ ]s<k corresponding to codewords
V( f ) ∈ LILRS[β, a, �, s; nt , k] that are (γ, δ)-reachable from U can be found requiring at
most Õ(sωM(nr )) operations in Fqm .

Proof The proof follows directly from Lemma 6, Theorem 2 and the discussion above.

4.3.4 Probabilistic unique decoding

We now consider the interpolation-based decoder from Sect. 4.3 as a probabilistic unique
decoder which either returns a unique solution (if the list size is equal to one) or a decoding
failure. The main idea is to use a basis for the dI -dimensional Fqm -linear solution spaceQ of
the interpolation system (20) to set up the root-finding matrix (27) which in turn facilitates
that the root-finding matrix QR can have full rank.

Using similar arguments as in [4–6]we can lower bound the dimension dI of theFqm -linear
solution space Q of Problem 1.

Lemma 7 (Dimension of Solution Space) Let γ and δ satisfy (24). Then the dimension dI =
dim(Q) of the Fqm -linear solution space Q of Problem 1 satisfies

dI ≥ s(D + 1) − sk − γ.

Proof Let {(
ζ

(i)
j , f1(ζ

(i)
j )ai , . . . , fs(ζ

(i)
j )ai

)
: j ∈ [1, n(i)

t − δ(i)]
}

be a basis for each non-corrupted intersection space U (i) ∩ V(i) where ζ
(i)
1 , . . . , ζ

(i)

n(i)
t −δ(i)

are

(n(i)
t − δ(i)) Fq -linearly independent elements from Fqm for all i = 1, . . . , �. Define the

vector ζ := (ζ (1) | ζ (2) | · · · | ζ (�)) ∈ F
nt−δ
qm where ζ (i) = (ζ

(i)
1 , . . . , ζ

(i)

n(i)
t −δ(i)

) for all

i = 1, . . . , �. Let {(
ε
(i)
j , ẽ(i)

j,1, . . . , ẽ
(i)
j,s,

)
: j ∈ [1, γ (i)]

}

be a basis for the error space E(i) for all i = 1, . . . , � and define

ε = (ε(1) | ε(2) | · · · | ε(�)) ∈ F
γ (i)

qm with ε(i) = (ε
(i)
1 , ε

(i)
2 , . . . , ε

(i)
γ (i) ),

ẽ j = (ẽ(1)
j | ẽ(2)

j | · · · | ẽ(�)
j ) ∈ F

γ (i)

qm with ẽ(i)
j = (ẽ(i)

1, j , ẽ
(i)
2, j , . . . , ẽ

(i)
γ (i), j

).

Then the matrix

R̃ I =
(

�D(ζ )�a 0 . . . 0
�D(ε)�a �D−k+1(ẽ1)�a . . . �D−k+1(ẽs)�a

)
∈ F

nr×D(s+1)−s(k−1)
qm

has the same column space as the matrix R I in (22). Since wt	R(ζ ) = nt −δ and D ≤ nt −δ

(see (26))we have that thematrix�D(ζ )�a hasFqm -rank D. The lastγ rows of R̃ I can increase
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the Fqm -rank of R̃ I by at most γ . Thus we have that rkqm (R I ) = rkqm (R̃ I ) ≤ D+γ . Hence,
the dimension dI of the Fqm -linear solution space Q of Problem 1 satisfies

dI = dim(kerr (R I )) = D(s + 1) − s(k − 1) − rkqm (R I )

≥ s(D + 1) − sk − γ.

The rank of the root-finding matrix QR can be full if and only if the dimension of the
solution space of the interpolation problem dI is at least s, i.e. if

dI ≥ s ⇐⇒ γ ≤ sD − sk

⇐⇒ γ + sδ ≤ s(nt − k). (31)

The probabilistic unique decoding region in (31) is only sightly smaller than the list decoding
region in (24). The improveddecoding region forLILRScodes is illustrated inFigure 5.Recall
from Remark 4 that unlike the proposed decoder, the decoder in [27] has the restriction that
nr = nt , which corresponds to the case that γ = δ.

Combining (26) and (31) we get the degree constraint for the probabilistic unique decoder
(see [5])

Du =
⌈
nr + sk

s + 1

⌉
.

In order to get an estimate of the probability of successful decoding, we use similar
assumptions as in [5, 50] to derive a heuristic upper bound on the decoding failure probability
Pf .

The root-finding matrix QR in (27) contains a lower block-diagonal matrix with
Q0, σ

−1(Q0), . . . , σ
−(k−1)(Q0) on the diagonal. Since rkqm (σ i (Q0)) = rkqm (Q0) for

all i , this implies that rkqm (QR) = sk if rkqm (Q0) = s.

Under the assumption that the coefficients q(r)
i, j are uniformly distributed over Fqm (see [5,

50, Lemma 9]), we can upper bound the decoding failure probability Pf := Pr(rkqm (QR) <

sk) by the probability that the (dI × s) matrix Q0 with uniformly distributed elements from
Fqm has Fqm -rank less than s and get

Pf ≤ κqq
−m(dI−s+1) ≤ κqq

−m
(
s
(⌈

nr+sk
s+1

⌉
−k

)
−γ+1

)

. (32)

Note, that for D = nt − δ (see (26)) we get

Pf ≤ κqq
−m(γmax−γ+1).

Note, that the assumption that the coefficients q(r)
i, j are uniformly distributed overFqm does

not reflect the distribution of the error space tuple E . Although there is evidence that this
assumption is reasonable (see e.g. [16] for folded LRS codes), it does not reflect the actual
error model of the multishot operator channel.

Similar as in [50, Lemma 8] for interleaved Gabidulin codes and [4, Theorem 4] for
ILRS codes, the conditions of successful decoding of the interpolation-based decoder can be
reduced to the conditions of the Loidreau–Overbeck-like decoder from Sect. 4.2. This reduc-
tion allows to obtain an upper bound on the decoding failure probability since the distribution
of the error space tupleE is considered in the derivation. The results of the interpolation-based
probabilistic unique decoder are summarized in Algorithm 3 and Theorem 4.

Theorem 4 (Probabilistic Unique Decoding of LILRS Codes) Let U ∈ Gq(N, nr ) be a tuple
of received subspaces of a transmission of a codeword V ∈ LILRS[β, a, �, s; nt , k] over
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Algorithm 3 Probabilistic Unique Decoding of LILRS Codes

Input: A tuple containing the basis matrices U = (U(1),U(2), . . . ,U(�)) ∈ ∏�
i=1 F

n(i)
r ×(s+1)

qm for the

output U = (U (1),U (2), . . . ,U (�)) ∈ Gq (N, nr ) of an �-shot operator channel with overall γ insertions
and δ deletions for input V( f ) ∈ LILRS[β, a, �, s; nt , k]
Output: Message polynomial vector f = ( f1, . . . , fs ) ∈ Fqm [x; σ ]s

<k or “decoding failure”

1: Define the generalized operator evaluation maps as in (19)

2: Find left Fqm [x; σ ]-linearly independent Q(1), . . . , Q(s′) ∈ Q \ {0} whose left Fqm [x; σ ]-span contains
the Fqm -linear solution space Q of Problem 1

3: if s′ = s then
4: Use Q(1), . . . , Q(s) to find the unique vector f = ( f1, . . . , fs ) ∈ Fqm [x; σ ]s

<k that satisfies (25)
5: else
6: return “decoding failure”
7: end if
8: return Message polynomial vector f = ( f1, . . . , fs ) ∈ Fqm [x; σ ]s

<k

random instance of the �-shot operator channel (see Remark 2) with overall γ insertions and
δ deletions. If the number of overall insertions γ and deletions δ satisfy

γ + sδ ≤ s(nt − k),

then a the unique message polynomial vector f ∈ Fqm [x; σ ]s<k corresponding to the code-
word V( f ) ∈ LILRS[β, a, �, s; nt , k] satisfying d	S(V( f ),U) = γ + δ can be found with
probability at least

Pr(success) ≥ 1 − κ�+1
q q−m(γmax−γ+1) (33)

requiring at most Õ(sωM(nr )) operations in Fqm .

Proof For the purpose of the proof (but not algorithmically), we consider the root-finding
problem set up with an Fqm -basis Q(1), . . . , Q(dI ) of Q. The unique decoder fails if there
are at least two distinct roots f and f ′. In this case, the Fqm -linear system QR · f R = −q0
in (30) set up with the Fqm -basis Q̃(r) ∈ Q for r = 1, . . . , dI has at least two solutions. This

means that QR ∈ F
DdI×sk
q must have rank < sk.

The matrix QR contains a lower block triangular matrix with matrices Q0, σ
−1(Q0),

. . . , σ−(k−1)(Q0) on the upper diagonal, which have all Fqm -rank rkqm (Q0) (see [4]). Thus,
if rkqm (Q0) = s the matrix QR has full Fqm -rank sk. Therefore, rkqm (QR) < sk implies
that Q0 has rank < s.

Since the root-finding system (30) has at least one solution f R , there is a vector f 0 ∈ F
s
qm

such that
Q0 f 0 = −q�

0,0.

Thus, the matrix
Q0 := (

Q0 q�
0,0

) ∈ F
dI×(s+1)
qm

has rank rkqm (Q0) = rkqm (Q0) < s. Hence, there are at least dI − s + 1 Fqm -linearly
independent polynomials Q̃(1), . . . , Q̃(dI−s+1) ∈ Q such that their zeroth coefficients
q̃ (1)
l,0 , . . . , q̃ (dI−s+1)

l,0 are zero for all l = 0, . . . , s (obtained by suitable) Fqm -linear com-

binations of the original basis polynomials Q(1), . . . , Q(dI ), such that the corresponding
Fqm -linear row operations on Q0 give a (dI − s + 1) × (s + 1) zero matrix (recall that Q0
has dI rows, but rank at most s − 1).
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The dI − s + 1 Fqm -linearly independent coefficient vectors of Q̃(1), . . . , Q̃(dI−s+1) of
the form (21) are in the left kernel of the matrix

R�
I =

⎡

⎢
⎢
⎢
⎣

�D(ξ)a
�D−k+1(u1)a

...

�D−k+1(us)a

⎤

⎥
⎥
⎥
⎦

∈ F
D(s+1)−s(k−1)×nr
qm .

Since the zeroth components q̃ (r)
l,0 of all Q̃(r) are zero for all l = 0, . . . , s and r = 1, . . . , dI −

s + 1, this means that the left kernel of the matrix

R̃
�
I =

⎡

⎢
⎢
⎢
⎣

Da (�D−1(ξ)a)

Da (�D−k(u1)a)
...

Da (�D−k(us)a)

⎤

⎥
⎥
⎥
⎦

F
D(s+1)−sk−1×n
qm

has dimension at least dI − s + 1. The maximum decoding region corresponds to the degree
constraint D = nr − γmax = nt − δ (see (26)) and thus

dim(kerl(R̃
�
I )) ≥ s(nt − δ + 1) − sk − γmax − s + 1 ≥ 1.

Therefore, we have that

rkqm (R̃
�
I ) ≤ D(s + 1) − sk − 1 − dim(kerl(R̃

�
I ))

< (nt − δ)(s + 1) − sk − 1

= nr − 1.

Observe, that for D = nt − δ we have that

R̃
�
I = Da (L)

where L is the Loidreau–Overbeck decodingmatrix from (12). By [4, Lemma3] theFqm -rank
of L and Da (L) is the same and thus we have that

rkqm (L) = rkqm (R̃ I ) < nr − 1

which shows that in this case the Loidreau–Overbeck-like decoder fails as well. Therefore,
we conclude that

Pr(rkqm (QR) < sk) ≤ Pr(rkqm (Q0) < s) ≤ Pr(rkqm (L) < nr − 1)

and thus the lower bound on the probability of successful decoding follows from Theorem 1.
The complexity statement follows from [4, Corollary 1] and [4, Corollary 2].

The lower bound on the probability of successful decoding in (33) yields an upper bound
on the decoding failure probability Pf , i.e. we have that

Pf ≤ κ�+1
q q−m(γmax−γ+1). (34)

The simulations results in Sect. 4.5 show that the upper bound on the decoding failure
probability in (34) gives a good estimate of the performance of the probabilistic unique
decoder.

The interpolation-based probabilistic unique decoding scheme for LILRS codes is illus-
trated in Example 2.
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Example 2 (Interpolation-BasedDecoding)Consider again the codeLILRS[β, a, �, s; nt , k],
the codeword V( f ) from (15) and received spaces in U from (16) considered in Example 1.

First, we compute Fqm [x; σ ]-linearly independent polynomials of minimalw = (0, 1, 1)-
weighted degree that span the solution space of Problem 1 as

Q(1) = (α + 2) x2 + (2α + 1) x + 1 + (x + 1)y1

Q(2) = (α + 1) x2 + (α + 2) x + α + 2 + ((2α + 2) x + 2α)y1 + (x + 2α + 1)y2

using e.g. the skew Kötter interpolation from [23].
Using the coefficients of Q(1) and Q(2) we set up the root-finding matrix QR as (see (27))

QR =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
2α 2α + 1 0 0
1 0 1 0

α + 1 1 α + 2 α

0 0 1 0
0 0 2α + 2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and the vector q0 as (see (29))

q0 = (1, α + 2, α, 2α, α + 2, α + 1)� .

The unique solution of the Fqm -linear root-finding system QR · f R = −q0 in (30) is

f R :=
(
f (1)
0 , f (2)

0 , σ−1( f (1)
1 ), σ−1( f (2)

1 )
)

= (2, α + 2, 2α + 1, α + 2))� .

Considering the structure of f R (cf. (28)) we can recover the message polynomials

f1(x) = αx + 2,

f2(x) = 2αx + α + 2

which correspond to the transmitted codeword C( f ).

4.4 Insertion/deletion-correction with the complementary code

In [6, Sect. 4.4] it was shown that the complementary of an interleaved (single-shot) subspace
code is capable of correcting more deletions than insertions. We will now briefly describe
how to extend the concept from [6] to the multishot scenario. In particular, we show that the
complementary code of a LILRS code is more resilient against deletions than insertions. By
using the arguments from [6, Lemma 14] and [6, Theorem 4] on each of the components of
U⊥ (and U) we obtain the following result.

Proposition 3 Consider a LILRS code C = LILRS[β, a, �, s; nt , k] and the corresponding
complementary code C⊥. Suppose we transmit a tuple V⊥ ∈ C⊥ over a multishot operator
channel (3) with overall γ insertions and δ deletions and receive

U⊥ = HN−nt−δ(V⊥) ⊕ Eγ

where dim	(Eγ ) = γ . Then we have that

U = Hnt−γ (V) ⊕ Eδ

where dim	(Eδ) = δ.
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The proof of Proposition 3 can be found in Appendix 1.
Proposition 3 shows, that the dual of the received tuple U⊥, which is U , is a codeword

V ∈ C that is corrupted by δ insertions and γ deletions. Therefore we can use the decoder
from Sect. 4.3.3 on U to perform list decoding of γ insertions and δ deletions up to

δ + sγ < s(nt − k + 1)

or the decoders from Sects. 4.2 and 4.3.4 to perform probabilistic unique decoding up to

δ + sγ ≤ s(nt − k).

The decoding steps can be summarized as follows:

1. Transmit a tuple V⊥ ∈ C⊥ over a multishot operator channel with overall γ insertions
and δ deletions.

2. Compute the dual of the received tuple (U⊥)⊥ = U .
3. Use a decoder from Sects. 4.3.3, 4.2 and 4.3.4 to recover the tuple V ∈ C.
4. Compute the dual tuple of V to obtain V⊥.

4.5 Simulation results

In order to verify the upper bound on the decoding failure probability in (33) we performed a
MonteCarlo simulation (100 errors) of a codeLILRS[β, a, � = 2, s = 3; nt = (3, 3), k = 3]
over F33 over a multishot operator channel with overall δ = 1 deletion and γ ∈ {4, 5, 6}
insertions.

The channel realization is chosen uniformly at random from all possible realizations
of the multishot operator channel with exactly this number of deletions and insertions
(see Remark 2). The drawing procedure was implemented using the adapted dynamic-
programming routine in Appendix 1.

The results in Figure 6 show, that the upper bound in (33) gives a good estimate of the
decoding failure probability. Although the heuristic upper bound from (32) looks tighter for
the considered parameters, it is not a strict upper bound for the considered multishot operator
channel.

For the same parameters a (non-interleaved) lifted linearized Reed–Solomon code [27]
(i.e. s = 1) can only correct γ insertions and δ deletions up to γ + δ < 4.

5 Conclusion

5.1 Summary

Weconsidered lifted s-interleaved linearizedReed–Solomon (LILRS) codes for error-control
in noncoherent multishot network coding and showed that the relative overhead due to lifting
can be reduced significantly compared to the construction by Martínez-Peñas–Kschischang.
We proposed two decoding schemes for the multishot operator channel that are capable of
correcting insertions and deletions beyond the unique decoding region in the sum-subspace
metric.

We proposed an efficient interpolation-based decoding scheme for LILRS codes, which
can be used as a list decoder or as a probabilistic unique decoder and can correct a total
number of γ insertions and δ deletions up to γ + sδ < s(nt − k+1) and γ + sδ ≤ s(nt − k),
respectively, where s is the interleaving order, nt the sum of the dimensions of the transmitted

123



Fast decoding of LILRS codes

Fig. 6 Result of a Monte Carlo simulation of the code LILRS[β, a, � = 2, s = 3; nt = (3, 3), k = 3] over
F33 transmitted over a multishot operator channel with overall δ = 1 deletions and γ = 2, 3, 4, 5, 6 insertions

spaces and k the dimension of the code. We derived a Loidreau–Overbeck-like decoder for
LILRS codes, which provides arguments to upper bound on the decoding failure probability
for the interpolation-based probabilistic unique decoder.

We showed how to construct and decode lifted s-interleaved linearized Reed–Solomon
codes for error control in random linear multishot network coding. Compared to the construc-
tion by Martínez-Peñas–Kschischang, interleaving allows to increase the decoding region
significantly (especially w.r.t. the number of insertions) and decreases the overhead due to
the lifting (i.e., increases the code rate), at the cost of an increased packet size.

Up to our knowledge, the proposed decoding schemes are the first being able to cor-
rect errors beyond the unique decoding region in the sum-subspace metric efficiently. The
tightness of the upper bounds on the decoding failure probability of the proposed decoding
schemes for LILRS codes were validated via Monte Carlo simulations.

5.2 Remarks on generality

In this paper, we considered codes constructed by skew polynomials with zero derivations,
i.e. polynomials from Fqm [x; σ ], only. The main reason for this is that for operations in
Fqm [x; σ ] we can give complexity bounds, which are of interest in the implementation point
of view.However, the complexity analysis has to be performedw.r.t. this setup (computational
complexity may be larger).

We considered decoding of homogeneousLILRScodes, respectively, i.e. interleaved codes
where the component codes have the same code dimension. We consider these simpler code
classes in order to not further complicate the quite involved notation. The decoding schemes
proposed in this paper can be generalized to heterogeneous interleaved codes, where each
component code may have a different dimension, in a straight-forward manner like e.g. in [5,
49]. Denote by k1, . . . , ks the dimensions of the component codes and define k := 1

s

∑s
l=1 kl .
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The resulting decoding regions are then γ + sδ < s(nt − k + 1) for list decoding and
γ + sδ ≤ s(nt − k) for probabilistic unique decoding.

5.3 Outlook and future work

For future work it would be interesting to see the considered concepts applied to interleaved
LILRS codes that are based on the construction of LRS codes over smaller fields. Further,
the investigation of lifted interleaved variants of other maximum sum-rank distance (MSRD)
codes such as e.g. one-weight codes in the sum-rank metric and the application of subspace
designs to sum-subspace-metric codes, is subject to future work.

So far, no results on the list-decodability of random sum-subspace-metric codes, like e.g.
for single-shot subspace codes [15], are available. Once such results are available it would
be interesting to compare the list-decodability of random sum-subspace-metric codes with
constructive results proposed in this paper.
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Appendix A: Proofs from Sect. 4.2

A.1 Proof of Lemma 2

Proof First observe, that every received space U (i) can be represented by a matrix Ũ
(i)

of
the form

Ũ
(i) =

⎛

⎜⎜⎜
⎝

ξ
(i)�
1 x(i)�

1 . . . x(i)�
s

ξ
(i)�
2 ũ(i)�

1 . . . ũ(i)�
s

0 ê(i)�
1 . . . ê(i)�

s

⎞

⎟⎟⎟
⎠

∈ F
n(i)
r ×(s+1)

qm
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such that first n(i)
t − δ(i) rows of Ũ

(i)
form a basis for the non-corrupted received space

U (i) ∩ V(i) whereas the last t (i) + κ
(i) = γ (i) rows correspond to the insertions for all

i = 1, . . . , �, i.e. we have that
〈(

ξ
(i)�
1 x(i)�

1 . . . x(i)�
s

)〉

q
= U (i) ∩ V(i),

〈⎛

⎝
ξ

(i)�
2 ũ(i)�

1 . . . ũ(i)�
s

0 ê(i)�
1 . . . ê(i)�

s

⎞

⎠

〉

q

= E(i) (A1)

for all i = 1, . . . , � where ξ
(i)
1 , x(i)

j ∈ F
n(i)
t −δ(i)

qm , ξ
(i)
2 , ũ(i)

j ∈ F
t (i)
qm and Ê

(i) =
(
ê(i)�
1 . . . ê(i)�

s

)
∈ F

κ
(i)×s

qm .

Since the rows of the matricesU (i) also form a basis of U (i), there exist invertible matrices

W (i) ∈ F
n(i)
r

q such that
(
W (i)

)�
U (i) = Ũ

(i)
, ∀i = 1, . . . , �.

Since U (i) ∩ V(i) is an n(i)
t − δ(i)-dimensional subspace V(i), we have by the definition of

LILRS codes that rkq(ξ
(i)
1 ) = n(i)

t − δ(i) for all i = 1, . . . , �. We also have that rkq(Ê
(i)

) =
κ

(i) for all i = 1, . . . , � since otherwise the matrix Ũ
(i)

would not have full Fq -rank n(i)
r ,

which contradicts that it is a basis for U (i) that is obtained from U (i) via Fq -elementary row

operations. Since V(i) ∩ E(i) = {0}, we have that ũ(i)
l �= f1(ξ

(i)
2 )ai for all i = 1, . . . , � and

l = 1, . . . , s, since otherwise there would exist a vector such that, for some j , we have
〈
(ξ

(i)
2, j | f1(ξ

(i)
2, j )ai . . . f1(ξ

(i)
2, j )ai )

〉

q
∈ V(i)

which contradicts that V(i) ∩ E(i) = {0}. We now show that

rkq(ξ
(i)
2 ) = t (i), and rkq((ξ

(i)
1 , ξ

(i)
2 )) = n(i)

t − δ(i) + t (i), ∀i = 1, . . . , �.

Suppose that rkq(ξ
(i)
2 ) < t (i). Then there exists an Fq -linear combination of the rows of the

matrix in (A1) such that the first entry of the vector becomes zero. In this case it would belong
to the lower part of the matrix having a leading zero. If rkq((ξ

(i)
1 , ξ

(i)
2 )) < n(i)

t − δ(i) + t (i),

then there exist an element ξ2, j such that
〈
ξ2, j

〉
q ⊆

〈
ξ�
1

〉

q
. In this case we can subtract the

corresponding Fq -linear combination from the row having ξ2, j as first entry, which again
yields a row with leading zero element.

Using the matrices Ũ
(i)

for all i = 1, . . . , � and performing Fqm -linear row operations,
we can set up a matrix of the form

L =
(
L(1), . . . , L(�)

)
:=

⎛

⎜⎜⎜
⎝

�nt−δ−1(ξ)a
�nt−δ−k(u1)a

...

�nt−δ−k(us)a

⎞

⎟⎟⎟
⎠

∈ F
((s+1)(nt−δ)−sk−1)×nr
qm

where

ξ =
(
(ξ

(1)
1 | ξ

(1)
2 | 0) | · · · | (ξ

(�)
1 | ξ

(�)
2 | 0)

)
,
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ul =
(
(0 | ẽ(1)

l | ê(1)
l ) | · · · | (0 | ẽ(�)

l | ê(�)
l )

)
, ∀l = 1, . . . , s.

The component matrices are then of the form

L
(i) =

⎛

⎜
⎜
⎜
⎜
⎝

V nt−δ−1(ξ
(i)
1 )ai V nt−δ−1(ξ

(i)
2 )ai 0

0 V nt−δ−k (̃e
(i)
1 )ai V nt−δ−k(ê

(i)
1 )ai

...
...

...

0 V nt−δ−k (̃e
(i)
s )ai V nt−δ−k(ê

(i)
s )ai

⎞

⎟
⎟
⎟
⎟
⎠

∈ F
((s+1)(nt−δ)−sk−1)×n(i)

r
qm

where x(i)
l − fl(ξ

(i)
1 )ai = 0 (yielding the zero matrices in the leftmost block) and ẽ(i)

l =
ũ(i)
l − fl(ξ

(i)
2 )ai for all l = 1, . . . , s and i = 1, . . . , �. Define the matrices

Ẽ
(i) =

⎛

⎜
⎜
⎝

ẽ(i)
1
...

ẽ(i)
s

⎞

⎟
⎟
⎠ ∈ F

s×t (i)
qm , Ê

(i) =

⎛

⎜
⎜
⎝

ê(i)
1
...

ê(i)
s

⎞

⎟
⎟
⎠ ∈ F

s×κ
(i)

qm

for all i = 1, . . . , �. Suppose that the Fq -rank of Ẽ
(i)

is less than t (i). Then there exist a
nontrivial Fq -linear combination of the columns of the matrix

⎛

⎜⎜⎜⎜
⎝

V nt−δ−1(ξ
(i)
2 )ai

V nt−δ−k (̃e
(i)
1 )ai

...

V nt−δ−k (̃e
(i)
s )ai

⎞

⎟⎟⎟⎟
⎠

∈ F
((s+1)(nt−δ)−sk−1)×t (i)

qm

such that thefirst (upper) (nt−δ−1) rows are nonzero and the last (lower) s(nt−δ−k) rows are

all zero. This contradicts that V(i) ∩ E(i) = {0} since each L
(i)

is obtained by subtracting the
evaluations of each fl at the corresponding values in ξ

(i)
1 and ξ

(i)
2 (and the corresponding row-

operator powers thereof). Now assume that rkq(Ẽ
(i) | Ê(i)

) < γ (i) for some i ∈ {1, . . . , �}.
Then there exist nontrivialFq -linear combinations of the t (i)+κ

(i) = γ (i) rightmost columns

of L
(i)

such that the s(nt −δ−k) rows are all zero and the upper nt −δ−1 rows are nonzero.
This contradicts that V(i) ∩ E(i) = {0} by the same argument as above.

Since L is obtained from L viaFqm -elementary row operations andFq -elementary column
operations, we have that

rkqm (L) = rkqm (L).

A.2 Proof of Lemma 3

Proof – Ad 1.): By column permutations, i.e. by rearranging the columns of L according
to the vectors

ξ1 :=
(
ξ

(1)
1 | ξ

(2)
1 | · · · | ξ

(�)
1

)
∈ F

nt−δ
qm , ξ2 :=

(
ξ

(1)
2 | ξ

(2)
2 | · · · | ξ

(�)
2

)
∈ F

t
qm ,

ẽl :=
(
ẽ(1)
l | ẽ(2)

l | · · · | ẽ(�)
l

)
∈ F

t
qm , êl :=

(
ê(1)
l | ê(2)

l | · · · | ê(�)
l

)
∈ F

κ

qm ,

we obtain another (equivalent) matrix

L̃ :=
(

�nt−δ−1(ξ1)a �nt−δ−1(ξ2)a 0
0 �nt−δ−k(Ẽ)a �nt−δ−k(Ê)a

)
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where

Ẽ =
(
Ẽ

(1) | · · · | Ẽ(�)
)

∈ F
s×t
qm and Ê =

(
Ê

(1) | · · · | Ê(�)
)

∈ F
s×κ

qm

such that rkqm (L) = rkqm (L) = rkqm (L̃). By Lemma 2 we have that

wt	R(Ẽ) = t, wt	R(Ê) = κ

and
wt	R

(
(Ẽ

(1) | Ê(1)
) | · · · | (Ẽ

(�) | Ê(�)
)
)

= t + κ = γ.

Defining the matrix

Z := (
�nt−δ−k(Ẽ)a �nt−δ−k(Ê)a

) ∈ F
s(nt−δ−k)×γ
qm

we can write L̃ as a block matrix of the form

L̃ =
(

�nt−δ−1(ξ1)a �

0 Z

)
,

where � denotes an arbitrary matrix, and thus we have that rkqm (L̃) = rkqm (�nt−δ−1

(ξ1)a) + rkqm (Z). By Lemma 2 the vector ξ1 ∈ F
nt−δ
qm has sum-rank nt − δ. Recall that

we have

rkqm
(
�nt−δ−1(ξ1)a

) = min{nt − δ − 1, nt − δ} = nt − δ − 1.

The matrix Z can be obtained from Z via column permutations, which implies that
rkqm (Z) = rkqm (Z). Since the Fqm -rank of Z (and thus also of Z) equals γ , we conclude
by the upper block triangular structure of L̃ that

rkqm (L̃) = rkqm (L) = nt − δ − 1 + γ = nr − 1.

– Ad 2.): Let h =
(
h(1) | h(2) | · · · | h(�)

)
∈ kerr (L) \ {0} be a nonzero element in the

right kernel of L. If the Fqm -rank of Z equals γ , we have that

rkqm (Z
(i)

) = γ (i)

for all i = 1, . . . , �. Thus, for any h ∈ kerr (L)\{0}wemust have that the last (rightmost)

γ (i) entries of each h
(i)

must be zero, which implies that

rkq(h
(i)

) ≤ n(i)
t − δ(i), ∀i = 1, . . . , �. (A2)

Let C be the [nt − δ + t, nt − δ − 1] code generated by (�nt−δ−1(ξ1)a | �nt−δ−1(ξ2)a)

and let C′ be the [nr , nt − δ − 1] code generated by (�nt−δ−1(ξ1)a | �nt−δ−1(ξ2)a | 0).
Since (�nt−δ−1(ξ1)a | �nt−δ−1(ξ2)a) is a generator matrix of an [nt − δ + t, nt − δ −1]
LRS code (up to column permutations), we have that the dual code C⊥ is equivalent to an
LRS code with minimum sum-rank distance nt − δ. The dual code of C′ is an [nr , γ +1]
code C′⊥ that can be decomposed into

C′⊥
1 = {(c | 0) : c ∈ C⊥}

C′⊥
2 = {(0 | c̃) : c̃ ∈ F

κ

qm }
such that C′⊥ = C′⊥

1 + C′⊥
2 and C′⊥

1 ∩ C′⊥
2 = {0}. Therefore, we have that the minimum

distance of the dual code C′⊥ is nt − δ.
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The first nt − δ −1 rows of L span code C which is equivalent to C′ and thus we have that
the minimum sum-rank distance of the dual code C⊥

equals nt − δ. Since any nonzero

element h in the right kernel of L is contained in C⊥
, we have that

wt	R(h) ≥ nt − δ. (A3)

Therefore, (A2) and (A3) are satisfied only if

rkq(h
(i)

) = n(i)
t − δ(i), ∀i = 1, . . . , �.

This proves the statement, since by Lemma 2 we have that kerr (L) = kerr (LW−1) and
thus

h ∈ kerr (L) ⇐⇒ h
(
W−1)� ∈ kerr (L).

– Ad 3.): Expand h(i) into an m × n(i)
r matrix over Fq , which has Fq -rank n(i)

t − δ(i) by
2.). Then, we can perform elementary column operations on this matrix to bring it into
reduced column echelon form, where the n(i)

t − δ(i) nonzero columns are the leftmost

ones. The matrix T (i) ∈ F
n(i)
r ×n(i)

r
q is then chosen to be the matrix that, by multiplication

from the right, performs the used sequence of elementary column operations. Note that
the n(i)

t − δ(i) nonzero entries of h(i)T (i) are linearly independent over Fq .

– Ad 4.): The matrices T (i) ∈ F
n(i)
r ×n(i)

r
q are chosen such that the rightmost γ (i) positions

of h(i)T (i) are zero. Recall from 2.), that if rkqm (Z) = γ , we have that for any nonzero

element h = (h
(1) | · · · | h(�)

) in the right kernel of L the γ (i) rightmost positions of

each h
(i)

are zero. Define the matrices D(i) = (
T (i)−1

)�
for all i = 1, . . . , �. Then we

have that
hT ∈ kerr (L · diag(D(1), . . . , D(�))).

We will now show that the column span of the matrices
[
L

(i)
]

{n(i)
t −δ(i)+1,...,n(i)

r } and
[
L(i)D(i)

]

{n(i)
t −δ(i)+1,...,n(i)

r }

must be the same. Since rkqm (Z) = γ implies rkqm (Z
(i)

) = γ (i) for all i = 1, . . . , �,
the s(nt − δ − k) last (lower) rows of L(i)D(i) have Fqm -rank γ (i) for all i = 1, . . . , �.
Now assume that the column span of the matrices above are not the same for some
i ∈ {1, . . . , �}. Then there exist Fqm -linearly independent columns for some index j ∈
{1, . . . , n(i)

t − δ(i)}, which contradicts that hT (which has the γ (i) rightmost entries per
block equal to zero) is in the right kernel of L ·diag(D(1), . . . , D(�)). Therefore, we must
have that the column space is the same.

Since the γ (i) rightmost columns of each L
(i)

correspond to the insertions, we have that
the rightmost γ (i) columns of L(i)D(i) also correspond to the insertions. Since L is set
up using the matrices U (i) for all i = 1, . . . , �, we have that the last (lower) γ (i) rows

of
(
T (i)

)−1
U (i) span the error space E(i). This implies that the first n(i)

t − δ(i) rows of
(
T (i)

)−1
U (i) form a basis of the noncorrupted space U (i) ∩ V(i), since by the definition

of the operator channel we have that V(i) ∩ E(i) = {0} for all i = 1, . . . , �.
– Ad 5.): By 4.) the first n(i)

t − δ(i) rows of

Û
(i) =

(
T (i)

)−1
U (i) =

(
ξ̂

(i)�
û(i)�
1 . . . û(i)�

s

)
∈ F

n(i)
r ×(s+1)

qm .
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form a basis for the noncorrupted subspace U (i) ∩ V(i), i.e. we have that

û(i)
l,μ = fl(ξ̂

(i))ai , ∀μ = 1, . . . , n(i)
t − δ(i), ∀l = 1, . . . , s, ∀i = 1, . . . , �.

Therefore, the message polynomials f1, . . . , fs ∈ Fqm [x; σ ]<k can be reconstructed via
Lagrange interpolation (cf. Lemma 1).

Appendix B: Proofs from Sect. 4.4

B.1 Proof of Proposition 3

Proof The proof proceed similar as the proof of [6, Theorem 4]. At the output of the operator
channel we have

U⊥ = HN−nt−δ(V⊥) ⊕ Eγ

where dim	(Eγ ) = γ . Let γ and δ denote the partition of the insertions and deletions,
respectively.

For all i = 1, . . . , � we have that

U (i) =
(
(U (i))⊥

)⊥ =
(
H

Ni−n(i)
t −δ(i)

(
(V(i))

⊥) ⊕ E(i)
γ (i)

)⊥

=
(
H

Ni−n(i)
t −δ(i)

(
(V(i))

⊥))⊥ ∩ (E(i)
γ (i) )

⊥.

By [6, Lemma 14] we have that

(
H

Ni−n(i)
t −δ(i)

(
(V(i))

⊥))⊥ = V(i) ⊕ E(i)
δ(i) (B4)

where dim(E(i)
δ(i) ) = δ(i) and therefore

U (i) =
(
V(i) ⊕ E(i)

δ(i)

)
∩ (E(i)

γ (i) )
⊥

=
(
V(i) ∩ (E(i)

γ (i) )
⊥) ⊕ E(i)

δ(i) (B5)

for all i = 1, . . . , � since E(i)
δ(i) ∩ (E(i)

γ (i) )
⊥ = E(i)

δ(i) . From the operator channel we have that

(V(i))⊥ ∩ E(i)
γ (i) = 0 �⇒ (V(i))⊥ ⊆ (E(i)

γ (i) )
⊥

since (V(i))⊥⊕V(i) = F
Ni
q anddim((V(i))⊥) ≤ dim((E(i)

γ (i) )
⊥). From (B4)wegetV(i)∩E(i)

δ(i) =
0 and therefore

E(i)
δ(i) ⊆ (V(i))⊥ ⊆ (E(i)

γ (i) )
⊥

for all i = 1, . . . , �. We have that dim((E(i)
γ (i) )

⊥) = Ni − γ (i) which therefore deletes exactly

γ (i) dimensions from V(i) since dim(U (i)) = Ni − dim((U (i))⊥) = dim(V(i)) − γ (i) + δ(i)

for all i = 1, . . . , �. Hence, we can write (B5) as

U (i) = H
n(i)
t −γ (i) (V(i)) ⊕ E(i)

δ(i) , ∀i = 1, . . . , �

which proves the statement.
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Appendix C: Efficient implementationof themultishot operator channel

For implementing the multishot operator channel we need to draw tuples that contain sub-
spaces and have a particular constant sum-dimension uniformly at random from the set of
all such tuples efficiently. In the following we assume that � | N . In order to accomplish this
subspace-tuple drawing algorithm efficiently we adapted the enumerative coding approach
from [36] for the case where the dimension of the ambient space as well as the dimensions
of the transmitted spaces are equal in each shot, i.e. for N = (N , N , . . . , N ) with N := N

�

and nt = (nt , nt , . . . , nt ).
Suppose that we want to draw tuples with fixed sum-dimension γ uniformly at random

from the set
{E ∈ Pq(N) : dim	(E) = γ }.

Define the set TN ,γ,� :=
{
γ ∈ {0, . . . ,min{N , γ }}� : ∑�

i=1 γ (i) = γ
}
.

Then the number N	S(N , t, �) of tuples in Pq(N) with sum-dimension γ is given by

N	S(N , γ, �) =
∑

γ∈TN ,γ,�

�∏

i=1

[
N

γ (i)

]

q

.

Since the cardinality of the set TN ,γ,� and thus the number of terms in the sum above is large

for most parameters (see [36, Sect. III]) we may compute N	S(N , γ, �) recursively as

N	S(N , γ, �) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
N

γ

]

q

, if � = 1,

min{N ,γ }∑

γ ′=max{0,γ−(�−1)N }

[
N

γ ′

]

q

N	S(N , γ − γ ′, � − 1) if � > 1,

with N	S(N , γ, �) = 0 for γ > N�.
For � = 1 the number coincides with the number of γ -dimensional vector spaces of F

N
q

which is
[
N
γ

]

q
. The recursion for � > 1 follows by summing over the product of all possible

γ ′-dimensional subspaces in the first block and the number of remaining (� − 1)-tuples of
sum-dimension γ − γ ′.

As in [36] this recursion provides an efficient method to draw dimension partitions of
�-tuples with fixed sum-dimension that are chosen uniformly at random from Pq(N) which
is given in Algorithm 4.

Equipped with the efficient method to draw dimension partitions for sampling �-tuples
with constant sum-dimension from Pq(N) uniformly at random (see Algorithm 4) we can
implement the multishot operator channel (see (3))

U = Hnt−δ(V) ⊕ E
with input alphabet Gq(N, nt ) and an overall number of γ insertions and δ deletions as
follows.

First, we require the partition δ of the δ deletions. For each shot i there are
[

nt
δ(i)

]

q
ways

to chose an δ(i)-dimensional subspace of the transmitted space V(i) ∈ Gq(N , nt ). Hence,
we can use the routine DrawDimensionPartition(q, nt , δ, �) in Algorithm 4 to draw the
dimension partition δ for the deletions operator Hnt−δ(V).
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Algorithm 4 DrawDimensionPartition

Input: Parameters q, N , γ , �

Output: Dimension partition γ ∈ TN ,γ,�
of an �-tuple E with sum-dimension γ that is chosen uniformly

at random from Gq (N, nt )

1: D(1) $←− {
1, . . . ,N	S(N , γ, �)

} � Draw index uniformly at random
2: γ1 ← γ

3: for i = 1, . . . , � do

4: γ (i) ← max

{
γ ′′∈{0, . . . ,γi} : ∑γ ′′−1

γ ′=γi−(�−i)N

[
N
γ ′
]

q
N	S(N , γi−γ ′, �−i)<D(i)

}

5: D(i+1) ← D(i) − ∑γ (i)−1
γ ′=γi−(�−i)N

[
N
γ ′
]

q
N	S(N , γi−γ ′, � − i)

6: γi+1 ← γi − γ (i)

7: end for
8: return γ = (γ (1), . . . , γ (�))

Recall that for the error space E we have the restriction that V ∩ E = 0. Hence, we have
to sample E uniformly at random from Gq(N − nt , γ )( rather than from Gq(N, γ )) and thus
have to call DrawDimensionPartition(q, N − nt , γ, �) in order to get the corresponding
insertion partition γ .

Once the partitions of insertions γ and deletions δ are obtained we can apply the single-
shot operator channel from [18] to each shot with the corresponding number of γ (i) insertions
and δ(i) deletions. The whole procedure is provided in Algorithm 5.

Algorithm 5 Random Instance of Multishot Operator Channel

Input: V ∈ Gq (N, nt ), number of insertions γ , number of deletions δ, �

Output: Received space U ∈ Pq (N)

1: γ = (γ (1), . . . , γ (�)) ← DrawDimensionPartition(q, N − nt , γ, �)

2: δ = (δ(1), . . . , δ(�)) ← DrawDimensionPartition(q, nt , δ, �)
3: for i=1,…,� do

4: E(i) $←− Gq (N , γ (i)) \ V(i) � Choose random E(i) s.t. V(i) ∩ E(i) = {0}
5: U (i) ← Hnt−δ(i) (V(i)) ⊕ E(i)

6: end for
7: return U = (U (1), . . . ,U (�))
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