
Designs, Codes and Cryptography (2024) 92:435–465
https://doi.org/10.1007/s10623-023-01315-4

Fast Kötter–Nielsen–Høholdt interpolation over skew
polynomial rings and its application in coding theory

Hannes Bartz1 · Thomas Jerkovits1 · Johan Rosenkilde2

Received: 6 July 2022 / Revised: 21 September 2023 / Accepted: 4 October 2023 /
Published online: 18 November 2023
© The Author(s) 2023

Abstract
Skew polynomials are a class of non-commutative polynomials that have several applications
in computer science, coding theory and cryptography. In particular, skew polynomials can
be used to construct and decode evaluation codes in several metrics, like e.g. the Hamming,
rank, sum-rank and skew metric. We propose a fast divide-and-conquer variant of Kötter–
Nielsen–Høholdt (KNH) interpolation algorithm: it inputs a list of linear functionals on skew
polynomial vectors, and outputs a reduced Gröbner basis of their kernel intersection. We
show, that the proposed KNH interpolation can be used to solve the interpolation step of
interpolation-based decoding of interleaved Gabidulin codes in the rank-metric, linearized
Reed–Solomon codes in the sum-rank metric and skew Reed–Solomon codes in the skew
metric requiring at most ˜O (sωM(n)) operations in Fqm , where n is the length of the code,
s the interleaving order, M(n) the complexity for multiplying two skew polynomials of
degree at most n, ω the matrix multiplication exponent and ˜O (·) the soft-O notation which
neglects log factors. This matches the previous best speeds for these tasks, which were
obtained by top–downminimal approximant bases techniques, and complements the theory of
efficient interpolation over free skew polynomial modules by the bottom-up KNH approach.
In contrast to the top–down approach the bottom-up KNH algorithm has no requirements on
the interpolation points and thus does not require any pre-processing.
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1 Introduction

Skew polynomials are a class of non-commutative polynomials, that were introduced by
Ore in 1933 [53] and that have a variety of applications in computer science, coding theory
and cryptography. The non-commutativity stems from themultiplication rule, which involves
both, a field automorphism σ and a field derivation δ. Unlike ordinary polynomials, there exist
several ways to evaluate skew polynomials. General results regarding the so-called remainder
evaluation of skew polynomials were derived in [27, 29] whereas the generalized operator
evaluation was considered in [31]. Depending on the choice of the automorphism σ and
the derivation δ, skew polynomial rings (denoted by Fqm [x; σ, δ]) include several interesting
special cases, such as the ordinary polynomial ring as well as the linearized polynomial ring
[52, 53]. This property along with the different ways to evaluate skew polynomials make
them a very versatile tool with many different applications.

One important application of skew polynomials is the construction of evaluation codes,
that have distance properties in several decoding metrics, including the Hamming, rank,
sum-rank, skew and other related metrics such as the (sum-)subspace metric [14, 15, 39, 43].

Many evaluation codes allow for decoding via efficient interpolation-based decoding
algorithms, like e.g. the Welch–Berlekamp [64] and Sudan [61] algorithms for decoding
Reed–Solomon codes. In [26] Kötter presented a bivariate interpolation algorithm for Sudan-
like decoding of Reed–Solomon codes [26] (over ordinary polynomial rings) that since then
is often referred to as the Kötter interpolation. The Kötter interpolation as it is known today
was first stated by Nielsen and Høholdt [50] as a generalization of Kötter’s algorithm [26]
which is able to handle multiplicities. To acknowledge the contribution by Nielsen and
Høholdt we refer to the algorithm as Kötter–Nielsen–Høholdt (KNH) interpolation. A fast
divide-and-conquer variant of the KNH interpolation for the Guruswami–Sudan algorithm
for decoding Reed–Solomon codes was presented in [49]. Rosenkilde’s algorithm [49] is a
bottom-up KNH-like algorithm whose complexity is only slightly larger compared to the
currently fastest approach [24, Sect. 2.5].

A multivariate generalization of the KNH interpolation for free modules over ordinary
polynomial rings was proposed in [63]. This approach was generalized to free modules over
linearized polynomial rings in [65]. A generalization of the multivariate KNH interpolation
to freemodules over skew polynomial rings was proposed in [33], which contains the variants
over ordinary polynomial rings [63] and linearized polynomial rings [65] as a special case.

The evaluation and interpolation of multivariate skew polynomials was also considered
in [42]; here with the main motivation to construct Reed-Muller-like codes (see also [4, 21,
41]).

1.1 Main contribution

In this paper, we propose a fast divide-and-conquer (D&C) variant of the KNH interpolation
in skew polynomial rings [33], that uses ideas from [49]. The main idea of the proposed algo-
rithm (Algorithm 3) is, that the interpolation problem is divided into smaller sub-problems,
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that can be solved and merged efficiently. In particular, the update operations in each loop of
the KNH interpolation are “recorded” and then applied to a degree-reduced basis in themerge
step rather than to a non-reduced basis. This allows to control the degree of the polynomials
during the interpolation procedure which in turn results in a lower computational complexity.

We state the interpolation problem and the algorithm in a general way using linear func-
tionals over skew polynomials rings with arbitrary automorphisms and derivations. We show
how the fast KNH interpolation can be applied to interpolation-based decoding of (inter-
leaved) Gabidulin codes [35, 54], interleaved linearized Reed–Solomon codes [5, 6, 15, 39]
and (interleaved) skew Reed–Solomon codes [5, 6, 14].

We consider skew polynomials over finite fields only. However, the results (except for the
complexity statements) also hold for skew polynomials over arbitrary finite Galois extensions
L/K instead of Fqm /Fq and automorphisms σ ∈ Gal(L/K) with K = L

σ and derivations
δ : K �→ K satisfying (2) for all a, b ∈ K.

For the above mentioned applications using generalized operator and remainder evalu-
ation maps over skew polynomial rings with arbitrary field automorphisms we discuss the
asymptotic complexity for zero derivations (δ = 0). The asymptotic complexity for solving
the interpolation step with the proposed approach is ˜O (sωM(n)) operations in Fqm , where
n is the length of the code, s a decoding parameter (e.g. interpolation order, usually s � n),
M(n) ∈ ˜O

(

n1.635
)

the complexity for multiplying two skew polynomials of degree at most
n,ω thematrixmultiplication exponent (currentlyω < 2.37286) and ˜O (·) denotes the soft-O
notation which neglects log factors.

The original skewKNH interpolation from [33] has an asymptotic complexity of O
(

s2n2
)

operations inFqm , which is larger compared to the proposed approach formost practical cases
where we usually have s � n.

The interpolation step of the above mentioned coding applications can also be solved
using the skewminimal approximant basesmethods from [11] requiring at most ˜O (sωM(n))

operations inFqm . This approach can be seen as a top–down approach: first construct amodule
that contains all solutions to the interpolation problem, and then find the minimal solution in
that module. The KNH family of algorithms are bottom-up: Gradually build up a minimal
basis solving the interpolation constraints one by one. Developing both approaches in tandem
has been very fruitful for the analogous family of algorithms for ordinary polynomial rings.

Due to the top–down nature, the minimal approximant bases method [11, Algorithm 6]
requires an additional step if the first entries of the interpolation points (related to the gener-
alized operator evaluation maps) are not linearly independent (see [11, Theorem 22]), which
is not required in the proposed KNH-like algorithm.

A comparison between the proposed fast KNH interpolation algorithm and existing inter-
polation methods for ordinary and skew polynomial rings, including the computational
complexity for the zero-derivation case (δ = 0), is given in Table 1. Note that for ordi-
nary polynomial rings we have thatM(n) ∈ ˜O (n). Additionally, in the ordinary polynomial
ring case we have the notion of multiplicities of roots; a concept which is not yet generalized
to the skew polynomial setting and therefore omitted.

Although the proposed interpolation algorithm achieves the best known complexity
over skew polynomial rings, Table 1 shows that the best computational complexity of
˜O
(

sω−1M(n)
)

for ordinary polynomial rings [24] is not yet reached for the skew poly-
nomial case. Closing this gap is a potential topic for future work.
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Table 1 Overviewof the computational complexity of the proposed fastKNH interpolation approach compared
to existing methods for the case of zero derivations (δ = 0)

Interpolation method Type Polynomial ring Complexity (δ = 0)

Ordinary KNH [63] bottom-up Fqm [x; Id, 0] O
(

s2n2
)

D&C KNH [49] bottom-up Fqm [x; Id, 0] ˜O
(

sωM(n)
)

Min. approximant
bases method [22]

top–down Fqm [x; Id, 0] ˜O
(

sωM(n)
)

Min. interpolation
bases [24]

top–down Fqm [x; Id, 0] ˜O
(

sω−1M(n)
)

Skew Linearized KNH [65] bottom-up Fqm [x; σFrob, 0] O
(

s2n2
)

Skew KNH [33] bottom-up Fqm [x; σ, δ] O
(

s2n2
)

D&C skew KNH
(this contribution)

bottom-up Fqm [x; σ, δ] ˜O
(

sωM(n)
)

Skew min.
approximant bases
method [11]

top–down Fqm [x; σ, δ] ˜O
(

sωM(n)
)

Here n is the number of interpolation points, s an interpolation parameter (usually s � n),M(n) ∈ ˜O
(

n1.635
)

the complexity for multiplying two skew polynomials of degree at most n and ω the matrix multiplication
exponent (currently ω < 2.37286). For ordinary polynomial rings we have that M(n) ∈ ˜O (n)

1.2 Outline of the paper

Section 2 gives definitions and notations related to skew polynomials as well as a definition
of the skew KNH interpolation algorithm from [33]. Section3 presents a fast general D&C
framework for the skew KNH interpolation. Section4 considers the application of the fast
skew KNH interpolation for decoding (interleaved) Gabidulin, linearized Reed–Solomon
and Skew Reed–Solomon codes. The complexity analysis shows that we obtain the currently
fastest known decoders for the considered codes. Section5 concludes the paper.

2 Preliminaries

2.1 Sets, vectors andmatrices over finite fields

Let Fq be a finite field and denote by Fqm the extension field of degree m. Sets are denoted
by A = {a0, a1, . . . , an−1}. The cardinality of a set A is denoted by |A|.

Vectors and matrices over Fqm are denoted by bold lower-case and upper-case letters such
as a and A, respectively, and the elements are indexed beginning from zero. The r × c zero
matrix is denoted by 0r×c and the r × r identity matrix is denoted by Ir . The i-th row of a
matrixA is denoted by ai . Let FN

qm denote the set of all row vectors of length N over Fqm and

let FM×N
qm denote the set of all M × N matrices over Fqm . The rank of a matrix A ∈ F

M×N
q is

denoted by rkq(A). Under a fixed basis of Fqm over Fq , there is a bijection between Fn
qm and

F
m×n
q . This allows us to define the Fq -rank of a vector a ∈ F

N
qm as rkq(a):= rk(A) where A

is the corresponding matrix of a over Fq . Note that the Fq -rank rkq(a) is independent of the
choice of the basis of Fqm over Fq and can be equivalently seen as the maximum number of
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Fq -linearly independent entries of a. The Hamming weight of a vector a ∈ F
N
qm is defined as

wtH (a) = |{i ∈ {1, . . . , N } : ai �= 0}|. (1)

Let σ : Fqm �→ Fqm be a field automorphism of Fqm and let δ : Fqm �→ Fqm be a
σ -derivation such that

δ(a + b) = δ(a) + δ(b) and δ(ab) = δ(a)b + σ(a)δ(b). (2)

Over a finite field, all σ -derivations are of the form (see e.g. [33, Proposition 1])

δ(a) = b(σ (a) − a) for b ∈ Fqm . (3)

From (3) we see that we get the zero derivation (δ = 0) if the automorphism is the identity
(σ = Id).

For any two elements a ∈ Fqm and c ∈ F
∗
qm = Fqm \ {0} define

ac:=σ(c)ac−1 + δ(c)c−1 (4)

where term δ(c)c−1 is called the logarithmic derivative of c. Two elements a, b ∈ Fqm are
called (σ, δ)-conjugates, if there exists an element c ∈ F

∗
qm such that b = ac. Otherwise, a

and b are called (σ, δ)-distinct. The notion of (σ, δ)-conjugacy defines an equivalence relation
on Fqm and thus a partition of Fqm into conjugacy classes (see [29]).

Definition 1 (Conjugacy Class [29]) The set

C(a):=
{

ac : c ∈ F
∗
qm

}

(5)

is called conjugacy class of a.

2.2 Skew polynomials

Skew polynomials are non-commutative polynomials that were introduced by Ore [53]. The
set of all polynomials of the form

f (x) =
∑

i

fi x i with fi ∈ Fqm (6)

together with the ordinary polynomial addition and the multiplication rule

xa = σ(a)x + δ(a) (7)

forms the non-commutative ring of skew polynomials that is denoted by Fqm [x; σ, δ]. The
degree of a skew polynomial f ∈ Fqm [x; σ, δ] is defined as deg( f ):=maxi {i : fi �= 0} for
f �= 0 and−∞ else. Further, by Fqm [x; σ, δ]<n we denote the set of skew polynomials from
Fqm [x; σ, δ] of degree less than n.

For δ being an inner derivation (3), which is always the case for finite fields, there is a
ring isomorphism between Fqm [x; σ, δ] and Fqm [x; σ ] that is given by the mapping (see [39,
Proposition 40] and [32, Proposition 2.1.8])

Fqm [x; σ, δ] → Fqm [x; σ ]
∑

i

fi x i �→
∑

i

fi (x + b)i .
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The monic least common left multiple (LCLM) of some polynomials p0, p1, . . . , pn−1 ∈
Fqm [x; σ, δ] is denoted by

lclm (pi )0≤i≤n−1 :=lclm (p0, p1, . . . , pn−1) . (8)

The skew polynomial ring Fqm [x; σ, δ] is a left and right Euclidean domain, i.e., for
any f ∈ Fqm [x; σ, δ] and any nonzero g ∈ Fqm [x; σ, δ] there exist unique polynomials
qL , rL , qR, rR ∈ Fqm [x; σ, δ] such that

f (x) = qR(x)g(x) + rR(x) = g(x)qL(x) + rL(x) (9)

where deg(rR), deg(rL ) < deg(g) (see [53]). Efficient Euclidean-like algorithms for per-
forming left/right skew polynomial division exist [16, 17, 55]. For two skew polynomials
f , g ∈ Fqm [x; σ, δ], denote by f modr g the remainder of the right division of f by g.

Example 1 Applying the multiplication rule in (7) to x2a we get

x2a = x(σ (a)x + δ(a)) = xσ(a)x + xδ(a)

= (σ 2(a)x + δ(σ (a)))x + σ(δ(a))x + δ2(a)

= σ 2(a)x2 + (δ(σ (a)) + σ(δ(a)))x + δ2(a).

There are several interesting cases where skew polynomial rings coincide with other
polynomial rings:

– For σ being the identity we have that δ is the zero derivation (see (3)) which implies that
Fqm [x; σ, δ] is equivalent to the ordinary polynomial ring Fqm [x].

– For δ being the zero derivation we get the twisted polynomial ring Fqm [x; σ ].
– For σFrob being the Frobenius automorphism of Fqm (i.e. σFrob(·) = ·q ) and δ being the

zero derivation we have that Fqm [x; σFrob] is isomorphic to the linearized polynomial
ring Lqm[x] [52, 53].
There exist two variants of skew polynomial evaluation: the (generalized) operator eval-

uation and the remainder evaluation.

2.2.1 Generalized operator evaluation

The generalized operator evaluation defined in [31] allows to Fq -linearize the skew polyno-
mial evaluation and therefore establishes the link between the skew polynomial ring and the
linearized polynomial ring [52, 53].

Given an Fqm automorphism σ , a σ -derivation δ and an element a ∈ Fqm , the (σ, δ)

operator Dσ,δ
a (b) : Fqm �→ Fqm is defined as

Dσ,δ
a (b):=σ(b)a + δ(b), ∀b ∈ Fqm . (10)

We use the notationDa(b)whenever σ and δ are clear from the context. For an integer i ≥ 0,
we define Di+1

a (b) = Da(Di
a(b)) and D0

a(b) = b.

Definition 2 (Generalized Operator Evaluation [39]) For a skewpolynomial f ∈ Fqm [x; σ, δ]
the generalized operator evaluation f (b)a of f at an element b ∈ Fqm w.r.t. the evaluation
parameter a ∈ Fqm is defined as

f (b)a :=
∑

i

fiDi
a(b). (11)
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The definition of the generalized operator evaluation includes the operator evaluation f (b)1
as a special case (a = 1).

The generalized operator evaluation is an Fq -linear map, i.e. for any f ∈ Fqm [x; σ, δ],
λ1, λ2 ∈ Fq and a, b1, b2 ∈ Fqm we have that (see [39, Lemma 23] and [30])

f (λ1b1 + λ2b2)a = λ1 f (b1)a + λ2 f (b2)a . (12)

For a vector b = (b0, b1, . . . , bn−1) ∈ F
n
qm we define the generalized multipoint operator

evaluation of a skew polynomial f ∈ Fqm [x; σ, δ] w.r.t. an a ∈ Fqm as

f (b)a := ( f (b0)a, f (b1)a, . . . , f (bn−1)a) . (13)

For a tuple B = (b0, b1, . . . , bn−1) ∈ F
n
qm and a vector a = (a0, a1, . . . , an−1) ∈ F

n
qm the

minimal skew polynomial that vanishes on all elements in B w.r.t. the evaluation parameters
in a is defined as (see e.g. [15])

Mop
B (x)a = lclm

(

x − σ(bi )ai + δ(bi )

bi

)

0≤i≤n−1
bi �=0

. (14)

The degree of Mop
B (x)a satisfies

deg(Mop
B (x)a) ≤ n (15)

where equality holds if the sequence of elements bi that have the same evaluation parameter
ai are Fq -linearly independent and the distinct evaluation parameters ai are from different
conjugacy classes (see [15]).

Example 2 Consider the tupleB = (b0, b1, b2, b3) ∈ F
4
qm and a vector a = (a0, a1, a2, a3) ∈

F
4
qm , where a0 = a1 and a2 = a3 are representatives from different conjugacy classes. Then

we have deg(Mop
B (x)a) = n if and only if b0 and b1 are Fq -linearly independent and b2 and

b3 are Fq -linearly independent.

Similar to ordinary polynomials, we get the following result for the generalized operator
evaluation of a polynomial modulo a particular minimal polynomial.

Lemma 1 For any f ∈ Fqm [x; σ, δ], B = (b0, b1, . . . , bn−1) ∈ F
n
qm and a =

(a0, a1, . . . , an−1) ∈ F
n
qm we have that

f (bi )ai = (

f (x) modr Mop
B (x)a

)

(bi )ai , ∀i = 0, . . . , n − 1. (16)

Proof SinceFqm [x; σ, δ] is a left/right Euclidean domain, there exist two unique polynomials
q, r ∈ Fqm [x; σ, δ] with deg(r(x)) < deg(Mop

B (x)a) such that

f (x) = q(x)Mop
B (x)a + r(x) ⇐⇒ r(x) = f (x) modr Mop

B (x)a. (17)

Since Mop
B (x)a vanishes on all bi w.r.t. ai for all i = 0, . . . , n − 1 we have that

f (bi )ai = r(bi )ai , ∀i = 0, . . . , n − 1, (18)

and the result follows. ��
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2.2.2 Remainder evaluation

Another variant of skew polynomial evaluation is the remainder evaluation defined in [27,
29], which generalizes the concept of polynomial evaluation by means of (right) division.

Definition 3 (Remainder Evaluation [27, 29]) For a skew polynomial f ∈ Fqm [x; σ, δ] the
remainder evaluation f [b] of f at an element b ∈ Fqm is defined as the unique remainder of
the right division of f (x) by (x − b) such that

f (x) = g(x)(x − b) + f [b] ⇐⇒ f [b] = f (x) modr (x − b). (19)

For a vector b = (b0, b1, . . . , bn−1) ∈ F
n
qm we define the multipoint remainder evaluation

of a skew polynomial f ∈ Fqm [x; σ, δ] as
f [b] := (

f [b0] , f [b1] , . . . , f
[

bn−1
])

. (20)

In the following we recall important properties of the concept of P-independence (or
polynomial independence) from [27, 28, 39]. Given a setF ⊆ Fqm [x; σ, δ]we define its zero
set Z(F) ⊆ Fqm as

Z(F):={a ∈ Fqm : f [a] = 0,∀ f ∈ F}. (21)

For a set B = {b0, b1, . . . , bn−1} ⊆ Fqm we define its associated ideal as (see [39])

I (B) = { f ∈ Fqm [x; σ, δ] : f [b] = 0,∀b ∈ B}. (22)

For a set B = {b0, b1, . . . , bn−1} ⊆ Fqm the unique minimal skew polynomial that
vanishes on all elements in B w.r.t. the remainder evaluation is defined as (see e.g. [14])

M rem
B (x) = lclm (x − bi )0≤i≤n−1 . (23)

Since M rem
B (x) has the minimal degree among all polynomials in Fqm [x; σ, δ] that vanish on

B it generates the left Fqm [x; σ, δ]-ideal I (B). The degree of M rem
B (x) satisfies

deg(M rem
B (x)) ≤ n (24)

where the elements b0, b1, . . . , bn−1 are called P-independent (or polynomially independent)
if and only if deg(M rem

B (x)) = n.
The closure of a set B ⊆ Fqm is defined as the zero set of its minimal polynomial, i.e. as

B:=Z(I (B)) = Z(M rem
B (x)) (25)

where B is called P-closed if and only if B = B. For a P-closed set B it can be shown that
any root of M rem

B (x) is an (σ, δ)-conjugate of an element in B (see [28]).
Similar to the result w.r.t. to the generalized operator evaluation in Lemma 1, we obtain

the following result w.r.t. the remainder evaluation.

Lemma 2 For any p ∈ Fqm [x; σ, δ] and B = {b0, b1, . . . , bn−1} ⊆ Fqm we have that

p[bi ] = (

p(x) modr Mrem
B (x)

)

[bi ] , ∀i = 0, . . . , n − 1. (26)

Proof SinceFqm [x; σ, δ] is a left/right Euclidean domain, there exist two unique polynomials
q, r ∈ Fqm [x; σ, δ] with deg(r(x)) < deg(M rem

B (x)) such that

p(x) = q(x)M rem
B (x) + r(x) ⇐⇒ r(x) = p(x) modr M rem

B (x). (27)

Since M rem
B (x) vanishes on all bi ∈ B we have that p[bi ] = r [bi ] for all i = 0, . . . , n − 1

and the result follows. ��
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The following result from [31] (see also [39]) shows the relation between the generalized
operator and the remainder evaluation.

Lemma 3 (Connection between Evaluation Types [31, 39]) For any a ∈ Fqm , b ∈ F
∗
qm and

f ∈ Fqm [x; σ ] we have that

f
[

Da(b)b−1] b = f (b)a . (28)

2.2.3 Skew polynomial vectors andmatrices

To be consistent with the conventional notation in coding theory we denote both, vectors and
matrices, by bold letters. The dimensions are clear from the context.

For two vectors a,b ∈ Fqm [x; σ, δ]n we denote the element-wise right modulo operation
by

a modr b:= (a0 modr b0, a1 modr b1, . . . , an−1 modr bn−1) . (29)

For two vectors a,b ∈ Fqm [x; σ, δ]n we define the element-wise LCLM as

lclm (a,b) := (

lclm (a0, b0) , lclm (a1, b1) , . . . , lclm (an−1, bn−1)
)

. (30)

For a vector a = (a0, a1, . . . , an−1) ∈ Fqm [x; σ, δ]n and a vector w = (w0, w1, . . . ,

wn−1) ∈ Z
n+ we define its w-weighted degree as

degw(a):= max
0≤ j≤n−1

{deg(a j ) + w j }. (31)

Further, we define the w-weighted monomial ordering ≺w on Fqm [x; σ, δ]n such that we
have

b�x�e j ≺w b�′ x�′
e j ′ (32)

for b�, b�′ ∈ Fqm \ {0} if � + w j < �′ + w j ′ or if � + w j = �′ + w j ′ and j < j ′, where
e j denotes the j-th unit vector over Fqm [x; σ, δ]. The definition of ≺w coincides with the
w-weighted term-over-position (TOP) ordering as defined in [1].

For a vector a ∈ Fqm [x; σ, δ]n \ {0} and weighting vector w = (w0, . . . , wn−1) ∈ Z
n+,

we define the w-pivot index Indw(a) of a to be the largest index j with 0 ≤ j ≤ n − 1 such
that deg(a j ) + w j = degw(a).

For a nonzero vector ∈ Fqm [x; σ, δ]n we identify the leading term LT(a) of a as the
maximum term ai, j x j under ≺w. Note that in this case j coincides with the w-pivot index
of a.

A matrix A ∈ Fqm [x; σ, δ]a×b with a ≤ b is in (row) w-ordered weak Popov form if the
w-pivot indices of its rows are strictly increasing in the row index [46].

A free Fqm [x; σ, δ]-module is a module that has a basis that consists of Fqm [x; σ, δ]-
linearly independent elements. The rank of this module equals the cardinality of that basis.

In the following we consider particular bases for (left) Fqm [x; σ, δ]-modules.

Definition 4 (w-ordered weak-Popov Basis [11]) Consider a left Fqm [x; σ, δ]-submoduleM
of Fqm [x; σ, δ]b. Forw ∈ Z

a , a leftw-ordered weak-Popov basis forM is a full-rank matrix
A ∈ Fqm [x; σ, δ]a×b s.t.

1. A is in w-ordered weak Popov form.
2. The rows of A are a basis of M.
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We will now establish a connection between w-ordered weak-Popov Bases and Gröbner
bases w.r.t.≺w for left Fqm [x; σ, δ]-submodules. This connection is well-known for ordinary
commutative polynomial rings (see e.g. [2, 19, 25, 47, 48]). For skew polynomial rings this
relation was derived in [45, Chapter 6] and also used in [11].

For a short introduction to Gröbner bases the reader is referred to [60]. An extensive study
of Gröbner bases can be found in [18].

Definition 5 (Gröbner Basis [18]) Let M be a left Fqm [x; σ, δ]-submodule. A subset B =
{b0,b1, . . . ,bν−1} ⊂ M is called a Gröbner basis for M under ≺w if the leading terms of
B span a left module that contains all leading terms in M, i.e. if 〈LT(b0), . . . ,LT(bν−1)〉 =
〈LT(M)〉.

A Gröbner basis for a Fqm [x; σ, δ]-submoduleM is not necessarily a minimal generating
set for M since any subset of M that contains a Gröbner basis is also a Gröbner basis (see
[18, 60]). The following definition imposes a minimality requirement on the cardinality of
Gröbner bases for an Fqm [x; σ, δ]-submodule under ≺w.

Definition 6 (Minimal Gröbner Basis [18]) Given a monomial ordering ≺w, a Gröbner basis
B for a left Fqm [x; σ, δ]-submodule M is called minimal if for all p ∈ B the leading term
LT(p) is not contained in the module 〈LT(B \ {p})〉, i.e. if LT(p) /∈ 〈LT(B \ {p})〉.

A minimal Gröbner basis B w.r.t. to ≺w is called reduced Gröbner basis if all leading
terms are normalized and no monomial of p ∈ B is in 〈LT(B \ {p})〉.

Although [45, Theorem 6.29] establishes the connection between the stronger w-ordered
Popov form and the corresponding reduced Gröbner basis w.r.t. ≺w, the arguments also hold
for the relation between the w-ordered weak-Popov form and the minimal Gröbner basis
w.r.t. ≺w.

Note that given amodulemonomial order≺ and a basisB ⊂ Fqm [x; σ, δ]n of a submodule
M there exist an efficientmethod to determine aweightingvectorw and a columnpermutation
P such that theweakPopov formunder≺w of P(M) equals the P-permutedminimalGröbner
basis of M under ≺ (see [47, Chapter 1.3.4]).

2.2.4 Cost model for skew polynomial operations

For deriving the computational complexity we consider only skew polynomials with zero
derivations since in this case explicit results are available in literature. Note, that the isomor-
phism between Fqm [x; σ, δ] and Fqm [x; σ ] (see Sect. 2.2 and [32, 39]) can be used to obtain
complexity bounds for the nonzero derivation case.

We use the big-O notation O (·) to state asymptotic costs of algorithms. Further, we use
shorthand ˜O (·) for f (n) ∈ ˜O (g(n)) ⇔ ∃k : f (n) ∈ O

(

g(n) logk g(n)
)

which is equivalent
to the O (·) notation, ignoring logarithmic factors in the input parameter. We denote by ω

the matrix multiplication exponent, i.e. the infimum of values ω0 ∈ [2; 3] such that there
is an algorithm for multiplying n × n matrices over Fqm in O(nω0) operations in Fqm . The
currently best known cost bound in operations in Fqm is ω < 2.37286 (see [3]).

By M(n) we denote the cost of multiplying two skew polynomials from Fqm [x; σ ] of
degree n. The currently best known cost bound for M(n) in operations in Fqm is (see [55])

M(n) ∈ O

(

n
min

{

ω+1
2 ,1.635

})

.
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and (see [16, 17])

M(n) ∈ ˜O
(

min
{

nω−2m2, nmω−1})

in operations in Fq . Hence, the following skew polynomial operations in Fqm [x; σ ] can be
performed in ˜O (M(n)):

– Left/right division of two skew polynomials of degree at most n
– Generalized operator / remainder evaluation of a skew polynomial of degree at most n at

n elements from Fqm

– Computation of the minimal polynomials M rem
B (x) and Mop

B (x)a for |B| ≤ n w.r.t. the
remainder and generalized operator evaluation, respectively

– Computation of the LCLM (see [17, Theorem 3.2.7])

2.3 Skew Kötter–Nielsen–Høholdt interpolation

We now consider the skew KNH interpolation from [33], which is the skew polynomial
analogue of the KNH interpolation over ordinary polynomial rings in [63]. Note that due to
the isomorphism between Fqm [x; σ, δ] and the ring of linearized polynomials for σ being
the Frobenius automorphism and δ = 0 (zero derivations), the KNH variant over linearized
polynomial rings in [65] can be seen as a special case of [33].

As input to our problem, we consider the n Fqm -linear skew vector evaluation maps1 Ei :

Ei : Fqm [x; σ, δ]s+1 → Fqm

where n is the number of interpolation constraints and s is an interpolation parameter.
Later on, we will specify particular mappings Ei w.r.t. the generalized operator and the

remainder evaluation (see Sect. 4). For each skew vector evaluation map Ei we define the
kernels

Ki :={Q ∈ Fqm [x; σ, δ]s+1 : Ei (Q) = 0}, ∀i = 0, . . . , n − 1. (33)

For 0 ≤ i ≤ n − 1 the intersection Ki :=K0 ∩ K1 ∩ . . . ∩ Ki contains all vectors from
Fqm [x; σ, δ]s+1 that are mapped to zero under E0, E1, . . . , Ei , i.e.

Ki = {Q ∈ Fqm [x; σ, δ]s+1 : E j (Q) = 0,∀ j = 0, . . . , i}. (34)

Under the assumption that theKi are leftFqm [x; σ, δ]-submodules for all i = 0, . . . , n−1
(see [33]) we can state the general skew polynomial vector interpolation problem.

Problem 1 (General Vector Interpolation Problem) Given the integer s ∈ Z+, a set of Fqm -
linear vector evaluation maps E = {E0, . . . , En−1} and a vector w ∈ Z

s+1+ compute a w-
ordered weak-Popov Basis for the left Fqm [x; σ, δ]-module

Kn−1 = {b ∈ Fqm [x; σ, δ]s+1 : Ei (b) = 0,∀i = 0, . . . , n − 1}. (35)

Problem 1 can be solved using a slightly modified variant of the multivariate skew KNH
interpolation from [33]. Since the solution of Problem 1 is aw-ordered weak Popov basis for
the interpolation module Kn−1 instead of a single minimal polynomial vector, we modified
the output of [33, Algorithm 1] such that it returns a whole basis for the interpolation module

1 In [33, 63, 65] linear functionals are defined for each interpolation point. Here we give a different defi-
nition based on skew polynomial vectors which is equivalent to the definition based on linear functionals if
Fqm [x; σ, δ]s+1 is considered as a vector space over Fqm .
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Kn−1. A similar approach was used in [8] to construct a basis for the interpolation module
over linearized polynomial rings.

The modified multivariate skew KNH interpolation is summarized in Algorithm 1.

Algorithm 1:Modified Skew KNH Interpolation
Input : A set {E0,E1, . . . ,En−1} of vector evaluation maps

A “weighting” vector w = (w0, w1, . . . , ws ) ∈ Z
s+1+

Output: A w-ordered weak-Popov Basis B ∈ Fqm [x; σ, δ](s+1)×(s+1) for Kn−1

1 Initialize: B = Is+1 ∈ Fqm [x; σ, δ](s+1)×(s+1)

2 for i ← 0 to n − 1 do
3 for j ← 0 to s do
4 Δ j ← Ei (b j )

5 J ← { j : Δ j �= 0}
6 if J �= ∅ then
7 j∗ ← min j∈J {argmin j∈J {degw(b j )}}
8 b∗ ← b j∗
9 for j ∈ J do

10 if j = j∗ then

11 b j ←
(

x − E i (xb∗)
Δ j∗

)

b∗ ; /* degree-increasing step */

12 else

13 b j ← b j − Δ j
Δ j∗ b

∗ ; /* cross-evaluation step */

14 return B

Note that min j∈J {argmin j∈J {degw(b j )}} in Line 7 returns the smallest index j ∈ J to
break ties, i.e. the index j of the minimal vector b j w.r.t. ≺w for which Δ j �= 0 (see (32)).

In each iteration of Algorithm 1 (and so [33, Algorithm 1]) there are three possible update
steps:

1. No update: The vector b j is not updated if b j is in the kernel Ki already, i.e. if Δ j =
Ei (b j ) = 0.

2. Cross-evaluation (or order-preserving [33]) update: For any b j that is not minimal w.r.t.
≺w (i.e. j �= j∗) the cross-evaluation update (Line 13) is performed such that

Ei

(

b j − Δ j

Δ j∗
b∗
)

= Ei (b j ) − Ei (b j )

Ei (b j∗)
Ei (b j∗) = 0.

Note that the (w-weighted) degree of b j is not increased by this update.
3. Degree-increasing (or order-increasing [33]) update: For the minimal vector b j∗ :=b∗

w.r.t. ≺w the degree-increasing update (Line 11) is performed such that

Ei

((

x − Ei (xb∗)
Δ j∗

)

b∗
)

= Ei (xb∗) − Ei (xb∗)
Ei (b∗)

Ei (b∗) = 0.

The (w-weighted) degree of b∗ is increased by one in this case.

The different update steps are illustrated in [33, Figure 1]. Define the sets

S j :={Q ∈ Fqm [x; σ, δ]s+1 : Indw(Q) = j} ∪ {0} (36)
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and

Ti, j :=Ki ∩ S j (37)

for all i = 0, . . . , n − 1 and j = 0, . . . , s. Note that S j ∩ S j ′ = {0} for all 0 ≤ j, j ′ ≤ s.
The following result from [33] is fundamental for proving the correctness of Algorithm 1.

Theorem 1 ([33, Theorem 5]) Assume that Ki are left Fqm [x; σ, δ]-submodules for all i =
0, . . . , n − 1. Then after each iteration i of Algorithm 1, the updated b j is a minimum w.r.t.
≺w in Ti, j = Ki ∩ S j for all j = 0, . . . , s.

In other words, after the i-th iteration each b j has Indw(b) = j and the minimal w-
weighted degree among all vectors in Ti, j . Therefore, after the i-th iteration, the matrix B is
a w-ordered weak Popov basis for Ki .

Lemma 4 (Correctness of Algorithm 1) Algorithm 1 is correct and provides a solution to the
general vector interpolation problem in Problem 1.

Proof The update steps of Algorithm 1 and [33, Algorithm 1] are equivalent and therefore
we have by [33, Theorem 5] that after the i-th iteration each b j ∈ Ki . We now will show
that after the i-th iteration of Algorithm 1 the matrix B is a w-ordered weak Popov basis for
Ki . By Theorem 1 ([33, Theorem 5]) each b j has the minimal w-weighted degree among
all polynomials in Ti, j , which implies that the w-pivot indices of b0, . . . ,bs are increasing
and distinct. Now assume that there exists a vector p ∈ Ki that can not be represented by a
Fqm [x; σ, δ]-linear combination of the form

p =
s
∑

j=0

a jb j

for some a j ∈ Fqm [x; σ, δ]. Then we must have that p can be written as

p = r +
s
∑

j=0

a jb j (38)

where degw(r) < min j {degw(b j )}. This contradicts that b j is a minimum w.r.t. ≺w in
Ti, j since Indw(r) ∈ {0, . . . , s}. Therefore we conclude that after the i-th iteration B is a
w-ordered weak Popov basis for Ki . ��
Proposition 1 (Computational Complexity of Algorithm 1) The complexity of Algorithm 1
is dominated by the complexity of:

– O(sn) evaluation maps Ei applied to a vector from Fqm [x; σ, δ]s+1≤n ,

– n multiplications of a monic degree-1 skew polynomial with a vector fromFqm [x; σ, δ]s+1≤n
(degree-increasing step),

– O(sn) multiplications of an element from Fqm with a vector from Fqm [x; σ, δ]s+1≤n (cross-
evaluation step).

Proof In each of the n iterations we have:

– s + 2 evaluation maps Ei applied to a vector from Fqm [x; σ, δ]s+1≤n (Line 4),
– one product of a skew polynomial of degree 1with a vector fromFqm [x; σ, δ]s+1≤n (degree-

increasing step in Line 11),
– s multiplications of an element from Fqm with a vector from Fqm [x; σ, δ]s+1≤n (cross-

evaluation step in Line 14),
– s + 1 inversions/divisions in Fqm . ��
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3 Fast Kötter–Nielsen–Høholdt interpolation over skew polynomial
rings

In [49] a fast D&C variant of the Kötter interpolation for the Guruswami–Sudan decoder for
Reed–Solomon codes was presented. We now use ideas from [49] to speed up the skew KNH
interpolation from [33]. The main idea is to sub-divide Problem 1 into a tree of successively
smaller problems. Each leaf is identified with a linear functional, and the updates done here
are represented as skew polynomial matrices. The inner-nodes of the tree combine updates
using matrix multiplication. The entire cost of the algorithm hinges on the fact that at any
node of the tree, we need only know the intermediate basis up to its image on the linear
functionals of the subtree of that node.

In the following, we describe the general framework for the fast skew KNH interpolation
algorithm which we will then discuss in Sect. 4 w.r.t. to particular operator and remainder
vector evaluation maps.

The operations performed on the basis B in the inner loop of the i-th iteration of Algo-
rithm 1 can be represented by the matrix

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − Δ0
Δ j∗

. . .
...

1 −Δ j∗−1
Δ j∗

(

x − E i (xb j∗ )

Δ j∗

)

−Δ j∗+1
Δ j∗ 1
...

. . .

− Δs
Δ j∗ 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(39)

such that after the i-th iteration we obtain the basisUB forKi . Note that ifΔ j = 0 no update
on the row b j is performed since Δ j/Δ j∗ = 0.

3.1 Divide-and-Conquer Skew Kötter interpolation

To describe the following algorithms we introduce some notations.M[i, j] ∈ Fqm [x; σ, δ]s+1

denotes a polynomial vector that is dependent on the index set {i, i + 1, . . . , j − 1, j} with
j ≥ i and M[i,i] = Mi . The (ordered) set M is globally available for all algorithms and is
defined as

M = (M[0,n−1],M[0,�n/2�−1],M[�n/2�,n−1], . . . ,M0,M1, . . . ,Mn−1) ⊆ Fqm [x; σ, δ]s+1

(40)

for an integer n ∈ Z+. For an ordered set (or tuple) of evaluation maps E = (E0, . . . , En−1)

we use a similar notation to access an ordered subset of E as follows

E[i, j] = (Ei , . . . , E j ). (41)

Depending on the considered interpolation problem, we will later on define the polyno-
mial vectors M[i, j] to contain minimal polynomials that depend on the interpolation points
corresponding to the vector evaluation maps in E[i, j]. In the general interpolation problem
(Problem 1) we only consider sets of evaluation maps whereas here we consider ordered sets
since we need the notation within the D&C algorithm to build up the tree.
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In order to describe a general framework for the fast skew KNH interpolation, we need
the following assumption. In Sect. 4 we show that this assumption holds for specific coding
applications.

Assumption 1 Let E = {E0, . . . , En−1} be a set of linear functionals as defined in (33) and let
E[i, j] = {Ei , . . . , E j } ⊆ E .We assume that for allQ ∈ Fqm [x; σ, δ]s+1 and 0 ≤ i ≤ j ≤ n−1
the skew polynomial vector M[i, j] ∈ M (which contains minimal skew polynomials that
depend on E[i, j]) satisfies

El(Q) = El(Q modr M[i, j]), ∀l = i, . . . , j . (42)

Algorithm 2: SkewInterpolatePoint
Input : A skew vector evaluation map Ei ,

B ∈ Fqm [x; σ, δ](s+1)×(s+1)

d = (d0, d1, . . . , ds ) ∈ Z
s+1+ s.t. d j = degw(b j ) for all j = 0, . . . , s.

Output: T ∈ Fqm [x; σ, δ](s+1)×(s+1) s.t. the rows of B̂:=TB is a w-ordered weak-Popov Basis for
〈B〉 ∩ Ki ,
d̂ = (d̂0, d̂1, . . . , d̂s ) ∈ Z

s+1+ s.t. d̂ j = degw(b̂ j ) for all j = 0, . . . , s.

1 d̂ ← d
2 for j ← 0 to s do
3 Δ j ← Ei (b j )

4 J ← { j : d j �= 0}
5 T ← Is+1 ∈ Fqm [x; σ, δ](s+1)×(s+1)

6 if J �= ∅ then
7 j∗ ← minl∈J {argminl∈J {dl }}
8 T ← U where U is as in (39)

9 d̂ j∗ ← d̂ j∗ + 1

10 return (T, d̂)

Lemma 5 (Correctness of Algorithm 2) SkewInterpolatePoint in Algorithm 2 is correct.

Proof The columns ofU except for the j∗-th column correspond to the non-minimal rows of
B. The cross-evaluation step of the j-th non-minimal row of B in Line 13 of Algorithm 1 is
performed by the entries in the j-th row and j∗-th column ofU. The entry in the j∗-th row and
the j∗-th column of U corresponds to the degree-increasing step in Line 11 in Algorithm 1.
Hence, the algorithm outputs a matrix T such that all rows of TB are mapped to zero under
Ei . ��

Equipped with the routine SkewInterpolatePoint in Algorithm 2 to solve the basic step
we can now derive a D&C variant of the skew KNH interpolation in Algorithm 1.

Lemma 6 (Correctness of Algorithm 3) Under Assumption 1, SkewInterpolateTree in Algo-
rithm 3 is correct.

Proof The correctness of Algorithm 3 follows directly from the definition of the matrix U
in (39) and Assumption 1. ��
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Algorithm 3: SkewInterpolateTree
Input : Skew vector evaluation maps E[i1,i2] = (Ei1 , . . . ,Ei2 )

B ∈ Fqm [x; σ, δ](s+1)×(s+1),

d = (d0, d1, . . . , ds ) ∈ Z
s+1+ s.t. d j = degw(b j ) for all j = 0, . . . , s.

Output: A matrix T ∈ Fqm [x; σ, δ](s+1)×(s+1) s.t. B̂:=TB is a w-ordered weak-Popov Basis for
〈B〉 ∩ Ki1 ∩ · · · ∩ Ki2 ,

d̂ = (d̂0, d̂1, . . . , d̂s ) ∈ Z
s+1+ s.t. d̂ j = degw(b̂ j ) for all j = 0, . . . , s.

1 if i1 = i2 then
2 return SkewInterpolatePoint(Ei1 ,B,d)

3 else

4 z ←
⌊

i1+i2
2

⌋

5 B1 ← B modr M[i1,z]
6 (T1, d1) ← SkewInterpolateTree(E[i1,z],B1, d)

7 B2 ← T1B modr M[z+1,i2]
8 (T2,d2) ← SkewInterpolateTree(E[z+1,i2],B2, d1)

9 return (T = T2T1, d̂ = d2)

3.2 Precomputingminimal polynomial vectors

We now present a generic procedure to pre-compute the setM containing the minimal poly-
nomial vectorsM[i, j] required in Algorithm 3 efficiently. We consider minimal polynomials
such as the generalized operator and the remainder evaluation which can be constructed by
means of the LCLM of polynomial sequences (see (14) and (23)) we use the ideas from
[17, Theorem 3.2.7] to obtain the efficient procedure described in Algorithm 4. The D&C
structure of the algorithm is illustrated in Fig. 1 for an example of κ = 4. The initial mini-
mal polynomial vectors M0,M1, . . . ,Mκ−1 from which all other minimal polynomials are
computed via the LCLM, are computed depending on the application. In Sect. 4 two cases
are given, for the general operator evaluation as in (55) and for the remainder evaluation as
in (86).

Algorithm 4: PreComputeMinVectorsTree
Input : Upper and lower index bound a ∈ Z+ and b ∈ Z+ with b ≥ a

Minimal polynomial vectorsMa ,Ma+1, . . . ,Mb ∈ Fqm [x; σ, δ]s+1

Output: An (ordered) set
(M[a,b],M[a,�(b−1)/2�−1],M[�(b−1)/2�,b], . . . ,M[a,a],M[a+1,a+1], . . . ,M[b,b]) ⊂
Fqm [x; σ, δ]s+1

1 if a = b then
2 return {Ma}
3 else
4 δ ← � b−a+1

2 �
5 M1 ← PreComputeMinVectorsTree(a, a + δ − 1)
6 M2 ← PreComputeMinVectorsTree(a + δ, b)

7 M[a,b] ← lclm
(

M[a,a+δ−1],M[a+δ,b]
)

; /* with M[a,a+δ−1] ∈ M1 and M[a+δ,b] ∈ M2
*/

8 return M1 ∪ M2 ∪ {M[a,b]}
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Fig. 1 Illustration of the computation tree of Algorithm 4 to precompute all minimal polynomial vectors in
the set M for κ = 4

Lemma 7 (Correctness of Algorithm 4) Algorithm 4 is correct.

Proof The correctness of Algorithm 4 follows directly from [17, Theorem 3.2.7]. The algo-
rithm proceeds in a recursive manner and splits the size of the set of considered minimal
polynomials in half. When sets consist only of one element,M[a,a] are computed, using the
generalized operator or remainder evaluation (see (14) and (23)). The sets of minimal poly-
nomials of larger size are then obtained by merging the smaller sets of minimal polynomials
using the relation M[a,b] = lclm

(

M[a,a+δ−1],M[a+δ,b]
)

with δ = � b−a+1
2 �, also illustrated

in Fig. 1. ��

4 Application to coding problems

In this section we apply the fast skew KNH interpolation described in Sect. 3 to coding
problems in the rank, sum-rank and skew metric. For simplicity, we consider evaluation
codes constructed over Fqm [x; σ ], i.e. skew polynomial rings with zero derivations, only.
The results can be generalized to the Fqm [x; σ, δ] case where the complexity analysis can be
performed using the ring isomorphism to Fqm [x; σ ] (see Sect. 2.2).

First we consider the application to interpolation-based decoding of interleaved Gabidulin
codes in the rank metric. As interleaved Gabidulin codes are a special case of interleaved
linearized Reed–Solomon (ILRS) codes, the decoder derived in Sect. 4.1 is a special case
of the decoder for interleaved linearized Reed–Solomon (LRS) codes derived in Sect. 4.2.
Nevertheless, we state the application for decoding interleaved Gabidulin codes in the rank
metric separately to make it more accessible to readers that are familiar only with the rank
metric.

In Sect. 4.3 we show how to apply the fast KNH interpolation algorithm to decoding inter-
leaved skew Reed–Solomon (ISRS) codes in the skew metric. In contrast to the decoding
approaches the rank and the sum-rank metric, the decoder performs the interpolation step
with respect to the remainder evaluation and thus does not require the isometry between the
sum-rank and the skew metric from [39].

4.1 Interpolation-based decoding of interleaved Gabidulin codes

Interleaved Gabidulin codes are rank-metric codes that are obtained by the Cartesian product
of ordinary Gabidulin codes [20] and which allow for decoding beyond half the minimum
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rank distance (see [35, 54]). In [35], a probabilistic unique decoder that is able to correct
errors beyond the unique decoding radiuswith high probability,was presented.ABerlekamp–
Massey-like decoding algorithm for interleaved Gabidulin codes was presented in [57, 59].

A Welch–Berlekamp-like interpolation-based decoding scheme, that can be either used
as a (not necessarily polynomial-time) list decoding algorithm or as a probabilistic unique
decoding algorithmwas presented byWachter-Zeh and Zeh in [62]. The algorithm consists of
an interpolation step and a root-finding step. The list size (and so the probability of obtaining
a unique solution) can be optimized by using a minimal Gröbner basis for the left module
containing the solutions of the interpolation problem rather than a single solution of the
interpolation problem for the root-finding step (see [8, 9]).

The interpolation step (including the computation of the minimal Gröbner basis) can be
solved by the linearized or skew variants of the multivariate KNH interpolation [33, 65] in
O
(

s2n2
)

operations in Fqm , where s is the interleaving order and n is the length of the
code. The overall computational complexity of the algorithm in [62] is then in the order of
O
(

s2n2
)

operations in Fqm .
Recently, efficient algorithms for solving the interpolation step and the root-finding step

that are based on the computation of minimal approximant bases over skew polynomial
rings were presented in [11]. The algorithms reduce the overall decoding complexity of the
Wachter-Zeh and Zeh decoder [62] to ˜O (sωM(n)) ⊆ ˜O

(

sωn1.635
)

.
In this section we show how the fast skew KNH interpolation algorithm from Sect. 3

can be used to accomplish the interpolation step in the Wachter-Zeh and Zeh decoder in
˜O (sωM(n)) ⊆ ˜O

(

sωn1.635
)

operations in Fqm . The obtained improved computational
complexity coincides with the computational complexity of the minimal approximant bases
variant from [11]. The results can be also used to speed up the interpolation-based decoder
for interleaved subspace codes in [9].

4.1.1 Codes in the rank metric

The rank weight of a vector x ∈ F
n
qm is defined as (see [20])

wtR(x):= rkq(x) = rkq(X) (43)

where X ∈ F
m×n
q is the corresponding expanded matrix of x over Fq . Notice, that in general

we have that wtR(x) ≤ wtH (x) for any x ∈ F
n
qm (see [38]). The rank distance between two

vectors x, y ∈ F
n
qm is then defined as the rank of their difference, i.e. as

dR(x, y):=wtR(x − y). (44)

The rank weight of a matrixX ∈ F
s×n
qm is defined as the Fq -rank of the matrixXq ∈ F

sm×n
q

that is obtained by expanding each row ofXwith respect to a fixed basis of Fqm over Fq . Note
that the Fq -rank wtR (X) can be equivalently seen as the maximum number of Fq -linearly
independent columns of X.

As a channel model we consider the rank error channel

R = C + E (45)

where the error matrix E is chosen uniformly at random from all matrices in F
s×n
qm with

wtR(E) = t .

Definition 7 (Interleaved Gabidulin Code [35, 54]) Let σ be the Frobenius automorphism
σ(·) = ·q of Fqm . Let β = (β0, β1, . . . , βn−1) ∈ F

n
qm contain Fq -linearly independent

123



Fast KNH interpolation over skew polynomial rings 453

elements from Fqm . An s-interleaved Gabidulin code of length n ≤ m and dimension k is
defined as

IGab[β, s; n, k] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

f (1)(β)1
f (2)(β)1

...

f (s)(β)1

⎞

⎟

⎟

⎟

⎠

: f ( j) ∈ Fqm [x; σ ]<k,∀ j ∈ [1, s]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (46)

Interleaved Gabidulin codes fulfill the Singleton-like bound in the rank metric with equality,
i.e. we have that dR(IGab[β, s; n, k]) = n − k + 1, and thus are maximum rank distance
(MRD) codes.

Suppose we transmit a codeword

C =

⎛

⎜

⎜

⎜

⎝

f (1)(β)1
f (2)(β)1

...

f (s)(β)1

⎞

⎟

⎟

⎟

⎠

∈ IGab[β, s; n, k] (47)

and receive

R = C + E (48)

where wtR(E) = t .

Definition 8 (Generalized Operator Vector Evaluation Map) Given an interpolation point
set P = {(pi,0, pi,1, . . . , pi,s) : i = 0, . . . , n − 1} ⊆ F

s+1
qm , a vector Q ∈ Fqm [x; σ ]s+1, and

a vector a ∈ F
n
qm containing the generalized operator evaluation parameters, we define the

generalized vector evaluation maps as

E
op
i (Q)ai :=

s
∑

j=0

Q j (pi, j )ai , ∀i = 0, . . . , n − 1. (49)

For interleaved Gabidulin codes, the interpolation point set is

P = {(βi , r0,i , . . . , rs−1,i ) : i = 0, . . . , n − 1} ⊂ F
s+1
qm (50)

with a = (1, 1, . . . , 1) ∈ F
n
qm being a vector containing the corresponding generalized

operator evaluation parameters. Equipped with these definitions the interpolation problem
[62, Problem 1] for decoding interleaved Gabidulin codes can be stated as follows.

Problem 2 (Vector Interpolation Problem) Given the integer s ∈ Z+, a degree constraint
D ∈ Z+, a set of Fqm -linear vector evaluation maps Eop = {E op

0 , . . . , E
op
n−1} as defined

in (49), the vector a = (1, 1, . . . , 1) ∈ F
n
qm and a vector w = (0, k − 1, . . . , k − 1) ∈ Z

s+1+
compute a vector b ∈ Fqm [x; σ ]s+1 that satisfies:

– E
op
i (b)1 = 0, ∀i = 0, . . . , n − 1,

– degw(b) < D.

A nonzero solution of Problem 2 exists if the degree constraint satisfies (see [62])

D =
⌈

n + s(k − 1) + 1

s + 1

⌉

. (51)
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Proposition 2 Problem 2 can be solved by Algorithm 1 in O
(

s2n2
)

operations in Fqm .

Proof Problem 2 corresponds to finding a vector in the interpolation module

Kn−1 = {b ∈ Fqm [x; σ ]s+1 : E op
i (b)1 = 0, ∀i = 0, . . . , n − 1} (52)

of minimal w-weighted degree. Hence, Problem 2 can be solved by computing a w-ordered
weak-Popov basis for the left Fqm [x; σ ]-module Kn−1 and returning a row with w-weighted
degree less than D. The problem of finding a w-ordered weak-Popov basis for Kn−1 is an
instance of the general vector interpolation problem (Problem 1) which can be solved by
Algorithm 1 (see Lemma 4). By Proposition 1, Algorithm 1 requires O (sn) evaluation maps
E

op
i of a vector in Fqm [x; σ ]s+1≤n , which requires O (sn) operations in Fqm each. Overall, the

computation of the evaluation maps requires O
(

s2n2
)

operations in Fqm . The computation
of the n multiplications of a monic degree-1 skew polynomial with a vector from Fqm [x; σ ]
(Line 11) requires O

(

sn2
)

operations in Fqm in total. The O (sn) multiplications of an
element from Fqm and a vector from Fqm [x; σ ]s+1≤n require at most O

(

s2n2
)

operations in
Fqm . Thereforewe conclude that Algorithm 1 can solve Problem 2 requiring atmost O

(

s2n2
)

operations in Fqm . ��
If the error weight t = wtR(E) satisfies

t <
s

s + 1
(n − k + 1) (53)

it can be shown that (see [62, Theorem 1])

P(x):=Q0(x) +
s
∑

j=1

Q j (x) f ( j)(x) = 0. (54)

The root-finding step consists of finding all polynomials f (1), . . . , f (s) ∈ Fqm [x; σ ]<k

that satisfy (54). This task can be accomplished by the minimal approximant basis methods
in [10, 11] requiring at most ˜O (sωM(n)) operations in Fqm .

4.1.2 Solving the interpolation step via the fast KNH interpolation

For an interpolation point set P = {p0,p1, . . . ,pn−1} ⊆ F
s+1
qm define the vectors of minimal

polynomials with respect to the generalized operator evaluation for 0 ≤ i, j ≤ n − 1 and
i ≤ j as

Mop
[i, j](x)ai :=

(

Mop
{pi,0,...,p j,0}(x)ai , Mop

{pi,1,...,p j,1}(x)ai , . . . , Mop
{pi,s ,...,p j,s }(x)ai

)

. (55)

Lemma 8 Let Eop = (E
op
0 , . . . , E

op
n−1) be an ordered set of skew vector evaluation maps as

defined in (49) and let Eop
[i, j] = (E

op
i , . . . , E

op
j ) ⊆ Eop. Then for any Q ∈ Fqm [x; σ ]s+1 we

have that

E
op

l (Q)al = E
op

l (Q modr M
op
[i, j](x)a)al , ∀l = i, . . . , j (56)

where a = (ai , . . . , a j ) contains the corresponding general operator evaluation parameters.

Proof The lemma follows directly by applying the result from Lemma 1 to the elementary
evaluations in the skew vector operator evaluation maps defined in (49). ��
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An important consequence of Lemma 8 is, that the generalized operator vector evaluation
maps from Definition 8 and the minimal polynomial vectors in (55) fulfill Assumption 1.
Hence, we can solve Problem 2 by callingAlgorithm 3with Eop , basis Is+1 and initial degrees
(0, k − 1, . . . , k − 1).

4.1.3 Complexity analysis

Wenowperform a complexity analysis of Algorithm 4 for the generalized operator evaluation
maps defined in (49) (Fqm [x; σ ]-case).
Lemma 9 (Complexity of Computing Minimal Polynomial Vectors) Algorithm 4 constructs
the (ordered) set Mop ⊂ Fqm [x; σ ]s+1 containing the minimal polynomial vectors defined
as

Mop:=
(

Mop
[0,n−1](x)a,M

op
[0,�n/2�−1](x)a,M

op
[�n/2�,n−1](x)a, . . . ,M

op
[n−1,n−1](x)a

)

(57)

in ˜O (sM(n)) operations in Fqm .

Proof Algorithm 4 is a generalization of the procedure in [17, Theorem 3.2.7] to construct a
single minimal polynomial, which requires ˜O (M(n)) operations in Fqm . Hence, the overall
complexity of Algorithm 4 is in the order of ˜O (sM(n)) operations in Fqm . ��
Theorem 2 (Computational Complexity) Algorithm 3 solves Problem 2 over Fqm [x; σ ]s+1

in ˜O (sωM(n)) operations in Fqm .

Proof Let C(n) denote the complexity on n input points without the cost of the routine
SkewInterpolatePoint (see Algorithm 2). We have that deg(T1), deg(T2) ≤ n/2 and thus
the product of T2T1 in Line 9 requires ˜O (sωM(n/2)) ∈ ˜O (sωM(n)) operations in Fqm . By
the master theorem we have C(n) = 2C(n/2) + ˜O (sωn/2) implying that C(n) ∈ ˜O (sωn).
The complexity of SkewInterpolatePoint is dominated by s +1 univariate skew polynomials
of degree less than 1, which requires O

(

s2
)

operations in Fqm .
The routine SkewInterpolatePoint is called n times yielding O

(

s2n
)

operations in total.
By Lemma 9 all minimal polynomial vectors required in Lines 5 and 7 of Algorithm 3 can be
pre-computed in ˜O (sM(n))operations inFqm .One (right)modulo operation inFqm [x; σ ]s+1

requires O (sM(n)) operations in Fqm . Therefore, Lines 5 and 7 require ˜O
(

s2M(n)
)

oper-
ations in Fqm each. ��
Remark 1 (Practical Consideration)Note that in theFqm [x; σ ]-case the i-th generalized oper-
ator vector evaluation map E

op
i (xQ)ai of xQ can be computed efficiently from E

op
i (Q)ai

requiring only one application of the automorphism σ and one multiplication since by the
product rule [40] we have that

E
op
i (xQ)ai = σ

(

E
op
i (Q)ai

)

ai , ∀i = 0, . . . , n − 1. (58)

4.2 Interpolation-based decoding of interleaved linearized Reed–Solomon codes

Linearized Reed–Solomon (LRS) codes are codes that have distance properties with respect
to the sum-rank metric and were introduced in [39] and also considered in [15]. Recently,
codes in the sum-rank metric gained attraction since they generalize several code families
in the Hamming metric and the rank metric, such as Reed–Solomon codes and Gabidulin
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codes, and have potential applications in code-based quantum-resistant cryptosystems [56].
Further applications include the construction of space-time codes [36], locally repairable
codes with maximal recoverability [44] (also known as partial MDS codes) and error control
formultishot network coding [43]. Interpolation-based decoding of s-interleaved LRS codes,
which allows for correcting errors beyond the unique decoding radius (up to s

s+1 (n − k +1))
in the sum-rank metric, was recently considered in [6].

In the following we show, how Algorithm 3 can be used to solve the interpolation step in
the interpolation-based decoder for ILRS from [6] efficiently.

The sum-rank weight of a vector x = (

x(1) | x(2) | · · · | x(�)
) ∈ F

n
qm , where x(λ) ∈ F

nλ

qm

for all λ = 1, . . . , �, is defined as (see [36, 51])

wtΣ R(x):=
�
∑

λ=1

rkq

(

x(λ)
)

. (59)

For any x ∈ F
n
qm we have that wtΣ R(x) ≤ wtH (x) (see [38, 39]). The sum-rank distance

between two vectors x, y ∈ F
n
qm is then

dΣ R(x, y):=wtΣ R(x − y) =
�
∑

i=λ

rkq

(

x(λ) − y(λ)
)

. (60)

The sum-rank weight of a matrix X = (X(1) | X(2) | · · · | X(�)) ∈ F
s×n
qm is defined as

wtΣ R(X):=
�
∑

λ=1

rkq

(

X(λ)
)

, (61)

where X(λ) ∈ F
s×nλ

qm for all λ = 1, . . . , �. The sum-rank distance between two matrices

X,Y ∈ F
s×n
qm is then defined as

dΣ R(X,Y):=wtΣ R(X − Y) =
�
∑

λ=1

rkq

(

X(λ) − Y(λ)
)

. (62)

As channel model we consider the sum-rank channel

R = C + E (63)

where the error matrix

E = (E(1) | E(2) | · · · | E(�)) (64)

is chosen uniformly at random from all matrices in Fs×n
qm with sum-rank weight wtΣ R(e) = t .

Definition 9 (Interleaved Linearized Reed–Solomon Code) Let σ be the Frobenius automor-
phism of Fqm defined as σ(·) = ·q . Let ξ = (ξ0, ξ1, . . . , ξ�−1) ∈ F

�
qm be a vector containing

representatives from different conjugacy classes of Fqm . Let the vectors β(λ) =
(

β
(λ)
0 , . . . ,

β
(λ)
nλ−1

)

∈ F
nλ

qm contain Fq -linearly independent elements from Fqm for all λ = 1, . . . , �

and define the vector β =
(

β(1),β(2), . . . ,β(�)
)

∈ F
n
qm . An s-interleaved linearized Reed–
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Solomon (ILRS) code of length n = n1 + n2 + · · · + n� and dimension k is defined as

ILRS[β, �, s; n, k] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

f (1)(β(1))ξ0 . . . f (1)(β(�))ξ�−1

f (2)(β(1))ξ0 . . . f (2)(β(�))ξ�−1
...

. . .
...

f (s)(β(1))ξ0 . . . f (s)(β(�))ξ�−1

⎞

⎟

⎟

⎟

⎠

: f ( j) ∈ Fqm [x; σ ]<k,

∀ j ∈ [1, s]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

(65)

The code rate and the minimum sum-rank distance of ILRS codes is R = k
n and d =

n − k + 1 (see [6]), respectively. ILRS codes fulfill the Singleton-like bound in the sum-rank
metric with equality and thus are maximum sum-rank distance (MSRD) codes [39].

Suppose we transmit a codeword

C =

⎛

⎜

⎜

⎜

⎝

f (1)(β(1))ξ0 . . . f (1)(β(�))ξ�−1

f (2)(β(1))ξ0 . . . f (2)(β(�))ξ�−1
...

. . .
...

f (s)(β(1))ξ0 . . . f (s)(β(�))ξ�−1

⎞

⎟

⎟

⎟

⎠

∈ ILRS[β, �, s; n, k] (66)

and receive a matrix

R =
(

R(1) | R(2) | · · · | R(�)
)

= C + E (67)

with R(λ) ∈ F
s×nλ

qm for all λ = 1, . . . , � where the error matrix E = (

E(1) | E(2) | · · · | E(�)
)

has sum-rank weight wtΣ R(E) = t . In order to simplify the notation we index the entries in
R as r j,i for j = 0, . . . , s − 1 and i = 0, . . . , n − 1.

Further, we define the vector

a = (a(1), a(2), . . . , a(�)) ∈ F
n
qm (68)

where a(λ) = (ξλ−1, . . . , ξλ−1) ∈ F
nλ

qm for all λ = 1, . . . , �.
For interleaved linearized Reed–Solomon codes, the interpolation point set is

P = {(βi , r0,i , . . . , rs−1,i ) : i = 0, . . . , n − 1} ⊂ F
s+1
qm . (69)

Problem 3 (Vector Interpolation Problem) Given the integer s ∈ Z+, a degree constraint
D ∈ Z+, a set of Fqm -linear vector evaluation maps Eop = {E op

0 , . . . , E
op
n−1} as defined

in (49), a vector a = (a0, a1, . . . , an−1) ∈ F
n
qm as defined in (68) and a vector w = (0, k −

1, . . . , k − 1) ∈ Z
s+1+ compute a vector b ∈ Fqm [x; σ ]s+1 that satisfies:

– E
op
i (b)ai = 0, ∀i = 0, . . . , n − 1,

– degw(b) < D.

A nonzero solution of Problem 3 exists if the degree constraint satisfies

D =
⌈

n + s(k − 1) + 1

s + 1

⌉

. (70)

By following the ideas in Proposition 2 for general evaluation parameters we see that Prob-
lem 3 can be solved by Algorithm 1 in O

(

s2n2
)

operations in Fqm .
If the sum-rank weight of the error t = wtΣ R(E) satisfies

t <
s

s + 1
(n − k + 1) (71)
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we have that (see [6, Theorem 2])

P(x) = Q0(x) +
s
∑

j=1

Q j (x) f ( j)(x) = 0. (72)

The root-findingproblemconsists offinding all polynomials f (1), . . . , f (s) ∈ Fqm [x; σ ]<k

that satisfy (72). The root-finding problem can be solved efficiently by the minimal approx-
imant basis methods in [10, 11] requiring at most ˜O (sωM(n)) operations in Fqm .

4.2.1 Solving the interpolation step via the fast KNH interpolation

Since Lemma 8 holds for arbitrary evaluation parameters a we have that the minimal polyno-
mial vectors in (55) fulfill Assumption 1. Consequently, we can solve Problem 3 by calling
Algorithm3with Eop as defined in (49), the basis Is+1 and initial degrees (0, k−1, . . . , k−1).

4.2.2 Complexity analysis

Note that Problem 2 is an instance of Problem 3 with particular evaluation parameters.
Therefore, the complexity follows directly from Theorem 2.

Corollary 1 (Computational Complexity) Algorithm 3 solves Problem 3 over Fqm [x; σ ]s+1

in ˜O (sωM(n)) operations in Fqm .

4.3 Interpolation-based decoding of interleaved skew Reed–Solomon codes

In this section we consider decoding of Skew Reed–Solomon (SRS) codes with respect
to the skew metric, which was introduced in [39]. Decoding schemes for SRS codes that
allow for correcting error of skew weight up to � n−k

2 � were presented in [11, 13, 34, 39].
Interpolation-based decoding of interleaved SRS ISRS codes that allows for decoding errors
of skew weight up to s

s+1 (n − k + 1), where s is the interleaving order, was considered in
[6]. The interpolation scheme can be either used as a list decoder or as a probabilistic-unique
decoder.

In this work we consider the definition of the skew weight from [13, Proposition 1]. Let
the vector b ∈ F

n
qm contain P-independent elements and let B be the P-closed set generated

by the elements in b. Then, the skew weight of a vector x ∈ F
n
qm with respect to B is defined

as

wtskew(x):= deg

(

lclm
(

x − bi
xi
)

0≤i≤n−1
xi �=0

)

(73)

where bi
xi :=σ(xi )bi x−1

i + δ(xi )x−1
i (see (3).) For simplicity we omit the dependence on

B in the definition of wtskew(·) as it will be clear from the context. Similar to the rank and
the sum-rank weight we have that wtskew(x) ≤ wtH (x) for all x ∈ F

n
qm (see [39]). The skew

distance between two vectors x, y ∈ F
n
qm is defined as

dskew(x, y):=wtskew(x − y). (74)

As a channel model we consider the skew metric channel

r = c + e (75)
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where the error vector e has skew weight wtskew(e) = t .
We define (vertically) interleaved skew Reed–Solomon (ISRS) codes as follows.

Definition 10 (Interleaved Skew Reed–Solomon Code) Let b = (b0, b1, . . . , bn−1) ∈ F
n
qm

contain P-independent elements from Fqm . For a fixed integer k ≤ n, a vertically s-
interleaved skew Reed–Solomon (ISRS) code of length n and dimension k is defined as

ISRS[b, s; n, k] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

f (1)[b]
f (2)[b]

...

f (s)[b]

⎞

⎟

⎟

⎟

⎠

: f ( j) ∈ Fqm [x; σ ]<k,∀ j ∈ [1, s]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (76)

ISRS codes are maximum skew distance (MSD) codes, i.e. we have that

dskew(ISRS[b, s; n, k]) = n − k + 1. (77)

Under a fixed basis of Fqms over Fqm there is a bijection between a matrix C ∈ F
s×n
qm and

a vector c ∈ F
n
qms . Hence, we can represent each codeword C ∈ ISRS[b, s; n, k] as a vector

c = f (b) ∈ F
n
qms where f ∈ Fqms [x; σ ] is the the polynomial obtained by considering

the coefficients of f (1), . . . , f (s) over Fqms . This relation between s-interleaved evaluation
codes over Fqm and punctured evaluation codes over the bigger field Fqms is well-known
from Reed–Solomon and Gabidulin codes (see e.g. [8, 58]).

Suppose we transmit a vector c = f (b) ∈ ISRS[b, s; n, k] and receive a vector
r = c + e ∈ F

n
qms (78)

where wtskew(e) = t . Let R ∈ F
s×n
qm denote the expanded matrix of r ∈ F

n
qms over Fqm .

Definition 11 (Remainder Vector Evaluation Map) Given an interpolation point set P =
{(pi,0, pi,1, . . . , pi,s) : i = 0, . . . , n − 1} ⊆ F

s+1
qm and a vectorQ ∈ Fqm [x; σ ]s+1 we define

the remainder vector evaluation maps as

E rem
i (Q):=Q0

[

pi,0
]+

s
∑

j=1

Q j
[

pi,0
pi, j

]

pi, j , ∀i = 0, . . . , n − 1. (79)

Remark 2 Note that pi,0
pi, j is not defined whenever pi, j = 0. Similar to [43] we define

Q j
[

pi,0
pi, j

]

pi, j = 0 for all pi, j = 0. This definition is very natural in view of the corre-
spondence to the generalized operator evaluation (see Lemma 3) and the product rule (see
[29, Theorem 2.7]).

For interleaved skew Reed–Solomon codes, the interpolation point set is

P = {(βi , r0,i , . . . , rs−1,i ) : i = 0, . . . , n − 1} ⊂ F
s+1
qm . (80)

Problem 4 (Vector Interpolation Problem) Given the integer s ∈ Z+, a degree constraint
D ∈ Z+, a set of Fqm -linear vector evaluation maps Erem = {E rem

0 , . . . , E rem
n−1 } as defined

in (79) and a vector w = (0, k − 1, . . . , k − 1) ∈ Z
s+1+ compute a vector b ∈ Fqm [x; σ ]s+1

that satisfies:

– E rem
i (b) = 0, ∀i = 0, . . . , n − 1,

– degw(b) < D.
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A nonzero solution of Problem 4 exists if the degree constraint satisfies (see [6])

D =
⌈

n + s(k − 1) + 1

s + 1

⌉

. (81)

Proposition 3 Problem 4 can be solved by Algorithm 1 in O
(

s2n2
)

operations in Fqm .

Proof Problem 4 corresponds to finding a vector in the interpolation module

Kn−1 = {b ∈ Fqm [x; σ ]s+1 : E rem
i (b) = 0, ∀i = 0, . . . , n − 1} (82)

of minimal w-weighted degree. Hence, Problem 4 can be solved by computing a w-ordered
weak-Popov basis for the left Fqm [x; σ ]-module Kn−1 and returning a row with w-weighted
degree less than D. The problem of finding a w-ordered weak-Popov basis for Kn−1 is an
instance of the general vector interpolation problem (Problem 1) which can be solved by
Algorithm 1 (see Lemma 4).

By Proposition 1, Algorithm 1 requires the computation of O (sn) evaluation maps E rem
i

of a vector in Fqm [x; σ ]s+1≤n , which requires O (sn) operations in Fqm each. Overall, the
computation of the evaluation maps requires O

(

s2n2
)

operations in Fqm . The computation
of the n multiplications of a monic degree-1 skew polynomial with a vector from Fqm [x; σ ]
(Line 11) requires O

(

sn2
)

operations in Fqm in total. The O (sn) multiplications of an
element from Fqm and a vector from Fqm [x; σ ]s+1≤n require at most O

(

s2n2
)

operations in
Fqm . Thereforewe conclude that Algorithm 1 can solve Problem 2 requiring atmost O

(

s2n2
)

operations in Fqm . ��

If the skew weight of the error t = wtskew(e) satisfies

t <
s

s + 1
(n − k + 1) (83)

it can be shown that (see [6])

P(x) = Q0(x) +
s
∑

j=1

Q j (x) f ( j)(x) = 0. (84)

The root-finding step consists of finding all polynomials f (1), . . . , f (s) ∈ Fqm [x; σ ]<k

that satisfy (84). The root-finding problem can be solved efficiently by the minimal approx-
imant basis methods in [10, 11] requiring at most ˜O (sωM(n)) operations in Fqm .

4.3.1 Solving the interpolation step via the fast KNH interpolation

Define the sets

P(r)
[i, j]:=

{

pl,0
pl,r : pl,r �= 0,∀l = i, . . . , j

}

(85)

for all 0 ≤ i, j ≤ n − 1 and r = 1, . . . , s. Then the vectors of minimal polynomials with
respect to the generalized operator evaluation are defined as

Mrem[i, j](x):=
(

M rem{pi,0,...,p j,0}(x), M rem
P(1)

[i, j]
(x), . . . , M rem

P(s)
[i, j]

(x)

)

. (86)
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Lemma 10 Let Erem = (E rem
0 , . . . , E rem

n−1 ) be an ordered set of skew vector evaluation maps
as defined in (79) and let Erem

[i, j] = (E rem
i , . . . , E rem

j ) ⊆ Erem. Then for anyQ ∈ Fqm [x; σ ]s+1

we have that

E rem
l (Q) = E rem

l (Q modr Mrem[i, j](x)), ∀l = i, . . . , j . (87)

Proof For the case where the interpolation point pi (corresponding to E rem
i ) contains only

nonzero elements, the lemma follows directly by applying the result from Lemma 2 to the
elementary evaluations in the skew vector remainder evaluation maps defined in (79). Since
by definition of the sets in (85) all conjugates pi,0

pi,r where pi,r = 0 are excluded, and by
definition the evaluation of each Qr

[

pi,0
pi,r
]

pi,r = 0 for all pi,r = 0 (see Remark 2), we
have that the statement also holds in this case. ��

An important consequence ofLemma10 is, that the vector remainder evaluationmaps from
Definition 11 and the minimal polynomial vectors in (86) fulfill Assumption 1. Hence, we
can solve Problem 4 by calling Algorithm 3 with SkewInterpolateTree(Erem, Is+1, (0, k −
1, . . . , k − 1)).

4.3.2 Complexity analysis

Lemma 11 (Complexity of ComputingMinimal Polynomial Vectors)Algorithm 4 constructs
the (ordered) set containing the minimal polynomial vectors

Mrem :=
(

Mrem[0,n−1](x),Mrem[0,�n/2�−1](x),Mrem[�n/2�,n−1](x) . . . ,Mrem[n−1,n−1](x)
)

⊂ Fqm [x; σ ]s+1 (88)

as defined in (86) in ˜O (sM(n)) operations in Fqm .

Proof Algorithm 4 is a generalization of the procedure in [17, Theorem 3.2.7] to construct a
single minimal polynomial, which requires ˜O (M(n)) operations in Fqm . Hence, the overall
complexity of Algorithm 4 is in the order of ˜O (sM(n)) operations in Fqm . ��
Theorem 3 (Computational Complexity) Algorithm 3 solves Problem 4 over Fqm [x; σ ]s+1

in ˜O (sωM(n)) operations in Fqm .

Proof Follows the ideas of the proof of Theorem 2. ��
Remark 3 (Practical Consideration) Note that in theFqm [x; σ ]-case the i-th remainder vector
evaluation map E rem

i (xQ) of xQ can be computed efficiently from E rem
i (Q) requiring only

one application of the automorphism σ and one multiplication since by the product rule [29]
we have that

E rem
i (xQ) = σ

(

E rem
i (Q)

)

pi,0, ∀i = 0, . . . , n − 1. (89)

4.4 Applications to other related coding problems

Algorithm 3 with generalized operator vector evaluation maps of the form as defined in
Definition 8 can be used to solve the interpolation step in other related interpolation-based
decoding problems efficiently. The corresponding interpolation problems are instances of
Problem 1 where the minimal polynomial vectors in (55) fulfill Assumption 1.
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In particular, the interpolation step in decoding of lifted s-interleaved Gabidulin codes
in the subspace metric [8, 9] can be performed requiring at most ˜O (sωM(nr )) operations
in Fqm , where nr denotes the dimension of the received subspace. Further, the interpolation
step in decoding h-folded Gabidulin codes [8, 37] and lifted h-folded Gabidulin codes [7]
can be performed in at most ˜O (sωM(n)) and ˜O (sωM(nr )) operations in Fqm , respectively,
where s ≤ h denotes an interpolation parameter.

Algorithm 3 can also be used to solve the interpolation step for decoding lifted s-
interleaved LRS codes in the sum-subspace metric [5] requiring at most ˜O (sωM(nr ))

operations in Fqm , where nr denotes the sum of the dimensions of the received subspaces
over all shots.

Algorithm 3 can also solve the interpolation step for interpolation-based decoding of h-
folded lLRS codes [23] requiring at most ˜O (sωM(n)) operations in Fqm , where s ≤ h is a
decoding parameter and n is the length of the unfolded code.

Since, unlike the minimal approximant basis approach in [6, 11], Algorithm 3 has no
requirements on the interpolation points (related to the evaluation maps), it can be applied in
a straight-forward manner to decoding problems of lifted Gabidulin and LRS code variants
in the (sum-)subspace metric.

5 Conclusion

We proposed a fast divide-and conquer variant of the Kötter–Nielsen–Høholdt (KNH) inter-
polation over free modules over skew polynomial rings. We showed how the proposed KNH
interpolation can be used to solve the interpolation step of interpolation-based decoding of
interleaved Gabidulin, linearized Reed–Solomon and skew Reed–Solomon codes and vari-
ants thereof efficiently requiring at most ˜O (sωM(n)) operations inFqm , where n is the length
of the code, s the interleaving order,M(n) the complexity for multiplying two skew polyno-
mials of degree at most n, ω the matrix multiplication exponent and ˜O (·) the soft-O notation
which neglects log factors. The computational complexity of the proposed fast KNH vari-
ant coincides with the complexity of the currently fastest interpolation algorithms for skew
polynomial rings, where the proposed variant relies on the well-known (bottom-up) KNH
interpolation algorithm instead of quite involved (top–down) minimal approximant bases
techniques. The proposed results also hold for codes defined over general skew polynomials
rings (with derivations), except for the complexity analysis. Due to the bottom-up nature of
the proposed KNH interpolation there are no requirements on the interpolation points and
thus no pre-processing of the interpolation points, which may be required for the top–down
minimal approximant bases approaches, is necessary.
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