
Designs, Codes and Cryptography
https://doi.org/10.1007/s10623-024-01374-1

Square root computation in finite fields

Ebru Adiguzel-Goktas1 · Enver Ozdemir2

Received: 26 December 2022 / Revised: 7 January 2024 / Accepted: 6 February 2024
© The Author(s) 2024

Abstract
In this paper, we present a review of three widely-used practical square root algorithms. We
then describe a unifying framework where each of these well-known algorithms can be seen
as a special case of it. The framework with singular curves offers a broad perspective to
compare and further improve the existing methods in addition to offering a new avenue for
square root computation algorithms in finite fields.

Keywords Square roots · Singular curves · Elliptic curves

Mathematics Subject Classification Primary 11Y99 · 68Q99

1 Introduction

Finding square roots in finite fields has been an interest of many researchers in computational
number theory [3]. In a strict sense, the problem is reduced to finding square roots modulo
a prime number p. In other words, the problem is converted to computing square roots in a
finite field Fp where p is a prime integer and Fp is a field with p elements. The square root
computation is a dominating step of several other methods in computations. For example, any
sieving method for factorization of integers or the elliptic curve primality proving method
requires an enormous number of square root computations [3]. Even though frequently a
new method for computing square root in finite fields appears [5, 7], the two oldest methods,
Tonelli-Shanks andCipolla [2, 11], are still themost popular algorithms in practice in addition
to a relatively recent one presented by Peralta [10]. Each algorithm has its own advantages
and disadvantages over the others. First of all, all three algorithms are probabilistic and in
terms of probability of success for each trial, they are all the same considering the worst-

Communicated by D. Panario.

B Ebru Adiguzel-Goktas
ebru.adiguzel@agu.edu.tr

Enver Ozdemir
ozdemiren@itu.edu.tr

1 Department of Computer Science, Abdullah Gul University, Kayseri, Turkey

2 Informatics Institute, Istanbul Technical University, Istanbul, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-024-01374-1&domain=pdf
http://orcid.org/0000-0002-8215-2256

E. Adiguzel-Goktas, E. Ozdemir

case scenario. In other words, the probability of success for a single trial is around 1/2 for
each of these algorithms. However, considering a general case, Peralta’s algorithm has higher
probability of success. On the other hand, Tonelli–Shanks algorithm has lower computational
loadmost of the time.We are going to present a method for square root computing which also
allows us to observe aforementioned algorithms in the same context. The observation leads
to an efficient way of analyzing and comparing of algorithms. For example, despite Peralta’s
algorithm success rate being stated to be at least 1/2 in the original manuscript, we show that
the actual probability can be improved to be at least 3/4 and this can be achieved by adding
one step while implementing Peralta’s algorithm with a singular cubic. We present that the
success rate for a prime p where p − 1 = 2em and m is odd depends on the exponent e.

The well-known three algorithms are quite efficient in practice but the scholarly work on
finding a method for computing square roots continues in the direction of finding a practical
and deterministic algorithm [7]. In what follows, we aim to explain these three algorithms
as part of single method with singular curves to provide a wider insight that might help for
further development toward a practical and deterministic square root algorithm. The singular
curve explanation of these methods might also help understanding of current methods and
their efficiency. In other words, each method is an analogue of finding special torsion points
of certain curves where Tonelli–Shanks and Cipolla’s algorithms seek sufficient conditions
while Peralta’s algorithm only seeks to fulfill the necessary condition for the same purpose.
In this respect, we first present a brief description of Tonelli–Shanks, Cipolla, and Peralta’s
algorithms in the next section. The third section introduces the mathematical objects for
the method and presentation of each algorithm in terms of these mathematical objects. We
include performance analysis in the last section.

2 Square roots algorithms

Let p be an odd prime integer and Fp be a prime field with p elements. Let a �= 0 ∈ Fp . It
is not hard to determine whether a has a square root in Fp . In fact, the multiplicative group
G = (F∗

p, ·) is cyclic and so a = gβ for some positive integer β, where g ∈ G is a generator
of G. β is an even integer if and only if a has a square root. In other words, β being odd
implies that a is a quadratic non-residue modulo p. It is not a tedious task to determine
whether β is even or not. As g is a generator of G, then

g
p−1
2 = −1 ∈ G.

In this respect;

a
p−1
2 = (gβ)

p−1
2 = (g

p−1
2)β = (−1)β in G.

Therefore, a
p−1
2 mod p is 1 if and only if a is a quadratic residue modulo p. The formu-

lation of quadratic residue/non-residue is given by the Legendre symbol;

(
a

p

)
=

⎧⎪⎨
⎪⎩
1, if a is quadratic residue modulo p and a �≡ 0 mod p

−1, if a is a non-quadratic residue modulo p

0, a ≡ 0 mod p

Once decided that a has a square root, the next task is to find it.

123

Square root computation in finite fields

Let’s assume for a moment that the prime integer p ≡ 3 mod 4. We are also assuming a

has a square in Fp , i.e.,

(
a

p

)
= 1. As

(
a(p+1)/4

)2 = a(p+1)/2 ≡ a(p−1)/2 · a ≡ 1 · a mod p,

x = a(p+1)/4 gives a square root of a ∈ Fp .

We do not have a generic square root formula for all other primes except for p ≡ 5
mod 8. In fact, a(p−1)/2 ≡ 1 mod p implies either

a(p−1)/4 ≡ 1 mod p or a(p−1)/4 ≡ −1 mod p.

• If a(p−1)/4 ≡ −1 mod p, x ≡ 2a(4a)(p−5)/8 mod p gives a solution for

x2 ≡ a mod p as 2
p−1
2 =

(
2

p

)
= (−1)

p2−1
8 = −1.

• Otherwise, x ≡ a(p+3)/8 mod p gives a square root of a.

From now on, we are assuming all primes p ≡ 1 mod 8. The first method for square
root computation that we are going to present briefly is due to Tonelli. The method is later
improved by Shanks.

2.1 Tonelli–Shanks algorithm

The multiplicative group G = (F∗
p, ·) has order exactly p − 1 so for any element s ∈ G we

have

s p−1 ≡ 1 mod p.

Lets write p− 1 = 2em for some e ≥ 3 and odd integer m. Then the group G has a 2-Sylow
subgroup H of order 2e. Let z be a generator of H and b be equal to am . Then b has order
2 j for some j ≥ 0 since b = am lies in H . As z is a generator of H , there must be an integer

r ≥ 0 such that b ≡ zr mod p. Since a is a quadratic residue, i.e., a
p−1
2 ≡ 1 mod p, so b

is also a quadratic residue and then r must be even integer.
The fact that r is even implies x = a(m+1)/2z−r/2 a desired square root of a. Indeed,

x2 ≡ am+1z−r ≡ am · a · b−1 ≡ b · a · b−1 ≡ a mod p

Now, the problem is how to find a generator z of the 2-Sylow subgroup H of G. The best

way of finding the generator of H is to choose a random integer n such that

(
n

p

)
= −1.

Then z = nm is a generator of H since z2
e−1 ≡ n(m2e)/2 ≡ n(p−1)/2 ≡ −1 mod p i.e., z

has order exactly 2e in H . At the current state of the art, the only practical way to find such
n is the trial and error method. Assuming GRH, n is smaller than 2 log2 p [1]. Let n be an
element of G, as G is cyclic and g is a generator of it, there is a positive integer α such that
n = gα . The random number n gives a generator of H if and only if the positive integer
α is odd. In other words, for random n ∈ G, the probability that nm is a generator of H is
around 1/2. This part of Tonelli–Shanks algorithm is probabilistic and the success rate for a
single trial is almost 1/2. The resulting probabilistic algorithm for a square root computation
performs the following steps:

123

E. Adiguzel-Goktas, E. Ozdemir

Algorithm 1 Tonelli–Shanks Algorithm
Input: a quadratic residue a modulo p where p is an odd prime such that
p − 1 = 2em.

Output:
√
a mod p

(1) Choose numbers n at random until

(
n

p

)
= −1

(2) Set z = nm mod p and b ≡ am mod p.
(4) Find the smallest integer r ≥ 0 such that b ≡ zr ≡ nmr mod p.
(5) Set x ≡ a(m+1)/2z−r/2 ≡ √

a mod p.

We should also note that finding r might be a tedious task if e is a large number, say
more than 99. In such a case, the usage of Tonelli–Shanks might not be suitable for practical
purposes. However, Cipolla’s algorithm stands as a little more practical alternative if e is
large.

2.2 Cipolla’s algorithm

Cipolla’s Algorithm [2] is described as a square root method while using the extension field
Fp2 ofFp . Even though the probability of success is the same as theTonelli–Shanks algorithm,
computing in extension brings an extra burden for this method. As mentioned above, step
4 of Algorithm 1 handles the discrete logarithm problem in the 2-Sylow subgroup H of G.
Once the size of H gets large, Cipolla’s method becomes more practical. In what follows,
we give brief details of Cipolla’s method.

Let t be an integer with 0 ≤ t ≤ p − 1 such that u = t2 − a is quadratic non-residue
modulo p. The polynomial x2 − u is an irreducible polynomial in Fp and Fp[x]/(x2 − u)

is isomorphic to the extension field Fp2 . Let w = √
u in Fp2 . As w can not be an element of

Fp , one can define the extension field as;

Fp[
√
u] = Fp[w] = {x + yw : x, y ∈ Fp}.

For every element x + yw ∈ Fp[w], we have (x + yw)p = x − yw, since

w p−1 ≡ (w2)(p−1)/2 ≡ u(p−1)/2 ≡ −1 mod p.

Theorem 2.1 The element b = (t + w)p+1/2 lies in Fp and it is a square root of a.

Proof

b2 = (t + w)p+1 = (t + w)(t + w)p = (t + w)(t − w) = t2 − w2 = t2 − (t2 − a2) = a.

	

Thefirst aimofCipolla’smethod is to find a primitive element u inFp2 such thatu = t2−a.

For our case, u is a primitive element if and only if t2−a is a quadratic non-residuemodulo p.
As in the case of Tonelli–Shanks algorithm, there is no deterministic method for finding such
a primitive element. The desired primitive element is found via the trial and error method.
Again, for a random t , the probability that u = t2 − a gives a primitive element is around
1/2. The implementation of Cipolla’s algorithm follows the following steps:

123

Square root computation in finite fields

Algorithm 2 : Cipolla’s Algorithm
Input: an odd prime p and a quadratic residue a modulo p.
Output:

√
a mod p

(1) Find an integer t with 0 ≤ t ≤ p − 1 such that u = t2 − a is a quadratic non-residue mod p.
(2) Return (t + √

u)(p+1)/2.

As mentioned above the last step of the algorithm requires more multiplication operations
than the Tonelli–Shanks method as w does not lie in Fp. It lies strictly in the extension field
Fp2 . The running time of the algorithm is bounded by O(M log2 p) while Tonelli–Shanks
is O(M(log p + e2)) where M stands for complexity of multiplication in Fp . Moreover, the
complexity of the Tonelli–Shanks approach can be improved by using a faster algorithm for
the discrete logarithm which yields a complexity of O(M(log p + e log e/ log log e)) [12].
In practice, this approach will almost always outperform Cipolla unless e is very large.

2.3 Peralta’s algorithm

A relatively new and practical method by Peralta [10] also exploits the group (Z∗
p, ·). Unlike

Tonelli–Shanks and Cipolla’s algorithms, the probability of success does not stand same all
the time. If p−1 = 2em withm odd, the probability of success depends on e and it is at least
1/2. Consider a square a in the group (Z∗

p, ·). Let f (y) = y2 − a be a polynomial over Fp.

Note that f (y) is reducible. The ring R = Zp[y]/(f (y)) is a factor ring and every nonzero
element in

R = Zp[y]/(f (y)) = {b1y + b0 + (f (y)) |b0, b1 ∈ Zp}
is either a unit or a zero-divisor. Since the set of units R∗ in R form a finite abelian group
under multiplication modulo f (y) and every finite abelian group is a direct products of cyclic
groups of prime order, R∗ is isomorphic to Z

∗
p ⊕ Z

∗
p. Hence,

ep−1 ≡ 1 mod p for every e ∈ R∗.

The ring R can also be considered as the ring Zp[√a] and the norm of any unit in this
ring should be 1. In other words, if r + s

√
a is a multiplicative unit then N (r + s

√
a) =

(r + s
√
a)(r − s

√
a) = r2 − s2a = 1 which also means that r2 − s2a �= 0 where N is the

norm function. Therefore, R∗ consists of elements of the form r + s
√
a such that r2 �≡ s2a

mod p. If r ∈ Z
∗
p and r2 ≡ a mod p, then r would be our desired result. From now on,

we will consider the case r2 �≡ a mod p and we focus on the elements of R∗ of the form
r + √

a. Consider

(r + √
a)(p−1)/2 = u + v

√
a.

then we have

(r + √
a)(p−1) ≡ 1 ≡ u2 + 2uv

√
a + v2a mod p.

It implies that 2uv = 0, i.e., either u or v is 0. In the case u = 0 we have,

(r + √
a)(p−1)/2 = 0 + v

√
a �⇒ (r + √

a)p−1 ≡ 1 ≡ v2a mod p.

Then v−1 is our desired square root of a. Hence, if one can find a random r ∈ Z
∗
p such

that r2 �≡ a mod p and (r + √
a)(p−1)/2 = 0 + v

√
a, then the solution of the square root

problem will be v−1. The algorithm based on this above observation follows the steps: A

123

E. Adiguzel-Goktas, E. Ozdemir

Algorithm 3 : Peralta’s Algorithm I
Input: a quadratic residue a modulo p
Output: x ≡ √

a mod p.
(1) Choose r ∈ Z

∗
p at random such that r2 �≡ a mod p, otherwise output is r .

(2) Compute (r + √
a)(p−1)/2 = u + v

√
a.

(3) If u = 0, output x ≡ v−1 mod p else go to (1).

slightly modified version of the above algorithm: The probability of success depends on the

Algorithm 4 : Peralta’s Algorithm II
Input: a quadratic residue a modulo p.
Output: x ≡ √

a mod p.
(1) Choose r at random ∈ Z

∗
p .

(2) If r2 ≡ −a mod p, choose a new r .
(3) Compute (r + √−a)m = u + v

√−a, where p − 1 = 2em and m is an odd integer.
(4) If either u or v is 0, choose a new r .

(5) Compute (u + v
√−a)2

i
for some i = 1, 2, · · · , e until (u + v

√−a)2
i = 0 + w

√−a for some w.

(6) Let (u + v
√−a)2

i−1 = k + l
√−a. Then k2 − l2a ≡ 0 mod p and output k/l.

number e. In fact, for a random r , we have 1− 1/2e−1 chance to end up with a square root of
a (See [10, Theorem 4]). On the other hand, as mentioned above, when we look at Peralta’s
algorithm through singular curves, we would notice that the actual probability of success
is 1 − 1/2e. Peralta’s algorithm serves for all integers but as we do have a generic square
root formula for p ≡ 3 mod 4, the probability of success was defined to be 1/2 by Peralta
considering the worst-case scenario (e = 2) event though we see in a moment that it is 3/4.

3 Geometric analogue of algorithms

In this section, we present analogues of all three algorithms for square root computing [2,
10, 11] using the Jacobian group of singular cubics. In the first part, we describe the group
structure of a singular curve’s Jacobian group and then show that the square root is embedded
in certain points in this group [9].

3.1 Square root algorithmwith curves

Let E be an elliptic curve over a finite field Fp with p elements where p is an odd prime
integer. In particular, the curve E can be defined as

y2 = x3 + Ax + B over the field Fp. (3.1)

123

Square root computation in finite fields

3.2 Computing in an elliptic curve group

3.2.1 Affine coordinates

In case the affine coordinates is employed for representation of elements in the elliptic curve
E : y2 = x3 + Ax + B group, an addition operation can be performed as follows:

Addition
Let P1 = (x1, y1), P2 = (x2, y2) be points on E such that P + Q = P3 = (x3, y3).

• If P1 �= ±P2 then x3 = k2 − x1 − x2, y3 = k(x1 − x3) − y1, k = y1−y2
x1−x2

.

• If x1 = x2 but y1 �= y2, then P1 + P2 = ∞.

Doubling
Let 2P1 = (x3, y3). Then

x3 = k2 − 2x1, y3 = k(x1 − x3) − y1, k = 3x21 + A

2y1
. (3.2)

An addition and doubling operation require (I + 2M + S) and (I + 2M + 2S) calculations,
where I is inversion, M is multiplication and S is squaring in finite field, respectively.[[14]]

Since the calculation of inversion is costly, representing elements with projective coordi-
nates in E might be more suitable in practice.

3.2.2 Projective coordinates

For representing elements in projective coordinates, the equation of E is written as

Y 2Z = X3 + AX Z2 + BZ3.

The point P1 = (X1 : Y1 : Z1) on E corresponds to the affine point (X1/Z1, Y1/Z1)

when Z1 �= 0, otherwise it represents the point at infinity P∞ = (0 : 1 : 0). Also,
−P1 = (X1 : −Y1 : Z1).

Addition
Let P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) on and P3 = P1 + P2 = (X3 : Y3 : Z3).

• If P1 �= P2, then set

K = Y2Z1 − Y1Z2, L = X2Z1 − X1Z2, M = K 2Z1Z2 − L3 − 2L2X1Z2

so that

X3 = LM, Y3 = K (L2X1Z2 − M) − L3Y1Z2, Z3 = L3Z1Z2.

• If P1 = −P2, then P1 + P2 = ∞.

Doubling
Let 2[P1] = (X3 : Y3 : Z3) then set

K = 4X1Y
2
1 , L = 3X2

1 + AZ4
1

and

X3 = −2K + L2, Y3 = −8Y 4
1 + L(K − X3), Z3 = 2Y1Z1.

123

E. Adiguzel-Goktas, E. Ozdemir

The complexities for an addition and doubling are 12M + 4S, 4M + 6S, respectively. No
inversion is needed.

The idea of using singular curves for square root finding is based on the following obser-
vation. Let P1, P2, P3 be points on the elliptic curve such that P1 = (x1, 0), P2 = (x2, 0)
and P3 = (x3, 0). In other words, x1, x2, x3 are the x-coordinates where the graph of E is
crossed with the x-axis and this means that the tangent line at the point Pi is vertical for
i = 1, 2, 3. The group operation in the elliptic curve group E(Fp) indicates that Pi is equal
to its inverse as the tangent line is vertical at these points. That implies 2Pi = ∞ where
∞ represents the identity of the group E(Fp). Since the right side of Eq. (3.1) can have at
most three distinct roots, there are at most three 2-torsion points in the curve E’s group. The
observation basically says reaching a 2-torsion on the curve gives a root of x3 + Ax + B.

In particular, define E : y2 = (x − a)(x2 − a) on Fp where a is a quadratic residue
modulo p. The equation (x − a)(x2 − a) has three distinct roots in Fp . Hence, the points
P1 = (a, 0), P2 = (

√
a, 0) and P3 = (−√

a, 0) are the only 2-torsion points of E . In this
regard, two 2-torsion points on E give a square root of a. Since the points {P1, P2, P3,∞}
forms a subgroup of order 4, the order of the group on the elliptic curve should be divisible
by 4. Therefore, we can say that #E(Fp) = 2em where m is an odd integer and e ≥ 2. We
should note here that finding the number of points on the curve can take at most polynomial
time [4] so we can assume that the order of E is computed in an efficient way. Consider a
random point Q on E . Once mQ is not the identity in E(Fp), 2 jmQ gives a two torsion for
some 0 ≤ j < e. One can define a square root algorithm based on this observation. However,
the problematic part is locating a random point on the curve E . Even though, one can easily
say Q1 = (0, a) and Q2 = (1, 1 − a) are points on the curve, the case mQ1 = mQ2 = ∞
requires locating another random point to be able to continue with the algorithm. Therefore,
using a plain form of the method might stop most of the time as finding a point on the curve
also requires square root computation. In order to avoid this issue, singular curves can be
used.

3.3 Singular curves

The curves for our purposes are defined in a special format that resembles the well-known
elliptic curves. Let K be a field with a characteristic different from 2, the curves that we work
with are defined by an equation of the form y2 = x f 2(x) over K where f (x) is a monic
square- free polynomial. Even though, the normalization of such curves returns the basic
geometric tool of the projective line, the Jacobian group of these curves has the potential
to be utilized for problems in computational number theory [6–8]. The employed singular
curves are defined in a special format. A singular cubic curve that is utilized for square root
computation is defined by E : y2 = x(x + a)2 over the field Fp . The non-singular points
on E(Fp) form an abelian group and the group operation is performed as described above
for the elliptic curves [14, Sect. 2.10]. Note that if a change of coordinates x = x1 − 2a

3 on

an equation y2 = x(x + a)2 is applied then the equation becomes y2 = x31 − a2
3 x1 − 2a3

27 .
Therefore, we can apply above group operation formulas for E : y2 = x31 + Ax + B where

A = − a2
3 and B = − 2a3

27 in Fp . For the sake of simplicity, we use affine coordinates for
the proofs below, however the projective coordinates give better performance in practical
applications. Since the point (−a, 0) is a singular point, the point (0, 0) is the only 2-torsion
point on this curve. For any point P �= (0, 0) on E, if mP is neither ∞ nor (0, 0) then the
order of P must be divisible by 4 and 2imP is a 4-torsion point of E for some 0 < i < e.

123

Square root computation in finite fields

We show in a moment that the 4-torsion points on this curve give the square root of a. In
what follows, we show that computing square root via finding a 4-torsion is actually what
other algorithms implicitly do.

3.3.1 Tonelli–Shanks and Peralta’s algorithms with singular curves

Let a be a quadratic residue modulo p. We define a special singular cubic curve E with the
equation y2 = x2(x−a). As wementioned above the normalization of E at the singular point
(a, 0) returns the projective line. This can also be seen via the following re-formalization

(y

x

)2 = x − a (3.3)

This representation strikes the observation that leads to Peralta’s algorithm. In otherwords,
the coordinate ring of E and the ring in Peralta’s algorithm match. Even though, the change
of coordinates of any singular cubic curve returns to the same coordinate ring, the concealed
singular cubic in Peralta’s algorithm is revealed via the resulting algorithm’s behavior. We
are now going to show that Peralta’s algorithm is nothing but the method of finding 4-torsion
points in the Jacobian of E where E : y2 = x(x + a)2. Note that the change of coordinates
(x = x1 + a) on E states that E can also be defined by y2 = x2(x − a).

Remark 3.1 If an element x ∈ Fp is not a quadratic residue then y2 = x(x + a)2 has no
solutionmodulo p. Because of this, for all points (x, y) on the given curve the first coordinate
must be a quadratic residue. This observation allows for the parametrization (t2, t(t2 + a)).

Theorem 3.2 Let a be a square in Fp, E : y2 = x(x + a)2 be a singular curve over Fp.
Then the points on E of order 4 give the square root of a.

Proof Let P = (x1, y1) = (t2, t(t2+a)) be a point on E .We are going to find 2P = (x3, y3)
in terms of t . The tangent line y = k(x − x1) + y1 intersects E : y2 = x(x + a)2 =
x3 + 2ax2 + xa2 and we have,

(k(x − x1) + y1)
2 = x(x + a)2. �⇒ 0 = x3 − (k2 − 2a)x2 + · · ·

Since the sum of three roots of the given cubic equation is k2 − 2a, we have

x1 + x1 + x3 = k2 − 2a �⇒ x3 = k2 − 2a − 2x1, y3 = k(x1 − x3) − y1.

Since

2y
dy

dx
= (x + a)(3x + a)

then we have

k = dy

dx
= (x + a)(3x + a)

2y

This implies

x3 = k2 − 2a − 2x1 = (t2 − a)2

(2t)2
, y3 = (t2 + a)2(t2 − a)

(2t)3
.

It follows that;

2P =
(

(a − t2)2

4t2
,
(t2 + a)2(t2 − a)

8t3

)
. (3.4)

123

E. Adiguzel-Goktas, E. Ozdemir

If the order of the point P on E is 4, then 4P = ∞ i.e., (x3, y3) = 2P = −2P = (x3,−y3)
which implies y3 = 0 i.e, (t2 + a)2(t2 − a) = 0. It follows that t = ±√

a or t = ±√−a.

(−a, 0) is a singular point, it is not in group and so t can not be±√−a. Therefore, the points
that have order 4 are (a, 2a

√
a), (a,−2a

√
a) as t can only be

√
a or −√

a. 	

Theorem 3.2 suggests a way of finding square root of a in Fp . Let R be a random point

on the curve E . The singular cubic curve E has attached abelian group consisting of non-
singular points in addition to the point at infinity [14, Theorem 2.31]. Counting the points
on E modulo p depends on the following observation: Every quadratic residue x other than
−a generates two points. That means there exists p− 3 remaining points. Adding the points
(0, 0) and∞ yields p−1 points. The group E(Fp) has order exactly p−1. Let p−1 = 2em
for some odd integer m and a positive integer e ≥ 2. Let R = (�2, �(�2 + a)) be a random
point on E(Fp) for some � �= 0 ∈ Fp . If T = mR and 2T are not the identity then 2i T is
definitely a 4-torsion point in E(Fp) for some 0 ≤ i ≤ e − 1. The above discussion leads to
us the following algorithm which is implicitly the method presented by Peralta [10].

Algorithm 5 .
Input: An odd prime number p and a quadratic residue a modulo p.
E : y2 = x(x + a)2 over the field Fp . Assume #E(Fp) = 2em such that (m, 2) = 1.
Output:

√
a mod p.

(1) Choose a point R = (t2, t(t2 + a)) on E such that Q = mR �= ∞ and Q = mR �= (0, 0).
(2) 2i Q = (z, w) must be a 4-torsion (i.e z = a) for some i = 0, 1, · · · e − 1.
(3) Compute w/2a which gives

√
a mod p.

Theorem 3.3 Let E be as above and R be a random point on it. The probability of reaching

a point of order 4 via computing 2imR for some 0 ≤ i < e − 1 is 1 − 1

2e−1 .

Proof Since the attached abelian group, Jac(E), to E is cyclic group of order p − 1, where
p − 1 = 2em, Jac(E) ∼= Z2e ⊕ Zm . The probability that a random point’s order is not
divisible by 4 is 2/2e = 1/2e−1 and this completes the proof. 	

The same probability of success reveals that the curve is the actual singular cubic curve
that Peralta’s algorithm employed. The following lemma indicates an additional step can
improve the success rate of Peralta’s algorithm.

Lemma 3.4 Let E be as above over the field Fp and R = (�2, �(�2 + a)) be a random point
on E(Fp). If mR = (0, 0) then the point Q = (m+1

2

)
R has order divisible by 4 where again

p − 1 = m2e for some positive integer e and odd integer m.

Proof The point Q = (m+1
2

)
R is in the group E(Fp) where the order of E(Fp) = m2e with

odd integer m and positive integer e. It is given that mR = (0, 0) where (0, 0) is the only
point E(Fp) of order 2. Lets look at:

4Q = 2mR + 2R = 2(0, 0) + 2R = ∞ + 2R = 2R

Since we have 2mQ = mR = (0, 0), the order of Q is divisible by 4 and mQ has order
exactly 4. 	

Remark 3.5 Lemma 3.4 implies that the success rate of Algorithm 5 can easily be improved.
In other words, unless one reaches mR = ∞ in step 1, one can still find a square root of a.

123

Square root computation in finite fields

Because, in the case of mR = (0, 0) then Q = (m+1
2

)
R gives a point of order divisible by

4. This observation reduces the probability of failure to 1/2e and increases the success rate
to 1 − 1/2e in a single trial. Considering the worst case where e = 2, we have at least 3/4
chance to reach a square root in a single trial with a little modification in Algorithm 5.

Theorem 3.6 Let E be as above and R be a random point on it. The probability of mR being
a generator of the Sylow-2 subgroup of E(Fp) is 1/2.

Proof Consider the group Z
∗
p

∼= Z2e ⊕ Zm and an element n of it where p − 1 = m2e

for some odd integer m. The element nm is a generator of the Sylow-2 subgroup of Z∗
p if it

satisfies n(p−1/2) ≡ −1 mod p. Similarly, if a point R in the cyclic group E(Fp) satisfies(p−1
2

)
R = (0, 0) then mR becomes a generator of the Sylow-2 subgroup of E(Fp). As the

groups Z∗
p and E(Fp) are isomorphic, the probability of reaching a generator of the Sylow-2

subgroup of E(Fp) via computing mR for a random point R is 1/2. 	

Once one finds a generatormR of Sylow-2 subgroup of E(Fp), one can easily reach a square
root by computing a 4-torsion via 2e−2mR. In other words, like Tonelli–Shanks algorithm,
finding a generator is sufficient to reach a desired square root in a deterministic way. However,
Peralta’s algorithm shows that this is not a necessary condition as one can reach a 4-torsion
without finding a generator for the 2-Sylow subgroup of E(Fp).

3.3.2 Cipolla’s algorithmwith singular curves

In the same context, we now present a geometric analogue of Cipolla’s algorithm.

Theorem 3.7 Let a be a square in Fp, E : y2 = x(x + a)2 be a singular curve over Fp and
P = (t2, t(t2 + a)) be any point on E, where t �= 0. If t2 + a is quadratic non-residue, then
employing P with Algorithm 5 definitely returns a square root of a.

Proof We first show that if t2 + a is a quadratic non-residue, then it is impossible to have
mP = ∞. Suppose mP = ∞. Consider the point

Q = (m + 1)

2
P.

Then we have

2Q = mP + P = P.

Let the x-coordinate of Q be b where b ∈ Fp . Then the x-coordinates of 2Q would be
(a − b2)2

(2b)2
by (2.4). So, we should have

(a − b2)2

(2b)2
= t2 and then a − b2 = ±2bt .

Since the discriminant of b2 ± 2bt − a = 0 is � = 4t2 + 4a = 4(t2 + a) and t2 + a is
quadratic non-residue, it is impossible to have such b2 such that mP = ∞.

IfmP = (0, 0)Lemma 3.4 thenRemark 3.5 implies that Q = (m+1
2

)
P has order divisible

by 4 which means a modified version of Algorithm 5 returns a square root. 	

123

E. Adiguzel-Goktas, E. Ozdemir

The above theorem indicates that Cipolla’s method also seeks a sufficient condition in Algo-
rithm 5 similar to the Tonelli–Shanks method. Employing 4-torsion points on E returns a
square root algorithm where each of three practical algorithms can be explained in the same
context. Towards a deterministic and polynomial-time algorithm for square root computa-
tion in the finite field, it might be beneficial to work with other torsion points. For example,
designing a singular curve where 5-torsion points return square root increases the success
rate.

Example 3.8 We are going to find the square root of a = 2 modulo p = 2017 via a singular
cubic analogue of each algorithm. We define the curve E by the equation y2 = x(x + 2)2

over the finite field F2017. As

2017 − 1 = 2016 = 25 · 63
m = 63 and e = 5.
Peralta’s AlgorithmWe select a random point P on E , say P = (1, 3). We compute

Q = mP = 63P = (2, 90).

Since Q is neither the identity nor two torsion point (0, 0), the order of P is divisible by 4
which means that the order of 2i Q is divisible by 4 for some i = 0, . . . , 3. As 2Q = (0, 0),
the point Q has order 4. Note that

Q = (a, 2a
√
a) = (2, 4

√
2) = (2, 90) which implies

√
2 = 1031.

Tonelli–Shanks AlgorithmWe search a point P such that(
p − 1

2

)
P �= ∞

The first random points P = (1, 3) and P = (25, 135) do not work. The third point P =
(289, 913) works as 1008P = (0, 0). That means that mP = Q = 63P = (138, 258) is a
generator of the Sylow-2 subgroup where

8Q = 8 · 63P = (2, 1927)

is a point of order 4. Note that (2, 1927) = (2, 4
√
2) = (2, 4 · 986) which implies

√
2 ≡

986 ≡ −1031 mod 2017
Cipolla AlgorithmWe first search a random point t such that t2 + a = t2 + 2 is a quadratic
non-residue mod 2017. We have found such t on the second try where we set t = 611
and P = (t2, t(t2 + 2)) = (176, 1857). The order of the point P must be divisible by
4. We compute mP = (1379, 1791) then 2mP = (1553, 936), 4mP = (96, 384) and
8mP = (2, 90) where we get 4

√
2 = 90 and

√
2 = 1031.

We implemented all algorithms in the same environment where we use a C++ library,
PARI/GP [13], for operations involving large integers. The real time tests are conducted
on the computer running Linux OS with an Intel i7-11370H processor and 32 GB main
memory. The discrete logarithm problem in Tonelli–Shanks algorithm is handled via a naive
brute forcemethod. The first implementation of Tonelli–Shanks seeks a quadratic non-residue
randomly in the field Fp for a prime integer p. On the other hand, we also implement Tonelli–
Shanks with the quadratic reciprocity law to find a quadratic non-residue while searching
only numbers less than 100. The following table briefly summarize the test results (Table 1).

123

Square root computation in finite fields

Table 1 The tests are conducted for primes p where p − 1 = 2em and the time (in millisecond) is average
of 1000 runs for each algorithm

Finite field size (size of p) 256-bit, e = 4 512-bit, e = 5 1024-bit, e = 8

Tonelli–Shanks 0.753 1.548 4.792

Tonelli–Shanks (Quadratic Reciprocity) 0.328 0.642 2.372

Cipolla 0.583 1.391 4.484

Peralta 0.407 0.720 2.188

Singular cubics 0.317 0.992 4.298

Acknowledgements We thank Andrew Sutherland and Rewievers for their corrections and suggestions to
improve the quality of paper.

Funding Open access funding provided by the Scientific and Technological Research Council of Türkiye
(TÜBİTAK).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bach E.: Explicit bounds for primality testing and related problems. Math. Comput. 55(191), 355–380
(1990).

2. Cipolla M.: Un metodo per la risoluzione della congruenza di secondo grado. Napoli Rend. 9, 154–163
(1903).

3. Cohen H.: A Course in Computational Algebraic Number Theory. Springer, New York (2000).
4. Cohen H., Frey G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC,

Boca Raton (2005).
5. Müller S.: On strong lucas pseudoprimes. Comb. Gen. Algebra 10, 237–249 (1998).
6. Nari K., Ozdemir E., Ozkirisci A.N.: Strong pseudo primes to base 2. Ramanujan J. 59, 1323–1332

(2022).
7. Ozdemir E.: Computing square roots in finite fields. IEEE Trans. Inf. Theory 59, 9 (2013).
8. Ozdemir E.: Factoring polynomials over finite field. Int. J. Number Theory 17(07), 1517–1536 (2021).
9. Ozdemir E..: Curves and Their Applications to Factoring Polynomials, PhD Thesis (2009).

10. Peralta R.. C.: A simple and fast probabilistic algorithm for computing square roots modulo a prime
number. IEEE Trans. Inf. Theory 32(6,), 846–847 (1986).

11. Shanks D.: Class number, a theory of factorization, and genera. In: Proc. Symp Pure Maths. 20, AMS,
Providence pp. 415–440 (1971).

12. Sutherland A.V.: Structure computation and discrete logarithms in finite abelian p-groups. Math. Comput.
80, 477–500 (2011).

13. The PARI Group. PARI/GP version 2.13.4, Univ. Bordeaux, 2022, http://pari.math.u-bordeaux.fr/.
14. Washington L.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn Chapman & Hall/CRC,

Boca Raton (2008).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://pari.math.u-bordeaux.fr/

	Square root computation in finite fields
	Abstract
	1 Introduction
	2 Square roots algorithms
	2.1 Tonelli–Shanks algorithm
	2.2 Cipolla's algorithm
	2.3 Peralta's algorithm

	3 Geometric analogue of algorithms
	3.1 Square root algorithm with curves
	3.2 Computing in an elliptic curve group
	3.2.1 Affine coordinates
	3.2.2 Projective coordinates

	3.3 Singular curves
	3.3.1 Tonelli–Shanks and Peralta's algorithms with singular curves
	3.3.2 Cipolla's algorithm with singular curves

	Acknowledgements
	References

