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Abstract

We provide classification results for translation generalized quadrangles of order less than
or equal to 64, and hence, for all incidence geometries related to them. The results consist of
the classification of all pseudo-ovals in PG(3n — 1, 2), for n = 3, 4, and that of the pseudo-
ovals in PG(3n — 1, ¢), for n = 5, 6, such that one of the associated projective planes is
Desarguesian.
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1 Introduction and known results

This paper can be considered as a sequel to [39, 40], where the recent classification of
hyperovals of PG(2, 64) [64] was used to extend previously known classification results for
related structures to order 64. Here, we classify all pseudo-ovals of PG(3n — 1, 2), n = 3, 4,
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and all pseudo-ovals of PG(3n—1, 2),n = 5, 6, yielding a Desarguesian translation plane via
the construction given in [47, pp. 181-182]. As a by-product, thanks to the correspondence
between pseudo-ovals and translation generalized quadrangles (TGQs) [47, 8.7.1], we also
classify all TGQs of order 2", n = 3, 4, and all translation GQs 7 (O) of order ¢",n =5, 6,
when the pseudo-oval O gives rise to a Desarguesian translation plane. In the case n = 3, our
classification of translation GQs is computer-free. Another consequence is the classification
of all elation Laguerre planes of order 2", n = 3, 4, and that of all elation Laguerre planes
of order 2", n = 5, 6, with a Desarguesian projective completion. We point out that the
classification of elation Laguerre planes of order 16 has already been obtained by Steinke in
[59], but here we present a different method of proof.

Since the results in this paper involve a certain number of incidence structures that are
closely related to each other, it is worth recalling their definition and main properties together
with the corresponding known classification results when the order of the structure is small.
This is done in this section, and, to make everything easier and more readable, we divide
it into subsections, one for each object we consider. All classification results as well as the
tools and methods used to get them are instead collected in Sect. 2.

1.1 Generalized quadrangles

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P, B, I) where P and
B are disjoint (nonempty and finite) sets of objects called points and lines, respectively, and |
is a symmetric point-line relation, called incidence relation, satisfying the following axioms:

(i) Each point is incident with ¢ + 1 lines, and two distinct points are incident with at most
one line.
(ii) Each line is incident with s 4 1 points, and two distinct lines are incident with at most
one point.
(iii) Ifx isapointand L is aline notincident with x, then there is a unique pair (y, M) € Px B
suchthat x IMIyIL.

The integers s and ¢ are the parameters of the GQ, and S is said to have order (s, t); if
s = t,itis said to have order s. If S has order (s, t), then it follows that |P| = (s + 1)(st + 1)
and |B] = (t+1)(st+1).If S = (P, B, I) is aGQ of order (s, t), then the incidence structure
S* = (B, P, D is aGQ of order (¢, s), and it is called the dual of S.

The classical GQs of order g are W (q), whose points and lines are those of a symplectic
geometry in PG(3, ¢), and Q (4, g), whose points and lines are those of a non-singular quadric
in PG(4, ¢). It is known that Q(4, ¢) is isomorphic to the dual of W(g), and it is self-dual
when g is even [47]. For more details on GQs, the reader is referred to [47].

There is a unique GQ of order 2 [47, Chap. 6]; there are exactly two GQs of order 3 [47,
Chap. 6]; there is a unique GQ of order 4 [41, 42], [47, Chap. 6]. Up to the knowledge of the
authors, for no other value of s, there is a complete classification of GQs of order s.

A TGQ with base point P is a GQ for which there is an abelian group acting regularly on
the points not collinear with P, while fixing each line through P. Such a group is uniquely
determined, and it is called the translation group at P. The classical GQ Q(4, ¢) is a TGQ,
but, for ¢ odd, W(g) is not a TGQ. In [47, 8.7.3(i)], it is shown that a TGQ of prime order p
is isomorphic to Q(4, p).

Two lines of a GQ are said to be concurrent if there is a point incident with both of them. A
symmetry of a GQ with respect to the line / is a collineation fixing each line concurrent with
1. The kernel of a TGQ with base point P is the ring of all endomorphisms of the translation
group T fixing the subgroup 7; of all symmetries of T with respect to [, for each line / through
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P. With the usual addition and multiplication of endomorphisms, the kernel is a ring, thus
by Wedderburn’s Theorem is a finite field. If the kernel is GF(q) and the TGQ has order s,
then s is a power of g.

In [45, 46], using a result of Denniston [18] on ovals in the Hall plane of order 9, the
uniqueness of a TGQ of order 9 is proved. This depends on the classification of translation
planes of order 9 [5, 32]. Note that, by [47, Sect. 8.6], the base point of a TGQ of odd order
s is anti-regular, so that a result by Steinke on Laguerre planes [58] implies the uniqueness
of a TGQ of order 9. In Corollary 2.7 we show that there are exactly two TGQs of order 8.
Here we present a computer-free proof of this result. Furthermore, Corollary 2.14 shows that
there are exactly three TGQs of order 16. In this case, the result is computer-based. About
the cases g = 32, 64, we refer the reader to Corollaries 2.17 and 2.20.

1.2 Pseudo-ovals

An n-dimensional pseudo-oval inPG(3n—1, q) isaset O of ¢ +1 (n — 1)-dimensional sub-
spaces with the property that any three of them span PG(3n — 1, ¢). Given an n-dimensional
pseudo-oval, there exists a unique system of ¢” +1 (2n— 1)-dimensional subspaces, called the
tangents to O, such that each element X of O is on a unique tangent 7'(X), and 7 (X) meets
no other element of O [61]. The order of an n-dimensional pseudo-oval in PG(3n — 1, q) is
q". When n = 1, the definition of pseudo-oval covers that of an oval in PG(2, g).

An oval in PG(2, ¢") gives rise to an n-dimensional pseudo-oval in PG(3n — 1, ¢),
by identifying the underlying vector space GF(g)>"* of PG(3n — 1, q) with the underlying
vector space GF(q")3 (considered as a vector space over GF(q)) of PG(2, ¢"). A pseudo-
oval so constructed is known as elementary pseudo-oval. No other pseudo-ovals are known.
It [2] it was proved that the only pseudo-ovals contained in the elliptic quadric Q™ (5, 7) are
elementary, so arising from conics in PG(2, 49) by Segre’s Theorem [53].

Proposition 1.1 Let O and O; be two elementary n-dimensional pseudo-ovals in PG(3n —
1, q) arising from the ovals O and Oy in PG(2, g™), respectively. Then, O1 and O, are
projectively equivalent if and only if O1 and O, are.

Proof Assume that there is a collineation g of PG(3n — 1, ¢) that maps O; to O,. Then,
the kernel K of O is conjugate to the kernel K, of O;; we may assume that both of them
are the same copy K of the multiplicative group of GF(¢"). Hence, K is a Singer cycle of
PI'L(3n, q), and g lies in the normalizer of K in PI'L(3n, ¢). From [25, 7.3 Seitz] g lies in
PI'L(3, ¢"), which is naturally embedded in PI'L (37, ¢) by identifying the underlying vector
space GF(¢")? of PG(2, ¢") with the underlying vector space GF(¢)*" of PG(3n — 1, ¢).
This gives that the two ovals 51 and 62 are projectively equivalent. For the converse just
note that any collineation of PG(2, ¢") naturally embeds in PI'L(3n, ¢) via the identification
of GF(¢)" with GF(¢")3. o

An n-dimensional pseudo-oval O in PG(3n — 1, q¢) gives rise to a number of (n — 1)-
spreads of PG(2n — 1, q) [47, pp. 181-182], and so to many translation planes of order
q" [1, 6]. For instance, the projections of the elements of O from a fixed X € O onto a
(2n — 1)-dimensional subspace S of PG(3n — 1, ¢) skew to X, together with 7(X) N S, form
an (n — 1)-spread of S. The corresponding translation plane, denoted by 7 (O, X), has order
q" with kernel containing GF(q) [1, 6].

Let O be a n-dimensional pseudo-oval in PG(3n — 1, g). Embed PG(3n — 1,¢g) as a
hyperplane H in PG(3n, g), and let T (O) be the incidence structure with points: (i) the
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points of PG(3n, ¢) not on H, (ii) the 2n-spaces of PG(3n, ¢) meeting H in a tangent to
O, (iii) a new point (oco); with lines: (a) the n-spaces of PG(3n, ¢), not in H, meeting H
in an element of O, (b) the elements of O; and taking as the incidence relation the natural
incidence in PG(3n — 1, ¢) augmented by making all lines of type (b) incident with (o).
Then, T (O) is a TGQ of order ¢" with base point (0co) and kernel containing GF(g) [47,
Theorem 8.7.1]. Conversely, every TGQ of order ¢g” with GF(g) contained in its kernel is
isomorphic to 7' (O), for some n-dimensional pseudo-oval O in PG(3n — 1, ¢g) [47, Theorem
8.7.1]. The proof in [37] generalizes to show that 7'(O) is isomorphic to 7 (O;) if and only
if Oy is projectively equivalent to O;. When n = 1, we use 7> (O) to refer to the GQ T (0),
where 7 (0O) is the Tits quadrangle constructed on the oval O in PG(2, g) [16].

The kernel of an n-dimensional pseudo-oval O in PG(3n — 1, g) is the kernel of the TGQ
T (O): it is a subfield of GF(¢") and an extension of GF(g). It is known [47, 8.6.5] that the
multiplicative group of the kernel of T (O) is isomorphic to the group of all whorls about
(c0) fixing a given point not collinear with (co); here, a whorl about the point (c0) is a
collineation of 7 (O) fixing each line incident with (c0). This yields that the kernel of 7'(O)
is GF(¢") if and only if O is elementary, i.e., it arises from an oval O’ of PG(2, ¢"), in which
case T (0) is isomorphic to T>(O').

In analogy to the case n = 1, if ¢ is odd, the tangents to an n-dimensional pseudo-oval
in PG(3n — 1, g) form a pseudo-oval in the dual space, and, if g is even, the tangents to
an n-dimensional pseudo-oval O in PG(3n — 1, ¢) all pass through an (n — 1)-space N, the
nucleus of the pseudo-oval. In addition, forany X € O, (O \ {X}) U{N} is an n-dimensional
pseudo-oval in PG(3n — 1, ¢) [61-63, Theorem 6(v)], [47, pp. 181-182].

An n-dimensional dual pseudo-oval in PG(3n — 1, q) is a set O of ¢" + 1 2n — 1)-
dimensional subspaces with the property that any three of them intersect trivially, together
with g” + 1 (n — 1)-dimensional subspaces, called the fangents to O, with the property that
each element X of O contains a unique tangent 7'(X), and 7 (X) meets no other element of
0. Under a correlation of PG(3n — 1, q), the image of an n-dimensional dual pseudo-oval
in PG(3n — 1, g¢) is an n-dimensional pseudo-oval in PG(3n — 1, g). Moreover, over fields
of odd order, a pseudo-oval is a self-dual concept. The situation is quite different for fields
of characteristic 2, and this explains some of the subtleties that occur.

It follows from the uniqueness of the GQ of order 4 that there is a unique 2-dimensional
pseudo-oval in PG(5, 2), and from the uniqueness of the TGQ of order 9 that there is a
unique 2-dimensional pseudo-oval in PG(5, 3). There are exactly two 3-dimensional pseudo-
ovals in PG(8, 2) (Theorem 2.6). They are elementary, so arising from the conic and the
pointed-conic in PG(2, 8). There are exactly three 4-dimensional pseudo-ovals in PG(11, 2)
(Theorem 2.10). All of the 4-dimensional pseudo-ovals in PG(11, 2) are elementary, and so
they arise from ovals in PG(2, 16). Hence, there are exactly three 2-dimensional pseudo-ovals
in PG(5, 4) (Corollary 2.11). About the cases n = 5, 6, we refer the reader to Theorems 2.15,
2.18.

1.3 Laguerre planes

A finite Laguerre plane of order n, n > 2, is a triple £ = (P, C, G) consisting of a set P of
n(n + 1) points, a set C of n3 circles and a set G of n + 1 generators (or parallel classes),
where circles and generators are both subsets of P, such that the following three axioms are
satisfied:

(i) G partitions P and each generator contains » points.
(i) Each circle intersects each generator in precisely one point.
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(iii) Three points no two of which are on the same generator can be uniquely joined by a
circle.

Given a finite Laguerre plane £ of order n and a point P of the plane, the derived affine
plane at P is the incidence structure £ p whose points are the points of £ not on the generator
through P, and the lines are the circles of £ through P together with the generators not
passing through P (with the natural incidence relation). It turns out that £ p is an affine plane
of order n; its projective completion PL p is called the derived projective plane at P.

Kleinewillinghofer [27] classifies Laguerre planes in terms of their respective auto-
morphism group, this classification being analogous to the Lenz-Barlotti classification of
projective planes and the Hering classification of inversive planes. In [9] (see also [45, 46]),
Chen and Kaerlein show that if the derived affine plane of a Laguerre plane of finite order n,
where 7 is 2 or 4 or odd, is Desarguesian, then the Laguerre plane is Miquelian. This has as
a corollary the uniqueness of the Laguerre planes of orders 2, 3, 4, 5, and 7, relying on the
uniqueness of the projective planes of these orders. In [58], the uniqueness of the Laguerre
plane of order 9 is proved. This depends on the classification by computer of all projective
planes of order 9 [28], and on the classification by computer of all ovals in these planes [12,
18]. There are exactly two Laguerre planes of order 8, and the only references in the literature
we can find are [20, p. 530], [21, p. 108], [57, p. 163]. Since there is no affine plane of order
6, there is obviously no Laguerre plane of order 6. By applying the Bruck—Ryser theorem [7],
more generally there is no Laguerre plane of order n, where n is congruent to 1 or 2 modulo
4 and the square-free part of n is divisible by a prime congruent to 3 modulo 4. This rules out
Laguerre planes of orders 6, 14, 21, 22,... Moreover, by the famous computer-based result of
the nonexistence of an affine plane of order 10 [29], there is no Laguerre plane of order 10.
In fact, since the projective completion of the derived affine plane of a Laguerre plane at a
point contains an oval, we need only the earlier computer-based result [30] that there is no
projective plane of order 10 containing an oval. Up to the knowledge of the authors, for no
other n, there is a complete classification of Laguerre planes of order n.

Two Laguerre planes £ and £, are said to be isomorphic if there is a bijection from the
point set of £ to that of £, such that circles are mapped onto circles. An automorphism of
a Laguerre plane £ is an isomorphism of £ on itself. All automorphisms of £ form a group
with respect to composition, the automorphism group Aut(£) of L.

An elation Laguerre plane is a Laguerre plane which admits an automorphism group acting
regularly on the circles, while fixing every generator; such a group is uniquely determined
and abelian [26, Corollary 2.9, Proposition 2.8]. It is called the elation group of the Laguerre
plane. The derived affine plane Lp at any point P of an elation Laguerre plane £ are dual
translation planes [57, Theorem 3], [26, Lemma 2.3], and hence a finite elation Laguerre
plane has prime power order. An elation Laguerre plane of prime order is Miquelian, by
applying the theorem of André [1] that a translation plane of prime order is Desarguesian,
and then applying the result in [9].

Models of elation finite Laguerre planes can be obtained as follows. Let O be an oval
in PG(2, ¢) and K a cone in PG(3, g) with vertex V projecting O. The incidence structure
L, (0O) with points the points of K other than V, generators the generators of K, circles the
intersections of the planes of PG(3, ¢) not on V with K is a Laguerre plane of order g. The
group of all elations of PG(3, ¢) with center V fixes every line on V, and it is regular on the
planes of PG(3, ¢) not on V; hence, it fixes every generator of £ (Q), while acting regularly
on the circles of £, (). This yields that £, (O) is an elation Laguerre plane. A finite Laguerre
plane is said to be ovoidal if it is isomorphic to £,(O), for some oval O of PG(2, ¢). Every
known finite Laguerre plane is ovoidal. By [38], £2(O1) is isomorphic to £;(0») if and only
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if Oy is projectively equivalent to O3 (that is, they are in the same orbit under the collineation
group PI'L(3, ¢g) of PG(2, ¢)). When O is a conic, the elation Laguerre plane £,(O) is
characterized among all Laguerre planes by satisfying the configuration of Miquel [65], [15,
pp- 245-246], and hence is called Miquelian. General references on Laguerre planes are [3,
15, 22, 60].

It is of interest to give the dual construction (in PG(3, ¢)) of £ (0O), for comparison with
both the previous construction of the Tits GQ 7> (O) and its generalization involving pseudo-
ovals. Let O be a dual oval of PG(2, ¢) (i.e., a set of g + 1 lines, no three of them concurrent).
Embed PG(2, ¢) as aplane 7 in PG(3, ¢), and let L(O) be the incidence structure with points
the planes of PG(3, ¢) meeting = in a line of O, generators the lines of O, circles the points
of PG(3, ¢) not on m, and with incidence relation the natural one. Then, L(O) is a Laguerre
plane of order ¢, isomorphic to £,(0*), where O* is the image of O under a correlation.

The kernel of an elation Laguerre plane with elation group E is the ring of all endomor-
phisms of E fixing the subgroup Ep, for all points P of the plane. The kernel of an elation
Laguerre plane is a skew-field [26, Theorem 2.10]. If the elation Laguerre plane is finite, then
the kernel is a finite field GF(g) and the order of the plane is a power of g.

Inspired by Casse, Thas and Wild [8], Steinke [57] and Léwen [31] provided the following
construction of elation Laguerre planes from dual pseudo-ovals. Let O be an n-dimensional
dual pseudo-oval in PG(3n — 1, ¢). Embed PG(3n — 1, ¢) as a hyperplane H in PG(3n, q),
and let £(O) be the incidence structure with points the 2n-spaces of PG(3n, ¢) meeting H
in an element of O, generators the elements of O, circles the points of PG(3n, ¢) noton H,
and taking as the incidence relation the natural one. Then, £(O) is an elation Laguerre plane
of order ¢".

By aresult of Joswig [26, Theorem 5.3], the converse holds: a finite elation Laguerre plane
of order ¢" with kernel containing GF(g) is isomorphic to £(0), for some n-dimensional
dual pseudo-oval O in PG(3n — 1, q).

By [57, Theorem 3], an elation Laguerre plane £ can be coordinatized as follows: there is
a matrix-valued mapping D : GF(g)" U {oo} — M3, ,(q) (Where M3, ,(¢q) is the set of all
3n x n matrices over GF(q)) such that the point set of £ is (GF(g)" U {oo}) x GF(g)" and
every circle is of the form K. = {(z, ¢ - D(z)) : z € GF(g)" U {o0}}, where ¢ € GF(q)S".
More precisely, D(c0) = (I O O)!, where I and O denote the n x n identity and the zero
matrices, respectively, and the matrix D(z), z € GF(g)", can be written as (h(z) g(z) I)!
with suitable n x n matrices /(z) and g(z). After this coordinatization, the Laguerre plane £
is denoted by L(g, ). In particular, {g(z) : z € GF(g)"} is a spread set defining a translation
plane of order ¢”, which is the dual of the derived projective plane PLp, with P = (o0, 0),
and the matrix /& describes a pencil of hyperovals in PLp [59, p. 316].

Steinke in [57] takes advantage of the above coordinatization to show the following:

Theorem 1.2 [57, Theorem 4] An elation Laguerre plane of order q" is equivalent to a
pseudo-oval in PG(3n — 1, q).

In particular, when ¢ is even, an elation Laguerre plane of order ¢" can be constructed
from a pseudo-oval in PG(3n — 1, ¢) in the following way [57]. Let O be a pseudo-oval in
PG(3n—1, q), q even, with nucleus N. The elements of O can be labelled by GF(g)" U{oo}:
O ={X; : 7 € GF(g)" U {oc}}. The projective space PG(3n — 1, g) can be coordinatized in
such a way that X, and N are generated by the columns of the 3n x n-matrices (I O O)T
and (O I O)', respectively. In this setting, the remaining elements X, with z € GF(g)",
can be assumed to be generated by (1(z) g(z) I)!, for uniquely defined n x n matrices (z)
and g(z). Let 0" = (O U {N}) \ {Xoo}. Then, O is a pseudo-oval in PG(3n — 1, q) with
nucleus Xo. Let ¥ = (N, Xo), and set A, = ¥ N (X, X;) for z € GF(q)". Then, by
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[61], S = {A; : z € GF(g)"} U {N} is a spread of X, whose associated spread set is
{g(z) : z € GF(g)"}. This implies that 7(O’, X ) is the translation plane defined by the
above spread set. Consider the matrix-valued mapping D : GF(g)" U {co} — M3, ,(g) with
D(z) = (h(z) g(z) I)', z € GF(g)", and D(oo) = (1 O O)'. It turns out that the mapping D
can be used as above to construct an elation Laguerre plane £(g, #), whose derived projective
plane PL(,0) at (0o, 0) is the dual of 7 (0, X ).

Since there is a unique Laguerre plane of order 4, there is a unique elation Laguerre plane
of order 4; the same holds for order 9. The only two existing Laguerre planes of order 8
are both elation Laguerre planes. These last two results are computer-dependent. Since there
is a computer-free proof of the uniqueness of a translation plane of order 8 [32], in Sect.2
we give a computer-free proof that there are exactly two elation Laguerre planes of order 8
(Corollary 2.8). We also apply the classification of translation planes of order 16 [17, 52]
and the classification of ovals in the duals of these planes [51] to classify by computer the
elation Laguerre planes of order 16 in Corollary 2.12, finding that there are exactly three of
them. The latter classification has already been obtained by Steinke in [59] using the same
arguments as above, but with a different method of proof. Corollaries 2.16 and 2.19 provide
results for ¢ = 32 and 64.

1.4 Wild subspaces

We now recall some results from the unjustly neglected paper of Wild [66]. It would be nice
to state Wild’s results in full generality, but that would take us into the realm of quasifields
and coordinatization of translation planes, which is unfortunately too far from our present
purpose. So we refer the reader to the original paper [66] for the general definitions and
statements. We only require the Desarguesian case.

Let § be the vector space of all functions f : GF(q) — GF(g), g even, such that f(0) = 0.
It is well known that each element of § can be written as a polynomial in one variable of
degree at most g — 1.

Given an oval O in PG(2, q), g even, it is possible to choose projective coordinates such
that O contains the points {(1, 0, 0), (1, 1, 1), (0, 1, 0)}.! This yields that it can be written as

O =D(f)={,t, f(t)) :t € GF(g)} U{(0, 1, 0)}, with nucleus (0, 0, 1),

where f € § with f(1) = 1, and such that f; : x — (f(x +5) + f(s5))/x is a permutation
of GF(¢)\{0}, for any s € GF(gq). Permutations of GF(g) with these properties are called
o-polynomials [24, p. 185]. It turns out that the degree of an o-polynomial is at most g — 2.
If f(1) = 1 is not required but the other conditions are, then f is an o-permutation over
GF(gq). Conversely, for every f € §suchthat f(1) =1land f; : x = (f(x +5) 4+ f(5))/x
is a permutation of GF(g) \ {0}, for any s € GF(q), the point-set D(f) = {(1,¢, f(¢)) : t €
GF(g)}U{(0, 1, 0)} is an oval in PG(2, ¢) with nucleus (0, 0, 1) [24, Theorem 8.22]. In this
setting, the oval D(x!/2) is a conic, while D(x?) is a pointed conic of PG(2, q).

An n-dimensional Wild subspace over GF(q), g even, is a n-dimensional subspace W of

3.

Remark 1.3 We point out that our definition of a Wild subspace coincides with the definition
of a linear triangular system of ovals given in [66], when the left-quasifield is GF(¢"). In

L' To be formally correct, (x, y, z) should be replaced by ((x, y, z)) to denote the point defined by the vector
(x, y, z), but we guess that the only result of putting angle brackets everywhere in the paper would be to burden
it with a uselessly heavy notation. For this reason, we warn the reader that we will freely use this simplified
notation throughout this paper.
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particular, since every o-polynomial is actually a polynomial in one variable of degree at
most g — 2, the property (iii) in the latter definition implies that a Wild subspace contains
exactly one o-polynomial.

The kernel of an n-dimensional Wild subspace W over GF(q) is the largest subfield of
GF(g™) over which W is a subspace. Let f be an o-polynomial over GF(¢") and W be the
set of all GF(¢") scalar multiples of f. Clearly, W is an n-dimensional Wild subspace over
GF(gq) with kernel GF(¢"), and the ovals D(f), f € W, are images of each other under the
homologies of PG(2, ¢g") with center (0, 0, 1) and axis the line joining (1, 0, 0) and (0, 1, 0).

Since the Desarguesian projective plane PG(2, g) is self-dual, as an immediate conse-
quence of Theorem 1 and Corollary 2 in [66], we get the following results.

Theorem 1.4 Let O be an n-dimensional pseudo-oval in PG(3n — 1, q), q even, and X be an
element of O. Suppose that the translation plane 7w (O, X) is Desarguesian. Then, there arises
an n-dimensional Wild subspace W (O, X) over GF(q). Conversely, each n-dimensional Wild
subspace W over GF(q) gives rise to an n-dimensional pseudo-oval O of PG(3n — 1, q)
such that w (O, X) is Desarguesian, for some element X of O, with W = W (O, X).

Theorem 1.5 Let O be an n-dimensional pseudo-oval in PG(3n — 1, q), q even, and X be
an element of O such that the translation plane 7w (O, X) is Desarguesian. Then, W (O) has
kernel GF(q™) if and only if O has kernel GF(q") (i.e., O is elementary).

2 Machinery and computational results

In this section, we classify all pseudo-ovals in PG(3n — 1, 2), n = 3, 4, and all pseudo-ovals
inPG(3n—1, 2),n =5, 6, that give a Desarguesian translation plane. In the latter two cases,
we require that there is a Desarguesian translation plane since the classification of translation
planes and that of the ovals in their duals are not complete. As a by-product, thanks to the
correspondence between pseudo-ovals and TGQs, we also classify all TGQs of order ¢",
n = 3,4, and all TGQs T (O) of order ¢"*, n = 5, 6, when O gives a Desarguesian translation
plane 7 (O, X), for some X € O. Another consequence, via Theorem 1.2, is the classification
of all elation Laguerre planes of order 2", n = 3, 4, and that of all elation Laguerre planes of
order 2", n =5, 6, with a Desarguesian projective completion. In light of Theorems 1.4 and
1.5, to achieve the above aim, we actually classify the n-dimensional Wild subspaces over
GF(g) forn = 3,4,5,6.

Our programs, written in MAGMA [4], were run on a macOS system with one quad-core
Intel Core i7 2.2 GHz processor. All the computational operations take approximately 60 h
of CPU time. The code is available on email request to the 3rd author.

In [37, Lemma 1] an action of PI'L(2, ¢), ¢ even, on the vector space § is defined:
it is known as magic action. Recall that, if f(x) = Za,-xi and y € Aut(GF(g)), then
fY(x) = Zag/xi.

Any element ¥ = (A, y) € PTL(2, q), with A = <Ccl Z) and y € Aut(GF(gq)), acts on
§ by mapping f to ¥ f, where

_ —1/2 ax +c¢ a a\].
v f@) = 4| [(bx+d)f”(bx+d)+bxfy(b>+dfy<d)]

here, if b = 0 then bf" (a/b) = 0 by convention (and similarly for df" (c/d)).
This action of PI'L(2, ¢) on § is called magic action.
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Theorem 2.1 [37, Theorem 4,Theorem 6] The magic action preserves the set of o-
permutations, and for g = ¥ f we have that D(f) and D(g) are projectively equivalent
under a collineation ¥ of PG(2, q) induced by V. Conversely, if D(f) and D(g), with f, g
o-permutations, are equivalent under PI'L(3, q), then there is v € PI'L(2, q) such that
Y fe(g)

For an o-polynomial, there are ¢ — 1 o-permutations, namely the non-zero scalar multiples
of the o-polynomial, and for an o-permutation f there is the unique o-polynomial (1/ £ (1)) f.
For f € §, (f) will denote the one-dimensional subspace of § containing f.

Since the magic action preserves the set of o-permutations, we say that two o-permutations
f and g are equivalent if they correspond under the magic action, i.e., there exists ¢ €
PI'L(2, g¢) such that ¢ f € (g) = {rg : L € GF(q)}.

The main theorem of Segre [53] is that, if ¢ is odd, then every oval of PG(2, ¢) is a conic.
Itis also shown in [54] that, if g is 2 or 4, then every oval of PG(2, ¢) is a conic, and if ¢ = 8§,
then every oval of PG(2, ¢) is either a conic or a pointed conic. Other ovals that we need to
mention are the Lunelli-Sce ovals in PG(2, 16) [33]. They are uniquely specified by being
ovals of PG(2, 16) that are neither conics nor pointed conics. This is due to the classification
of ovals in PG(2, 16) obtained by Hall [23] with the use of a computer, and by O’Keefe and
Penttila [34] without it. The ovals of PG(2, 32) were classified: up to projective equivalence,
there are 35 ovals, coming from 6 hyperovals [50]. The hyperovals of PG(2, 64) have been
classified by Vandendriessche in [64]: up to projective equivalence, there are 4 hyperovals,
giving rise to 19 ovals [48].

Surveys of the known families of hyperovals in PG(2, ¢) appear in [11, 13]. They are
the translation hyperovals [54], the Segre-Bartocci hyperovals [55, 56] for ¢ not square, the
two families of Glynn hyperovals [19] for ¢ not square, the Payne hyperovals [43] for g not
square, the Subiaco hyperovals [14] for all even g (two families [44] if ¢ is a square but
not a fourth power), the Cherowitzo hyperovals [11] for g not square (proved to be new in
[49]), the Adelaide hyperovals [13] for ¢ square, and the O’Keefe—Penttila hyperoval [36]
in PG(2, 32). It is probably also worth passing the remark that the Lunelli-Sce ovals are no
longer sporadic, having been generalized to the Subiaco ovals in [14] and to the Adelaide
ovals in [13]. No other hyperovals of PG(2, ¢) are known.

The ovals of the four projective planes of order 9 were classified in [18] (see also [12]). The
hyperovals of the twenty-two known projective planes of order 16 (including all translation
planes of order 16 [10, 20] and all dual translation planes of order 16) were classified in [51].
It is worth remarking that four of the known planes of order 16 contain no ovals. For no other
projective plane of finite order have the ovals in that plane been classified.

In what follows, we consider the projective plane PG(2, 2"), n = 3,4, 5, 6. Since every
oval lies in a unique hyperoval, all the ovals in PG(2, 2"), up to equivalence, can be obtained
by removing one representative from each point-orbit of the stabilizer in PI'L(3, 2") of
each hyperoval, viewed as a permutation group acting on it. We apply a suitable lin-
ear collineation to every oval in such a way the corresponding image contains the points
0,1,0),(1,0,0), (1,1, 1) and has nucleus (0, 0, 1). Then, we obtain the associated o-
polynomials by Lagrange interpolation. Via the magic action, we get all the ovals in PG(2, 2")
on the fundamental quadrangle, and we store the corresponding o-polynomials in terms of
their coefficients. This operation, using MAGMA, produces all isomorphism classes of ovals
in PG(2, 2"), whose number is denoted by k,,; see [54] for n = 3, [23, 34] for n = 4, [50]
forn =5, and [48] for n = 6.

Lemma 2.2 If W is a Wild subspace, and f,g € W with f # g, then f(1) # g(1).
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Proof From the definition of a Wild subspace, it follows that f + g € W, so f + g is an
o-permutation (or 0). If f # g, then f + g #0,s0 (f +¢)(1) #0,1ie., f(1) #g(l). O

Corollary 2.3 If W is an n-dimensional Wild subspace over GF(q), then {f(1) : f € W} =
GF(g").

Proposition 2.4 The only n-dimensional Wild subspace over GF(2),n = 3,4, 5, 6, is GF(2"),
whose kernel is clearly GF(2").

Proof By Corollary 2.3, we can fix an element a of GF(2") witha # 0, 1. From the definition
of Wild subspaces and Remark 1.3, under the magic action, we may assume that a Wild
subspace W contains a fixed o-polynomial f from some of the &, equivalence classes of
ovals. Then, there exists g € W, g # f, with g(1) = a. Thus, h = a~'g is an o-polynomial,
and (14a)~'(f +g) is an o-polynomial as well. Therefore, we may say that, for the fixed o-
polynomial f and the element a, there is an o-polynomial & such that p = (14+a)~'(f +ah)
is an o-polynomial. This implies that ps : x +— (p(x + s) + p(s))/x is a permutation of
GF(2")\ {0}, forany s € GF(2"). By using MAGMA, we checked that forn = 3, 4, 5, 6, and
any fixed o-polynomial f from each of the k,, classes, the only o-polynomial / that passes
the test on pg being a permutation as above is f itself. O

The following result is an immediate consequence of Theorems 1.4 and 1.5.

Corollary 2.5 Every pseudo-oval O of PG(3n — 1,2), n = 3,4, 5, 6, such that 7 (O, X) is a
Desarguesian translation plane, for some element X € O, is elementary.

In the following subsections, we give all computational details for each value n that has
been taken into consideration.

2.1 Casen=3

Theorem 2.6 Up to projective equivalence, there are exactly two 3-dimensional pseudo-ovals
in PG(8, 2), and each of them is elementary. Explicitly, either O arises from a conic C or
Jfrom a pointed conic PC.

Proof Let O be a 3-dimensional pseudo-oval in PG(8, 2) and X be an element of O. Then,
(O, X) is a translation plane of order 8. There is a computer-free proof that all translation
planes of order 8 are Desarguesian [32]. Thus, the hypotheses of Theorem 1.4 are satisfied,
and we need only to classify the 3-dimensional Wild subspaces over GF(2). The 70 o-
permutations over GF(8) are given, for example, in [35, Theorem 2.2]. It follows by inspection
with MAGMA that every 3-dimensional Wild subspace over GF(2) has kernel GF(8). Thus,
by Theorem 1.5, O has kernel GF(8), and so O arises from an oval in PG(2, 8), which is
either a conic or a pointed conic by [35, Theorem 2.2], [54]. Since these two ovals are not
projectively equivalent, the result follows from Proposition 1.1. O

Corollary 2.7 Up to isomorphism, there are exactly two TGQs of order 8, namely Q (4, 8) =
T>(C) and T>(PC).

Corollary 2.8 Up to isomorphism, there are exactly two elation Laguerre planes of order 8,
namely the Miquelian plane L£(C) and the ovoidal plane L(PC).

Remark 2.9 There are exactly two Laguerre planes of order 8. However, this result is
computer-dependent. There seems to be some value in having a computer-free proof of the
weaker result here.
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2.2 Casen=4

Theorem 2.10 Up to projective equivalence, there are exactly three 4-dimensional pseudo-
ovals in PG(11, 2), and each of them is elementary. Explicitly, O arises from a conic C, a
pointed conic PC, or a Lunelli-Sce oval K.

Proof According to the coordinatization given in [57, Theorem 3], the derived projective
plane PLp, with P = (0o, 0), which is a dual translation plane, contains a pencil of hyperovals
through the points w, (0), (0, 0), where w is the translation center of PLp. [59, p. 316]. The
translation planes of order 16 were classified in [17, 52]. There are eight distinct translation
planes of order 16. The hyperovals in these planes and in their duals were classified in [10, 51].
The only (dual) translation plane admitting a pencil of hyperovals with the above property
is PG(2, 16). Hence, each derived projective plane of an elation Laguerre plane of order
16 is Desarguesian [59, Proposition 5]. Under the aforementioned correspondence between
elation Laguerre planes and pseudo-ovals (see Theorem 1.2 for g even), we know that for
all pseudo-ovals O in PG(11, 2) there is X € O such that 7 (O, X) is Desarguesian. Thus,
the hypotheses of Theorem 1.4 are satisfied, and we need to classify all 4-dimensional Wild
subspaces W (O) over GF(2). The 30870 o-permutations over GF(16), split into k4 = 3 (see
[23, 34]) isomorphism classes of ovals in PG(2, 16), are obtained via the magic action. It
follows by inspection with MAGMA that every 4-dimensional Wild subspace over GF(2)
has kernel GF(16). Thus, by Theorem 1.5, O has kernel GF(16), and so O arises from an
oval in PG(2, 16), which is or a conic or a pointed conic or a Lunelli-Sce oval [23, 34]. Since
these three ovals are not projectively equivalent, the result follows from Proposition 1.1. O

Corollary 2.11 Up fto projective equivalence, there are exactly three 2-dimensional pseudo-
ovals in PG(5, 4), and each of them is elementary. Explicitly, O arises from a conic C, a
pointed conic PC or a Lunelli-Sce oval K.

Corollary 2.12 [59, Theorem 8] Up to isomorphism, there are exactly three elation Laguerre
planes of order 16, and these are ovoidal. Explicitly, they are the Miquelian plane L(C), the
ovoidal plane L(PC) over a pointed conic, and the ovoidal plane L(K) over a Lunelli-Sce
oval.

Remark 2.13 1In [20] the authors classify translation Laguerre planes of order 16 by computer,
finding just £(C) and L(PC). Of course, £,(O) is a translation Laguerre plane if and only if
O is a translation oval.

Corollary 2.14 Up to isomorphism, there are exactly three TGQs of order 16, and these are
of the form T,(O), where O is an oval in PG (2, 16). Explicitly, the three TGQs of order 16
are Q(4,16) = T»(C), To(PC), and T»(K).

In both following cases, it is worth underlining that, since the classification of translation
planes of order 2% and 2°, and that of ovals in their duals are not complete, we cannot adopt
the same approach as in case n = 4. Therefore, we limit ourselves to the classification of
all pseudo-ovals O of PG(3n — 1,2), n = 5, 6, which admit a Desarguesian translation
plane. Consequently, we classify all TGQs T (O) of order ¢", n = 5,6, when O admits a
Desarguesian translation plane, and all elation Laguerre planes of order 2", n = 5, 6, with a
Desarguesian projective completion.
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23 Casen=>5

Theorem 2.15 Up to projective equivalence, there are exactly thirty-five S-dimensional
pseudo-ovals in PG(14, 2) admitting a Desarguesian translation plane, and each of them
is elementary.

Proof Let O be a 5-dimensional pseudo-oval in PG(14, 2) such that the translation plane
(O, X) is Desarguesian for some X € O. Thus, the hypotheses of Theorem 1.4 are satisfied,
and we need to classify all 5-dimensional Wild subspaces W (QO) over GF(2). Via magic
action, we obtain 3537700 o-permutations over GF(32), split into ks = 35 isomorphism
classes of ovals in PG(2, 32) [50]. The above-described inspection with MAGMA gives that
every 5-dimensional Wild subspace over GF(2) has kernel GF(32). Thus, by Theorem 1.5,
O has kernel GF(32), and so O arises from an oval in PG(2, 32). Since in PG(2, 32) there
are exactly thirty-five ovals which are pairwise not projectively equivalent, the result follows
from Proposition 1.1. O

Corollary 2.16 Up to isomorphism, there are exactly thirty-five elation Laguerre planes of
order 32 with Desarguesian projective completion, and these are ovoidal.

Corollary 2.17 Up to isomorphism, there are exactly thirty-five TGQs T (O) of order 32, with
O admitting a Desarguesian translation plane, and these are of the form T>(O), where O is
an oval in PG(2, 32).

24 Casen=6

Theorem 2.18 Up to projective equivalence, there are exactly nineteen 6-dimensional
pseudo-ovals in PG(17, 2) admitting a Desarguesian translation plane, and each of them
is elementary.

Proof Let O be a 6-dimensional pseudo-oval in PG(17, 2) such that the translation plane
(O, X) is Desarguesian for some X € O. Thus, the hypotheses of Theorem 1.4 are satisfied,
and we need to classify all 6-dimensional Wild subspaces W(O) over GF(2). Via magic
action, we obtain 17297346 o-permutations over GF(64), split into k¢ = 19 isomorphism
classes of ovals in PG(2, 64) [48]. The above-described inspection with MAGMA gives that
every 6-dimensional Wild subspace over GF(2) has kernel GF(64). Thus, by Theorem 1.5,
O has kernel GF(64), and so O arises from an oval in PG(2, 32). Since in PG(2, 64) there
are exactly nineteen ovals which are pairwise not projectively equivalent, the result follows
from Proposition 1.1. o

Corollary 2.19 Up to isomorphism, there are exactly nineteen elation Laguerre planes of
order 64 with Desarguesian projective completion, and these are ovoidal.

Corollary 2.20 Up to isomorphism, there are exactly thirty-five TGQs of order 64, and these
are of the form T>(O), where O is an oval in PG(2, 64).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
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