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Abstract
In this paper, we give the Jacobi polynomials for first-order generalized Reed–Muller codes.
We show as a corollary the nonexistence of combinatorial 3-designs in these codes.
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1 Introduction

There is growing interest in the designs derived from codes within the fields of coding theory
and design theory. In [3, 9], a criterion was provided for determining whether a shell of a code
constitutes a t-design, using Jacobi polynomials (see Proposition 2.2, the definition of the
Jacobi polynomials will be given in Sect. 2.2). Using this criterion, in [3, 5], they presented
t-designs derived from Type II, III, and IVcodes with short lengths. Additionaly, Miezaki
and Munemasa [6] provided Jacobi polynomials for the first-order Reed–Muller codes. As
a corollary, they showed the nonexistence of combinatorial 4-designs in these codes. The
purpose of the present paper is to give a generalization of Miezaki and Munemasa’s results.

Let m be a positive integer and q be a prime power, and set V = F
m
q . The first-order

generalizedReed–Muller (GRM)code RMq(1,m) is defined as the subspace ofFV
q consisting

of affine linear functions:

RMq(1,m) =
{
(λ(x) + b)x∈V ∈ F

V
q | λ ∈ V ∗, b ∈ Fq

}
,

where V ∗ = Hom(V ,Fq). We remark that the weight enumerator of RMq(1,m) is

xq
m + (qm+1 − q)xq

m−1
y(q−1)qm−1 + (q − 1)yq

m
. (1.1)
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Let C = RMq(1,m) and C� := {c ∈ C | wt(c) = �}. In this paper, we call C� a shell
of the code C whenever it is non-empty. We show shells of C are combinatorial 2-designs
but are not combinatorial 3-designs by using Jacobi polynomials. More precisely, the set
B(C�) := {supp(x) | x ∈ C�} forms the set of blocks of a combinatorial 2-design but
does not form a 3-design. Herein, we always assume that a combinatorial t-design allows
the existence of repeated blocks, and we exclude the trivial design D = (�,B) where
� = {1, . . . , n} and B = {�, . . . , �}.
Remark In [7],Miezaki andNakasora provided the first non-trivial examples of a codewhose
shells are t-designs for all weights and whose shells are t ′-designs for some weights with
some t ′ > t (see also [1, 8]). Therefore, it is important to determine the value t such that all
shells of a code are t-designs, and no shell is a t + 1-design, if such a t exists.

First, we provide Jacobi polynomials for C with T , where |T | = 2.

Theorem 1.1 Let C = RMq(1,m) and T = {0, u} ∈ (V
2

)
. Then,

JC,T (w, z, x, y) =w2xq
m−2 + (qm−1 − 1)w2xq

m−1−2y(q−1)qm−1

+ 2(q − 1)qm−1wzxq
m−1−1y(q−1)qm−1−1

+ (q − 1)(qm − qm−1 − 1)z2xq
m−1

y(q−1)qm−1−2

+ (q − 1)z2yq
m−2.

Using this theorem,we show that the shells of RMq(1,m) and RMq(1,m)⊥ are 2-designs.

Corollary 1.2 Let C = RMq(1,m). Then for any � ∈ N, C� is a combinatorial 2-design.
Similarly, (C⊥)� is a combinatorial 2-design.

Second, we provide Jacobi polnomials for C with T , where |T | = 3.

Theorem 1.3 Let C = RMq(1,m), T = {0, u1, u2} ∈ (V
3

)
, and A = t [u1 u2].

1. If rank A = 2, then

JC,T (w, z, x, y) =w3xq
m−3 + (qm−2 − 1)w3xq

m−1−3y(q−1)qm−1

+ 3qm−2(q − 1)w2zxq
m−1−2y(q−1)qm−1−1

+ 3qm−2(q − 1)2wz2xq
m−1−1y(q−1)qm−1−2

+ (q − 1)(qm − 2qm−1 + qm−2 − 1)z3xq
m−1

y(q−1)qm−1−3

+ (q − 1)z3yq
m−3.

2. If rank A = 1, then

JC,T (w, z, x, y) =w3xq
m−3 + (qm−1 − 1)w3xq

m−1−3y(q−1)qm−1

+ 3qm−1(q − 1)wz2xq
m−1−1y(q−1)qm−1−2

+ (q − 1)(qm − 2qm−1 − 1)z3xq
m−1

y(q−1)qm−1−3

+ (q − 1)z3yq
m−3.

We show, as a corollary, the nonexistence of combinatorial 3-designs in these codes.
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Corollary 1.4 Let C = RMq(1,m). If q ≥ 3 and m ≥ 2, then for any � ∈ N, C� is not a
combinatorial 3-design.

Using Theorem 1.3, we show that C� is a 3-(v, k, (λ1, λ2))-design (see Sect. 2.1).

Corollary 1.5 Let C = RMq(1,m) and � = (q − 1)qm−1. Then, C� is a combinatorial
3-(v, k, (λ1, λ2))-design, where

v = qm, k = � = (q − 1)qm−1,

λ1 = (q − 1)(qm − 2qm−1 + qm−2 − 1),

λ2 = (q − 1)(qm − 2qm−1 − 1).

Third, we provide Jacobi polnomials for C with T , where |T | = 4.

Theorem 1.6 Let C = RMq(1,m), T = {0, u1, u2, u3} ∈ (V
4

)
, and A = t [u1 u2 u3].

1. If rank A = 3 then,

JC,T (w, z, x, y) =w4xq
m−4 + (qm−3 − 1)w4xq

m−1−4y(q−1)qm−1

+ 4qm−3(q − 1)w3zxq
m−1−3y(q−1)qm−1−1

+ 6(q − 1)2qm−3w2z2xq
m−1−2y(q−1)qm−1−2

+ 4qm−3(q − 1)3wz3xq
m−1−1y(q−1)qm−1−3

+ (q − 1)(qm − 3qm−1+3qm−2 − qm−3 − 1)z4xq
m−1

y(q−1)qm−1−4

+ (q − 1)z4yq
m−4.

2. If rank A = 2 then,

JC,T (w, z, x, y) =w4xq
m−4 + (qm−2 − 1)w4xq

m−1−4y(q−1)qm−1

+ qm−2(q − 1)w3zxq
m−1−3y(q−1)qm−1−1

+ 3qm−2(q − 1)w2z2xq
m−1−2y(q−1)qm−1−2

+ qm−2(q − 1)(4q − 5)wz3xq
m−1−1y(q−1)qm−1−3

+ (q − 1)(qm − 3qm−1 + 2qm−2 − 1)z4xq
m−1

y(q−1)qm−1−4

+ (q − 1)z4yq
m−4

or

JC,T (w, z, x, y) =w4xq
m−4 + (qm−2 − 1)w4xq

m−1−4y(q−1)qm−1

+ 6qm−2(q − 1)w2z2xq
m−1−2y(q−1)qm−1−2

+ qm−2(q − 1)(4q − 8)wz3xq
m−1−1y(q−1)qm−1−3

+ (q − 1)(qm − 3qm−1 + 3qm−2 − 1)z4xq
m−1

y(q−1)qm−1−4

+ (q − 1)z4yq
m−4.
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3. If rank A = 1 then,

JC,T (w, z, x, y) =w4xq
m−4 + (qm−1 − 1)w4xq

m−1−4y(q−1)qm−1

+ 4qm−1(q − 1)wz3xq
m−1−1y(q−1)qm−1−3

+ (q − 1)(qm − 3qm−1 − 1)z4xq
m−1

y(q−1)qm−1−4

+ (q − 1)z4yq
m−4.

By this theorem, we show that C� is a combinatorial 4-(v, k, (λ1, λ2, λ3, λ4))-design.

Corollary 1.7 LetC=RMq(1,m) and �=(q−1)qm−1. ThenC� is a 4-(v, k, (λ1, λ2, λ3, λ4))-
design, where

v = qm, k = � = (q − 1)qm−1,

λ1 = (q − 1)(qm − 3qm−1 + 3qm−2 − qm−3 − 1),

λ2 = (q − 1)(qm − 3qm−1 + 2qm−2 − 1),

λ3 = (q − 1)(qm − 3qm−1 + 3qm−2 − 1),

λ4 = (q − 1)(qm − 3qm−1 − 1).

This paper is organized as follows. In Sect. 2, we define and give some basic properties
of codes, combinatorial t-designs, and Jacobi polynomials used in this paper. In Sects. 3, 4,
and 5, we show Theorems 1.1, 1.3, and 1.6, respectively.

All computer calculations reported in this paper were carried out using Magma [4] and
Mathematica [10].

2 Preliminaries

In this section, we give definitions and some properties of codes, combinatorial designs, and
Jacobi polynomials. We mainly refer to [6] and [5].

2.1 Codes and combinatorial t-designs

Let q be a prime power. A q-ary linear code C of length n is a linear subspace of Fn
q .

The dual code of C is the set of vectors which are orthogonal to any codewords in C :
C⊥ := {x ∈ F

n
q | x · c = 0 for all c ∈ C}. For c ∈ F

n
q , the weight wt(c) is the number of

its nonzero components. The shell of a weight-� is the set of codewords whose weight is �:
C� := {c ∈ C | wt(c) = �}.

A combinatorial t-design is a pair D = (�,B), where � is a set of points of cardinality
v, and B is a collection of k-element subsets of � called blocks, with the property that any
t-element subset of � is contained in precisely λ blocks. Recall [3] for the definitions of
various types of designs. A pair D = (�,B) is a combinatorial design with parameters
t-(v, k, (λ1, . . . , λN )) if B is a collection of k-element subsets of � called blocks and every
t-element subset of � is contained in λi blocks. Note that for N = 1, the design coincides
exactly with a t-design.

The support of a vector x := (x1, . . . , xn), xi ∈ Fq , is the set of indices of its nonzero
coordinates: supp(x) = {i | xi �= 0}. Let� := {1, . . . , n} andB(C�) := {supp(x) | x ∈ C�}.
Then for a code C of length n, we say that the shell C� is a combinatorial t-design if
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(�,B(C�)) is a combinatorial t-design. Similarly, we say that the shell C� is a combinatorial
t-(v, k, (λ1, . . . , λN ))-design if (�,B(C�)) is a combinatorial t-(v, k, (λ1, . . . , λN ))-design.

2.2 Jacobi poynomials

Let C be a q-ary code of length n and T ⊂ [n] := {1, . . . , n}. Then the Jacobi polynomial
of C with T is defined as follows [9]:

JC,T (w, z, x, y) :=
∑
c∈C

wm0(c)zm1(c)xn0(c)yn1(c),

where for c = (c1, . . . , cn),

m0(c) = |{ j ∈ T | c j = 0}|,
m1(c) = |{ j ∈ T | c j �= 0}|,
n0(c) = |{ j ∈ [n] \ T | c j = 0}|,
n1(c) = |{ j ∈ [n] \ T | c j �= 0}|.

The Jacobi polynomial of the dual code is written as follows.

Theorem 2.1 [9, Theorem 4] Let C be a q-ary code of length n and T ⊂ [n]. Then we have

JC⊥,T (w, z, x, y) = 1

|C | JC,T (w + (q − 1)z, w − z, x + (q − 1)y, x − y).

Clearly, we have the following relation between Jacobi polynomials and combinatorial
designs.

Proposition 2.2 Let C be a linear code. C� is a combinatorial t-design if and only if the
coefficient of zt xn−�y�−t in JC,T is independent of the choice of T with |T | = t .

We remark that the Jacobi polynomials are invariant under the automorphisms of codes. In
particular, for C = RMq(1,m), a map ϕ such that ϕ(λ(x) + b′) = λ(x) + b + b′ is an
automorphism on C . Then, we have the following result.

Proposition 2.3 Let C = RMq(1,m), T ⊂ V , and T ′ = T + v, where v ∈ V . Then we have
JC,T = JC,T ′ .

This fact is useful because it suffices to consider the case that T contains zero.

2.3 Notation

We next introduce some notation. Let C = RMq(1,m), T ⊂ V , and t = |T |. For c =
(λ(x) + b)x∈V ∈ C and u ∈ V , the evaluation of c at u is denoted by c(u), which equals
λ(u) + b. Let i ∈ {0, 1, . . . , t}, j ∈ Fq , we define

n j,T (c) := |{u ∈ T | c(u) = j}|,
bi, j := |{c ∈ V ∗ | n j,T (c) = i}|,

and

ai := |{c ∈ C \ Fq1 | wt(c|T ) = i}|,
bi :=

∑
j∈Fq

bi, j =
∑
j∈Fq

|{c ∈ V ∗ | n j,T (c) = i}|.
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Then, the Jacobi polynomial of C with T is written as

JC,T (w, z, x, y) =wt xq
m−t

+
t∑

i=0

aiw
t−i zi xq

m−1−(t−i)y(q−1)qm−1−i

+ (q − 1)zt yq
m−t .

(2.1)

We have the following relation between ai and bi .

Lemma 2.4 We have
ai = bt−i − δi,0 − (q − 1)δi,t .

Proof Since

at−i = |{c ∈ C \ Fq1 | n0,T (c) = i}|
=

∑
j∈Fq

|{c ∈ (V ∗ + j1) \ { j1} | n0,T (c) = i}|

=
∑
j∈Fq

|{c ∈ V ∗ \ {0} | n0,T (c + j1) = i}|

=
∑
j∈Fq

|{c ∈ V ∗ \ {0} | n− j,T (c) = i}|

= |{c ∈ V ∗ \ {0} | n0,T (c) = i}| +
∑

j∈Fq\{0}
|{c ∈ V ∗ \ {0} | n− j,T (c) = i}|

= bi,0 − δi,t +
∑

j∈Fq\{0}
(bi,− j − δi,0)

=
∑
j∈Fq

bi,− j − δi,t − (q − 1)δi,0

=
∑
j∈Fq

bi, j − δi,t − (q − 1)δi,0

= bi − δi,t − (q − 1)δi,0,

we obtain

ai = bt−i − δt−i,t − (q − 1)δt−i,0

= bt−i − δi,0 − (q − 1)δi,t .

	

Using this lemma, we obtain ai by calculating bi .

3 Proofs of Theorem 1.1 and Corollary 1.2

In this section, we give proofs of Theorem 1.1 and Corollary 1.2 using the notation introduced
in Sect. 2.3. First, we give a lemma to show Theorem 1.1. Let T = {0, u} ∈ (V

2

)
.

123



Jacobi polynomials for the first-order GRM codes

Lemma 3.1 We have

b0 = qm−1(q − 1)2,

b1 = 2qm−1(q − 1),

b2 = qm−1.

Proof Considering u ∈ T as an element of V ∗∗, u is a surjective linear map from V ∗ to Fq

because u �= 0. Then, for j ∈ Fq\{0},

b0,0 = 0, b0, j =
∣∣∣∣∣∣

⋃
a∈Fq\{ j}

u−1(a)

∣∣∣∣∣∣
= (q − 1)qm−1,

b1,0 = (q − 1)qm−1, b1, j = ∣∣u−1( j)
∣∣ = qm−1,

b2,0 = qm−1, b2, j = 0.

Therefore,

b0 = b0,0 +
∑

j∈Fq\{0}
b0, j = (q − 1)2qm−1,

b1 = b1,0 +
∑

j∈Fq\{0}
b1, j = 2(q − 1)qm−1,

b2 = b2,0 +
∑

j∈Fq\{0}
b2, j = qm−1.

	


Using this Lemma, we show Theorem 1.1.

Proof of Theorem 1.1 Using Lemmas 2.4 and 3.1, we obtain

a0 = b2 − 1 = qm−1 − 1,

a1 = b1 = 2(q − 1)qm−1,

a2 = b0 − (q − 1) = (q − 1)(qm − qm−1 − 1).

Thus, we obtain coefficients of the Jacobi polynomial by (2.1). 	


Finally, we give a proof of Corollary 1.2.

Proof of Corollary 1.2 By Proposition 2.3, it suffices to show that for any T = {0, u} ⊂ (V
2

)
,

the coefficient of z2xq
m−�y�−2 is the same value. This is true by using Theorem 1.1. In

addition, we have the Jacobi polynomial of RMq(1,m)⊥ by using Theorem 2.1. Thus, we
obtain the desired results. 	


Remark Collorary 1.2 can be proved by 2-transitivity of the automorphism group of
RMq(1,m), which is the general linear homogenious group [2].
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4 Proofs of Theorem 1.3 and Corollary 1.4

In this section, we give proofs of Theorem 1.3 and Corollaries 1.4 and 1.5 using the notation
introduced inSect. 2.3. First,wegive two lemmas to showTheorem1.3.LetT = {0, u1, u2} ∈(V
3

)
, A = t [u1 u2].

Lemma 4.1 If rank A = 2, then

b0 = qm−2(q − 1)3,

b1 = 3qm−2(q − 1)2,

b2 = 3qm−2(q − 1),

b3 = qm−2.

Proof We remark that A is a surjective map from V to F
2
q , and for all a, b ∈

Fq , |A−1(t [a b])| = |Ker A| = qm−2. Then, for j ∈ Fq\{0},

b0, j =
∣∣∣∣∣∣

⋃
a,b �= j

A−1(t [a b])
∣∣∣∣∣∣
=

∑
a,b∈Fq\{ j}

∣∣A−1(t [a b])∣∣ = (q − 1)2qm−2,

b1, j = 2 ×
∣∣∣∣∣∣
⋃
a �= j

A−1(t [ j a])
∣∣∣∣∣∣
= 2(q − 1)qm−2,

b2, j = ∣∣A−1(t [ j j])∣∣ = qm−2,

b3, j = 0

and

b0,0 = 0,

b1,0 =
∣∣∣∣∣∣

⋃
a,b �=0

A−1(t [a b])
∣∣∣∣∣∣
=

∑
a,b∈Fq\{0}

∣∣A−1(t [a b])∣∣ = (q − 1)2qm−2,

b2,0 = 2 ×
∣∣∣∣∣∣
⋃
a �=0

A−1(t [ j a])
∣∣∣∣∣∣
= 2(q − 1)qm−2,

b3,0 = |Ker A| = qm−2.

Since
bi = bi,0 +

∑
j∈Fq\{0}

bi, j ,

we obtain the desired results. 	

Lemma 4.2 If rank A = 1, then

b0 = qm−1(q − 1)(q − 2),

b1 = 3qm−1(q − 1),

b2 = 0,

b3 = qm−1.
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Proof Because u1 and u2 are not equal to 0 or each other, there exist a, b ∈ Fq \ {0} such
that a �= b and {t [a b]} is a basis of Im A. Hence, for any v ∈ Im A,

|A−1(v)| = |Ker A| = qdimKer A = qm−rank A = qm−1.

Then, for j ∈ Fq \ {0}, we have
b1, j = |A−1(t [ j ja−1b])| + |A−1(t [ jb−1a j])| = 2qm−1,

b2, j = b3, j = 0,

b0, j = |V | − (b1, j + b2, j + b3, j ) = qm − 2qm−1

and

b1,0 = (q − 1)qm−1,

b0,0 = b2,0 = 0,

b3,0 = |Ker A| = qm−1.

Thus, since bi = ∑
j∈Fq bi, j , we obtain the desired results. 	


Using these lemmas, we give a proof of Theorem 1.3.

Proof of Theorem 1.3 By Lemmas 2.4 and (2.1), (1) follows from Lemma 4.1, and (2) follows
from Lemma 4.2. 	


Then, we show that the shells of RMq(1,m) are not 3-designs if q ≥ 3 and m ≥ 2.

Proof of Corollary 1.4 Let C = RMq(1,m). We give a proof relying on the properties of
Jacobi polynomials. Let T1 = {0, u1, u2} ∈ (V

3

)
, T2 = {0, v1, v2} ∈ (V

3

)
, A1 = t [u1 u2], and

A2 = t [v1 v2]. We assume that rank A1 = 2 and rank A2 = 1. Indeed, if q ≥ 3 and m ≥ 2,
there exist such T1, T2. By Theorem 1.3,

JC,T1 − JC,T2 = −qm−2(q − 1)xq
m−1−3y(q−1)qm−1−3(wy − xz)3.

Since the coefficient of z3xq
m−�y�−3 in JC,T1 − JC,T2 is non-zero wheneverC� is non-empty,

C� is not a 3-design. 	

By using Theorem 2.1, we obtain

JC⊥,T1 − JC⊥,T2 = (q − 1){x + (q − 1)y}qm−1−3(x − y)(q−1)qm−1−3(wy − xz)3.

Based on this equation, we conjecture the following.

Conjecture 4.3 Let C = RMq(1,m). If q ≥ 3, then for any � ∈ N, (C⊥)� is not a combina-
torial 3-design.

We verified this conjecture for q , m which satisfying q2m < 109. The computations were
performed using the code available at GitHub.1

Finally, we claim that the shells of RMq(1,m) are 3-(v, k, (λ1, λ2))-designs.

Proof of Corollary 1.5 It is clear from Theorem 1.3.

1 https://github.com/yama821/GRMJacobi-paper.
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5 Proof of Theorem 1.6

In this section, we give proofs of Theorem 1.6 and Corollary 1.7 using the notation introduced
in Sect. 2.3. Let T = {0, u1, u2, u3} ∈ (V

4

)
, A = t [u1 u2 u3].

Considering A as a linear map from V to F
3
q , for all j ∈ Fq \ {0}, we have

bi, j = |{c ∈ V | i elements of Ac are equal to j}|
= qm−rank A × |{v ∈ Im A | i elements of v are equal to j}|, (5.1)

and for j = 0, we have

bi,0 = |{c ∈ V | i − 1 elements of Ac are equal to 0}|
= qm−rank A × |{v ∈ Im A | i − 1 elements of v are equal to 0}|. (5.2)

Next, we prepare three lemmas for proving Theorem 1.6.

Lemma 5.1 If rank A = 3,

a0 = qm−3 − 1, a1 = 4(q − 1)qm−3, a2 = 6(q − 1)2qm−3,

a3 = 4(q − 1)3qm−3, a4 = (q − 1)(qm − 3qm−1 + 3qm−2 − qm−3 − 1).

Proof By (5.1) and (5.2),

b0 = b0,0 +
∑

j∈Fq\{0}
b0, j = (q − 1) × (q − 1)3 × qm−3 = (q − 1)4qm−3,

b1 = b1,0 +
∑

j∈Fq\{0}
b1, j = (q − 1)3qm−3 + 3(q − 1)3qm−3 = 4(q − 1)3qm−3,

b2 = b2,0 +
∑

j∈Fq\{0}
b2, j = 3(q − 1)2qm−3 + 3(q − 1)2qm−3 = 6(q − 1)2qm−3,

b3 = b3,0 +
∑

j∈Fq\{0}
b3, j = 3(q − 1)qm−3 + (q − 1)qm−3 = 4(q − 1)qm−3,

b4 = b4,0 +
∑

j∈Fq\{0}
b4, j = qm−3.

Therefore, we obtain the desired results by Lemma 2.4. 	

Lemma 5.2 If rank A = 1,

a0 = qm−1 − 1, a1 = 0, a2 = 0,

a3 = 4(q − 1)qm−1, a4 = (q − 1)(qm − 3qm−1 − 1).

Proof Since u1, u2, u3 are different from each other and not equal to 0, we take a basis
{t [a b c]} of Im A, where a, b, c ∈ Fq\{0} and are different from each other. If rank A = 1,
then for all v ∈ Im A, |A−1(v)| = qm−1. Then, for all j ∈ Fq\{0},

b1, j = 3 × qm−1 = 3qm−1,

b2, j = b3, j = b4, j = 0,

b0, j = qm − (b1, j + b2, j + b3, j + b4, j ) = qm − 3qm−1
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and

b1,0 = (q − 1) × qm−1,

b0,0 = b2,0 = b3,0 = 0,

b4,0 = qm−1.

Therefore, b0, . . . , b4 are written as follows:

b0 = b0,0 +
∑

j∈Fq\{0}
b0, j = (q − 1) × (qm − 3qm−1) = (q − 1)(q − 3)qm−1,

b1 = b1,0 +
∑

j∈Fq\{0}
b1, j = (q − 1)qm−1 + (q − 1) × 3qm−1 = 4(q − 1)qm−1,

b2 = b2,0 +
∑

j∈Fq\{0}
b2, j = 0,

b3 = b3,0 +
∑

j∈Fq\{0}
b3, j = 0,

b4 = b4,0 +
∑

j∈Fq\{0}
b4, j = qm−1.

Thus, we obtain a0, . . . , a4 by using Lemma 2.4. 	

Before stating the lemma under the condition of rank A = 2, we give a basis of Im A.

Since Im A is invariant under the right multiplication of an invertible matrix to A, we confine
a basis of Im A to the following:

⎧
⎨
⎩

⎡
⎣
1
0
a

⎤
⎦ ,

⎡
⎣
0
1
b

⎤
⎦

⎫
⎬
⎭ ,

⎧
⎨
⎩

⎡
⎣
1
a
0

⎤
⎦ ,

⎡
⎣
0
0
1

⎤
⎦

⎫
⎬
⎭ ,

⎧
⎨
⎩

⎡
⎣
0
1
0

⎤
⎦ ,

⎡
⎣
0
0
1

⎤
⎦

⎫
⎬
⎭ ,

wherea, b ∈ Fq .However, sinceu1, u2, u3 are not equal to 0, the last one is excluded.Without
loss of generality, we take the first one because bi, j is invariant under a permutation on indices
of codewords. Note that we have (a, b) �= (0, 0), (1, 0), (0, 1) because u1, u2, u3 �= 0.

Lemma 5.3 If rank A = 2, we have the following.

1. If a + b = 1 or ab = 0, then

a0 = qm−2 − 1, a1 = qm−2(q − 1), a2 = 3qm−2(q − 1),

a3 = qm−2(q − 1)(4q − 5), a4 = (q − 1)(qm − 3qm−1 + 2qm−2 − 1).

2. If a + b �= 1 and ab �= 0, then

a0 = qm−2 − 1, a1 = 0, a2 = 6qm−2(q − 1),

a3 = qm−2(q − 1)(4q − 8), a4 = (q − 1)(qm − 3qm−1 + 3qm−2 − 1).

Proof First, we give b0. Clearly, b0,0 = 0. For all j ∈ Fq\{0},
b0, j = qm−rank A × |{v ∈ Im A | zero elements of v are equal to j}|

= qm−2 × |{(c1, c2) ∈ F
2
q | c1 �= j, c2 �= j, c1a + c2b �= j}|.
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We have

|{(c1, c2) ∈ F
2
q | c1 �= j, c2 �= j, c1a + c2b �= j}|

= (q − 1)2 − |{(c1, c2) ∈ F
2
q | c1 �= j, c2 �= j, c1a + c2b = j}|

= (q − 1)2 − (|{(c1, c2) ∈ F
2
q | c1a + c2b = j}|

− |{(c1, c2) ∈ F
2
q | c1 = j, c1a + c2b = j}|

− |{(c1, c2) ∈ F
2
q | c2 = j, c1a + c2b = j}|

+ |{(c1, c2) ∈ F
2
q | c1 = j, c2 = j, c1a + c2b = j}|).

If a = 0, then b �= 0, 1, and if b = 0, then a �= 0, 1. Thus,

|{(c1, c2) ∈ F
2
q | c1a + c2b = j}| = q,

|{(c1, c2) ∈ F
2
q | c1 = j, c1a + c2b = j}| =

{
1 if b �= 0,
0 if b = 0,

|{(c1, c2) ∈ F
2
q | c2 = j, c1a + c2b = j}| =

{
1 if a �= 0,
0 if a = 0,

|{(c1, c2) ∈ F
2
q | c1 = j, c2 = j, c1a + c2b = j}| =

{
1 if a + b = 1,
0 otherwise.

Therefore,

|{(c1, c2) ∈ F
2
q | c1 �= j, c2 �= j, c1a + c2b �= j}|

=
{

(q − 1)2 − (q − 1) if ab = 0 or a + b = 1,
(q − 1)2 − (q − 2) otherwise.

Hence,

b0 = b0,0 +
∑

j∈Fq\{0}
b0, j

=
{∑

j∈Fq\{0} qm−2(q − 1)(q − 2) if a + b = 1 or ab = 0∑
j∈Fq\{0} qm−2(q2 − 3q + 3) otherwise

=
{
qm−2(q − 1)2(q − 2) if a + b = 1 or ab = 0,
qm−2(q − 1)(q2 − 3q + 3) otherwise.

Second, we compute b1. Similarly,

b1,0 =
{
qm−2(q − 1)2 if ab = 0,
qm−2(q − 1)(q − 2) otherwise.

Fix j ∈ Fq \ {0}, and let I1, I2, and I3 be non-negative numbers such that

I1 = |{(c1, c2) ∈ F
2
q | c1 = j, c2 �= j, ac1 + bc2 �= j}|,

I2 = |{(c1, c2) ∈ F
2
q | c1 �= j, c2 = j, ac1 + bc2 �= j}|,

I3 = |{(c1, c2) ∈ F
2
q | c1 �= j, c2 �= j, ac1 + bc2 = j}|.
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Then, b1, j = qm−2 × (I1 + I2 + I3). We have

I1 =
{
q − 1 if b = 0 or a + b = 1,
q − 2 otherwise,

I2 =
{
q − 1 if a = 0 or a + b = 1,
q − 2 otherwise,

I3 =
{
q − 1 if ab = 0 or a + b = 1,
q − 2 otherwise,

I1 + I2 + I3 =
⎧⎨
⎩
3q − 3 if a + b = 1,
3q − 4 if ab = 0,
3q − 6 otherwise.

Therefore,

b1 = b1,0 +
∑

j∈Fq\{0}
b1, j

=
⎧⎨
⎩
qm−2(q − 1)(q − 2) + ∑

j q
m−2(3q − 3) if a + b = 1,

qm−2(q − 1)2 + ∑
j q

m−2(3q − 4) if ab = 0,
qm−2(q − 1)(q − 2) + ∑

j q
m−2(3q − 6) otherwise,

=
⎧
⎨
⎩
qm−2(q − 1)(q − 2) + (q − 1)qm−2(3q − 3) if a + b = 1,
qm−2(q − 1)2 + (q − 1)qm−2(3q − 4) if ab = 0,
qm−2(q − 1)(q − 2) + (q − 1)qm−2(3q − 6) otherwise,

=
{
qm−2(q − 1)(4q − 5) if a + b = 1 or ab = 0,
qm−2(q − 1)(4q − 8) otherwise.

Similarly, we give b3. For all j ∈ Fq\{0}, we have

b3, j =
{
qm−2 if a + b = 1,
0 otherwise.

Let J1, J2, and J3 be non-negative integers such that

J1 = |{(c1, c2) ∈ F
2
q | c1 = 0, c2 �= 0, ac1 + bc2 �= 0}|,

J2 = |{(c1, c2) ∈ F
2
q | c1 �= 0, c2 = 0, ac1 + bc2 �= 0}|,

J3 = |{(c1, c2) ∈ F
2
q | c1 �= 0, c2 �= 0, ac1 + bc2 = 0}|.

Clearly, J3 = 0. We have

J1 =
{
q − 1 if a = 0,
0 otherwise,

J2 =
{
q − 1 if b = 0,
0 otherwise.

Thus,

b3,0 = qm−2 × (J1 + J2 + J3) =
{
q − 1 if ab = 0,
0 otherwise.
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Therefore,

b3 = b3,0 +
∑

j∈Fq\{0}
b3, j

=
{
qm−2(q − 1) if a + b = 1 or ab = 0,
0 otherwise,

and we have b4, j = 0, where j ∈ Fq\{0}, and b4,0 = |Ker A| = qm−2. Then we have

b4 = qm−2.

Finally, by using Lemma 2.4, we obtain a0, . . . , a4 as follows:

a0 = b4 − 1

= qm−2 − 1,

a1 = b3

=
{
qm−2(q − 1) if a + b = 1 or ab = 0,
0 otherwise,

a3 = b1

=
{
qm−2(q − 1)(4q − 5) if a + b = 1 or ab = 0,
qm−2(q − 1)(4q − 8) otherwise,

a4 = b0 − (q − 1)

=
{
qm−2(q − 1)2(q − 2) − (q − 1) if a + b = 1 or ab = 0,
qm−2(q − 1)(q2 − 3q + 3) − (q − 1) otherwise,

=
{

(q − 1)(qm − 3qm−1 + 2qm−2 − 1) if a + b = 1 or ab = 0,
(q − 1)(qm − 3qm−1 + 3qm−2 − 1) otherwise,

a2 = |C \ Fq1| − (a0 + a1 + a3 + a4)

= qm+1 − q − (a0 + a1 + a3 + a4)

=
{
3qm−2(q − 1) if a + b = 1 or ab = 0,
6qm−2(q − 1) otherwise.

	

Proof of Theorem 1.6 and Corollary 1.7 Using Lemmas 5.1, 5.2, and 5.3, we obtain the desired
results. 	
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