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Abstract
Elliptic curves are abelian varieties of dimension one; the two-dimensional analogues are
abelian surfaces. In this work we present an algorithm to compute (2n, 2n)-isogenies between
abelian surfaces defined over finite fields. These isogenies are the natural generalization of
2n-isogenies of elliptic curves. The efficient computation of such isogeny chains gained a
lot of attention as the runtime of the attacks on SIDH (Castryck–Decru, Maino–Martindale,
Robert) depends on this computation. Different results deduced in the development of our
algorithm are also interesting beyond these applications. For instance, we derive a formula
for the evaluation of (2, 2)-isogenies. Given an element in Mumford coordinates, this for-
mula outputs the (unreduced) Mumford coordinates of its image under the (2, 2)-isogeny.
Furthermore, we study 4-torsion points on Jacobians of hyperelliptic curves and explain how
to extract square roots of coefficients of 2-torsion points from these points.

Keywords Isogeny-based cryptography · Richelot isogenies · Hyperelliptic curves ·
Computer algebra

Mathematics Subject Classification 11G20 · 11G10 · 14K02 · 14Q10

1 Introduction

In the past years, a lot of progress has been made in the efficiency with regard to computing
elliptic curve isogenies. The popularity of this research topic originates in the introduction
of the isogeny-based cryptographic primitives SIDH [11] and CSIDH [4] which are two can-
didates proposed for post-quantum cryptography. Both protocols describe a Diffie-Hellman
key exchange, where the public keys are elliptic curves and the secret keys describe isogenies.
For the generation of their public keys as well as for the computation of the shared key, both
parties need to compute an isogeny of exponential (but smooth) degree. A major difference
between the two protocols is that CSIDH relies on a commutative group action similar to the
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previously developed but less efficient CRS scheme [10, 22], whereas SIDH is structurally
more similar to the isogeny-based CGL hash function [5]. In 2022, a new line of attacks on
the SIDH protocol appeared [2, 18, 21]. These attacks break SIDH, but have no effect on
other isogeny-based protocols such as CSIDH or the CGL hash function.

A general advantage of isogeny-based protocols is their structural similarity to group-
based Diffie-Hellman key exchange, which allows us to translate existing schemes into the
post-quantum world more easily. However in terms of running time, other candidates are
currently in the lead. To improve the efficiency of isogeny-based protocols, it is essential to
further optimize isogeny computations.
Generalization of elliptic curve isogenies A generalization of pre-quantum Elliptic Curve
Cryptography (ECC) is Hyperelliptic Curve Cryptography (HECC), where the group law on
the Jacobian of a hyperelliptic curve is considered. While the group law computation on such
Jacobians is more involved than on elliptic curves, it allows us to use a smaller prime field
than in the elliptic-curve case. It is natural to ask, whether cryptographic protocols based
on isogenies of elliptic curves can also be generalized to hyperelliptic curves. For instance,
there exist proposals to generalize the SIDH protocol [12]1 and the CGL hash function [3,
25] to Jacobians of hyperelliptic curves of genus 2. While this allows for faster prime field
arithmetic, the computation of isogenies is more involved.
(2n, 2n)-isogenies In this work, we focus on the computation of (2n, 2n)-isogenies, which
are the natural analogues of 2n-isogenies of elliptic curves. Let J = J (C) be the Jacobian
of a hyperelliptic curve C of genus 2. Further, let J [2n] denote the 2n-torsion of J , which is
a free Z/2nZ-module of rank 4. Similar to the elliptic-curve case, we will consider isogenies
that are defined by subgroups of J [2n]. However, these subgroups will not be cyclic and to
describe them it is necessary to consider the Weil pairing, which is an alternating, bilinear
pairing e2n : J [2n] × J [2n] → μ2n . Here μ2n is the group of 2n-th roots of unity.

A (2n, 2n)-isogeny is an isogeny φ : J → J ′, where G:= ker(φ) ⊂ J [2n] satisfies
G � Z/2nZ × Z/2nZ, and the Weil-paring restricts trivially to G, that is e2n |G ≡ 1. In
this case, we say that G is a (2n, 2n)-group. The codomain J ′ is uniquely determined up to
isomorphism and it is an abelian surface. Generically, this means that it is the Jacobian of
another genus-2 curve C′.2 Vice versa any (2n, 2n)-subgroup ofJ defines a (2n, 2n)-isogeny.
In total, the Jacobian of a genus-2 curve has roughly 23n different (2n, 2n)-subgroups. This
compares very favorably to the case of elliptic curves, where we have about 2n different
2n-groups for any elliptic curve.

From a (2n, 2n)-isogeny algorithm, we request that it takes as input a genus-2 curve
C, a description of a given (2n, 2n)-group G ⊂ J (C) and possibly some further elements
T1, . . . , Tk ∈ J . And it should output J (C′) together with elements T ′

1, . . . , T
′
k , such that

there is an isogeny φ : J → J (C′) with kernel G and T ′
i = φ(Ti ) for i ∈ {1, . . . , k}.

Contributions

Our main contribution is an efficient algorithm for computing (2n, 2n)-isogenies. The com-
putation of a (2n, 2n)-isogeny may be decomposed into n computations of (2, 2)-isogenies.
Consequently one of the main ingredients to our algorithm, is a formula for the computa-
tion of (2, 2)-isogenies (Theorem 15). By this, we mean a formula that inputs data on a

1 While there does not exist an explicit implementation of an attack on G2SIDH, it is known that the recent
attacks on SIDH generalize to higher genus rendering the G2SIDH protocol insecure as well.
2 In special cases it is also possible that J ′ is not the Jacobian of a genus-2 curve, but the product of two
elliptic curves. We postpone this technicality to Sect. 3.
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Fig. 1 Sketch of our method to compute (2n , 2n)-isogenies

(2, 2)-group G ⊂ J and some element T ∈ J , and outputs not only the codomain of the
isogeny φ corresponding to G, but also the image point T ′ = φ(T ). For efficiency purposes,
our formula is specialized to a specific curve form, as well as a specific form of the kernel
G. The second important ingredient to our algorithm is a way to efficiently combine these
specialized (2, 2)-isogenies in order to obtain the desired (2n, 2n)-isogeny. This is achieved
by introducing a special symplectic basis for J [2n] (Definition 3) and extracting certain
square roots from the coordinates of 4-torsion elements of J (Corollary 5). To make this
more precise, we now explain the main steps of the algorithm.
SetupLet K be some finite field of characteristic greater than 3.We start with the JacobianJ0

of a genus-2 curve C0, and a (2n, 2n)-group G = 〈G1,G2〉 ⊂ J0 with K -rational generators,
and n > 1. Our goal is to compute the isogeny φ : J0 → Jn with kernel G. This is the top
dashed arrow in Fig. 1. In this setting, it is no restriction to assume that C0 is defined by an
equation of the form

C0 : y2 = (x2 − 1)(x2 − A0)(E0x
2 − B0x + C0) with A0, B0,C0, E0 ∈ K ,

and the generators of G are given as

G1 = T1 + aT3 + bT4, G2 = T2 + bT3 + cT4, with a, b, c ∈ Z/2nZ

for some special symplectic basis B = (T1, T2, T3, T4) of J0[2n].
Isogeny computation The isogeny φ is computed as φ = φn ◦ · · · ◦ φ1, where each φi :
Ji−1 → Ji is a (2, 2)-isogeny.

In the first step, we compute the (2, 2)-isogeny φ1 : J0 → J1 with kernel Gφ1 =
〈2n−1G1, 2n−1G2〉. To this end, we first apply a coordinate transformation so that the
resulting equation is of the form

C′
0 : y2 = E ′

0 · x (x2 − A′
0x + 1)(x2 − B ′

0x + C ′
0) with A′

0, B
′
0,C

′
0, E

′
0 ∈ K ,

and the kernel transforms into G ′
φ1

= 〈J (x, 0), J (x2 − A′
0x + 1, 0)〉. Here J (a, b) denotes

an element of the Jacobian with Mumford representation (a, b), see Definition 2. Such a
transformation always exists due to the special setup chosen in the algorithm and can be
computed efficiently by extracting square roots from the 4-torsion element 2n−2G1 ∈ J0.
Now, it is possible to apply the formula from Theorem 15 to explicitly compute the isogeny
φ̃1 : J ′

0 → J1 with kernel G ′
φ1
. When composed with the transformation J0 → J ′

0, this
yields the isogeny φ1 : J0 → J1. Via these maps, we compute the images φ1(G1), φ1(G2)

which generate a (2n−1, 2n−1)-subgroup of J1. This completes Step 1 of the algorithm.
The isogenies φ2, . . . , φn−1 are computed in a completely analogous way. Only the very

last step φn : Jn−1 → Jn , needs to be treated separately, since in this case, one cannot
extract the square root from a 4-torsion element. More details are given in Sect. 5.3.
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Note that apart from the images of the group generators, our algorithm also allows the
computation of image points φ(T ) for arbitrary elements T ∈ J0.

Applications

Our new algorithm for computing (2n, 2n)-isogenies has various applications. For instance,
our algorithm can be used in the Castryck-Decru attack on SIDH. Indeed, our methods can
be used as a drop-in replacement for the isogeny chains in their implementation and result in
a speed-up of the original attack.

Since the preparation of this work predates the publications of the attacks on SIDH, the
main application we had in mind was the G2SIDH protocol [12], where our algorithm can be
applied for Alice’s part of the key exchange. This speeds up the protocol by several orders
of magnitudes.

Apart from these applications, we believe that the efficient computation of (2n, 2n)-
isogenieswill also beuseful in thedevelopment of novel genus-2 isogeny-based cryptographic
protocols. For instance, there already exists a suggestion to build a verifiable delay function
using (2n, 2n)-isogenies [6]. However due to the lack of efficient methods, the authors had
to restrict to a special case of (2n, 2n)-isogenies which did not make use of the rich structure
of the genus-2 isogeny graph.

Comparison to previous work

Given a (2, 2)-groupG ⊂ J (C) for somegenus-2 curveC, there exists a very compact formula
for computing the codomain curve C′ of the (2, 2)-isogeny due to Richelot [20]. Moreover
the so-called Richelot correspondence provides a way to compute images of elements T ∈ J
under this isogeny.However thismethod includes several steps (cf.Algorithm1). In particular,
it necessitates to compute the support of a divisor

∑k
i=1 Pi ∈ Div(C) representing T . This

not only involves square root computations, but also requires to pass to a degree-2 extension
of the base field in about half of the cases. While our method for computing (2, 2)-isogenies
also relies on the Richelot correspondence, our formula (Theorem 15) completely replaces
Algorithm 1 and only requires standard additions and multiplications in the base field.
G2SIDH implementationThe computation of (2n, 2n)-isogenies inG2SIDH relies onAlgo-
rithm 1 mentioned above for which the authors provide a proof-of-concept implementation.
To compare the efficiency of this algorithm with our new methods, we use the setup from
[12, Appendix B]. In their example p = 251332 − 1 and a G2SIDH key exchange in the
superspecial isogeny graph over Fp2 is performed. In this protocol, Alice has to compute
a (251, 251)-isogeny φA : J → JA and the images φA(T1), . . . , φA(T4) of four elements
T1, . . . , T4 ∈ J to generate her public key. Then for the generation of the shared key, she
has to perform another (251, 251)-isogeny computation. This time without computing any
image points. The authors report on timings of 145.7 and 74.8 seconds for the generation
of the public key and the shared key, respectively [12]. For comparison we ran their code
on our platform, a laptop with an Intel i7-8565U processor and 16 GB of RAM with Linux
5.13.0 and Magma V2.27.5.3 The obtained timings were very much dependent on the choice
of the secret key; on average the computation of the public key took around 75 seconds and
the generation of the shared key around 36 seconds. The variance observed in the running

3 Note that arithmetic in prime fields of the form Fp2 has been considerably improved in a recent update and
requires Magma version at least 2.27.4.
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time can be explained by the fact that the algorithm requires to compute several square roots.
Depending on the input, this requires computations in a field extension at several steps.

In comparison, with our new algorithm the public key generation takes approximately
0.08 seconds and the computation of the shared key approximately 0.05 seconds.
Richelot chains in the SIDH attack Concurrently with the preparation of our manuscript,
another algorithm for the efficient computation of (2n, 2n)-isogenies was developed in [2]
with the goal of attacking the SIDH protocol. In essence, their approach is to replace Algo-
rithm 1 by a (small) Gröbner basis computation. This results in a significant speed-up of the
original algorithm from the G2SIDH implementation.

To compare the efficiency with our methods, we use the same setting as above. That is we
compute a (251, 251)-isogeny over Fp2 with p = 251332 − 1. Here, the first round takes 0.24
s and the second round 0.15 s (as opposed to 0.08 and 0.05 s with our algorithm).

Moreover, there exists a new SageMath implementation of the attack [19]. The com-
putation of (2n, 2n)-isogenies is based on the algorithm from [2] with the Gröbner basis
computations replaced by explicit computations. Further the code contains algorithmic
improvements similar to the ones that we describe in Remark 5. In that way, the authors
achieved timings comparable to those of the Magma implementation. In our running exam-
ple, the computation of a (251, 251)-isogeny including image points takes 0.58 seconds and
without image points 0.39 seconds on our laptop using SageMath version 9.7.
Genus-2 hash functions One of the first protocols based on elliptic curve isogenies is the
Charles–Goren–Lauter (CGL) hash function [5]. In [25], Takashima suggests a generalization
to Jacobians of genus-2 curves. Necessary improvements concerning the security have been
implemented by Castryck, Decru and Smith in [3]. The genus-2 hash function relies on the
computation of (2, 2)-isogenies. However the setup is different and the methods developed
therein cannot be applied for computing (2n, 2n)-isogenies as are needed for a G2SIDH
key exchange or the Castryck–Decru attack. In particular, for the hash function it is not
necessary to compute images of elements of J under the isogeny, but it suffices to compute
the codomains of isogenies.
Computing elliptic curve isogenies on Kummer surfaces In [7], the author develops a
method to compute 2n-isogenies of elliptic curves defined over Fp2 as isogenies of Jacobians
of hyperelliptic curves defined over Fp . To be more precise, isogenies of the Kummer surface
of the Jacobians are considered. Indeed our methods partially resemble the findings in that
work. In particular the methods in [7] involve a formula for pushing points through (2, 2)-
isogenies which is similar to Theorem 15. However the formulas in [7] rely on the fact that
the Jacobian J is constructed as a cover of an elliptic curve and cannot be used to compute
general (2, 2)-isogenies.

The preprint [6] suggests generalizations of some of the formulas from [7] to arbitrary
Kummer surfaces. However the consideration is restricted to a set of three (2, 2)-isogenies
(out of 15 possible (2, 2)-isogenies) and it seems not applicable to the general case.
Similarities with elliptic curve based methods Our general strategy for the computation
of isogeny chains is inspired by the methods that have been developed in the framework of
elliptic curve isogeny based cryptography. For instance, to efficiently compute a chain of 2-
isogenies of elliptic curves, it is suggested to useMontgomery curves E : By2 = x3+Ax2+x
and an isogeny formula specified to kernels of the form G = 〈(0, 0)〉. Moreover 4-torsion
points can be used to avoid square root computations [11, Sect. 4.3]. Our contributions can
hence be interpreted as a generalization of these methods to the 2-dimensional setting.
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Outline

We start by recalling some basic facts about the arithmetic of genus-2 curves and their
Jacobians in Sect. 2. In that section we also introduce two types of hyperelliptic equations
that will be used throughout the paper. Further the section contains an analysis of the 4-torsion
group of the Jacobian variety. Section3 is dedicated to the theory of Richelot isogenies. In
particular, we explain in detail how to use the Richelot correspondence to compute the
image of elements of the Jacobian under an isogeny. In Sect. 4, we proceed to study Richelot
isogenies in the setting of Type-1 equations. For this specialized setting, we derive a compact
formula to compute the image of points under a Richelot isogeny. Finally in Sect. 5, we
introduce (2n, 2n)-isogenies and develop an algorithm for their computation. Moreover we
compare our algorithm to other implementations of (2n, 2n)-isogenies from the literature.

Appendix A provides formulas for the special cases that were excluded in Sect. 4. While
these only occur with negligible probability and are not overly important from a computa-
tional perspective, some theoretically interesting configurations occur. Appendix B contains
SageMath code that can be used to verify the formulas deduced in this work. Note that this
code as well as implementations of our algorithm in Magma and SageMath are available at
[14].

2 Arithmetic of genus-2 curves

Let K be a finite field with characteristic p > 3. Any algebraic curve C of genus 2 is a
hyperelliptic curve. It admits an affine equation of the form y2 = f (x), where f ∈ K [x] is
a square-free polynomial of degree 5 or 6. We call this equation a hyperelliptic equation for
C. The set of points on C is given by

C(K̄ ) = {(u, v) ∈ K̄ 2 | v2 = f (u)} ∪
{

{∞} if deg( f ) = 5,

{∞+,∞−} if deg( f ) = 6.

We refer to points of the form (u, v) ∈ C(K̄ ) as affine points and to ∞, respectively ∞± as
the point(s) at infinity.

The hyperelliptic involution τ : C → C is defined by mapping a point P = (u, v) ∈ C(K̄ )

to the point τ(P) = (u,−v) ∈ C(K̄ ). The point P = ∞ in the degree-5 case is fixed, while in
the degree-6 case the points ∞+,∞− are swapped by the involution. TheWeierstrass points
of C are the points that are fixed under the hyperelliptic involution.Writing f = c f

∏
i (x−ri )

for the factorization of f over K̄ , the Weierstrass points of C are

{(r1, 0), . . . , (r5, 0),∞} if deg( f ) = 5, and {(r1, 0), . . . , (r6, 0)} if deg( f ) = 6.

2.1 Equations for genus-2 curves

Given a hyperelliptic curve C, there exist various different hyperelliptic equations for C.
Coordinate transformations as described in the well-known proposition below allow to move
from one equation to the other.

Proposition 1 (Corollary 7.4.33 in [17]) Let C be a hyperelliptic curve of genus 2 over K
and let

y2 = f (x), y′2 = g(x ′)
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be two hyperelliptic equations of C. Then there exist
(
a b
c d

)

∈ GL2(K ) and e ∈ K\{0} such
that

x ′ = ax + b

cx + d
, y′ = ey

(cx + d)3
.

Remark 1 For instance, theRosenhain form is a type of hyperelliptic equation. It is an equation
for C of the form

y2 = x(x − 1)(x − λ1)(x − λ2)(x − λ3).

This can be viewed as the analogue of the Legendre form for elliptic curves given by y2 =
x(x − 1)(x − λ).

Note that in the elliptic-curve case, we have a one-parameter family which stems from
the fact that the moduli space of elliptic curves has dimension 1. On the other hand in the
genus-2 case, we obtain a three-parameter family, since the moduli space has dimension 3.

We will work with two different types of hyperelliptic equations that resemble the Mont-
gomery form for elliptic curves. These two types of equations are defined as follows.

Definition 1 Let C be a hyperelliptic curve of genus 2 defined over K . We say that a hyper-
elliptic equation has Type 1 if it is of the form

y2 = Ex(x2 − Ax + 1) (x2 − Bx + C) [Type1]
and Type 2 if it is of the form

y2 = (x2 − 1)(x2 − A)(Ex2 − Bx + C) [Type2]
for some A, B,C, E ∈ K .4

Clearly not every genus-2 curve admits an equation of Type 1 or 2 defined over the base
field, but it might be necessary to pass to a field extension. Further we note that the existence
of a Type-1 equation is equivalent to the existence of a Type-2 equation over the same field.

To see this, apply the coordinate change (x ′, y′) =
(
x−1
x+1 ,

y
(x+1)3

)
to an equation of Type 2

and redefine the constants appropriately.
A sufficient criterion for the existence of Type-1 and Type-2 equations is provided by the

following proposition.

Proposition 2 Let C be a hyperelliptic curve of genus 2 defined by a hyperelliptic equation
y2 = g(x) over a finite field K . Assume that all Weierstrass points are K -rational. Then
there exist hyperelliptic equations of Type 1 and 2 for C.
Proof Let g = cg

∏
i (x − ri ). We are going to construct a coordinate transformation t

that for some α ∈ K maps four of the Weierstrass points to (0, 0),∞, (α, 0) and (1/α, 0),
respectively, hence generates a Type-1 equation. First note that the transformation

ta : x → a · x − r1
x − r2

with a ∈ K \ {0}
satisfies ta(r1) = 0 and ta(r2) = ∞. It remains to choose a. For that purpose consider the
quantities

λi = ri − r2
ri − r1

∈ K for i ∈ {3, 4, 5}

4 The letter D is omitted on purpose since it is reserved for representing divisors.
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and choose a pair i �= j such that λi · λ j is a square in K . Note that such a pair exists since
K is finite. Finally let a ∈ K such that a2 = λi · λ j . Then

ta(r j ) = a

λ j
= λi

a
= 1

ta(ri )

and the resulting hyperelliptic equation with coordinates (x ′, y′) = (ta(x), y/(x − r2)3
)
has

Type 1. As we noted before the existence of a Type-1 equation is equivalent to the existence
of a Type-2 equation. ��

2.2 The Jacobian variety

Let J = J (C) be the Jacobian variety of a genus-2 curve C defined by y2 = f (x). This
is an abelian surface, in particular there exists a group structure on J . Recall that for any
field extension L/K , the group of L-rational points J (L) is isomorphic to the Picard group
Pic0C(L). This means that elements ofJ can be represented as equivalence classes of degree-
0 divisors on C.

An effective divisor D ∈ Div(C) is in general position if it is of the form

D = P1 + · · · + Pd , for some Pi ∈ C(K̄ ) \ {∞,∞±} with Pi �= τ(Pj ) for i �= j .

In this case d = deg(D) is the degree of D.

Definition 2 Let D = P1 +· · ·+ Pd be a divisor in general position on C and let a, b ∈ K [x]
with the following properties:

1. a is monic of degree d ,
2. deg(b) < d ,
3. f ≡ b2 (mod a).
4. a(ui ) = 0, b(ui ) = vi , where Pi = (ui , vi ) for 1 ≤ i ≤ d . If a point Pi = (ui , vi )

appears with multiplicity in D, then a has a root of the same multiplicity in ui .

Then we say that (a, b) is the Mumford representation for D.

Each divisor in general position admits a Mumford representation ( [24, Lemma 4.16]).
Moreover it is shown in [13, Proposition 1] that every element [D] ∈ J has a unique
representative of the form [P1 + P2 − D∞], where

D∞ =
{
2 · ∞ if deg( f ) = 5,

∞+ + ∞− if deg( f ) = 6,

and P1 + P2 is an effective divisor with affine part in general position. In the generic case
this means that P1 + P2 is an affine divisor in general position. But it also includes cases
where one or both of P1, P2 are points at infinity. This allows us to represent elements of J
using the Mumford representation of the affine part of the effective divisor P1 + P2. To avoid
ambiguity, we introduce the following notation for a Mumford pair (a, b) as in Definition 2.

• D(a, b):=P1 + · · · + Pd ∈ Div(C).
• J (a, b):=[P1 + P2 − D∞] ∈ J (C).

The first notation D(a, b) is defined for arbitrary pairs (a, b) satisfying the properties from
Definition 2, while in the second notation J (a, b), we implicitly assume that deg(a) ≤ 2.
The case where deg(a) = 2 is clear. If deg(a) = 1, then J (a, b) = [P1 + P2 − D∞],
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with P1 = D(a, b) and P2 a point at infinity. For deg( f ) = 5, this is well-defined, but for
deg( f ) = 6, there are two options P2 ∈ {∞±}. To simplify the exposition, wewill ignore this
special case here. It only becomes relevant in one special instance of our isogeny formulas
which we treat in Appendix A.2. There, we also introduce the necessary notation.

2.3 Torsion points

We now proceed to study the torsion points of J . Recall that for any positive integer m, the
m-torsion of J is defined as

J [m] = {J ∈ J | m · J = 0}.
For any point P0 ∈ C(K ), the map

ιP0 : C ↪→ J , P → [P − P0]
defines an embedding of C into J . In this section, we only consider odd-degree models of C,
so that ∞ ∈ C(K). In this setting, we choose P0 = ∞ and simply write ι = ι∞. This means
that for a point P = (u, v) ∈ C(K̄ ), we have ι(P) = (x − u, v) in Mumford representation.
And ι(∞) = (1, 0) is the identity element inJ . Note that via this embedding the hyperelliptic
involution τ on C induces a map on J which corresponds to multiplication by −1 and in
particular −J (a, b) = J (a,−b) for any element J (a, b) ∈ J .

2.3.1 Two-torsion points

The 2-torsion of the Jacobian of a hyperelliptic curve is well-studied and explicit repre-
sentations are well known. We apply these results to curves with Type-1 equation, i.e. we
assume

C : y2 = Ex (x2 − Ax + 1) (x2 − Bx + C).

As described above, we fix the embedding

ι : C ↪→ J , P → [P − ∞].
The 2-torsion points onJ are the divisors fixed under the action of the hyperelliptic involution
τ . These are the images of the affineWeierstrass points, as well as their sums and the identity
element J (1, 0). Consequently, the number of 2-torsion points on J is 6 + (52

) = 16.
Let α be a root of the polynomial x2 − Ax + 1 and β, γ the roots of x2 − Bx + C . Then

the set of Weierstrass points of C is given by

{(0, 0), (α, 0), (1/α, 0), (β, 0), (γ, 0),∞} ⊂ C(K̄ ).

Let Pr = (r , 0) be a Weierstrass point. Consequently, the Mumford representations of the
2-torsion points are

ι(∞) = J (1, 0),

ι(Pr ) = J (x − r , 0) for r ∈ {0, α, 1/α, β, γ },
ι(Pr ) + ι(Pr ′) = J ((x − r)(x − r ′), 0) for r �= r ′ ∈ {0, α, 1/α, β, γ }.

In general not all of these points will be defined over K . But due to the structure of Type-1
equations, the following elements are always contained in J (K ):

J (1, 0), J (x, 0), J (x2 − Ax + 1, 0), J (x2 − Bx + C, 0).
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In fact, these four points form a subgroup ofJ [2], that is maximal 2-isotropic (cf. Subsection
3.1).

2.3.2 Four-torsion points

In [27], Zarhin provides explicit formulas for division by 2 on the Jacobian of a genus-2 curve
[27, Theorem 3.2]. We will apply this result in order to obtain explicit representations for
4-torsion points on the Jacobian and use these to extract certain square roots. The following
statement is tailored to our situation.

Proposition 3 Let C : y2 = g(x) be a degree-5 hyperelliptic equation defined over K . Let
P = (r , 0) ∈ C(K̄ ) be a Weierstrass point of C, and denote by {r1, . . . , r4} the remaining
roots of g.

Then any choice of square roots

r = (r1, . . . , r4) ∈ K̄ 4 with r2i = r − ri for i ∈ {1, 2, 3, 4}
defines a 4-torsion point [Dr] ∈ J (C) with the property 2 · [Dr] = ι(P). Here [Dr] =
J (ar, br), where

ar = (x − r)2 − s2(r)(x − r) + s4(r),

1√
cg

· br = (s1(r)s2(r) − s3(r))(x − r) − s1(r)s4(r)

with si the i-th elementary symmetric polynomial in r = (r1, . . . , r4) and cg is the leading
coefficient of g.

Proof The case cg = 1 is is a direct consequence of Theorem 3.2 in [27], see also Example
3.7 in loc.cit.

Let C1 be the hyperelliptic curve defined by setting cg = 1, i.e. C1 : y2 = 1
cg

· g(x) and
let [D] = J (a, b) be a 4-torsion point on J (C1) satisfying 2 · [D] = J (x, 0) ∈ J (C1). Then
[D′] = J (a,

√
cg b) ∈ J (C) and a direct calculation shows that 2 · [D′] = J (x, 0) ∈ J (C).

��
Below, we provide an example for the application of Proposition 3 to a curve given by

a Type-1 equation. Together with Corollary 4 it illustrates an easy way to extract a square
root from a four-torsion point. This result motivates the extraction from Corollary 5, which
is obtained in a more general setting and is essential for our algorithm in Sect. 5.

Example 1 In this example, we consider a Type-1 hyperelliptic equation y2 = Ex(x2− Ax+
1)(x2 − Bx +C) and apply Proposition 3 to compute the 4-torsion points T ∈ J satisfying
2 · T = J (x, 0). In this case r = 0 in the above proposition and r1, r2, r3, r4 are square roots
of the negative x-coordinates of the remaining Weierstrass points respectively. We denote

r1 = √−α, r2 = √−1/α, r3 = √−β, r4 = √−γ ,

having in mind that there are in total 24 choices for these 4 square roots. Note that (r1r2)2 = 1
and (r3r4)

2 = C , hence we denote r1r2 = √
1 and r3r4 = √

C . The elementary symmetric
polynomials si (r) are

s1(r) = √−α +√−1/α +√−β + √−γ ,

s2(r) = (
√−α +√−1/α)(

√−β + √−γ ) + √
1 + √

C,
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s3(r) = (
√−α +√−1/α)

√
C + (

√−β + √−γ )
√
1,

s4(r) = √
1 · √

C .

It follows that the 4-torsion points satisfying 2·T = J (x, 0), haveMumford representation
T = J (a, b), where

a = x2 − ((
√−α +√−1/α)(

√−β + √−γ ) + √
1 + √

C) · x + √
1 · √

C,

b = ((2√1 − A + √
C)(
√−β + √−γ ) + (2

√
C + √

1 − B)(
√−α +√−1/α)

) · √
E x

+ √
1 · √

C · (
√−α +√−1/α +√−β + √−γ ) · √

E .

Corollary 4 Let C : y2 = Ex(x2 − Ax + 1)(x2 − Bx + C) be defined over K . Assume that
T = J (x2 + a1x + a0, b1x + b0) ∈ J (C)(K ) is a K -rational 4-torsion point satisfying
2 · T = J (x, 0). Then C is a square in K and in particular a20 = C.

Proof This follows directly from the discussion in Example 1. ��
Similarly, we obtain the following corollary in a slightly more general setting. This result

is used in Proposition 9 which provides the coordinate transformation needed for the isogeny
chain computations in Subsection 5.3.

Corollary 5 Let C : y2 = cg x (x −β1)(x −β2)(x − γ1)(x − γ2) be a hyperelliptic equation.
If T = J (x2 + a1x + a0, b1x + b0) ∈ J (K ) satisfies 2 · T = J (x, 0), then

√
β1β2 = (a0b0b1 − a1b20)β1β2 + cga20(a0 − β1β2)

2

b20β1β2 + cga20(a0 − β1β2)(−a1 − β1 − β2)

for some choice of
√

β1β2.

Proof Let

r1 = √−β1, r2 = √−β2, r3 = √−γ1, r4 = √−γ2

be the choice of square roots corresponding to the 4-torsion element T , and let s1(r) . . . , s4(r)
be the symmetric polynomials in r1, . . . , r4. One can verify algebraically (cf. Appendix B.1)
that

√−β1
√−β2 = s1(r)s3(r)β1β2 + (s4(r) − β1β2)

2

β1β2s1(r)2 + (s4(r) − β1β2)(s2(r) − β1 − β2)
.

Using Proposition 3, we extract the values of si from the Mumford coordinates of T :

s1(r) = −b0
a0

√
cg

, s2(r) = −a1, s3(r) = b0a1 − b1a0
a0

√
cg

, s4(r) = a0.

Substituting these expressions into the equation for
√−β1

√−β2 above, yields the formula
in the statement of the corollary. ��

3 Richelot isogenies

Let C be a genus-2 curve with hyperelliptic equation y2 = g(x), where g(x) = cg
∏d

i=1(x −
ri ) and J (C) its Jacobian. Given a group G ⊂ J (C)[2] that is maximal 2-isotropic, there
exists a morphism

φ : J (C) → A with ker(φ) = G.
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The map φ is a (2, 2)-isogeny and A is an abelian surface. The abelian surface A is either
the Jacobian of a hyperelliptic curve or the product of two elliptic curves.

Isogenies of this form have been extensively studied in the literature. In particular there
exist very compact formulas to compute the codomain of a given isogeny and a correspon-
dence that can be used to compute the image of divisors under the isogeny. These findings
are attributed to Richelot, therefore (2, 2)-isogenies are usually called Richelot isogenies. In
this section, we recall the necessary background for the next section. For proofs we refer to
[12, 23].

3.1 (2, 2)-Subgroups

A group G ⊂ J [2] is called a (2, 2)-subgroup of J if G � Z/2Z × Z/2Z and G is
isotropic with respect to the 2-Weil paring meaning that e2 restricts trivially to G, where
e2 : J [2] × J [2] → {±1}.

Recall that J [2] is a Z/2Z-module of rank 4, therefore there are 15 non-trivial 2-torsion
elements in J . The (2, 2)-subgroups of J can be described very explicitly. Let [D] =
J (a, b) ∈ J [2] and [D′] = J (a′, b′) ∈ J [2] be elements of order 2. Then b = b′ = 0
and the roots of a and a′ are x-coordinates of the Weierstrass points of C. One can check
that e2(D, D′) = 1 if and only if a · a′ divides g and g

a·a′ is a polynomial of degree 1 or
2 (see [23, Lemma 8.1.4]). Moreover in this case [D] + [D′] = (

g
cgaa′ , 0). This property

already characterizes (2, 2)-subgroups. To simplify the exposition, we define r6 = ∞ and
x − r6 = 0 · x + 1 if deg(g) = 5.5

Lemma 6 With the notation above, a group G ⊂ J [2] is a (2, 2)-subgroup if and only if

G = 〈J (g1, 0), J (g2, 0)〉,
where g1 = (x − rσ(1))(x − rσ(2)) and g2 = (x − rσ(3))(x − rσ(4)) for some permutation
σ ∈ S6. In that case,

G = {J ((x − rσ(1))(x − rσ(2)), 0), J ((x − rσ(3))(x − rσ(4)), 0),

J ((x − rσ(5))(x − rσ(6)), 0), J (1, 0)
}
.

It follows that the (2, 2)-groups correspond precisely to the partitions of the set of Weier-
strass points into subsets of size 2, hence there are precisely 15 such groups. In [23], this
relation is formalized by introducing quadratic splittings.

3.2 Richelot correspondence

The next proposition provides information on the codomain of an isogeny defined by a
(2, 2)-subgroup.

Proposition 7 Let G = 〈J (g1, 0), J (g2, 0)〉 be a (2, 2)-subgroup and g3 = g
g1g2

, so that

g = g1 · g2 · g3. Denote gi = gi,2x2 + gi,1x + gi,0 for i ∈ {1, 2, 3}. Further let φ : J → A
be the isogeny with kernel G and

δ = det

⎛

⎝
g1,0 g1,1 g1,2
g2,0 g2,1 g2,2
g3,0 g3,1 g3,2

⎞

⎠ .

5 In other words r6 is the x-coordinate of the Weierstrass point at infinity and 1 is the polynomial with a root
at ∞.
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1. If δ �= 0, then A is isomorphic to the Jacobian of the genus-2 curve

C′ : y2 = h1h2h3,

where

h1 = δ−1 · (g′
2g3 − g2g

′
3), h2 = δ−1 · (g′

3g1 − g3g
′
1), h3 = δ−1 · (g′

1g2 − g1g
′
2),

and g′
i denotes the derivative of gi with respect to x.

2. If δ = 0, then A is isomorphic to a product of elliptic curves E1 × E2 with defining
equations

E1 : y2 =
3∏

i=1

(ai,1x + ai,2), E2 : y2 =
3∏

i=1

(ai,1 + ai,2x),

where ai,0, ai,1 are such that gi = ai,1(x − s1)2 + ai,2(x − s2)2 for some s1, s2 ∈ K.

Proof The first part is [23, Theorem 8.4.11]. The second part follows from the discussion in
[23, Section 8.3]. ��

Note that the element δ defined in the proposition is only well defined up to multiplication
by ±1, since it depends on the ordering of the polynomials g1, g2, g3. A different choice of
the sign corresponds to computing an isogeny to the Jacobian of a quadratic twist of C′.

In order to compute the image of an element in J (C) under an isogeny φ, we restrict to
the first case of the above proposition, i.e. we assume that δ �= 0.

Proposition 8 Let C and C′ be as defined in Part 1 of Proposition 7. Then the (2, 2)-isogeny
φ : J (C) → J (C′) from Proposition 7 is defined by the correspondence R ⊂ C × C′ with

R : 0 = g1(u)h1(u
′) + g2(u)h2(u

′)
vv′ = g1(u)h1(u

′)(u − u′) (1)

for points (P, P ′) = ((u, v), (u′, v′)
) ∈ C × C′.

Proof This is [23, Theorem 8.4.11]. ��
The correspondence defined in Proposition 8 is called Richelot correspondence. Given

a point P = (u, v) ∈ C, the first equation in (1) has two solutions for u′ and the second
equation has precisely one solution for v′ (depending on u′). This means that one point on C
corresponds to two points on C′. The correspondence extends uniquely to a homomorphism
of the Jacobians. In the following, we will describe this map more explicitly. To simplify the
exposition, we make the following assumptions:

• C is defined by a degree-5 equation, hence D∞ = 2∞ ∈ Div(C).
• C′ contains a rational Weierstrass point P ′

0.

Note that we will be in this situation for the formulas developed in the next section. In
most cases, C′ will be defined by a degree-6 extension, hence D′∞ = ∞+ + ∞− ∈ Div(C′).

Let us consider the following diagram.

R ⊂ C × C′

C C′
π π ′
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Here π and π ′ are the projections from R to C and C′ respectively. This gives rise to
a morphism ψ : C → J (C′), where for a point P ∈ C, we first consider its pullback
along π to obtain a divisor R = π−1(P). Here, this divisor is of the form R = (P, P1) +
(P, P2) ∈ Div(R). The pushforward along π ′ yields P1 + P2 ∈ Div(C′). Finally this divisor
is mapped to the Jacobian via the embedding ι′ : C′ → J (C′), P ′ → [P ′ − P ′

0] for some
K -rational Weierstrass point P ′

0 of C′. Choosing a Weierstrass point has the advantage that
the hyperelliptic involution inducesmultiplication by [−1]. Themapψ is summarized below.

ψ : C Div(R) Div(C′) J (C′),

P (P, P1) + (P, P2) P1 + P2 [P1 + P2 − 2P ′
0].

π∗ π ′∗ ι′

Finally ψ induces a homomorphism of the Jacobians of C and C′,

φ : J (C) → J (C′),
[P + Q − D∞] → ψ(P) + ψ(Q) − 2ψ(∞).

Using the correspondence from Proposition 8. the computation of ψ(P) is straightforward
for an affine point P ∈ C(K )\{∞}. To computeψ(∞), we use that one of gi for i ∈ {1, 2, 3}
has degree 1, and write [P∗ − ∞] ∈ G for the corresponding element in the kernel of φ.
Then ψ(∞) = ψ(P∗) can be computed using the coordinates of the affine point P∗.

Note that φ does not depend on the embedding ι′ : C′ → J (C′) that was chosen in the
construction ofψ . Moreover, with P1+P2 as above and analogously Q1+Q2 = π ′∗ ◦π∗(Q),
we have that

ψ(P) + ψ(Q) − 2ψ(∞) = [P1 + P2 − D′∞] + [Q1 + Q2 − D′∞] ∈ J (C′),

where we used that 2 · ψ(∞) − 2 · [D′∞] = 0.
The above discussion contains all ingredients to explicitly compute the image of elements

J (a, b) ∈ J (C) under the isogeny φ. For future reference, the overall procedure is summa-
rized in Algorithm 1. We restrict this description to the case where deg(a) = 2. The case
deg(a) = 1 is easier since in this case J (a, b) = [P − ∞] for a point P ∈ C(K ) and in
particular ψ(P) ∈ J (C)[K ].

We would like to point out that Algorithm 1 is not new, but it is a standard procedure to
compute the image of elements in J (C) under a (2, 2)-isogeny, see for example [7, 12]. The
algorithm consists of four main steps.
Step 1 concerns the computation of the codomain of φ, more precisely an equation for the
curve C′ such that J (C′) is the codomain of φ. This is done as outlined in Proposition 7. The
remaining steps are needed to compute φ(J (a, b)).
In Step 2 the support of the divisor D(a, b) is computed, that is we compute P, Q ∈ C(K̄ )

with D(a, b) = P + Q. This requires the computation of the roots of the polynomial
a ∈ K [x]. In about half of the cases this also requires passing to a degree-2 field extension
of K .
In Step 3 the Richelot correspondence (Eq.1) is used to compute the divisors DP = π ′∗ ◦
π∗(P) and DQ = π ′∗ ◦ π∗(Q) ∈ Div(C′).
In Step 4 we compute J (a′, b′) = φ(J (a, b)) as the sum of [DP − D′∞] and [DQ − D′∞].
This summation is done using Cantor’s algorithm. It consists of a composition step and a
reduction step. For more details on Cantor’s algorithm, the reader is referred to [16, 24] in
the odd-degree case and [13] in the even-degree case.

The procedure is illustrated in Example 2 in the next section.
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Algorithm 1 Computing (2, 2)-isogenies

Input: A curve C : y2 = g1(x)g2(x)g3(x), the group G = 〈J (g1, 0), J (g2, 0)〉, and an element J (a, b) ∈
J (C), where deg(a) = 2.

Output: A curve C′ and an element J (a′, b′) ∈ J (C′) such that there is an isogeny φ : J (C) → J (C′) with
kernel G and φ(J (a, b)) = J (a′, b′).

Step 1 Compute C′.
δ = det

(
(gi j )1≤i≤3, 0≤ j≤2

)

for i = 1 to 3 do
hi = δ−1(g′

i+1gi+2 − gi+1g
′
i+2), indices are viewed mod 3.

Set C′ : y2 = h1h2h3.

Step 2 Compute P, Q ∈ C(K̄ ) with J (a, b) = [P + Q − D∞].
Compute the roots u, s ∈ K̄ of a ∈ K [x].
Evaluate v = b(u), t = b(s) ∈ K̄ .
⇒ P = (u, v) and Q = (s, t).

Step 3 Compute DP , DQ ∈ Div(C′).
Set DP = D(aP , bP ), where
aP = monic(g1(u)h1(x) + g2(u)h2(x)),
bP = g1(u)h1(x)(u − x) · v−1 (mod aP ).
Set DQ = D(aQ , bQ), where
aQ = monic(g1(s)h1(x) + g2(s)h2(x)),

bQ = g1(s)h1(x)(s − x) · t−1 (mod aQ).

Step 4 Compute [D′] = [DP + DQ − 2D′∞] using Cantor’s algorithm.
(a) Composition:

⇒ D(acomp, bcomp) = DP + DQ ∈ Div(C′).
(b) Reduction:

⇒ J (a′, b′) = [D(acomp, bcomp)] ∈ J (C′).

4 Richelot isogenies for type-1 equations

In this section, we consider a genus-2 curve C defined by a Type-1 equation

C : y2 = Ex (x2 − Ax + 1)(x2 − Bx + C).

Moreover, we fix the (2, 2)-group

G = 〈J (x, 0), J (x2 − Ax + 1, 0)〉 ⊂ J (C)[2]
and restrict our considerations to the isogeny φ : J (C) → A with ker(φ) = G. First, we
show that under some mild conditions any (2, 2)-group may be transformed into a group of
this form (Proposition 9) and then translate the results from the previous section into our
setting. In the second part, we develop formulas that completely replace Algorithm 1. Our
main result is Theorem 15.

4.1 Richelot correspondence for type-1 equations

In order to apply the formulas that will be developed in this section for an arbitrary (2, 2)-
isogeny φ, it is necessary to perform a coordinate transformation to obtain a kernel of the
desired form. In general, this might require to extend the field of definition. The next propo-
sition shows that a coordinate transformation is possible over the base field K if there exists
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a K -rational point T of order 4 such that 2 · T is in the kernel of φ. Since the goal of this
work is to compute (2n, 2n)-isogenies (see Sect. 5), this is not a serious restriction.

Proposition 9 Let g1, g2, g3 ∈ K [x] be quadratic polynomials, C a genus-2 curve, defined
an equation of the from y2 = g1(x)g2(x)g3(x) and G = 〈J (g1, 0), J (g2, 0)〉 a (2, 2)-
subgroup of J (C). If the roots of g1 are K -rational and there exists a K -rational 4-torsion
point T ∈ J (C) such that 2 · T = J (g1(x), 0), then there exists a rational coordinate
transformation t : (x, y) → (x ′, y′) such that

y′2 = Ex ′ (x ′2 − Ax ′ + 1)(x ′2 − Bx ′ + C)

is a Type-1 equation for C and G = 〈J (x ′, 0), J (x ′2 − Ax ′ + 1, 0)〉.
Proof The transformation t is constructed as the composition of two transformations, t1 and
t2. We denote

g1 = (x − α1)(x − α2), g2 = (x − β1)(x − β2), g3 = cg · (x − γ1)(x − γ2).

Note that α1, α2 ∈ K by assumption, and β1, β2, γ1, γ2 ∈ K̄ . The first transformation is
defined as

t1 : x → x − α2

x − α1
, y → y

(x − α1)3
.

This leads to an equation of the form

y2 = cg · x(x − β ′
1)(x − β ′

2)(x − γ ′
1)(x − γ ′

2),

where β ′
i and γ ′

i are the images of βi and γi respectively.
The final transformation is of the form t2 : x → a · x , where a satisfies a2 = 1/(β ′

1β
′
2).

This square root can be extracted from the Mumford coordinates of the 4-torsion element
t1(T ) as explained in Corollary 5. ��

The next two propositions are translations of Proposition 7 and Proposition 8 to the setting
specified in this section.

Proposition 10 Let C be a genus-2 curve defined by a Type-1 equation y2 = Ex (x2 −
Ax + 1)(x2 − Bx + C) and let φ : J (C) → A be the isogeny with kernel ker(φ) =
〈J (x, 0), J (x2 − Ax + 1, 0)〉 ⊂ J (C)[2].
1. If C �= 1, thenA is isomorphic to the Jacobian of the genus-2 curve with Type-2 equation

C′ : y2 = (x2 − 1)(x2 − A′)(E ′x2 − B ′x + C ′),

where

A′ = C, B ′ = 2

E
, C ′ = B − AC

E(1 − C)
, E ′ = A − B

E(1 − C)
.

2. If C = 1, then A is isomorphic to a product of elliptic curves E1 × E2 with defining
equations

E1 :y2 = c1 · (x − 1)

(

x − A + 2

A − 2

)(

x − B + 2

B − 2

)

,

E2 :y2 = c2 · (x − 1)

(

x − A − 2

A + 2

)(

x − B − 2

B + 2

)

,

where

c1 = E · (A − 2)(B − 2) and c2 = −E · (A + 2)(B + 2).
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Proof The proposition is implied by Proposition 7. To see this, first note that

δ = E · det
⎛

⎝
0 1 0
1 −A 1
C −B 1

⎞

⎠ = −E · (1 − C),

hence δ = 0 if and only if C = 1.
The case C �= 1 can be easily verified by a direct computation. Note that we further

applied the coordinate change (x, y) → (x, (1−C) · y) in order to obtain a simpler form of
the equation for C′.

For the case C = 1, we use the identities

x = 1

4
(x + 1)2 − 1

4
(x − 1)2,

x2 − Ax + 1 = −A + 2

4
(x + 1)2 + A + 2

4
(x − 1)2,

x2 − Bx + 1 = −B + 2

4
(x + 1)2 + B + 2

4
(x − 1)2.

Inserting these values into the elliptic curve equations provided in Proposition 7 and scaling
x appropriately, yields the desired result. ��

The description of the Richelot correspondence simplifies as well when applied in our
specific setting.

Proposition 11 Let C and C′ be as defined in Part 1 of Proposition 10, in particular C �= 1.
Then the (2, 2)-isogeny φ : J (C) → J (C′) from Proposition 7 is defined by the correspon-
dence R ⊂ C × C′ with

R : 0 = (
u2 − Bu + 1

) · u′2 + 2(C − 1)u · u′ − Cu2 + Bu − C

vv′ = (A − B)u · u′3 − ((A − B)u2 + 2(1 − C)u
) · u′2

+ (2(1 − C)u2 − (AC − B)u
) · u′ + (AC − B)u2

for points (P, P ′) = ((u, v), (u′, v′)
) ∈ R ⊂ C × C′.

Proof This is a consequence of Proposition 8 with g1 = x , g2 = x2 − Ax + 1 and h1 =
E ′x2− B ′x+C ′, h2 = x2− A′. Note that we applied the same coordinate change (u′, v′) →
(u′, (1 − C) · v′) to points in C′ as in the previous proposition. ��
Example 2 Here, we illustrate the general Richelot isogeny procedure (Algorithm 1) in the
setting of Type-1 equations. This means, we use Propositions 10, 11 instead of Proposition
7, 8.

Let C be a genus-2 curve over the finite field F7 with Type-1 equation y2 = x(x2 − x +
1)(x2 − 3x + 2). We want to compute the isogeny φ with kernel G = 〈x, x2 − x + 1〉 and
evaluate it at the element J (x2 + 4, x + 4) ∈ J (C).

First note that C = 2 �= 1, hence the codomain of the isogeny is again the Jacobian of a
hyperelliptic curve. More precisely, we have φ : J (C) → J (C′) with

C′ : y2 = (x2 − 1)(x2 − 2)(2x2 − 2x − 1)

as per Proposition 10. For the computation of the image point, we first determine the points
in the support of J (a, b). For this purpose, we need to factor the polynomial a = x2 + 4 =
(x + 2i)(x − 2i) which requires working in the field F72 = F7(i). We find

J (x2 + 4, x + 4) = [P + Q − D∞], with P = (2i, 4 + 2i), Q = (−2i, 4 − 2i).
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Next, we use the correspondence from Proposition 11 in order to compute the divisors
DP and DQ on C′. Evaluating the correspondence at P and Q respectively, we find that

DP = (x2 + (3i + 6)x + 6i + 3, (3i + 3)x + 5i + 1),

DQ = (x2 + (4i + 6)x + i + 3, (4i + 3)x + 2i + 1).

It remains to compute the sum J (a′, b′) = [DP + DQ −2D∞] ∈ J (C′). Following Cantor’s
algorithm, the composition step yields

Dcomp = DP + DQ = (x4 + 5x3 + 2x2 + 2x + 3, x3 + 2x2 − 2x),

and finally

J (a′, b′) = J (x2 + 3x − 3, 3x + 3).

An important observation in the last example is that while the input and output of the
algorithm are F7-rational, it was necessary to compute over the quadratic extension F72 for
the intermediate steps. Our goal is to avoid these intermediate computations. This motivates
the derivation of explicit formulas.

4.2 Explicit formulas

In this section, we present compact formulas for the Richelot isogeny φ. By this we mean
formulas for the image φ(J (a, b)) for any element J (a, b) ∈ J (C).

First, we consider the easier case, where J (a, b) = [P−∞]. Here it is necessary to distin-
guish betweenWeierstrass points (Proposition 12) and general points P ∈ C(K ) (Proposition
14). Note that in these cases, our formulas do not provide a major advantage over Algorithm
1.

A significant speed-up occurs in the general case J (a, b), where a is a degree-2 poly-
nomial. In that case, Algorithm 1 necessitates to factor the polynomial a and possibly pass
to a degree-2 extension of the ground field, whereas our formula completely avoids these
computations. It works only with the Mumford coordinates and consists of additions, mul-
tiplications and inversions in the ground field. This formula is provided in Theorem 15. It
presents the main result of this section.

In themain theorem,we have to exclude some edge caseswhich are treated inAppendixA.
The first of these cases is when D(a, b) is supported at aWeierstrass point of C. This situation
is very similar to the case where J (a, b) = [P − ∞] and is explained in Section A.1. The
second special case is when gcd(a, x2 − Bx +1) �= 1. In this case, it is necessary to consider
elements of the form [P + ∞± − D′∞] ∈ J (C′) to describe the image φ(J (a, b)). These
were the elements that we excluded in the notation introduced in Sect. 2.2. The necessary
notation and formulas for this case are provided in Appendix A.2. The last special case
concerns divisors where the polynomial a is a square or a = (x − u)(x − 1/u) for some
u ∈ K̄ . This case is treated in Section A.3. All possible cases and criteria to decide which
formula to apply are summarized in Table 1. To keep this overview compact, we did not
include precise references to the intersection of cases (i.e. when two different criteria apply).
But this information is of course included in the statements. The last column of the table also
provides an overview concerning the frequency of these cases, where q = #K is assumed to
be large. Apart from the general case in Theorem 15, all other cases appear with negligible
probability for randomly chosen elements J (a, b) ∈ J (C).

We would like to point out that this case distinction is inherent in describing elements of
the Jacobian by their Mumford coordinates. Indeed, a similar case distinction is necessary
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Table 1 Formulas for the image of J (a, b) under the (2, 2)-isogeny φ

Criteria Formula Number of cases

a = x + a0, b = b0
b0 = 0 Proposition 12 O(1)

a20 + Ba0 + 1 = 0 Proposition 21 O(1)

b0(a
2
0 + Ba0 + 1) �= 0 Proposition 14 O(q)

a = x2 + a1x + a0, b = b1x + b0

b1(a1b0 − a0b1) + b20 = 0 Corollary 19 O(q)

a0B
2 + (a0 + 1)a1B + (a0 − 1)2 + a21 = 0 Propositions 23, 24 O(q)

(a0 − 1)(a21 − 4a0) = 0 Propositions 26, 27 O(q)

general case Theorem 15 O(q2)

in concurrently developed methods for the computation of Richelot isogeny chains [2, 19].
These works currently only describe the general case that we treat in Theorem 15.

Throughout, we assume that C is a genus-2 curve defined by a Type-1 equation

y2 = Ex (x2 − Ax + 1)(x2 − Bx + C)

withC �= 1. Furtherφ : J (C) → J (C′) is the isogenywith kernel ker(φ) = 〈J (x, 0), J (x2−
Ax + 1, 0)〉 ⊂ J (C)[2] from Proposition 10. In particular, C′ is of the form

C′ : y2 = (x2 − 1)(x2 − A′)(E ′x2 − B ′x + C ′),

with

A′ = C, B ′ = 2

E
, C ′ = B − AC

E(1 − C)
, E ′ = A − B

E(1 − C)
.

Proposition 12 Let P ∈ C(K ) be a Weierstrass point, then φ([P − ∞]) is as described
below.

1. If P ∈ {(0, 0),∞}, then φ([P − ∞]) = 0.
2. If P = (α, 0), where α2 − Aα + 1 = 0, then φ([P − ∞]) = J (x2 − 1, 0).
3. If P = (β, 0), where β2 − Bβ + C = 0, then φ([P − ∞]) = J (x2 − A′, 0).

Proof In Case 1, if P = ∞, then [P − ∞] = 0 ∈ J (C), so there is nothing to show. For
P = (0, 0), we have [(0, 0) − ∞] = [(0, 0) + ∞ − 2∞] ∈ ker(φ) by definition.

For the next cases, we fix aWeierstrass point P ′
0 ∈ C′(K ) and use the mapψ : C → J (C′)

subject to the embedding ι : C′ → J (C′), Q → [Q − P ′
0] as defined in Sect. 3.2. Moreover,

we note that the Richelot correspondence (Proposition 11) implies ψ(∞) = ψ((0, 0)) =
[D(x2 − A′, 0) − 2P ′

0].
In Case 2, we find ψ(P) = [D(E ′x2 − B ′x + C ′, 0) − 2P ′

0]. It follows that
φ([P − ∞]) = [D(E ′x2 − B ′x + C ′, 0) − D(x2 − A′, 0)]

= [D(E ′x2 − B ′x + C ′, 0) + D(x2 − A′, 0) − 2D′∞]
= J (x2 − 1, 0).

Here, we did not normalize the Mumford representation of D(E ′x2 − B ′x + C ′, 0) so that
the case E ′ = 0 is included.
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For Case 3, denote D(x2 − Bx + C, 0) = P + Q with P = (β, 0) and Q = (γ, 0). The
first relation in the Richelot correspondence shows that ψ(P) = [P1 + P2 − 2P ′

0], where
x(P1) = x(P2) = β. Similarlyψ(Q) = [Q1+Q2−2P ′

0], where x(Q1) = x(Q2) = γ . The
second relation vanishes for all possible y-coordinates for P1, P2 and Q1, Q2. Indeed, we
find that τ(P1) = P2 and τ(Q1) = Q2, where τ is the hyperelliptic involution τ : C′ → C′.
To see this, note that necessarily

[P1 + P2 − D(x2 − A′, 0)] = φ([P − ∞]) = −φ([Q − ∞])
= −[Q1 + Q2 − D(x2 − A′, 0)].

Adding J (x2 − A′, 0) on both sides yields

[P1 + P2 − D′∞] = [τ(Q1) + τ(Q2) − D′∞].
Since x(P1) = x(P2) �= x(Q1) = x(Q2), this implies that both sides of the equation are
zero, hence P1 = τ(P2) and Q1 = τ(Q2) as claimed above. Consequently,

φ([P − ∞]) = φ([Q − ∞]) = J (x2 − A′, 0).

��
The following Lemma makes Step 3 in Algorithm 1 more explicit. Given a point P ∈

C(K ), it provides a formula for the corresponding divisor DP ∈ Div(C′) under the Richelot
correspondence. The provided formula will be used in many of the subsequent propositions.

Lemma 13 Let R ⊂ C × C′ be the Richelot correspondence defined in Proposition 11 and
denote by π : R → C, π ′ : R → C′ the natural projections from this correspondence.
If P = (u, v) ∈ C(K̄ ) with (u2 − Bu + 1) · v �= 0, then DP := π ′∗ ◦ π∗(P) is equal to
D(aP , bP ), where aP = x2 + aP,1x + aP,0, bP = bP,1x + bP,0 with

aP,1 = 2(C − 1)u

u2 − Bu + 1
, aP,0 = −Cu2 + Bu − C

u2 − Bu + 1
,

bP,1 = u(1 − C)(u2 − Au + 1)

(u2 − Bu + 1)2 · v
· (2u3 − Bu2 + (−B2 + 4C − 2)u + B),

bP,0 = −u(1 − C)(u2 − Au + 1)

(u2 − Bu + 1)2 · v
· (Bu3 + (−B2 + 2C)u2 − Bu + 2C).

Proof The statement is deduced from the description of theRichelot correspondence provided
in Proposition 11. Normalizing the first equation from the correspondence, yields aP . Then
bP is obtained by dividing the right hand side of the second equation in the proposition by v

and reducing this modulo aP . ��
The next proposition explains the computation of the image φ(J (a, b)), where J (a, b) =

[P − ∞] and P is not a Weierstrass point.

Proposition 14 Let C be a genus-2 curve defined by a Type-1 equation y2 = Ex (x2 − Ax +
1)(x2 − Bx + C) and assume C �= 1. Further let φ : J (C) → J (C′) be the isogeny with
kernel ker(φ) = 〈J (x, 0), J (x2 − Ax + 1, 0)〉 ⊂ J (C)[2] from Proposition 10. Then for an
element J (a, b) = J (x + a0, b0) ∈ J (C) with b0(a20 + Ba0 + 1) �= 0, its image under the
isogeny φ is given by

φ(J (a, b)) = [DP + DQ − 2D′∞
] ∈ J (C′),

where DQ = D(x2 − A′, 0) and DP = D(aP , bP ) as in Lemma 13 for (u, v) = (−a0, b0).
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Proof We have that J (x + a0, b0) = [(−a0, b0) − ∞]. This means that

φ(J (a, b)) = ψ((−a0, b0)) − ψ(∞),

where ψ : C → J (C′) is the map induced by the Richelot correspondence R in Proposition
11 with respect to the embedding ι : C′ → J (C′), P → [P − P ′

0] (see Sect. 3.2).
As in the proof of the previous proposition, we use that ψ(∞) = [D(x2 − A′, 0) − 2P ′

0].
Furtherψ((−a0, b0)) = [DP−2P ′

0], where DP is as in Lemma13 (with (u, v) = (−a0, b0)).
In conclusion

φ(J (x + a0, b0)) = [D(aP , bP ) − D(x2 − A′, 0)]
= [D(aP , bP ) + D(x2 − A′, 0) − 2D′∞],

where we used that 2 · [D(x2 − A′, 0) − D′∞
] = 0. ��

The remainder of this section is dedicated to Theorem 15 and its proof. This theorem
provides a formula for the image of a general element J (x2 + a1x + a0, b1x + b0) ∈ J (C)

under φ.

Theorem 15 Let C be a genus-2 curve defined by a Type-1 equation y2 = Ex (x2 − Ax +
1)(x2 − Bx + C) and assume C �= 1. Further let φ : J (C) → J (C′) be the isogeny with
kernel ker(φ) = 〈J (x, 0), J (x2 − Ax + 1, 0)〉 ⊂ J (C)[2] from Proposition 10. We assume
that J (a, b) = J (x2 + a1x + a0, b1x + b0) ∈ J (C) satisfies

0 �= −b1(a1b0 − a0b1) + b20,

0 �= a0B
2 + (a0 + 1)a1B + (a0 − 1)2 + a21 ,

0 �= (a0 − 1)(a21 − 4a0). (2)

Then

φ(J (a, b)) =
[

D

(
a′
4x

4 + a′
3x

3 + a′
2x

2 + a′
1 + a′

0

a′
4

,
b′
3x

3 + b′
2x

2 + b′
1x + b′

0

b′
den

)

− 2D′∞

]

,

where

a′
0 = ((a0 − 1)2 + a21)C

2 + (a0 + 1)a1BC + a0B
2

a′
1 = 2 · (C − 1) · ((a0 + 1)a1C + 2a0B)

a′
2 = − (a0 + 1)a1B(C + 1) − 2a0B

2 + 4a0C
2 − 2((a0 + 1)2 + a21)C + 4a0

a′
3 = − 2 · (C − 1) · (2a0B + (a0 + 1)a1)

a′
4 = a0B

2 + (a0 + 1)a1B + (a0 − 1)2 + a21

and

μ = a1b0 − a0b1

b′
0 = a0μAB + (a0b0(a0 − 1) + a1μ) AC + a0 (a1μ − b0(a0 − 1)) B

+ μ((a0 − 1)2 + a21)C

b′
1 = a0b0AB + (a0a1b0 + μ(a0 + 1)) AC − 2a0μA + a0(μ + b1)B

+ (2a0a1μ + b0(−a20 + a21 + 1)
)
C − 2a0a1μ + 2a0b0(a0 + 1)

b′
2 = − a0μAB + 2a0b0AC + (−a0b0(a0 + 1) − a1μ) A + a0 (−a1μ + b0(a0 − 1)) B

+ 2a0 (μ + b1)C − (a20 + a21 + 1)μ
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b′
3 = − a0b0AB + (−a20b1 − μ

)
A − a0(μ + b1)B − b0((a0 − 1)2 + a21)

b′
den = (a0 − 1) · (−μb1 + b20).

Note that the formulas as presented in Theorem 15 are not completely optimized. Instead,
we decided for a presentation that achieves a better readability. For an optimized version,
where the number of multiplications and additions is reduced, the reader is referred to our
implementation [14].

Proof The proof involves several symbolic computations that were performed using the
Computer Algebra System SageMath [26]. Here, we explain the overall strategy and give
some details on the computations. The formulas that we obtained may be verified using the
Code provided in Appendix B and in our GitHub repository [14].

LetC be a genus-2 curve definedby aType-1 equation y2 = Ex (x2−Ax+1)(x2−Bx+C)

and J (a, b) = (x2 + a1x + a0, b1x + b0) ∈ J (C). In order to verify that the formula for
the image φ(J (a, b)) in the theorem is correct, we follow Algorithm 1 symbolically and
compare the output with our formula. The computations are preformed over the ring

R = Q[A, B,C, a0, a1, b0, b1, u],
where we assume that u is a root of the polynomial x2 + a1x + a0. This provides us with a
first relation among the variables. Moreover, it must hold that Ex (x2 − Ax + 1)(x2 − Bx +
C)− (b1x + b0)2 ≡ 0 (mod x2 + a1x + a0), since the pair (a, b) represents a divisor on the
curve. This provides us with two more relations. We let I � R be the ideal defined by these
three relations.

The first step of the algorithm consists in computing the codomain curve. This is already
covered by Proposition 10, so we directly proceed to the second step. This step requires to
compute the support P = (u, v), Q = (s, t) of the divisor D(a, b). Recall that u is a variable
in our ring R. The remaining coordinates can be represented as follows.

v = b1u + b0, s = −a1 − u, t = b1s + b0.

In the third step, we compute the divisors DP and DQ that correspond to P and Q under
the Richelot correspondence. Here, we can use the explicit description from Lemma 13. We
denote DP = D(aP , bP ) and DQ = D(aQ, bQ) ∈ Div(C′), where aP , bP are just as in the
statement of the lemma and aQ, bQ are obtained by replacing (u, v) by (s, t). Note that the
first two inequalities in (2) guarantee that we do not divide by zero in this step. To make this
more precise, 0 �= a0B2 + (a0 + 1)a1B + (a0 − 1)2 + a21 is equivalent to requiring that
u2 − Bu+1 and s2 − Bs+1 are non-zero (cf. Lemma 22); and 0 �= −b1(a1b0 −a0b1)+b20,
means that none of P and Q are Weierstrass points, hence v, t �= 0 (cf. Lemma 18).

Finally, we perform Step 4(a), the composition step of Cantor’s Algorithm with output
theMumford representation D(a′, b′) = DP +DQ . Here wemake use of the third inequality
0 �= (a0 − 1)(a21 − 4a0) which implies that gcd(aP , aQ) = 1 (cf. Lemma 25). In that case
a′ = aP · aQ . This results in a symbolic expression for a′ with coefficients in (the fraction
field of) R. This expression is considerably more complicated than the one provided in the
theorem. In particular, it still contains the variable u representing the x-coordinate of one
of the points in the support of the divisor. To verify that the simpler expression from our
theorem is correct, we check that the coefficients coincide modulo the ideal I .

It remains to verify thatb′ is correct.Weknow that it is the unique polynomial inFrac(R)[x]
with deg(b′) ≤ 3 that satisfies
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b′ ≡ bP (mod aP ),

b′ ≡ bQ (mod aQ),

b′2 ≡ f (mod a′),

where f = (x2 − 1)(x2 − A′)(E ′x2 − B ′x +C ′) is the defining polynomial for C′. One can
verify that these three properties are satisfied for the polynomial b′ provided in the theorem.
Again, it is necessary to take into account the relations contained in the ideal I , when checking
the identities. ��
Remark 2 The formula provided in Theorem 15 replaces steps 1, 2, 3, 4(a) in Algorithm 1.
This results in a major speed-up in the isogeny computation, since all of the square root
computations as well as the computation of a field extension are avoided. In order to find the
(reduced) Mumford representation (a′′, b′′) for the divisor class J (C), it remains to carry out
Step 4(b). Here, this last step consists of two computations:

• Computing the quotient
(
f − b′2) /a′, where f = (x2 − 1)(x2 − A′)(E ′x2 − B ′x +C ′)

is the defining polynomial for C′. The normalization of that quotient is then a monic
polynomial a′′ of degree at most 2.

• Computing the residue of −b′ modulo a′′. This residue is the polynomial b′′ with
deg(b′′) < deg(a′′).

Both of these computations can be executed very efficiently using the methods developed for
HECC.

It is also possible to extract a formula for the reduced Mumford representation directly.
However the formula that we obtained is not very compact, hence it is computationally
preferable to use the formula from Theorem 15 and then perform Step 4(b) of Algorithm 1
when computing a (2, 2)-isogeny of the given form.

Example 3 To make the description more explicit, let us go back to Example 2. That is we
consider the genus-2 curve C over F7 with Type-1 equation y2 = x(x2− x+1)(x2−3x+2).
And we want to evaluate the isogeny φ with kernel G = 〈x, x2 − x + 1〉 at the element
J (x2 + 4, x + 4) ∈ J (C).

Instead of followingAlgorithm 1, wemay now simply evaluate the formula fromTheorem
15 at

A = 1, B = 3,C = 2, E = 1, a0 = 4, a1 = 0, b0 = 4, b1 = 1.

This yields

a′ = x4 + 5x3 + 2x2 + 2x + 3, b′ = x3 + 2x2 + 5x .

The divisor D(a′, b′) coincides with the unreduced Mumford presentation computed in
Example 2. We see that the new formula replaces almost all steps in the algorithm and
allows us to perform all computations over F7.

5 Efficiently computing (2n, 2n)-isogenies

In this section, we first introduce (2n, 2n)-isogenies and analyze these in more detail for the
case of Type-2 equations. In particular, we define the term special symplectic basis. Then,
we present our algorithm for computing (2n, 2n)-isogenies as chains of (2, 2)-isogenies and
compare its efficiency to other algorithms in the literature.
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5.1 (2n, 2n)-Isogenies

Let A be a principally polarized abelian surface. For any n ∈ N, the 2n-torsion group A[2n]
is a Z/2nZ-module of rank 4. Letμμμ2n be the multiplicative group of 2n-th roots of unity. The
Weil pairing

e2n : A[2n] × A[2n] → μμμ2n

is an alternating, bilinear pairing on this module. We say that a basis (T1, T2, T3, T4) for
A[2n] is symplectic (w.r.t. the Weil pairing) if for some primitive 2n-th root μ ∈ μμμ2n ,

e2n (Ti , Tj ) = μ±1 if j = i ± 2

and the Weil pairing is trivial on all other combinations of basis elements, more precisely

e2n (Ti , Tj ) = 1 if j /∈ {i ± 2}.
Phrased differently, the pairing matrix of the basis is of the form

⎛

⎜
⎝

log(e2n (T1, T1)) . . . log(e2n (T1, T4))
...

...

log(e2n (T4, T1)) . . . log(e2n (T4, T4))

⎞

⎟
⎠ =

(
0 Id2

− Id2 0

)

,

where the logarithm is taken with respect to μ and Id2 is the identity matrix.
We are interested in isogenies φ : A → A′ that can be evaluated as a non-backtracking

chain of n (2, 2)-isogenies. The kernels of such isogenies aremaximal 2n-isotropic subgroups
of A. The group structure of such groups is analyzed in [12]. In particular, the authors show
that for any maximal 2n-isotropic subgroup G, there exists a k ∈ {0, . . . , � n

2 �} such that

G � Z/2nZ × Z/2n−k
Z × Z/2kZ.

We restrict our considerations to the case of rank-2 subgroups (i.e. the case k = 0). These
constitute roughly two thirds of all 2n-isotropic groups of A. For short, we say that an
isogeny φ : A → A′ is a (2n, 2n)-isogeny if G = ker φ � Z/2nZ × Z/2nZ and call G a
(2n, 2n)-group.

Given a (2n, 2n)-group G = 〈G1,G2〉 ⊂ A[2n], we consider the isogeny chain

A = A0 A1 . . . Ai . . . An = A′,φ1

ψi

φi φn

where φi : Ai−1 → Ai is the isogeny with kernel 2n−i 〈ψi−1(G1), ψi−1(G2)〉 and ψi =
φi ◦ · · · ◦ φ1.

5.2 (2n, 2n)-Groups and type-2 equations

The set of (2n, 2n)-groups has been analyzed in [15]. In particular the authors provide a
method for the random sampling of such groups when provided with a symplectic basis
(T1, T2, T3, T4) of A[2n]. As suggested in that article, we restrict to the subset

G = {〈T1 + aT3 + bT4, T2 + bT3 + cT4〉 | a, b, c ∈ Z/2nZ
}

(3)

of (2n, 2n)-subgroups. Each tuple (a, b, c) ∈ (Z/2nZ)3 defines a different (2n, 2n)-group,
hence groups can be sampled by choosing (a, b, c) at random. Of course, this sampling
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method depends on the choice of the symplectic basis for A[2n]. In the following, we will
discuss a choice that is particularly favorable for our setting.

From now on, we consider a genus-2 curve C given by a Type-2 equation

C : y2 = (x2 − 1)(x2 − A)(Ex2 − Bx + C)

for some A, B,C, E ∈ K , and the abelian variety J = J (C). We denote the Weierstrass
points of C by

{(1, 0), (−1, 0), (α, 0), (−α, 0), (β, 0), (γ, 0)},
where α is a square root of A and β, γ are the roots of (Ex2 − Bx +C). As before, we assign
γ = ∞ if E = 0, and in this case treat the polynomial x − γ as a constant.

Lemma 16 Let C be defined by a Type-2 equation. Then B = (T1, T2, T3, T4) with

T1 = J ((x − 1)(x − α), 0) , T3 = J ((x − 1)(x + 1), 0) ,

T2 = J ((x + α)(x − β), 0) , T4 = J ((x − β)(x − γ ), 0) ,

is a symplectic basis for J = J (C)[2], where α, β, γ are as defined above.

Proof This is easily verified by a direct computation. ��
Lemma 17 Let B = (T1, T2, T3, T4) and C as in Lemma 16. Then the set G of (2, 2)-groups
from Eq.3 comprises the 8 groups of the form

〈
J
(
(x − (−1)i )(x − (−1) jα), 0

)
, J

(
(x − (−1) j+1α)(x − r), 0

)〉
,

where i, j ∈ {0, 1} and r ∈ {β, γ }.
Proof For i ∈ {0, . . . , 7}, define

Gi = 〈T1 + ai T3 + bi T4, T2 + bi T3 + ci T4〉,
where (ai , bi , ci ) is the 2-adic representation of i , meaning i = 4ai + 2bi + ci with
(ai , bi , ci ) ∈ {0, 1}3. Then

G0 = 〈J ((x − 1)(x − α), 0) , J ((x + α)(x − β), 0)〉,
G1 = 〈J ((x − 1)(x − α), 0) , J ((x + α)(x − γ ), 0)〉,
G2 = 〈J ((x + 1)(x + α), 0) , J ((x − α)(x − γ ), 0)〉,
G3 = 〈J ((x + 1)(x + α), 0) , J ((x − α)(x − β), 0)〉,
G4 = 〈J ((x + 1)(x − α), 0) , J ((x + α)(x − β), 0)〉,
G5 = 〈J ((x + 1)(x − α), 0) , J ((x + α)(x − γ ), 0)〉,
G6 = 〈J ((x − 1)(x + α), 0) , J ((x − α)(x − γ ), 0)〉,
G7 = 〈J ((x − 1)(x + α), 0) , J ((x − α)(x − β), 0)〉.

These are precisely the 8 groups from the statement of the lemma. ��
In our algorithm, we want to use the explicit description of the different (2, 2)-groups

from Lemma 17. Therefore, on the 2-torsion level, we need to have a symplectic basis as in
Lemma 16. This motivates the following definition.
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Definition 3 For a genus-2 curve C defined by a Type-2 equation, we say that a symplec-
tic basis B = (T1, T2, T3, T4) of J (C)[2n] is a special symplectic basis if 2n−1 · B =
(2n−1T1, 2n−1T2, 2n−1T3, 2n−1T4) is the basis from Lemma 16.

Note that a special symplectic basic exists for any genus-2 curve C defined by a Type-2
equation. However, it is in general not unique. For the case n = 1 the basis from Lemma 16
is the only special symplectic basis. For n > 1, a special symplectic basis can be constructed
as follows. Starting with some symplectic basis B for J (C)[2n], one first computes a base
change from the 2-torsion basis 2n−1B to the basis from Lemma 16. The base change matrix
M is a symplectic matrix over Z/2Z, hence it can be lifted to a symplectic matrix M ′ over
Z/2nZ. Applying M ′ to the original basis B then yields a basis with the desired properties.

5.3 Algorithm

Weare now ready to describe an algorithm for the efficient computation of (2n, 2n)-isogenies.
This algorithm takes as input any genus-2 curve defined by a Type-2 equation over some finite
field K . Moreover it is assumed that the 2n-torsion of the Jacobian J (C) is K -rational. A
typical example relevant for cryptographic applications is a superspecial hyperelliptic curve
C defined over K = Fp2 with p ≡ −1 (mod 2n). In that case Proposition 2 guarantees the
existence of a Type-2 equation.

Moreover it is assumed that the (2n, 2n)-group defining the (2n, 2n)-isogeny is sampled
from the restricted set G (see Eq.3) of cardinality 23n corresponding to a special symplectic
basis (T1, T2, T3, T4) forJ (C)[2n] as inDefinition 3. Note that for cryptographic applications
this is not a serious restriction, sinceG containsmore than half of the (2n, 2n)-groups ofJ (C).
Indeed this restriction has already been suggested in the framework of G2SIDH in [15].

Figure2 provides an overview of the setup and the main steps in the algorithm. Moreover,
Fig. 1 in the introduction contains a schematic overview. Using the results and methods
developed in thiswork, all steps in the isogeny chain computation canbeperformedefficiently.
Below we provide some more details on our implementation.

1. The first step only consists of iterative doublings for elements in the Jacobian. There
already exist efficient algorithms that were developed in the framework of HECC, see
for example [8, 16]. Building on these results, we constructed formulas tailored to Type-
2 equations for this computation. Strictly following the algorithm, we need to compute
n(n−1)

2 such doublings in total. But this number may be decreased by using the alterations
described in Remark 5.
For i < n, we also save the 4-torsion element 2n−i−1G1,i−1 obtained during the compu-
tation. This will be used later in Step 3.

2. At a first glance, the second step seems costly since it requires the factorization of two
polynomials. Here, we can exploit the properties of the special symplectic basis B. It
follows from Lemma 17 that α1 ∈ {±1}. This allows us to find α1, α2 by a simple case
distinction. Further Lemma 17 implies that β1 = −α2, hence β2 can be easily computed
from the coefficients of the polynomial g2.

3. For the third step, the case k = n has to be treated separately. If k < n, we use the
coordinate transformation provided in the proof of Proposition 9.
In the last step, this proposition cannot be applied since we do not have a 4-torsion
point. Therefore the last round necessitates one square root computation to obtain a
suitable coordinate transformation. Note that the structure of J (Cn)(K ) guarantees that
this square root is contained in K , so it is not necessary to pass to a field extension. A
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Setup We fix a finite field K, an integer n and a genus-2 curve C0 defined
by a Type-2 hyperelliptic equation

C0 : y2 = (x2 − 1)(x2 − A0)(E0x
2 − B0x + C0)

for some A0, B0, C0, E0 ∈ K such that the J (C)[2n] is K-rational; and
choose a special symplectic basis (T1, T2, T3, T4) for J (C)[2n].

Random Sampling To randomly select a (2n, 2n)-isogeny, three ele-
ments a, b, c ∈ Z/2n

Z are chosen and the elements

G1,0 = T1 + aT3 + bT4, G2,0 = T2 + bT3 + cT4

are computed.

Isogeny Chain The following procedure computes an isogeny φ :
J (C0) → J (Cn) with kernel G1,0, G2,0 .
For 1 ≤ i ≤ n, perform the following steps.
1. Compute G∗

1 = 2n−iG1,i−1, G∗
2 = 2n−iG2,i−1 and denote G∗

1 =
J(g1, 0), G∗

2 = J(g2, 0).
2. Compute the roots of g1, g2 (using the properties of the special sym-

plectic basis) and denote g1 = (x − α1)(x − α2), g2 = (x − β1)(x −
β2).

3. Perform a coordinate change (x , y ) = t(x, y) to obtain a Type-1
equation

Ci−1 : y 2 = Ei−1 x (x 2 − Ai−1x + 1)(x 2 − Bi−1x + Ci−1)

satisfying t(g1) = x and t(g2) = x 2 − Ai−1x + 1.
4. If Ci−1 = 1, abort. Otherwise, apply the Richelot isogeny φ̃i :

J (Ci−1) → J (Ci) from Proposition 10 to obtain a Type-2 equation

Ci : y2 = (x2 − 1)(x2 − Ai)(Eix
2 − Bix + Ci)

and the formula from Theorem 15 to compute G1,i =
φi(G1,i−1), G2,i = φi(G2,i−1) with φi = φ̃i ◦ t.

Then J (Cn) is the codomain of the isogeny φ.

Fig. 2 Overview of our method for computing (2n , 2n)-isogenies

possible modification to avoid the square root computation in the last round is discussed
in Remark 4.

4. The fourth step consists of applying the formulas from Proposition 10 once to obtain the
coefficients for the new Type-2 equation, and the formula from Theorem 15 has to be
applied twice to compute the images of the kernel generators.
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Remark 3 Note that our formulas can only be applied if the isogeny chain does not contain any
split isogenies. In other words, we require δi = C ′

i−1 − 1 �= 0 in each step i (cf. Proposition
10). In the case that δ = 0, the algorithm aborts. In cryptographically relevant settings, where
the curve C0 is superspecial and n ≈ log(p)/2, this happens with probability approximately
log(p)/p for a randomly chosen isogeny chain, see for example [9, Section 5].

On the other hand, the splitting case, δ = 0, plays an important role in the SIDH attack
described in [2]. However, for the attack to work, one only needs to detect whether the
last isogeny φn splits. For this purpose, it suffices to compute the isogenies φ1, . . . , φn−1

explicitly and return the value of δn . Clearly, this is possible using our methods.
For more efficient versions of the attack as proposed in [18], one also needs to be able

to evaluate splittings and gluings. Explicit maps for the splitting and gluing isogeny can be
derived from the covering maps implied by the second part of Proposition 10.

Remark 4 For the last (2, 2)-isogeny in the isogeny chain, the above algorithm requires one
square root computation in the execution of Step 3. This computation can be avoided by
slightly changing the setup. For example, one can choose a curve C such that J (C)[2n+1]
is K -rational and provide the kernel G for a (2n+1, 2n+1)-isogeny, but consider only the
(2n, 2n)-isogeny defined by 2 · G. In other words, the last step of the isogeny computation
is omitted. In the superspecial case, this necessitates to increase the size of the underlying
prime field by two bits.

Remark 5 Running the algorithm as described above, requires to perform n(n−1)
2 point dou-

blings in total, since in each step i ∈ {1, . . . , n}, one has to compute the kernel generators of
the current isogeny G∗

1 = 2n−i G1,i−1 and G∗
2 = 2n−i G2,i−1. Note that

G∗
1 = ψi−1(2

n−i G1), G∗
2 = ψi−1(2

n−i G2).

This observation provides a different way of computing G∗
1 and G∗

2 which reduces the total
number of doublings. More precisely, in the beginning of the algorithm one computes a list
containing

H1,i = 2n−i G1, H2,i = 2n−i G2 for i ∈ {1, . . . , n}.
At each step, one additionally computes the image φi (H1, j ) for all j ≥ i so that G∗

1 and
G∗

2 can always be recovered without performing any additional point doublings. While this
procedure reduces the number of doublings to n, it increases the number of point image
computations by n(n − 1).

For optimal performance, one should use a mix of both methods. Using a classical divide-
and-conquer method, both the number of point image computations as well as the number
of doublings is around n log(n).6

Note that such a strategy was already developed in [11, Section 4.2.2] in the elliptic curve
setting. Further, in that setting the authors determine optimal parameters for specific values
of n that minimize the number of arithmetic operations.

5.4 Implementation

Implementations of our algorithm in Magma [1] and SageMath [26] are made available
in our GitHub repository [14]. Here, we compare its efficiency to related results in the

6 Thanks to Luca de Feo for pointing this out. In a previous version of the manuscript, we only described a
method reducing the number of doublings to n3/2.
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Table 2 Runtime in seconds for different algorithms computing a (2n , 2n)-isogeny

n = 51, log(p) ≈ 100 n = 86, log(p) ≈ 171
pure isogeny image points pure isogeny image points

Genus-2 SIDH (Magma) [12] 36 75 omitted omitted

SIDH attack (SageMath) [19] 0.39 0.58 0.80 1.13

SIDH attack (Magma) [2] 0.15 0.24 0.37 0.55

This work (SageMath) 0.16 0.22 0.33 0.43

This work (Magma) 0.05 0.08 0.12 0.16

literature. For that comparison, we use a setup which is typical for applications in isogeny-
based cryptography. This means that we consider a prime of the form p = e · 2n3m − 1 with
2n ≈ 3m and a small integer e. We choose a superspecial genus-2 curve C defined over Fp2 so
thatJ (C)[2n] ⊂ J (C)(Fp2) and compute a (2n, 2n)-isogeny. Since this is necessary, for some
applications, we also compute the image of a set consisting of four elements of J (C) under
this isogeny. The comparison is done on two different instances for typical cryptographic
parameters. For instance, in G2SIDH these parameter choices correspond to a (previously
assumed) classical security of 75 bits and 128 bits respectively.

All computations were performed on our platform, a laptopwith an Intel i7-8565U proces-
sor and 16 GB of RAMwith Linux 5.13.0, Magma V2.27.5, and SageMath 9.7. We compare
our algorithm with the Richelot isogeny computations in the following implementations:

• Genus-2 SIDH by Flynn and Ti: The authors of [12] kindly provided their source code
of the implementation of the genus-2 SIDH protocol. While this contains the first avail-
able implementation of (2n, 2n)-isogenies, it is to be understood as a proof-of-concept
implementation.

• SIDH attack by Castryck and Decru: The computation of (2n, 2n)-isogenies is an the
important part of the attack on SIDH and an implementation in Magma is provided
along with their paper [2]. Here, a significant speedup with respect to the G2SIDH
implementation is obtained by replacing Algorithm 1 by a Gröbner basis computation.
For more details, the reader is referred to [2, Sect. 6.2]. This work is concurrent to ours.

• SageMath implementation by Oudompheng and Pope: There also exists a version of the
SIDH attack implemented in SageMath [19]. The algorithm for the computation of the
(2n, 2n)-isogenies deviates from that in [2]. In particular the Gröbner basis computation
is replaced by a more explicit approach. Furthermore, similar as in our implementation,
the number of doublings in each chain is reduced by applying the strategy outlined in
Remark 5.

The results are summarized in Table 2.
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Appendix A: Special cases of the (2, 2)-isogeny formula

In this section, we treat the special cases that are not covered by Theorem 15 or Propositions
12 and 14. For the entire section, we assume that we are in the setting of Proposition 10, Case
1. This means, we consider the isogeny φ : J (C) → J (C′), where C and C′ are hyperelliptic
curves defined as

C : y2 = Ex (x2 − Ax + 1)(x2 − Bx + C)

and

C′ : y2 = (x2 − 1)(x2 − A′)(E ′x2 − B ′x + C ′),

with

A′ = C, B ′ = 2

E
, C ′ = B − AC

E(1 − C)
, E ′ = A − B

E(1 − C)
,

and ker(φ) = 〈J (x, 0), J (x2 − Ax + 1, 0)〉 ⊂ J (C)[2]. Some of the computations in this
section are quite tedious to perform by hand and we recommend to use our code available at
[14] or in Section B for verification.

A.1: Divisors supported atWeierstrass points

First, we consider the cases, where the divisor D(a, b) ∈ Div(C) is supported on aWeierstrass
points of C. This is very similar to the situation where a = x + a0 is a degree-1 polynomial
which is treated in Proposition 14. The next lemma provides an easy check for this property.

Lemma 18 Let C : y2 = f (x) be a genus-2 curve and J (a, b) ∈ J (C) with (a, b) =
(x2 + a1x + a0, b1x + b0). Then

−b1(a1b0 − a0b1) + b20 = 0

if and only if the support of D(a, b) contains a Weierstrass point of C.

Proof Note that −b1(a1b0 − a0b1) + b20 is the resultant of a and b. The resultant vanishes if
and only if there exists a common root u ∈ K̄ . In this case, P = (u, 0) lies in the support of
D(a, b). ��
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Corollary 19 Let J (a, b) ∈ J (C)with (a, b) = (x2+a1x+a0, b1x+b0) satisfying b1(a1b0−
a0b1) + b20 = 0, b �= 0 and a0B2 + (a0 + 1)a1B + (a0 − 1)2 + a21 �= 0. Then D(a, b) =
(u, v) + (r , 0), where

r = −b0
b1

, u = −a1 − b0
b1

, v = −a1b1;

and φ(J (a, b)) = [DP + DQ − 2D′∞], where DP is the divisor from Lemma 13 and
DQ = D(aQ, 0) with

aQ =

⎧
⎪⎨

⎪⎩

x2 − A′ if r = 0,

E ′x2 − B ′x + C ′ if r2 − Ar + 1 = 0,

1 if r2 − Br + C = 0.

Proof This is a consequence of Propositions 12 and 14. ��
For the case a0B2 + (a0 + 1)a1B + (a0 − 1)2 + a21 = 0, we refer to Proposition 23.

Moreover, we excluded the case b = 0, which happens if and only if J (a, b) ∈ J (C)[2].
The formulas for φ(J (a, b)) in this case can be easily extracted from Proposition 12. While
we leave this to the reader, we observe that 〈J (x2 − 1, 0), J (x2 − A′, 0)〉 defines the dual
isogeny φ̂ : J (C′) → J (C). This is implied by the corollary below.

Corollary 20 Let J (a, b) ∈ J (C) with (a, b) = (x2 + a1x + a0, b1x + b0) satisfying
−b1(a1b0 − a0b1) + b20 = 0 and b = 0. Then

φ(J (a, b)) ∈ 〈J (x2 − 1, 0), J (x2 − A′, 0)〉.
Proof This is a consequence of Propositions 12. ��

A.2: Image points supported at infinity

The curve C′ is defined by a degree-6 equation,

C′ : y2 = (x2 − 1)(x2 − A′)(E ′x2 − B ′x + C ′),

hence has two points at infinity.7 Let us fix an element e′ ∈ K̄ satisfying e′2 = E ′, then
the projective coordinates for the points at infinity are ∞+ = (1 : e′ : 0) and ∞− = (1 :
−e′ : 0). In this context, we denote sgn(e′) = +1 and sgn(−e′) = −1. As opposed to
the divisor D′∞ = ∞+ + ∞−, the points ∞+, ∞− are not necessarily K -rational. But
in case they are rational, we need to deal with elements on the Jacobian J (C′) of the form
[P −∞+] = [P +∞− − D′∞] and [P −∞−] = [P +∞+ − D′∞]. We therefore introduce
the notation

J (x + a0, b0,−) = [(−a0, b0) + ∞− − D′∞],
and

J (x + a0, b0,+) = [(−a0, b0) + ∞+ − D′∞].
Similarly, we denote

D(a, b,+) = D(a, b) + ∞+, D(a, b,−) = D(a, b) + ∞−.

7 For the sake of simplicity, we assume A �= B so that E ′ = A−B
E(1−C)

�= 0 here. But the reader can convince
themselves that the formulas for A = B are very similar.
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Note that these cases are not captured by the notation introduced in Sect. 2.2.
The next two propositions describe cases, where the image of an element J (a, b) ∈ J (C)

under the isogeny φ is of the special form described above. In other words, φ(J (a, b)) =
J (a′, b′,±). It is easy to see from the description of the Richelot correspondence (Proposition
11) that this happens if and only if gcd(a, x2 − Bx + 1) �= 1. First, we treat the case,
where a = x + a0 is a factor of x2 − Bx + 1 (Proposition 21). Then we consider the
cases, where a = x2 + a1x + a0. Lemma 22 provides an easy criterion to check, whether
gcd(a, x2−Bx+1) �= 1.We distinguish two cases. Proposition 23 deals with the case where
gcd(a, x2 − Bx + 1) has degree 1. This implies that a has two K -rational roots, which can
be computed using the Euclidean algorithm. This allows to determine two rational divisors
DP , DQ ∈ Div(C′) such that φ(J (a, b)) = [DP + DQ − 2D′∞]. The case a = x2 − Bx + 1
is treated in Proposition 24. Here, some interesting configurations occur. For example if
b = b1x , then φ(J (a, b)) ∈ ±[∞+ − ∞−].
Proposition 21 Let φ : J (C) → J (C′) as described above. Let J (a, b) ∈ J (C) satisfying
a = x + a0 and a20 + Ba0 + 1 = 0, then

φ(J (a, b)) = [DP + DQ − 2D′∞
] ∈ J (C′),

where DQ = (x2 − C, 0) and

DP = D

(

x − B

2
,
(4C − B2)(A − B)

8

a0(B + 2a0)

b0
, sgn

(

(B − A)
a0
b0

))

.

Proof We proceed similarly as in the proof of Proposition 12. To summarize, we have J (x +
a0, b0) = [(−a0, b0) − ∞], hence

φ(J (a, b)) = ψ((−a0, b0)) − ψ(∞),

where ψ : C → J (C′) is the map induced by the Richelot correspondence R in Proposition
11 with respect to some embedding ι : C′ → J (C′), P → [P − P ′]. It holds that ψ(∞) =
[D(x2 − C, 0) − 2P ′].

The computation ofψ((−a0, b0)) = [DP −2P ′] however differs from that in Proposition
12. Inserting the coordinates of P = (u, v) into the equation from the Richelot correspon-
dence 11, we find that there is only one (affine) solution u1 = B

2 . The second solution is
u2 = ∞. The corresponding y-coordinates can be determined from the second equation of
the Richelot correspondence. We obtain

v1 = (4C − B2)(A − B)

8

a0(B + 2a0)

b0
, v2 = (B − A)

a0
b0

.

Note that v2 is indeed a square root of E ′, the leading coefficient of the hyperelliptic equation
for C′, in particular v2 = ±e′. We denote sgn(v2) ∈ {±} for the sign of v2. This means

DP = (u1, v1) + ∞sgn(v2) = D(x − u1, v1, sgn(v2)).

��
Lemma 22 Let a = x2 + a1x + a0 and g = x2 − Bx + 1 be polynomials in K [x]. Then
gcd(a, g) �= 1 if and only if

a0B
2 + (a0 + 1)a1B + (a0 − 1)2 + a21 = 0.

Proof The expression above is the resultant of the polynomials a and g. ��
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Proposition 23 Let φ : J (C) → J (C′) as described above. Let J (a, b) ∈ J (C) with
a = x2 + a1x + a0 satisfying gcd(a, x2 − Bx + 1) = (x − s) and write t = b1s + b0. Then

φ(J (a, b)) = [D − 2D′∞], where D = DP + DQ

with

DQ = D

(

x − B

2
,
(4C − B2)(B − A)

8

s(B − 2s)

t
, sgn

(
(A − B)

s

t

))

and DP is as described below.

1. If a = (x − u)(x − s) with s �= u, then DP is the divisor from Lemma 13; unless
P = (u, 0) is a Weierstrass point, in which case DP = D(aP , 0) with aP ∈ {1, x2 −
A′, E ′x2 − B ′x + C ′} as in Corollary 19.

2. If a = (x − s)2, then D(a, b) = 2 · (s, t) and DP = DQ.

Proof In Case 1, gcd(a, x2 − Bx +1) = x − s for some s ∈ K . We write a = (x −u)(x − s)
and v = b(u), t = b(s). Then P = (u, v) and Q = (s, t). For the point P the divisor DP is
described in Lemma 13 or Corollary 19 depending on whether P is a Weierstrass point. For
Q = (s, t) the computation is identical to the proof of Proposition 21, when setting a0 = −s
and b0 = t .

In the second case P = Q = (s, t) and the result follows from the first case. ��
Proposition 24 Let φ : J (C) → J (C′) as described above, and J (a, b) ∈ J (C) with
a = x2 − Bx + 1.

1. If B = ±2, then D(a, b) = 2·(±1, b0) andφ(J (a, b)) = 2·J
(
x ∓ 1, 0,∓ sgn

(
A−2
b0

))
.

Otherwise, when B �= ±2, the following cases occur.

2. If b0 = 0, then (A − B)2b21 = E ′ and φ(J (a, b)) = s · [∞+ − ∞−], where s =
sgn((A − B)b1).

3. If b0 �= 0, then φ(J (a, b)) = J
((
x − B

2

)2
,

(4C−B2)(B−A)
4b0

)
.

Proof Let us write a = x2 − Bx + 1 = (x − u)(x − s) ∈ K̄ [x]. We denote v = b(u) and
t = b(s), hence D(a, b) = P + Q with P = (u, v) and Q = (s, t). Similar as in Case 1 of
Proposition 23, we find that φ(J (a, b)) = DP + DQ , where

DP = D(x − B/2, v1, sgn(v2)), and DQ = D(x − B/2, t1, sgn(t2)),

with

v1 = (4C − B2)(B − A)

8

u(B − 2u)

v
, v2 = (A − B)

u

v
.

and

t1 = (4C − B2)(B − A)

8

s(B − 2s)

t
, t2 = (A − B)

s

t
.

If B = ±2, then DP = DQ = P1 + ∞sgn(v2) are K -rational. The image φ(J (a, b)) is
easily computed by inserting B = ±2 everywhere.

From now on we assume B �= ±2, hence u �= s. In that case DP = P1 + ∞sgn(v2) and
DQ = Q1 + ∞sgn(t2) are K -rational. In order to compute their composition DP + DQ , note
that t1 = ±v1 and t2 = ±v2, since these points share the same x-coordinate on C′.
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If b0 = 0, then u/v = s/t , hence v2 = t2, and

v1

t1
= u(B − 2u)t

s(B − 2s)v
= B − 2u

B − 2s
= −1.

Thismeans that P1 = τ(Q1),where τ is the hyperelliptic involution, hence [P1+Q1−D′∞] =
0. And [∞sgn(v2) +∞sgn(t2) − D′∞] = s · [∞+ −∞−] ∈ J (C′), where s = sgn((A− B)b1).

Otherwise if b0 �= 0, then, we have v1 = t1 and v2 = −t2. In that case [∞sgn(v2) +
∞sgn(t2) − D′∞] = 0 and we find that

P1 = Q1 =
(
B

2
,

(4C − B2)(B − A)

4b0

)

.

��

A.3: Shared support

Let J (a, b) = [P+Q−D∞] and let DP = D(aP , bP ) and DQ = D(aQ, bQ) be the divisors
associated to P and Q under the Richelot correspondence. In the last step of Algorithm 1,
the composition D = D(a′, b′) of DP and DQ is computed. In most cases aP and aQ are
coprime, so that a′ = aP · aQ . In this part, we take care of the cases where this is not true.
First, we provide a criterion to distinguish this scenario from the general case (Lemma 25).
This criterion shows that there are two subcases which are covered in Propositions 26 and
27 respectively.

Lemma 25 Let J (a, b) = [P +Q−D∞] ∈ J (C). Consider the map π ′∗ ◦π∗ : C → Div(C′)
induced by the Richelot correspondence. Denote DP = D(aP , bP ) = π ′∗ ◦ π∗(P) and
DQ = D(aQ, bQ) = π ′∗ ◦π∗(Q). We assume that a0B2+(a0+1)a1B+(a0−1)2+a21 �= 0.
Then the gcd(aP , aQ) �= 1 if and only if a0 = 1 or a21 = 4a0. Moreover, in these cases
aP = aQ.

Proof Denote P = (u, v) and Q = (s, t). Since a0B2+(a0+1)a1B+(a0−1)2+a21 �= 0, we
are not in the situation of Section A.2. In particular, u2 − Bu + 1 �= 0 and s2 − Bs + 1 �= 0,
hence the first relation in the Richelot correspondence yields

aP = x2 + 2(C − 1)u

u2 − Bu + 1
· x + −Cu2 + Bu − C

u2 − Bu + 1
,

aQ = x2 + 2(C − 1)s

s2 − Bs + 1
· x + −Cs2 + Bs − C

s2 − Bs + 1
.

The resultant of aP and aQ is

res(aP , aQ) = (u − s)2(us − 1)2 · (C − 1)2(4C − B2)

(u2 − Bu + 1)2(s2 − Bs + 1)2
,

which is zero if and only if u = s or u = 1/s. Translated to the Mumford coordinates of
D = (u, v) + (s, t), this means that a21 = 4a0 or a0 = 1.

If u = s, it is clear that aP = aQ . If u = 1/s, then

aP = x2 + 2(1 − C)

B + a1
x − B + a1C

B + a1
= aQ .

��
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Proposition 26 Let φ : J (C) → J (C′) as described above and J (a, b) ∈ J (C) with
a = x2 + a1x + a0, b = b1x + b0 and 4a0 = a21 . Then,

φ(J (a, b)) = [2D(aP , bP ) − 2D′∞] ∈ J (C′),

where D(aP , bP ) is as in Lemma 13 with (u, v) = (− a1
2 , b0

)
.

Proof Clearly J (a, b) = [2P − D∞], where P = (− a1
2 , b0

)
. This implies φ(J (a, b)) =

[2DP − 2D′∞], where DP is as in Lemma 13. ��
Proposition 27 Let φ : J (C) → J (C′) as described above. Let J (a, b) ∈ J (C) with a =
x2+a1x+1, b1x+b0 (i.e. a0 = 1) and assume a1 /∈ {2,−A,−B},−b1(a1b0−b1)+b20 �= 0,
a0B2 + (a0 + 1)a1B + (a0 − 1)2 + a21 �= 0. Then φ(J (a, b)) = [2P − D∞], where

P =
(
d0
d1

,
(B2 − 4C)(C − 1)(a1 + A)

d1

)

,

with

d0 = (B(b1 − a1b0) + 2b0C)(a1 + B) − 2b0B(C − 1),

d1 = (2(b1 − a1b0) + b0B)(a1 + B) − 4b0(C − 1).

Proof Let J (a, b) = [P + Q − D∞] ∈ J (C). Consider the map π ′∗ ◦ π∗ : C → Div(C′)
induced by the Richelot correspondence and denote DP = D(aP , bP ) = π ′∗ ◦ π∗(P) and
DQ = D(aQ, bQ) = π ′∗ ◦ π∗(Q). As per Lemma 25, aP = aQ and we denote

aP = aQ = (x − u1)(x − u2) ∈ K̄ [x].
In order to compute the composition DP + DQ , we show that bP �= bQ and compute the
intersection of the two polynomials.

Using the presentation for bP and bQ from Lemma 13, we deduce that

bP,0 − bQ,0 = − (C − 1)(A + a1)(2u + a1)

(B + a1)2vt
d0,

bP,1 − bQ,1 = (C − 1)(A + a1)(2u + a1)

(B + a1)2vt
d1.

One can show that d1 �= 0 in our setting, hence bP,1 �= bQ,1 and bP and bQ intersect in a
unique point

S = (x̂, ŷ) =
(
d0
d1

,
(B2 − 4C)(C − 1)(a1 + A)

d1

)

.

Moreover, we find that aP (x̂) = 0, hence S is a point in the support of both DP and DQ .
Taking into account that bP �= bQ , we deduce that DP = S + P2 and DQ = S + Q2 with
P2 = (u2, v2) and Q2 = (u2,−v2), for some u2 ∈ K̄ . Consequently,

[DP + DQ − 2D′∞] = [2(x̂, ŷ) + (u2, v2) + (u2,−v2) − 2D′∞] = [2(x̂, ŷ) − D′∞].
��

Appendix B: Verification of the formulas

In the following, we provide SageMath code that can be used to verify the formulas obtained
in this work. This code is also made available in our GitHub repository [14].
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B.1: Proofs for Sect. 2

print("Corollary 5")
R.<r1,r2,r3,r4> = PolynomialRing(QQ)
s1 = r1+r2+r3+r4
s2 = r1*r2 + r1*r3 + r1*r4 + r2*r3 + r2*r4 + r3*r4
s3 = r1*r2*r3 + r1*r2*r4 + r1*r3*r4 + r2*r3*r4
s4 = r1*r2*r3*r4
b1 = -r1ˆ2
b2 = -r2ˆ2
print(r1*r2 == (s1*s3*b1*b2 + (s4-b1*b2)ˆ2) / (b1*b2*s1ˆ2
+ (s4-b1*b2)*(s2-b1-b2)))

B.2: Proofs for Sect. 4

def Richelot(G, delta):
Gd = [g.derivative() for g in G]
H = [(Gd[(i+1)
return H

#Type 1 Equation:
R.<A,B,C,E,u,v> = QQ[]
S.<x> = Frac(R)[]
F = E*x*(xˆ2-A*x+1)*(xˆ2-B*x+C)
G = [E*x,xˆ2-A*x+1, (xˆ2-B*x+C)]

print("Proposition 10")
delta = -E*(1-C)
H = Richelot(G,delta);
Ap = C
Bp = 2/E
Cp = (B-A*C)/(E*(1-C))
Ep = (A-B)/(E*(1-C))
print(prod(H)*(1-C)ˆ2 == (xˆ2-1)*(xˆ2-Ap)*(Ep*xˆ2-Bp*x+Cp))

print("Proposition 11")
P.<up> = Frac(R)[]
rel1 = (G[0](u)*H[0](up)+G[1](u)*H[1](up))*(1-C);
rel2 = (G[0](u)*H[0](up))*(u-up)*(1-C); #rel2=(1-C)*v’*v
print(rel1 == -(uˆ2-B*u+1)*upˆ2 - 2*(C-1)*u*up + C*uˆ2-B*u+C)
print(rel2 == (A-B)*u*upˆ3 - ((A-B)*uˆ2+2*(1-C)*u)* upˆ2
+ (2*(1-C)*uˆ2 - (A*C-B)*u)*up + (A*C-B)*uˆ2)

print("Lemma 13")
aP1 = 2*(C-1)*u/(uˆ2-B*u+1)
aP0 = (-C*uˆ2+B*u-C)/(uˆ2-B*u+1)
print(rel1/(-uˆ2+B*u-1) == upˆ2 + aP1*up + aP0)
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bP1 = u*(1-C)*(uˆ2-A*u+1)/(uˆ2-B*u+1)ˆ2 * (2*uˆ3-B*uˆ2
+ (-Bˆ2+4*C-2)*u+B)
bP0 = -u*(1-C)*(uˆ2-A*u+1)/(uˆ2-B*u+1)ˆ2 * (B*uˆ3
+(-Bˆ2+2*C)*uˆ2 - B*u+2*C)
print(rel2

print("Theorem 15")
K.<A,B,C,E,u,a0,a1,b0,b1> = QQ[]
R.<x> = K[]
#Relations among the elements
# 1) u is a root of a(x) = xˆ2+a1*x+a0
# 2) a0,a1,b0,b1 describe a divisor on the curve yˆ2
= x(xˆ2-Ax+1)(xˆ2-Bx+C)
rel1 = uˆ2 + a1*u + a0
F = E*x*(xˆ2-A*x+1)*(xˆ2-B*x+C)

b = b1*x+b0
a = xˆ2+a1*x+a0
[q,r] = (F-bˆ2).quo_rem(a) #r must be zero
relations = [rel1] + r.coefficients()
I = K.ideal(relations)
v = b0 + b1*u
s = -a1 - u
t = b0 + b1*s
#expressions for aP, bP from above
aP1 = 2*(C-1)*u/(uˆ2-B*u+1)
aP0 = (-C*uˆ2+B*u-C)/(uˆ2-B*u+1)
bP1 = u*(1-C)*(uˆ2-A*u+1)/(uˆ2-B*u+1)ˆ2/v * (2*uˆ3-B*uˆ2
+ (-Bˆ2+4*C-2)*u+B)
bP0 = -u*(1-C)*(uˆ2-A*u+1)/(uˆ2-B*u+1)ˆ2/v * (B*uˆ3
+(-Bˆ2+2*C)*uˆ2 - B*u+2*C)
aP = xˆ2+aP1*x+aP0
bP = bP1*x +bP0

aQ1 = 2*(C-1)*s/(sˆ2-B*s+1)
aQ0 = (-C*sˆ2+B*s-C)/(sˆ2-B*s+1)
bQ1 = +s*(1-C)*(sˆ2-A*s+1)/(sˆ2-B*s+1)ˆ2/t * (2*sˆ3-B*sˆ2
+ (-Bˆ2+4*C-2)*s+B)
bQ0 = -s*(1-C)*(sˆ2-A*s+1)/(sˆ2-B*s+1)ˆ2/t * (B*sˆ3
+(-Bˆ2+2*C)*sˆ2 - B*s+2*C)
aQ = xˆ2+aQ1*x+aQ0
bQ = bQ1*x +bQ0

a00 = a0*Bˆ2 + (a0*a1 + a1)*B*C + (a0ˆ2 + a1ˆ2 - 2*a0
+ 1)*Cˆ2

a11 = 4*a0*B*C + (2*a0*a1 + 2*a1)*Cˆ2 + (-4*a0)*B
+ (-2*a0*a1 - 2*a1)*C
a22 = (-2*a0)*Bˆ2 + (-a0*a1 - a1)*B*C + 4*a0*Cˆ2
+ (-a0*a1 - a1)*B
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+ (-2*a0ˆ2 - 2*a1ˆ2 - 4*a0 - 2)*C + 4*a0
a33 = (-4*a0)*B*C + 4*a0*B + (-2*a0*a1 - 2*a1)*C + 2*a0*a1 +
2*a1
aden = a0*Bˆ2 + (a0*a1 + a1)*B + a0ˆ2 + a1ˆ2 - 2*a0 + 1
ap = (a00 + a11*x + a22*xˆ2 + a33*xˆ3+aden*xˆ4)/aden
acomp = (aP*aQ).coefficients()
print("representation for a’:")
print("a0’:", K(a00-acomp[0].numerator()).reduce(I) == 0)
print("a1’:", K(a11-acomp[1].numerator()).reduce(I) == 0)
print("a2’:", K(a22-acomp[2].numerator()).reduce(I) == 0)
print("a3’:", K(a33-acomp[3].numerator()).reduce(I) == 0)
print("a4’:", all([c.denominator().reduce(I) == aden for c in
acomp[:3]]))

b00 = (a0*a1*b0 - a0ˆ2*b1)*A*B + (a0ˆ2*b0 + a1ˆ2*b0
- a0*a1*b1
- a0*b0)*A*C

+ (a0*a1ˆ2*b0 - a0ˆ2*a1*b1 - a0ˆ2*b0 + a0*b0)*B
+ (a0ˆ2*a1*b0 + a1ˆ3*b0 - a0ˆ3*b1 - a0*a1ˆ2*b1
- 2*a0*a1*b0 + 2*a0ˆ2*b1 + a1*b0 - a0*b1)*C
b11 = a0*b0*A*B + (2*a0*a1*b0 - a0ˆ2*b1 + a1*b0 - a0*b1)*A*C
+ (-2*a0*a1*b0 + 2*a0ˆ2*b1)*A + (a0*a1*b0 - a0ˆ2*b1
+ a0*b1)*B

+ (2*a0*a1ˆ2*b0 - 2*a0ˆ2*a1*b1 - a0ˆ2*b0 + a1ˆ2*b0 + b0)*C
- 2*a0*a1ˆ2*b0 + 2*a0ˆ2*a1*b1 + 2*a0ˆ2*b0 - 2*a0*b0
b22 = (-a0*a1*b0 + a0ˆ2*b1)*A*B + 2*a0*b0*A*C
+ (-a0ˆ2*b0 - a1ˆ2*b0 + a0*a1*b1 - a0*b0)*A
+ (-a0*a1ˆ2*b0 + a0ˆ2*a1*b1 + a0ˆ2*b0 - a0*b0)*B
+ (2*a0*a1*b0 - 2*a0ˆ2*b1 + 2*a0*b1)*C
- a0ˆ2*a1*b0 - a1ˆ3*b0 + a0ˆ3*b1 + a0*a1ˆ2*b1 - a1*b0 - a0*b1
b33 = (-a0*b0)*A*B + (-a0ˆ2*b1 - a1*b0 + a0*b1)*A
+ (-a0*a1*b0 + a0ˆ2*b1 - a0*b1)*B - a0ˆ2*b0 - a1ˆ2*b0
+ 2*a0*b0 - b0
bden = -1*(a0 - 1) * (-a1*b0*b1 + a0*b1ˆ2 + b0ˆ2)
bp = (b33*xˆ3+b22*xˆ2+b11*x+b00)/bden
print("representation for b’:")
print("b’=bP(mod aP):", all([c.numerator().reduce(I) == 0 for
c in
((bp-bP)
print("b’=bQ(mod aQ):", all([c.numerator().reduce(I) == 0 for
c in
((bp-bQ)

Ap = C
Bp = 2/E
Cp = (B-A*C)/(E*(1-C))
Ep = (A-B)/(E*(1-C))
Fp = (xˆ2-1)*(xˆ2-Ap)*(Ep*xˆ2-Bp*x+Cp)
print("b’ˆ2=f(mod a’):", all([c.numerator().reduce(I) == 0
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for c in
((Fp-bpˆ2)%ap).coefficients()]))

B.3: Proofs for Appendix A

#Type 1 Equation:
K.<u,A,B,C,E,a0,a1,b0,b1> = QQ[]
S.<x> = K[]
F = E*x*(xˆ2-A*x+1)*(xˆ2-B*x+C)
Ap = C
Bp = 2/E
Cp = (B-A*C)/(E*(1-C))
Ep = (A-B)/(E*(1-C))
Fp = (xˆ2-1)*(xˆ2-Ap)*(Ep*xˆ2-Bp*x+Cp)

#Richelot correspondence:
rel1 = (uˆ2-B*u+1)*xˆ2 + 2*(C-1)*u*x - C*uˆ2+B*u-C
rel2 = (A-B)*u*xˆ3 - ((A-B)*uˆ2+2*(1-C)*u)* xˆ2 +
(2*(1-C)*uˆ2 - (A*C-B)*u)*x + (A*C-B)*uˆ2

#relations among Mumford coefficients
a = xˆ2+a1*x+a0
b = b1*x+b0
[q,r] = (F-bˆ2).quo_rem(a) #r must be zero
relations = [a(u)] + r.coefficients()
I = K.ideal(relations)
v = b0 + b1*u
s = -a1 - u
t = b0 + b1*s

print("Lemma 18:", -b1*(a1*b0-a0*b1)+b0ˆ2 == a.resultant(b))

print("Proposition 21")
print("v1:", rel2(u=-a0, x = B/2) == 1/8*(4*C-Bˆ2)*
(A-B)*a0*(B+2*a0))
print("v2:", (rel2(u=-a0, x=1/x)*xˆ3)(0) == (B-A)*a0)

print("Lemma 22:", a0*Bˆ2 + (a0+1)*a1*B+(a0-1)ˆ2+a1ˆ2 ==
a.resultant(xˆ2-B*x+1))

print("General checks")
s = -a1-u
t = b1*s+b0
J = I + K.ideal(sˆ2-B*s+1)
s1 = B/2
t1 = (4*C-Bˆ2)*(B-A)*s*(B-2*s)/(8*t)
e = (A-B)*s/t
print("Q1 on curve:", (t1ˆ2-Fp(s1)).numerator().reduce(J)
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== 0)
print("square root E", (Ep-eˆ2).numerator().reduce(J) == 0)

print("Proposition 24:", 0)
J = I + K.ideal([a1+B,a0-1])
u1 = B/2
v1 = (4*C-Bˆ2)*(B-A)*u*(B-2*u)/(8*v)
print("case b0=0:",(v1/t1).numerator().reduce(J
+ K.ideal(u*t-s*v))
== -1*(v1/t1).denominator().reduce(J+ K.ideal(u*t-s*v)) )
print("case b0!=0:",
(v1 - (4*C-Bˆ2)*(B-A)/(4*b0)).numerator().reduce(J
+K.ideal(u*t+s*v)) == 0)

#Section A.3
aP1 = 2*(C-1)*u/(uˆ2-B*u+1)
aP0 = (-C*uˆ2+B*u-C)/(uˆ2-B*u+1)
bP1 = u*(1-C)*(uˆ2-A*u+1)/(uˆ2-B*u+1)ˆ2/v * (2*uˆ3-B*uˆ2
+ (-Bˆ2+4*C-2)*u+B)
bP0 = -u*(1-C)*(uˆ2-A*u+1)/(uˆ2-B*u+1)ˆ2/v * (B*uˆ3
+(-Bˆ2+2*C)*uˆ2 - B*u+2*C)
aP = xˆ2+aP1*x+aP0
bP = bP1*x +bP0

aQ1 = 2*(C-1)*s/(sˆ2-B*s+1)
aQ0 = (-C*sˆ2+B*s-C)/(sˆ2-B*s+1)
bQ1 = +s*(1-C)*(sˆ2-A*s+1)/(sˆ2-B*s+1)ˆ2/t * (2*sˆ3-B*sˆ2
+ (-Bˆ2+4*C-2)*s+B)
bQ0 = -s*(1-C)*(sˆ2-A*s+1)/(sˆ2-B*s+1)ˆ2/t * (B*sˆ3
+(-Bˆ2+2*C)*sˆ2 - B*s+2*C)
aQ = xˆ2+aQ1*x+aQ0
bQ = bQ1*x +bQ0

print("Lemma 25:", (aQ.resultant(aP).numerator().reduce(I)
==-(C-1)ˆ2*(u-s)ˆ2*(4*C-Bˆ2)*(1-u*s)ˆ2).reduce(I))

print("Proposition 27:")
J = I + K.ideal([a0-1])
rel1_s = (B+a1)*xˆ2 - 2*(C-1)*x - (B+a1*C)
print(all([c.reduce(J) == 0 for c in (rel1 +u*rel1_s).
coefficients()]))
d1 = (B*b0 - 2*(a1*b0-b1))*(a1+B) -4*b0*(C-1)
d0 = (B*(b1-a1*b0)+ 2*C*b0)*(a1+B) - 2*B*b0*(C-1)
nz = [B+a1,4*C-Bˆ2, C-1, A+a1, -a1*b0*b1+b0ˆ2+b1ˆ2]
#nonzero terms
print("bP1-bQ1:", all([(bP1-bQ1).numerator().reduce(J) ==
-nz[0]ˆ2*nz[2]*nz[3]*(2*u+a1)*d1,
(bP1-bQ1).denominator().reduce(J) == (v*t*nz[0]ˆ4).
reduce(J)]))
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print("bP0-bQ0:", all([(bP0-bQ0).numerator().reduce(J)
== nz[0]ˆ2*nz[2]*nz[3]*(2*u+a1)*d0,
(bP1-bQ1).denominator().reduce(J) == (v*t*nz[0]ˆ4).
reduce(J)]))
xhat = (bQ0-bP0)/(bP1-bQ1)
print("xhat:", (xhat - d0/d1).numerator().reduce(J) == 0)
yhat = bP1*xhat + bP0
print("yhat:", (yhat - nz[1]*nz[2]*nz[3]/d1).numerator().
reduce(J) == 0)
print("xhat is a root of aP:", rel1(xhatr).numerator().
reduce(J) == 0)

print("check that d1 nonzero (by contradiction):")
print("if d1=d0=0, ")
J1 = J + K.ideal([d0,d1])
print("then b1=b0=0 (contradiction):", all([prod(nz)ˆ2*b0
in J1, prod(nz)ˆ2*b1 in J1]))

print("if d0 nonzero, then bP1=bQ1=0.", True)
#geometric argument
J2 = J + K.ideal([d1, (bP1+bQ1).numerator().reduce(J)])
print("then 0=1 (contradiction):", prod(nz)ˆ2 in J2)
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