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Abstract
The Lattice Isomorphism Problem (LIP) is the computational task of recovering, assuming it
exists, an orthogonal linear transformation sending one lattice to another. For cryptographic
purposes, the case of the trivial lattice Zn is of particular interest (ZLIP). Heuristic analysis
suggests that theBKZ algorithmwith blocksizeβ = n/2+o(n) solves such instances (Ducas,
Postlethwaite, Pulles, van Woerden, ASIACRYPT 2022). In this work, I propose a provable
version of this statement, namely, that ZLIP can indeed be solved by making polynomially
many calls to a Shortest Vector Problem oracle in dimension at most n/2 + 1.
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1 Introduction

Two lattices �,�′ ⊂ R
n are said to be isomorphic if there exists a rotation between them,

that is a linear orthogonal map O ∈ On(R) such that O ·� = �′. Determining isomorphism
and finding it if it exists is called the Lattice Isomorphism Problem (LIP). The best known
provable algorithm [14] has super-exponential time nO(n), but in practice other methods are
often preferred [12, 14, 17, 18]. They essentially consist in finding all the shortest vectors, to
then solve a (potentially exponentially large) instance of the Graph Isomorphism Problem.

The LIP has recently been proposed as a foundation for cryptographic construction [8,
10], and the case of rotations of Zn quickly arose as a natural instantiation for simple and
efficient cryptographic design [9, 11]. In this case (coined ZLIP [8]), finding the shortest
vectors is sufficient, which generically implies a provable algorithm in time 2n+o(n) thanks
to the worst-case Shortest Vector Problem (SVP) algorithm [1, 2].
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1.1 Prior provable algorithms forZLIP

Yet, one might doubt that finding the shortest vector in rotations of Zn should be as hard as
in a worst-case lattice. It was suggested already by Szydlo [21] than finding rather short yet
not necessarily the shortest vector could be sufficient to solve LIP over Zn , though it was not
exactly clear at the time how short of a vector is required nor how costly it would be to find
it. The only formal statement of Szydlo is a reduction from ZLIP to a decisional version of
LIP for mild sparsification of Zn .

Bennett et al. [8] indeed proposed a provable algorithm with complexity 2n/2+o(n) for this
task, via a polynomial time reduction Gap-SVP in the same dimension n, with a constant
approximation factor. Despite the relaxation to an Gap version of SVP, block reductions
algorithm remain insufficient to reach this result, as they are only known to provide �(

√
n)

approximation factors even when the blocksize is close to the full dimension [3, 13, 16].
Instead, they rely on an algorithm of [2] tailored to Gap-SVP; the core of this algorithm
is similar to the 2n+o(n) algorithm for exact-SVP, in particular it operate on lattices of full
dimension n, but the gap allows for some complexity improvements.

1.2 Heuristic algorithms forZLIP

As for many other lattice problems, the best provable complexity stands in contrast with
the heuristic state of the art. Using standard heuristic analysis (see [4] for a survey), Ducas,
Postlethwaite, Pulles, and van Woerden [11, Sec. 4.2] argued that the block reduction algo-
rithm BKZ [19, 20] should be successful in finding those shortest vectors using a blocksize
of β = n/2 + o(n) because the shortest vectors are unusually short compared to that of a
random lattice by a factor �(

√
n).

More specifically, it is argued that when the lattice is sufficiently reduced, the last block of
the lattice has a large volume, and therefore it is not expected to contain a vector shorter than
the ones we are looking for. This step of the reasoning is entirely heuristic. From there, one
concludes that an SVP call on this last block should indeed find (a projection1 of) some unit
vectors of the fullZn lattice. This heuristic conclusion is confirmed by extensive experiments.

Plugging the best heuristic complexity of 2.292β+o(β) for SVP [7] in dimension β leads to
a heuristic complexity of 2.146n+o(n).

The result

In this work, I propose a provable variant of the heuristic claim of [11, Sec. 4.2], namely,
exhibiting a block reduction algorithm for solving ZLIP, that indeed relies on polynomially
many calls to an SVP oracle in dimensions less than n/2 + 1. The algorithm is however not
exactly BKZ [19, 20], but rather a specialization of the Slide algorithm [3, 13, 16]. The key
remark is that projected lattices of Zn have a shortest vector of length either 1 or smaller
than

√
1 − 1/n (Lemmas 3 and 4). This implies that the slide algorithm makes significant

progress at each iteration, until the first block is itself a rotation of Zk where n = 2k + 1.
Note that this does not directly improve the best provable complexity forZLIP, as plugging

in the best provable algorithm [1, 2] for SVP in dimension n/2 also leads to a 2n/2+o(n)

complexity, as reached by different means in [8]. While those final complexity are similar,

1 Lifting this projected solution to a full solution should then be rather easy according to further heuristic
reasoning [5, Claim 1].
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Provable lattice reduction ofZn 911

the complexity theoretic reduction underlying these results are different. The approach of
[8] maintain the dimension of the lattice to n, but relax the problem to a gap version with
an constant approximation factor.2 On the other hand the approach of this work divides the
SVP dimension but doesn’t relax the problem.3 Another difference is that our reduction is
deterministic while that of [8] is probabilistic.

Despite the lack of direct impact on the complexity of ZLIP of our approach, we found
it motivating for the following reason. It appears to be the first case where we can prove
that block reduction does find the shortest vector with a blocksize β < n despite the lack of
uniqueness of the shortest vector. Indeed, to the best of my knowledge, this was only proved
[3, 16] for latticeswith polynomial gap of at least�(

√
n) between the first and secondminima

λ1(L) and λ2(L). On the contrary, lattices that are rotation of Zn have all their successive
minima equal λ1(L) = λ2(L) = · · · = λn(L) = 1.

In that sense, this result is a step toward closing the gap between the theory and prac-
tice. Indeed heuristic and experiments suggested that the uniqueness of the shortest vector
is essentially irrelevant in practice, what matter is how unusually short it is compared to
Minkowski’s bound [5, 10, 11].

2 Preliminaries

We write a matrix B ∈ R
m×n as B = (b0, . . . , bn−1) where bi is the i th column vector of

B. We denote by In the n × n identity matrix.

2.1 Lattices

If B ∈ R
m×n has full-column rank n, the lattice L generated by the basis B is denoted

by L(B) = B · Zn = {B · x | x ∈ Z
n}. We denote by B� = (b�

0, . . . , b
�
n−1) the Gram–

Schmidt orthogonalization (GS) of the matrix (b0, . . . , bn−1). For i ∈ {0, . . . , n − 1}, we
denote the projection orthogonal to the span of (b0, . . . , bi−1) by πi ; π0 denotes “no pro-
jection”, i.e. the identity. For 0 ≤ i ≤ j < d , we denote by B[i : j] the local projected block
(πi (bi ), . . . , πi (b j )), and when the basis is clear from context, by L[i : j] the lattice generated
by B[i : j]. Note that both bounds of the interval [i : j] are inclusive in this notation.

2.2 Metric and volumetric properties

The Euclidean norm of a vector v is denoted by ‖v‖. The volume (or determinant) of a lattice
L(B) is vol(L(B)) = √| det(BT · B)| = ∏

i ‖b�
i ‖. It is an invariant of the lattice, it is also

invariant under rotation, and is non-negative for any lattice L . The first minimum of a lattice
L is the norm of a shortest non-zero vector, denoted by λ1(L). We use the abbreviations
vol(B) = vol(L(B)) and λ1(B) = λ1(L(B)).

The i th minimal distance λi (L) is defined as the smallest radius r > 0 such that L contains
i many linearly independent vectors. These quantities are also invariants under rotation.

2 They in fact propose a trade-off, which can reach larger approximation factors at the cost of making super-
polynomially or even exponentially many calls to the Gap-SVP oracle.
3 or only just a little bit: we remark later on that our approach would survive an tiny approximation factor of
1 + o(n−1/2)
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2.3 Primitivity

We write π⊥
X for the projection orthogonal to the space spanned by X for any set X ⊂ R

m .
A sublattice S of L is said to be primitive if S = SpanR(S) ∩ L . Equivalently, S ⊂ L is
primitive if and only if there exists another sublattice S′ ⊂ L such the sum S + S′ is direct
and L = S ⊕ S′. In particular, if B is a basis of L , then the lattice generated by any subset
of the column of B is a primitive sublattice of L .

The main purpose of primitivity in this work is the following property. For a primitive
sublattice S ⊂ L and any x ∈ L\S, it holds that the projection of x orthogonally to S is a
non-zero lattice vectors of π⊥

S (L): π⊥
S (x) �= 0.

2.4 Reduction

Definition 1 (Size reduction)A basis B ∈ R
m×n of a lattice L ⊂ R

m is said to be size-reduced
if 〈b j , b�

i 〉 ≤ 1
2‖b�

i ‖2 for all j > i .

We recall that there is a polynomial-time algorithm that size-reduces a basis [6, 15], and
that this algorithms does not affect the Gram–Schmidt orthogonalization B�.

Definition 2 (SVP and HKZ reduction) A basis B ∈ R
m×n of a lattice L ⊂ R

m is said to be
SVP-reduced if b1 is a shortest vector of L . It is said to be HKZ-reduced if it is size-reduced
and if each block B[i :n−1] for i ∈ {0, . . . , n − 1} is SVP-reduced.

Note that by the volume invariance, SVP reduction minimizes ‖b0‖ = ‖b�
0‖, it also

maximizes the remaining volume vol(B[1:n−1]) = ∏n−1
i=1 ‖b�

i ‖.

2.5 Duality

Definition 3 (Dual Lattice) The dual lattice L∨ of a lattice L ⊂ R
m is the set of all w ∈

SpanR(�) such that 〈w,L〉 ⊆ Z.

An important fact for our proof is that Zn is self-dual, and so are all of its rotations.
There is a natural correspondence between bases of the primal and bases of the dual, given

by the (pseudo-)inverse transpose: if B is a basis of � then D = B · (BT · B)
−1

is a basis
of the dual lattice L∨. For our purpose, we will only need the fact that the last dual vector
dn is the reciprocal of the last Gram–Schmidt vector: dn−1 = b�

n−1/‖b�
n−1‖2; in particular

‖dn−1‖ = 1/‖b�
n−1‖. We refer to [3, 16] for more background on reduction and duality.

For this reason, it is natural to consider the dual basis in reversed order. In particular, by
applying SVP reduction in the dual, we mean to minimize ‖dn−1‖, or equivalently maximize
‖b�

n−1‖.

2.6 ZLIP

Let � be a rotation of Zn . We assume n to be odd and write n = 2k + 1 for some integer
k. The case of even n can be treated by artificially adding an extra orthogonal component
defining a lattice �+ = �⊕Z. Note that this restriction seemingly prevents direct reduction
from ZSVP to ZLIP by induction4: instead we will directly solve ZLIP.

4 or at least makes it less straightforward: the expert reader might see a proof path invoking the random
self-reducibility of LIP [10, Lemma 3.9] and the automorphism group of Zn .
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Provable lattice reduction ofZn 913

We denote E = (e0, . . . , e2k) some orthogonal basis of�. The problem is to find any such
orthogonal basis given any basis of � as input,5 i.e. to find E up to signs and permutation.
Note that the set {±ei } is precisely the set of shortest vectors of �.

Note further that this is equivalent to finding an HKZ-reduced basis of� (a statement that
is not necessarily true for all lattices). Indeed, the shortest vectors are exactly ±ei so an HKZ
basis must start with such a vector. Projecting orthogonally to any of those vectors gives a
rotation of Zn−1; it remains to unroll the inductive definition of HKZ reduction.

3 A Provable ZLIP algorithm

We consider the following algorithm, which may be viewed as a specialization of the Slide
algorithm [3, 13, 16], namely the number of block is fixed to 2 and the stopping condition is
tailored to the special case of rotations of Zn .

Note that the algorithm is invariant by rotation of the input. Hence, it is sufficient to analyze
its behavior for the case � = Z

n .

Algorithm 1 An algorithm for ZLIP
Require: A basis B of �, � being a rotation of Zn , where n = 2k + 1 is odd.
Ensure: An orthonormal basis B of �

1: while vol(B[0...k−1]) > 1 do
2: Dual-SVP reduce the block B[0:k]
3: Primal-SVP reduce the block B[k:2k]
4: end while
5: Primal-HKZ reduce the block B[0:k−1]
6: Primal-HKZ reduce the block B[k:2k]
7: return B

3.1 Partial Correctness

Let us start by explaining why the algorithm succeeds when it terminates. The central argu-
ment will be that the first block is isometric to Zk (Lemma 2). To establish it, let us first state
the following.

Lemma 1 Let A, B ∈ R
n×n be two positive symmetric definite matrices. Then det(A+ B) ≥

det(A).

Proof This follows directly from the fact that H �→ det(H)1/n is concave on the space of
positive symmetric definitematrices.6 In particular it holds that det(A+B)1/n ≥ det(A)1/n+
det(B)1/n . Because det(B) ≥ 0, we have det(A + B)1/n ≥ det(A)1/n , and we conclude. ��
Lemma 2 Any sublattice L ⊂ Z

n of rank k ≥ 1 has non-zero integer squared volume.
Furthermore, if vol(L) = 1, then L is isomorphic to Zk .

5 There exist an equivalent and sometime advatageous formulation of LIP using positive definite quadratic
forms, where basis are replaced by their Gram matrices. In our context, we find the explicit basis formalism
to be more convenient. We refer to [10, 14] for this alternative formulation.
6 See exercises 209, 218 and 219 of http://perso.ens-lyon.fr/serre/DPF/exobis.pdf for three different proofs
of this fact. One may alternatively invoke the Brunn–Minkowski theorem.
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Proof Let B ∈ R
n×k be a basis of L . Because L ⊂ Z

n , B must be an integer matrix, and
vol(L)2 = det(|BT · B|) is therefore an integer. It is also non-zero, because L is a lattice.

For the second property, consider a basis B of L in Hermite Normal Form. Up to a
permutation of the rows, B = [

X
Y

]
where X is lower triangular and non-degenerate. Note

that BT B = XT X + Y T Y . Lemma 1 gives that det(XT X + Y T Y ) ≥ det(XT X). Because
both XT X is integral and non-degenerate, and since det(BT B) = 1, we have det(XT X) = 1.
By the properties of Hermite Normal Form, it must therefore be the case that X is the identity
matrix Ik .

Letη1, . . . , ηk ≥ 0 be the eigenvalues ofY T Y . Because the identity Ik is co-diagonalizable
with Y T Y , the eigenvalues of BT B = Ik + Y T Y are exactly 1 + η1, . . . , 1 + ηk . It remains
to write det(BT B) = ∏

(1 + ηi ) to conclude that ηi = 0 for all i , and therefore that Y = 0.
That is, up to permutation of the rows, B = [ Ik

0

]
. The lattice L is indeed isomorphic to Z

k .
��

Theorem 1 Algorithm 1 is partially correct, that is, if it terminates on a valid input, it outputs
an orthogonal basis of the input lattice.

Proof By Lemma 2, when the while loop terminates (Steps 1–4 of Algorithm 1), the block
B[0:k−1] has volume 1 and it is therefore isomorphic to Zk ; after HKZ reduction (Step 5) we
have recovered k orthogonal unit vectors. Then, the projected block B[k:2k] is also isomorphic
to Z

k+1 and we recover the remaining k + 1 orthogonal vectors at Step 6. ��

3.2 Termination

We now move to proving termination, which is done by showing that the volume of the first
block decrease significantly at each loop iteration.

Lemma 3 Let L be a primitive sublattice of Zn of rank k < n, and let L ′ = π⊥
L (Zn). Then

λ1(L ′)2 ≤ 1.

Proof Because L is not a full rank, there must exist an index j such that e j /∈ L . Therefore,
by primitivity of L , π⊥

L (e j ) ∈ L ′ is non-zero, and ‖π⊥
L (e j )‖ ≤ ‖e j‖ ≤ 1. ��

Lemma 4 Let L be a primitive sublattice of Zn of rank k < n and volume vol(L) > 1, and
let L ′ = π⊥

L (Zn). Then λ1(L ′)2 ≤ 1 − 1
n .

Proof Consider an HKZ-reduced and size-reduced basis B = [b0, . . . , bm−1] ∈ Z
m×n of

L . Because vol(L) > 1, there is at least one bi that is not a unit vector e j . Let i be the
minimal such index, and let S be the subset of indices j such at e j ∈ L . Because the basis
is HKZ-reduced and therefore size-reduced, bi is orthogonal to all the ek’s such that ek ∈ L .
That is, bi = ∑

k /∈S vkek where vk ∈ Z.
Now consider an index j that maximizes |v j |, i.e., |v j | = ‖bi‖∞; in particular 〈e j , bi 〉 =

‖bi‖∞. Note that e j does not belong to L and L is a primitive sublattice ofZn , soπ⊥
L (e j ) ∈ L ′

is non-zero. Furthermore,

‖π⊥
L (e j )‖ ≤ ‖π⊥

bi (e j )‖ =
∥∥∥∥e j − 〈e j , bi 〉

‖bi‖2 bi

∥∥∥∥ .
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Provable lattice reduction ofZn 915

We now apply the polar identity ‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2 · 〈x, y〉 to conclude

‖π⊥
L (e j )‖2 ≤ 1 + 〈e j , bi 〉2 · ‖bi‖2

‖bi‖4 − 2 · 〈e j , bi 〉2
‖bi‖2

≤ 1 − 〈e j , bi 〉2
‖bi‖2

≤ 1 − ‖bi‖2∞
‖bi‖2 ≤ 1 − 1

n
.

��

We are now ready to prove that Algorithm 1 terminates after polynomially many loop itera-
tions.

Theorem 2 On a valid input B ∈ R
n×n, Algorithm 1 terminates after at most

O(n2 logmaxi ‖bi‖) iterations of the main loop.

Note that the number of iteration is polynomial in the input size. One may further apply the
LLL algorithm to the input basis to enforce maxi ‖bi‖ ≤ 2n , to bound the number of iteration
by O(n3).

Proof The core claim is that, at each loop iteration (Steps 1–4 of Algorithm 1), the volume
of the block B[0:k−1] decreases by at least

√
1 − 1/n.

Indeed, the primal-SVP reduction step (Step 3) does not affect this block. Furthermore,
this Step 3 leaves the Gram–Schmidt norm at position k to a value less than

√
1 − 1/n, by

application of Lemma 4. Then, the dual-SVP reduction step (Step 2) is going to increase
this Gram–Schmidt norm to at least 1, by dual application of Lemma 3. This step therefore
decreases the volume of the block B[0:k−1] by a factor

√
1 − 1/n.

Note that at the beginning of the algorithm, the volume of that block is at most
(maxi ‖bi‖)k . There are therefore at most log((max ‖bi‖)k)/ log(√1 − 1/n)

= O(n2 log(maxi ‖bi‖)) loop iterations. ��

Remark

Onemay note that the algorithmand its proof should still work ifwe replace exact SVP solvers
with approximate SVP solver with approximation factor strictly less than 1/

√
1 − 1/n =

1 + 1/(2n) + O
(
1/n2

)
.
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