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Abstract
Threshold public-key encryption (threshold PKE) has various useful applications. A lot of
threshold PKE schemes are proposed based on RSA, Diffie–Hellman and lattice, but to the
best of our knowledge, code-based threshold PKEs have not been proposed. In this paper, we
provide three IND-CCA secure code-based threshold PKE schemes. The first scheme is the
concrete instantiation of Dodis–Katz conversion (Dodis and Katz, TCC’05) that converts an
IND-CCA secure PKE into an IND-CCA secure threshold PKE using parallel encryption and
a signature scheme. This approach provides non-interactive threshold decryption, but cipher-
texts are large (about 16 kilobytes for 128-bit security) due to long code-based signatures even
in the state-of-the-art one. The second scheme is a new parallel encryption-based construction
without signature schemes. Unlike the Dodis–Katz conversion, our parallel encryption con-
verts an OW-CPA secure PKE into an OW-CPA secure threshold PKE. To enhance security,
we use Cong et al.’s conversion (Cong et al., ASIACRYPT’21). Thanks to eliminating signa-
tures, its ciphertext is 512 bytes, which is only 3% of the first scheme. The decryption process
needs an MPC for computing hash functions, but decryption of OW-CPA secure PKE can
be done locally. The third scheme is an MPC-based threshold PKE scheme from code-based
assumption. We take the same approach Cong et al. took to construct efficient lattice-based
threshold PKEs. We build an MPC for the decryption algorithm of OW-CPA secure Classic
McEliece PKE. This scheme has the shortest ciphertext among the three schemes at just 192
bytes. Compared to the regular CCA secure Classic McEliece PKE, the additional cipher-
text length is only 100 bytes. The cons are heavy distributed computation in the decryption
process.
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1 Introduction

1.1 Background

Threshold public-key encryption is a variant of public-key encryption (PKE) where the
decryption key is distributed to multiple parties as partial decryption keys. A ciphertext is
decrypted by a threshold decryption protocol among parties. If more than a certain threshold
number of, but not necessarily all, parties execute the protocol, the ciphertext is correctly
decrypted. On the other hand, parties below the threshold cannot obtain any information
about the plaintext from a ciphertext even if they have their own partial decryption key.

We enjoy the features of threshold PKEs in various applications, for example, e-voting,
blockchain, and threshold implementation. In many e-voting systems such as [1, 15, 18, 32],
each ballot is encrypted by a threshold PKE. So, voters’ privacy is protected from (a few)
curious tally servers, and simultaneously, the voting results can be obtained by all (or most)
tally servers jointly decrypting non-private information.

Also, some blockchain applications [33, 48] use threshold PKEs. For example, in [48],
to prevent a miner from abusing knowledge from transactions before being added to the
chain, encrypted transactions are added to the chain first, and then randomly selected miners
jointly decrypt them. The property of threshold PKEs ensures that no one knows the content
of transactions before they are added, and also that no one cannot interfere with the pub-
lishing of inconvenient transactions. Another interesting application of threshold PKEs is a
countermeasure against side-channel attacks, known as “Threshold Implementation” [39].
By implementing the threshold decryption algorithm in a single device (i.e., virtual multiple
decryptors run the decryption process in it), key recovery using side-channel information
(e.g., power spectrum) becomes significantly hard [10, Section 2.5].

Because of such use of threshold PKEs, the US National Institute of Standards and Tech-
nology (NIST) is planning standardization of threshold PKEs [37] in order to encourage
implementations of threshold PKEs in the real world.

In the literature, a lot of threshold PKE schemes have been proposed from various compu-
tational assumptions, for example, RSA [28], composite residuosity [21], discrete logarithm
[23] and Diffie–Hellman [12, 43]. However, these schemes are not secure against quantum
computers due to Shor’s algorithm [42], which enables quantum computers to solve factoring
and discrete logarithm in polynomial time. To ensure security for the future, it is important
to construct post-quantum threshold PKE schemes, which are based on intractable problems
even against quantum computers.

Some post-quantum threshold PKE schemes were proposed in the area of lattice-based
cryptography [6, 16, 34]. On the other hand, there are no known post-quantum threshold
PKEs from other assumptions, e.g., code, multivariate, and isogenies. In case lattice-based
assumptions no longer hold, it is desirable to construct post-quantum threshold PKEs from
different assumptions as well. In fact, due to the same reason, NIST is still in the process of
selecting code-based KEMs in the fourth round of the PQC competition after NIST selected
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a lattice-based KEM [38]. Therefore, constructing post-quantum threshold PKEs other than
lattice-based ones is an important issue.

1.2 Prior work

A naive approach to constructing a post-quantum threshold PKE is computing the decryp-
tion algorithm of a non-threshold PKE by multi-party computations (MPCs). Theoretically
speaking, for any decryption algorithm, its threshold decryption can be realized byMPCs; but
the obtained protocol is impractical in general. Consider the case of hybrid encryption (i.e.,
KEM-DEM framework) often used to efficiently encrypt long messages. Hybrid encryption
leverages the high performance of DEM’s encryption and decryption process to achieve good
performance in total. However, replacing the entire decrypting process with anMPC requires
DEM decryption to be performed in a threshold fashion, which takes huge costs, especially
for long messages, even if the MPC for the KEM is lightweight.

To realize practical post-quantum threshold PKEs, we can use two known generic con-
versions, Dodis–Katz conversion [24] and Cong et al. conversion (CCMS conversion) [16].

Dodis–Katz conversion transforms an IND-CCA secure PKE to an IND-CCA secure thresh-
old PKE using the concept of parallel encryption. Parallel encryption is a scheme that divides
a plaintext into n pieces and encrypts each piece with a distinct public key of the underlying
PKE. In Dodis–Katz threshold PKEs, the ciphertext consists of n ciphertext and a one-time
signaturewith strongEUF-CMA security,which is required to achieveCCA security. Todecrypt
a ciphertext, each party first recovers the corresponding piece and then recovers the message
from the collection of the pieces. Since the decryption process only does local computation
(i.e., without MPCs), resulting threshold PKEs are optimal in the sense of computation cost.
Also, since the conversion can start from any regular IND-CCA secure PKE, we can obtain
post-quantum threshold PKEs from various post-quantum assumptions.

Recently, Cong et al. presented an elegant KEM-DEM framework (called CCMS conver-
sion in this paper) that can be used to efficiently convert an OW-CPA secure deterministic
threshold PKE into an IND-CCA secure threshold PKE. CCMS conversion can be consid-
ered as a variant of the Fujisaki–Okamoto transformation (FO transformation) proposed by
[29] that converts an OW-CPA secure probabilistic PKE into an IND-CCA one. More pre-
cisely, a deterministic encryption function Encp is first converted into a probabilistic one as
Enc′

p(pk,m; r) := (Encp(pk,m), r), and then applied FO transformation.1 In the decryption
process of the resulting PKE, the ciphertext validity can be verified simply by checking hash
values before decrypting the DEM part. Moreover, it has an attractive property that, if the
validity checks are passed, it is still secure even if the session key of DEM becomes public
(i.e., all parties know it). From this property, it is sufficient only to compute the decryption
of KEM in a distributed fashion, and the decryption of the DEM can be done in the clear.
Therefore, once we construct an OW-CPA secure (deterministic) PKE equipping an efficient
distributed decryption, we can obtain an IND-CCA threshold PKE,which ismuch simpler than
constructing an MPC for a more complex decryption algorithm of IND-CCA secure PKEs.

1 In order to guarantee the security under threshold setting, small modification has been introduced to design
CCMS conversion.
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Fig. 1 The Classic McEliece-based threshold PKE schemes �I
t , �

II
t and �III

t . The arrows (−→) indicate the
corresponding conversions. Our proposed conversions are highlighted with underlining

1.3 Our contributions

In this work, to ensure the diversity of post-quantum threshold PKEs, we provide three
IND-CCA secure code-based threshold PKE schemes, �I

t , �
II
t , and �III

t . These schemes are
all based on Classic McEliece [2], one of the candidates in the NIST PQC standardization.
Figure1 shows how they are constructed from (OW-CPA secure) Classic McEliece PKE.

The first scheme �I
t is the concrete instantiation of Dodis–Katz conversion from code-

based assumptions.We instantiate it with the IND-CCA secure ClassicMcEliece PKE2 and the
strong EUF-CMA secure Sig 3 signature [8], which is the state-of-the-art signature scheme
based on the same post-quantum assumption as Classic McEliece. We reveal that �I

t has
a large ciphertext (about 16 kilobytes for 128-bit security3) since the size of code-based
signatures is large.

The second scheme �II
t is a new parallel encryption-based construction without signature

schemes. To obtain �II
t , we start from OW-CPA Classic McEliece PKE, convert it into a

threshold one (with OW-CPA security) using newly-developed parallel encryption, and then
enhance its security into IND-CCA using CCMS conversion. Since CCMS requires a deter-
ministic PKE, the new parallel encryption must preserve the deterministic property of the
underlying PKE, while it does not need to guarantee CCA security. Our idea to realize such
a conversion is; (1) utilizing a simple dividing method instead of a threshold secret sharing
scheme used in Dodis–Katz parallel encryption, (2) assigning multiple key pairs to each
decryption party to support t out of n setting, and (3) eliminating unnecessary signatures.
Thanks to eliminating signatures,�II

t drastically reduces the ciphertext length: it is 512 bytes,
which is only 3% of the ciphertext length of �I

t . Although �II
t provides smaller ciphertext,

�II
t needs an MPC for computing hash functions during the decryption process. However, it

does not need MPCs for the decryption of the OW-CPA secure PKE since we use parallel
encryption techniques.

2 IND-CCA secure Classic McEliece PKE is constructed from IND-CCA secure Classic McEliece KEM and
IND-CCA secure SKE via the KEM-DEM framework.
3 Throughout this paper, concrete values are given in 128-bit security.
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The third scheme �III
t is an MPC-based threshold PKE scheme from code-based assump-

tion.We take the same approach Cong et al. took to construct efficient lattice-based threshold
PKEs; prepare OW-CPA secure threshold PKEs by building MPCs for key generation and
decryption, and convert them into CCA ones. We build an MPC for computing the decryption
algorithm of OW-CPA secure Classic McEliece PKE. Most part of the decryption algorithm
is a decoding process of the Goppa code, which is done by Patterson’s algorithm. We notice
that it is comparatively MPC-friendly because of its algebraic computation. In contrast to
other decoding algorithms for e.g., MDPC codes and LRPC codes, Patterson’s decoding
algorithm does not use integer comparison or operations on basis vectors, which require
heavy MPCs. Almost all parts of Patterson’s decoding can be computed in a distributed
fashion by existing MPC techniques, but computing the extended Euclidean Algorithm part
is non-trivial. We succeed in constructing an MPC for it using the idea of exploiting the
properties of the Subresultant Matrix used in [36]. As a result, we obtain an OW-CPA secure
threshold Classic McEliece PKE from our newMPCs for the decryption. Then, we convert it
into CCA secure one�III

t via CCMS conversion.�III
t has the shortest ciphertext length among

the three schemes at just 192 bytes. Compared to the regular CCA secure Classic McEliece
PKE, the additional ciphertext length is only 100 bytes. The cons of �III

t is heavy distributed
computation in the decryption process. It invokes a lot of interaction to compute Patterson’s
algorithm via MPCs.

1.4 Organization of this paper

This paper is organized as follows. In Sect. 2, we introduce notations and the syntax and the
security notions of cryptographic primitives used in this paper. In Sect. 3, we explain the back-
ground of code-based cryptography. We explain Classic McEliece PKE/KEM along with the
Goppa code and Patterson decoding, and related works about code-based signatures. Then, in
the subsequent three sections, we explain the concrete code-based threshold PKE schemes.
Section4 describes the concrete instantiation of Dodis–Katz conversion from code-based
assumption. Section5 explains a new parallel encryption-based threshold PKE. Section6
explains a new MPC-based threshold PKE from Classic McEliece, including the concrete
procedure to compute Patterson’s decoding algorithm in distributed fashions. Finally, in
Sect. 7, we compare the three schemes in terms of ciphertext length and computation com-
plexity of threshold decryption. Conclusions are provided in Sect. 8.

2 Preliminaries

2.1 Notations

Let λ be a security parameter. For a non-negative integer n, [n] denotes {1, 2, . . . , n}. (n
t

)

denotes the number of t-combinations for n elements, i.e.,
(n

t

) := n(n−1)···(n−t+1)
t(t−1)···1 . For finite

set X , x ←$ X indicates an element x ∈ X is chosen uniformly at random. QPT stands for
quantum polynomial time.
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2.2 Public-key encryption

A public key encryption (PKE) scheme is defined as a triple of algorithms �p =
(KGenp, Encp,Decp) with plaintext space Mp and ciphertext space Cp. The key generation
algorithm KGenp takes a security parameter 1λ as input and outputs a pair of public key and
secret key (pk, sk). The encryption algorithm Encp(pk,m) computes a ciphertext ct from a
plaintext m ∈ Mp and the public key pk. Note that we treat a deterministic PKE through-
out this paper and thus we suppose that Encp is a deterministic algorithm. The decryption
algorithm Decp(sk, ct) recovers a plaintext m ∈ Mp or returns the special symbol ⊥ /∈ Mp.

A probability of decryption failure (for a randomly chosen plaintext) δ f is defined as

δ f := Pr
[
Decp(sk, Encp(pk,m)) �= m

]
,

where (pk, sk) ← KGenp(1λ) andm ←$ Mp.We say that�p is (1−δ f )-correct. We require
that δ f is exponentially small. If δ f = 0, we say �p is perfectly correct. When �p fails to
decrypt, there are two types of decryption failures. The first type of decryption failure is two
different plaintexts are encrypted to the same ciphertext. We say that �p is δc-collision free
when

Pr
[∃m1,m2 ∈ Mp s.t. Encp(pk,m1) = Encp(pk,m2)

] = δc,

where (pk, sk) ← KGenp(1λ). If�p is perfectly correct, then it is 0-collision free. The second
type of decryption failure occurs when a valid ciphertext is decrypted to⊥. We define a game
called ⊥-aware in which an adversaryA given the public key pk finds a pair of plaintext and
ciphertext (m̃, c̃t) such that c̃t = Encp(pk, m̃) but Decp(sk, c̃t) = ⊥. The advantage of A is
defined as

Adv⊥-aware
�p,A := Pr

[
c̃t = Encp(pk, m̃) ∧ Decp(sk, c̃t) = ⊥]

,

where (pk, sk) ← KGenp(1λ). We say that �p is δ⊥-⊥-aware, if the above advantage is δ⊥
or less for any QTP adversary A. If �p is perfectly correct, it is 0-⊥-aware.

Moreover, we say that �p is rigid if it satisfies the following condition [7]: For any
(pk, sk) ← KGenp(1λ) and ct ∈ Cp\C⊥

p ,

Pr
[
Encp(pk,Decp(sk, ct)) = ct

] = 1

holds, where C⊥
p ⊂ (Cp) is the set of all ciphertexts ct ∈ Cp for which Decp(sk, ct) = ⊥.

The standard security notion of public key encryption is indistinguishability (IND) against
chosen ciphertext attack (CCA). This security guarantees that an adversary cannot obtain any
information about its plaintext from a ciphertext even if it accesses the decryption oracle.
LetA be an adversary. Given a public key pk,A accesses to the decryption oracle ODec, and
outputs two plaintexts m∗

0,m
∗
1. Then one of the two plaintexts is encrypted to the challenge

ciphertext ct∗ = Encp(pk,m∗
b) based on a randomly chosen challenge bit b. A is given the

challenge ciphertext ct∗ and the access to ODec, and it outputs a bit b′. If the advantage of
A, given by

AdvIND-CCA�p,A := ∣∣ 2 · Pr [b = b′] − 1
∣∣

is negligible for all QPT A, we say that �p is IND-CCA secure.
To design an IND-CCA PKE scheme, we sometimes use a PKE scheme with weaker

security, called onewayness (OW) against chosen plaintext attacks (CPA). OW-CPA security
ensures that an adversary cannot recover thewhole plaintext from a ciphertext. This adversary
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A is given a challenge ciphertext ct∗ whose plaintextm∗ is chosen randomly from the plaintext
space Mp. Then A guessesm∗. The advantage of A is defined as follows:

AdvOW-CPA
�p,A :=

∣
∣
∣
∣
∣
Pr

[
m = m∗] − 1

∣
∣ Mp

∣
∣

∣
∣
∣
∣
∣

If the advantage is negligible for all QPT A, we say that �p is OW-CPA secure.

2.3 Threshold public-key encryption

A (t, n)-threshold public-key encryption scheme is an extension of public-key encryption
schemes that equips two multi-party protocols KGent and Dect instead of algorithms KGenp
and Decp. Key generation protocol KGent is performed by n parties P1, . . . , Pn . At the end
of this protocol, all parties agree on a public key PK, and each party Pi obtains its partial
secret key ski . We denote the list of the partial secret keys as SK = (sk1, . . . , skn). Threshold
decryption protocolDect is performed by t or more parties. On input ciphertext CT as a public
input and a partial secret key ski as a private input from Pi , it outputs the plaintextm.

IND-CCA and OW-CPA for (t, n)-threshold PKEs can be defined in the same way as
IND-CCA and OW-CPA for regular PKE schemes. The difference is that the adversary can
corrupt t − 1 parties of their own choice, which allows them to receive t − 1 partial secret
keys and intermediate decryption results in response to decryption queries.

2.4 Key encapsulationmechanism

A key encapsulation mechanism (KEM) is defined as a triple of algorithms �k =
(KGenk, Encap,Decap) with a session key space Kk and a ciphertext space Ck. KGenk(1λ)

generates a key pair (pk, sk). The encapsulation algorithm Encap(pk) outputs a session key
k ∈ Kk and its ciphertext ct ∈ Ck. The decapsulation algorithm Decap(sk, ct) outputs a
session key k. For correctness, Decap(sk, ct) = k holds with overwhelming probability, if
(pk, sk) ← KGenk(1λ), (k, ct) ← Encap(pk).

For the security of KEM, we can define the indistinguishability of session keys, which
guarantees that an adversary given a ciphertext cannot obtain any information about the
session key. More precisely, an adversaryA is first given a public key pk. Next b ←$ {0, 1},
(ct∗, k0) ← Encap(pk) and k1 ←$ Kk are computed, and (ct∗, kb) is sent toA. After thatA
is allowed to send ct(�= ct∗) to a decapsulation oracle ODecap which returns Decap(sk, ct).
A outputs b′ as the guessing bit of b. If the advantage of A, defined by

AdvIND-CCA�k,A := ∣∣ 2 · Pr [b = b′] − 1
∣∣ ,

is negligible for all QPT A, we say �k is IND-CCA secure.

2.5 Symmetric-key encryption

A symmetric-key encryption (SKE) scheme is defined as a pair of algorithms �s =
(Encs,Decs) along with the key space Ks and the plaintext space Ms. For a randomly
chosen symmetric key k ∈ Ks, a plaintext m ∈ Ms is encrypted into a ciphertext ct as
ct = Encs(k,m). The ciphertext is decrypted by Decs as m = Decs(k, ct). For correctness,
Decs(k, Encs(k,m)) = m holds for all k ∈ Ks andm ∈ Ms.

123



284 K. Takahashi et al.

For the security notion of SKE, we give one-time IND-CCA and one-time IND-CPA [19]
securities with the use of the hybrid construction in mind. The following game defines one-
time IND-CCA security. First, a key is chosen randomly k ←$ Ks. Next, the adversary A
outputs a pair of plaintextsm∗

0,m
∗
1, and receives ct

∗ := Encs(k,m∗
b), where b is a randomly-

chosen challenge bit. After that A is allowed to send ct(�= ct∗) to a decryption oracle ODecs
which returns Decs(k, ct) any number of times. Finally, A outputs b′ ∈ {0, 1}. If A’s advan-
tage

AdvIND-CCA�s,A := ∣
∣ 2 · Pr [b′ = b

] − 1
∣
∣

is negligibly small for anyQPT adversaryA, thenwe say that�s is one-time IND-CCA secure.
One-time IND-CPA security is exactly the same as one-time IND-CCA security, except thatA
is not allowed to access the decryption oracle. If the advantageA in this setting is negligibly
small, then we say that �s is one-time IND-CPA secure.

2.6 Signature scheme

A signature scheme consists of three algorithms, �sig = (KGensig, Sign,Verify). KGensig
takes the security parameter 1λ as input and generates a public (verification) key vk and a
secret (signing) key sigk. Sign takes a messagem and a signing key sigk as input, and outputs
a signature σ . Verify takes m, σ , and vk as input, and outputs 1 (accept) or 0 (reject). For
allm and (vk, sigk) ← KGensig(1λ), Pr

[
Verify(m, Sign(m, sigk), vk)) = 1

] = 1 must hold
for correctness.

Signature schemes are often used in cryptographic systems as a building block. In such
a case, one-time strong existential unforgeability against chosen message attack (one-time
strong EUF-CMA) is required in general. Refer [4] for the definition of the one-time strong
EUF-CMA security.

2.7 Dodis and Katz conversion

Dodis and Katz [24] proposed a generic construction of an IND-CCA secure threshold PKE
from an IND-CCA secure (non-threshold) PKE using parallel encryption technique plus a
secret sharing scheme and a one-time signature scheme. We roughly explain the (t, n)-
threshold PKEconverted froma (non-threshold) PKEwith label4 �p = (KGenp, Encp,Decp)
as follows.

In the key generation process, each party Pi runs KGenp to generate a key pair (pki , ski ).
In the encryption process, a plaintext m is first divided into n shares s1, . . . , sn using a
(t, n)-secret sharing scheme, and a key pair (vk, sigk) of the one-time signature scheme is
generated. Next, cti ← Encp(pki , si , vk) is computed for all i ∈ [n], where vk is treated as
a label. The ciphertext of m consists of the list CT := (ct1, . . . , ctn), vk, and the signature
σ ← Sign(sigk,CT). In the decryption process, each Pi verifies the signature and computes
si ← Decp(ski , cti , vk). Then Pi broadcasts the share si and reconstructs the plaintext m
from the shares {si }i of the secret sharing scheme.

The security of the Dodis–Katz conversion is stated in the following proposition.

4 A PKE scheme with label can be easily constructed from any PKE schemes without label [44]. We denote
a label as the last input of the encryption and decryption algorithms.
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Proposition 1 [24, Theorem1] If the underlying PKE �p is IND-CCA secure and the signature
scheme is a one-time strong EUF-CMA secure, then the (t, n)-threshold PKE from the Dodis–
Katz conversion is IND-CCA secure.

2.8 Cong et al. conversion

Cong et al. [16] proposed constructions of building IND-CCA secure PKEs from OW-CPA
secure PKEs via the KEM-DEM paradigm. Their notable feature is that IND-CCA security of
the resulting scheme is guaranteed even if the decryption result of KEM (i.e., the session key
for DEM) is revealed. This feature has a great advantage in case the underlyingOW-CPA PKE
(used as a KEM) has an efficient threshold decryption protocol. Their hybrid construction
has two versions: Hybrid1 secure in the random oracle model (ROM), and Hybrid2 secure in
the quantum random oracle model (QROM) in which we are interested.

We recall the second conversion Hybrid2. (Henceforth, CCMS conversion will refer to
Hybrid2 conversion.) Let �ow

t = (KGenowt , Encowt ,Decowt ) be a OW-CPA (t, n)-threshold
PKE scheme with plaintext space Mt , �s = (Encs,Decs) be an SKE scheme with plaintext
space Ms, and key space Ks. Let

H : Mt → Ks H′,H′′ : Mt → Mt

G : {0, 1}∗ × Mt → {0, 1}�g

be hash functions. The IND-CCA secure threshold PKE �t = (KGent, Enct,Dect) from
CCMS conversion is described as follows.

• KGent(1λ): It is identical to KGenowt . The output is (SK, PK) ← KGenowt (1λ).
• Enct(PK,m): On input a public key PK and plaintextm ∈ Ms, it computes the ciphertext

CT = (ct1, ct2, ct3, ct4) as follows:

k ←$ Mt, k ← H(k), μ ← H′(k)

ct1 ← Encowt (pk, k), ct2 ← Encs(k,m),

ct3 ← G(ct2, μ), ct4 ← H′′(k).

• Dect(SK,CT): First, the parties jointly perform Decowt protocol to decrypt ct1. After the
protocol run, they have the secret share of k. Then, they evaluate μ ← H′(k), ct3 ←
G(ct2, μ), ct4 ← H′′(k), and check the validity of ct3 and ct4 by jointly performing the
MPC for hash functions and the equality check. If the check does not pass, they output⊥
and abort the protocol. Otherwise, they obtain the reconstructed k. Finally, they compute
k ← H(k) andm ← Decs(k, ct2) in the clear, and output (k,m).

The security of �t is stated as follows.

Proposition 2 [16, Theorem3.2]G,H,H′,H′′ are modeled as quantum random oracle. If �ow
t

is deterministic, rigid, δ⊥-⊥-aware, δc-collision free, OW-CPA secure, and has decryption
failure probability δ f for a randomly chosen plaintext and �s is (one-time) IND-CPA secure
with negligibly small δ⊥, δc, δ f , then �t is IND-CCA secure.

Efficiency of the decryption protocol The decryption protocol mainly consists of three parts,
the PKE decryption part, the validity check part, and the SKE decryption part. The efficiency
of the first part depends on the underlying threshold PKE. The last part is lightweight because
it is performed in the clear. As for the second part, Cong et al. suggested the use of an MPC-
friendly hash function Rescue [3] as a hash function. Note that, although the input of G can
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be long, the compression of ct2 can be done in the normal way (without MPC), and only the
compression of the very last part (distributed μ) needs to be done in a distributed fashion.

3 Code-based cryptography

In this section, we introduce the Classic McEliece as a typical example of code-based KEM.
Further, we describe code-based signature schemes.

3.1 Goppa codes and Patterson decoding

First, we explain the binary Goppa code [30] on which Classic McEliece is based, and its
decoding algorithm Patterson’s algorithm [40] implemented in it.

Let g(x) = ∑tc
i=0 gi xi ∈ F2m [x] be a monic irreducible polynomial of degree tc called

Goppa polynomial, and γ = (γ1, . . . , γnc ) ∈ F
nc
2m be nc distinct supports such that g(γi ) �= 0.

(kc, nc, tc)-binary Goppa codes are defined by a parity-check matrix

H = {hi, j } ∈ F
tc×nc
2m ,

hi, j = γ i−1
j

g(γ j )
(i = 1, . . . , tc, j = 1, . . . , nc).

Since each element of the matrix H is in F2m , H can be expressed as a (tc · m) × nc matrix
over F2. Denoting kc = nc − m · tc, it means H is a (nc − kc) × nc binary matrix. In the
following, we assume tc is an even number.

Patterson’s algorithm is a typical decoding algorithm for binary Goppa codes. For a given
receiving word v ∈ {0, 1}nc , it recovers the error e if e’s hamming weight wt(e) is at most
tc. The output e satisfies Hv = He and wt(e) ≤ tc. In Algorithm 1, we show a slightly
modified version of Patterson’s algorithm using the condition that tc is an even number and
wt(e) = tc.

3.2 Classic McEliece KEM

Classic McEliece KEM �CM
k is an IND-CCA secure KEM based on the syndrome decoding

problem [2]. Its core component is an OW-CPA secure public key encryption �owCM
p =

(KGenowCMp , EncowCMp ,DecowCMp ) described as follows. Its plaintext space is Wtc,nc := {e ∈
F

nc
2 | wt(e) = tc}.
• KGenowCMp (1λ): Generate a random parameter of (kc, nc, tc)-binary Goppa code g(x), γ

and its parity check matrix H = [Inc−kc | Hkc ], where Inc−kc is the (nc − kc)×(nc − kc)

identity matrix. Output pk := Hkc ∈ F
(nc−kc)×kc
2 and sk := (g(x), γ ).

• EncowCMp (pk, e): For a plaintext e ∈ Wtc,nc , output its ciphertext c = [Inc−kc | Hkc ] · e ∈
F

nc−kc
2 .

• DecowCMp (sk, c): For a given ciphertext c ∈ F
nc−kc
2 , set v := [c 0 . . . 0] ∈ F

nc
2 by

appending kc zeros. Find e s.t. Hv = He(= c) by using some decoding algorithm for
the Goppa code. If wt(e) = tc and c = He, output e, otherwise output ⊥.

By using �owCM
p and a hash function Hcm : {0, 1}× {0, 1}nc ×{0, 1}nc−kc → Kk, Classic

McEliece KEM �CM
k = (KGenCMk , EncapCM,DecapCM) is constructed as follows.
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Algorithm 1 Patterson’s algorithm.
Parameters: g(x) is a Goppa polynomial,
γ1, . . . , γnc are supports,
(x − γi )

−1 is a polynomial that satisfies (x − γi )
−1(x − γi ) = 1 mod g(x),

T is the matrix representing the transformation a(x) → a(x)2 mod g(x).

Input: v = [v1 · · · vnc ] ∈ {0, 1}nc

Output: e = [e1 · · · enc ] ∈ {0, 1}nc

1: sv(x) :=
nc∑

i=1

vi (x − γi )
−1 mod g(x)

2: s′
v(x) := 1

sv(x)
mod g(x)

3: u(x) := T −1(x + s′
v(x))  T −1 is the inversion matrix of T

4: Compute α(x) and β(x) such that s(x)g(x) + β(x)u(x) = α(x) and deg(α) = tc/2  Use the extended
Euclidean algorithm

5: ε(x) := α(x)2 + xβ(x)2

6: for i ∈ [nc] do
7: if ε(γi ) = 0 then ei := 1
8: else ei := 0
9: end if
10: end for
11: return e := [e1 · · · enc ]

• KGenCMk (1λ): Generate (sk′,pk′) ← KGenowCMp (1λ) and choose s ←$ {0, 1}nc . Output
sk := (sk′, s),pk := pk′.

• EncapCM(pk): Randomly choose e ←$ Wtc,nc . Compute c ← EncowCMp (pk, e) and
k ← Hcm(1, e, c). Output a ciphertext ct := c and a session key k.

• DecapCM(sk, ct): Set c := ct. Compute e ← DecowCMp (sk, c). If e �= ⊥, output k ←
Hcm(1, e, c). Otherwise output k ← Hcm(0, s, c).

�CM
k is perfectly correct and rigid [2].

3.3 Code-based signature

In the literature, several code-based digital signature schemes have been proposed [8, 14,
17, 22, 26, 31, 45, 46]. Mainly, there are two approaches: hash-then-sign paradigm and
a combination of proof-of-knowledge (PoK) and Fiat–Shamir transformation [27]. There
are only a few hash-then-sign signature schemes. CFS signature [17] is the initial one. Its
security is based on the hardness of the syndrome decoding problem, the same as the Classic
McEliece. However, it has several problems such as choosing parameters, signature size, and
signing algorithm complexity. Wave [22] is the state-of-the-art hash-then-sign-based code-
based signature. It has a short signature (930 bytes for 128-bit security) but a large verification
key (3.2 megabytes). On the other hand, a lot of PoK-based code-based signatures [8, 14, 26,
31, 45, 46] have been proposed. These schemes are derived fromStern’s protocols [45], which
are based on the syndrome decoding problem. PoK-based code-based signatures have short
verification keys (about 100–200 bytes) but large signature sizes (about 15–30 kilobytes).

To our best knowledge, Sig 3 [8] has the shortest verification key plus signature size (165
plus 15,355 bytes) among signature schemes whose security relies on the syndrome decoding
problem over F2. Moreover, it satisfies strong EUF-CMA security, which is required for the
Dodis–Katz conversion.
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4 Code-based threshold PKE fromDodis–Katz conversion

We can obtain an IND-CCA secure code-based threshold PKE by instantiating the Dodis–Katz
conversion [24] with a code-based PKE and signature scheme. For completeness, we give a
concrete description of the resulting scheme.We call it�I

t . We instantiate the building blocks
in the Dodis–Katz conversion as follows:

• IND-CCA secure PKE with label: We use a PKE scheme derived from the Classic
McEliece KEM �CM

k = (KGenCMk , EncapCM,DecapCM) and IND-CCA secure SKE
�s = (Encs,Decs) via the KEM-DEM paradigm [44]. Let Ks be the key space of
�s. To convert the PKE scheme into a scheme with label, a target collision resistance
hash function H� : {0, 1}∗ → {0, 1}�hash is used.

• Secret sharing scheme: We use Krawczyk’s scheme [35] with Shamir’s scheme [41], in
which the secret is encrypted with SKE, and the symmetric key of SKE is shared with
Shamir’s scheme.

• StrongEUF-CMA secure signature:Weuse theSig3 scheme�
Sig3
sig = (KGenSig3sig , SignSig3,

VerifySig3) proposed by Bidoux et al. [8].

The first code-based threshold PKE scheme �I
t = (KGenIt, Enc

I
t,Dec

I
t) is described as

follows. Its plaintext space is Ms.

• KGenIt(1
λ): Each party Pi runs (pki , ski ) ← KGenCMk (1λ) locally, and broadcasts pki .

Set PK := (pk1, . . . ,pkn). ski is the partial secret key of Pi .
• EncIt(PK,m): Choose k ←$ Ks. Let (s1, . . . , sn) be a set of Shamir’s shares of k, and

compute ct0 ← Encs(k,m). Generate a key pair (vk, sigk) ← KGenSig3sig (1λ). For all

i ∈ [n], compute (ctkem,i , k′
i ) ← EncapCM(pki ), ctske,i ← Encs(k′

i , (H�(vk), si )),
and set cti := (ctkem,i , ctske,i ). σ ← SignSig3(sigk, (ct1, . . . , ctn)). Output CT :=
(ct0, ct1, . . . , ctn, vk, σ ).

• DecIt(SK,CT): Check whether VerifySig3(vk, (ct1, . . . , ctn), σ ) = 1. If not, output
⊥. Otherwise, each party decrypts k′

i ← DecapCM(ski , ctkem,i ) and (hi , si ) ←
Decs(k′

i , ctske,i ). If hi �= H�(vk), Pi outputs ⊥. If no party outputs ⊥, k is reconstructed
from shares s1, . . . , sn and m is recovered asm ← Decs(k, ct0).

From Proposition 1, the above scheme is IND-CCA secure.

5 Code-based threshold PKE from new conversion

In this section, we propose a new conversion for building an OW-CPA secure threshold PKE
from a non-threshold OW-CPA secure PKE. Combining this new conversion and CCMS
conversion, we obtain the second IND-CCA secure code-based threshold PKE, called �II

t ,
from a non-threshold OW-CPA secure PKE.

As for the new conversion, first, we show how to build an (n, n)-threshold PKE, named
(n, n)-�owII

t , and then extend it into a (t, n)-threshold PKE. The scheme �owII
t satisfies the

requirements for applying CCMS conversion, so it can be converted into �II
t with IND-CCA

security.

5.1 Deterministic (n, n)-threshold PKE (n, n)-5owII
t

Our goal is to construct a new threshold PKE scheme that can be applied toCCMSconversion,
that is, we want a scheme that is
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• deterministic,
• rigid,
• δ⊥-⊥-aware for negligibly small δ⊥,
• δc-collision free for negligibly small δc,
• (1 − δ f )-correct for negligibly small δ f ,
• OW-CPA secure.

At first glance, Dodis–Katz conversion gives a threshold PKE that has all these properties
if we start with a non-threshold one that has all these properties. Unfortunately, this is not
correct. Because a threshold secret sharing scheme used in Dodis–Katz conversion generates
shares (s1, . . . , sn) probabilistically, the threshold PKE results in probabilistic. Note that,
there is no deterministic threshold secret sharing scheme since a deterministically-computed
share leaks some information about the secret.

We overcome this problem by changing the sharing method. Our construction utilizes a
simple split to divide a plaintext into n shares5 instead of a threshold secret-sharing scheme.
Such a sharing method cannot be used to convert an IND-CCA scheme since each share leaks
partial information of the shared secret. However, it is sufficient in our setting, as shown
below. A plaintext m of the converted scheme is n times longer than that of the underlying
PKE. That is, the plaintext space of �owII

t is Mt = (Mp)
n .

More concretely, our construction (n, n)-�owII
t = (KGenowIIt , EncowIIt ,DecowIIt ) is

described as follows, where �ow
p = (KGenowp , Encowp ,Decowp ) is an underlying PKE.

• KGenowIIt (1λ): Each party Pi generates a key pair (pki , ski ) ← KGenowp (1λ) and broad-
casts pki . Let the public key be PK := (pk1, . . . ,pkn), Pi ’s partial secret key be ski .

• EncowIIt (PK, m̄): The plaintext m̄ ∈ (Mp)
n is split as m̄ = (m1,m2, . . . ,mn). The cipher-

text is CT = (ct1, ct2, . . . , ctn), where cti = Encowp (pki ,mi ).

• DecowIIt (SK,CT): Given CT = (ct1, ct2, . . . , ctn), each Pi locally decrypts cti as mi ←
Decowp (ski , cti ), and broadcasts mi . If mi = ⊥ for some i , the protocol outputs ⊥.
Otherwise, the plaintext m̄ = (m1,m2, . . . ,mn) is output.

We first show (n, n)-�owII
t is OW-CPA secure.

Theorem 1 If �ow
p is OW-CPA secure, then (n, n)-�owII

t is OW-CPA secure.

Proof We show that, if there exists an adversary A that breaks the OW-CPA security of
(n, n)-�owII

t , there exists an adversary B that breaks the OW-CPA security of �ow
p that uses

A as a subroutine. Without loss of generality, we assume A corrupts the first n − 1 parties.
Let I := {1, . . . , n − 1}. B receives pk∗ and ct∗(= Encowp (pk∗,m∗)) as an input. Note that

m∗ is chosen randomly from Mp. B generates (pki , ski ) ← KGenowp (1λ) for all i ∈ I , and
sets pkn := pk∗, and sends PK := (pk1, . . . ,pkn−1,pkn) and (sk1, . . . , skn−1) to A. Next,
B randomly chooses mi ←$ Mp and computes cti = Encowp (pki ,mi ) for all i ∈ I . B sends
CT∗ := (ct1, . . . , ctn−1, ct∗) to A as the challenge ciphertext. The OW-CPA adversary A
outputs m̄ = (m1,m2, . . . ,mn) ∈ (Mp)

n . B outputsmn as own output.
If A succeeds, ct∗ = Encowp (pk∗,mn) holds. So, B also succeeds. However, since �ow

p is
OW-CPA secure, the advantage ofA is negligible. Thus the advantage of B is also negligible,
and thus (n, n)-�owII

t is OW-CPA secure. ��
We then show that (n, n)-�owII

t satisfies the required properties for CCMS conversion.

5 This method can be viewed as an extreme ramp scheme.
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Theorem 2 If �ow
p is deterministic, rigid, δc-collision free, δ⊥-⊥-aware, (1 − δ f )-correct,

then (n, n)-�owII
t is deterministic, rigid, δ′

c-collision free, δ′⊥-⊥-aware, and (1−δ′
f )-correct,

where δ′
c < nδc, δ′⊥ ≤ nδ⊥, δ′

f < nδ f .

Proof From the construction, (n, n)-�owII
t is deterministic if �ow

p is deterministic. Further,
the other properties follow from Lemmas 1 to 4 below. ��
Lemma 1 If �ow

p is rigid, then �owII
t is also rigid.

Proof Consider CT = (ct1, . . . , ctn) ∈ Ct\C⊥
t , where Ct is a ciphertext space of �owII

t .
Then Decowp (ski , cti ) �= ⊥ (i.e., cti ∈ Cp\C⊥

p ) must hold for all i . (Otherwise, DecowIIt

outputs ⊥ by the definition of DecowIIt .) Therefore, there existsmi ∈ Mp for all i ∈ [n] such
that DecowIIt (SK,CT) = (m1, . . . ,mn). Since �ow

p is rigid, EncowIIt (PK,DecowIIt (SK,CT)) =
EncowIIt (PK, (m1, . . . ,mn)) = (Encowp (pk1,m1), . . . , Encowp (pkn,mn)) = (ct1, . . . , ctn) =
CT holds. ��
Lemma 2 If �ow

p is δc-collision free, then �owII
t is δ′

c-collision free for δ′
c < nδc.

Proof It is clear that for fixed PK, two distinct plaintexts m̄ = (m1, . . . ,mn) and m̄′ =
(m′

1, . . . ,m
′
n) make a collision in �owII

t if and only if there exists i such that (mi ,m′
i )

makes a collision in �ow
p based on pki . Therefore, �

owII
t has a collision pair with probability

1 − (1 − δc)
n < nδc. ��

Lemma 3 If �ow
p is δ⊥-⊥-aware, then �owII

t is δ′⊥-⊥-aware, where δ′⊥ ≤ nδ⊥.

Proof LetA be an adversary of ⊥-aware game for �owII
t . Consider following adversary B of

⊥-aware game for �ow
p .

On input pk∗, B randomly chooses i∗ ∈ [n] and set pki∗ := pk∗. For all i(�= i∗), B
generates key pairs (pki , ski ), and runs A on input PK := (pk1, . . . ,pkn). If A outputs
m̄ = (m1, . . . ,mn) and CT = (ct1, . . . , ctn), B outputsmi∗ and cti∗ .

We assume A wins ⊥-aware game. In this case, the following holds:

CT = EncowIIt (PK, m̄) and (1)

DecowIIt (SK,CT) = ⊥. (2)

Equation (1) implies ∀i : cti = Encowp (pki ,mi ). Equation (2) implies there exists a non-
empty set I such that Decowp (ski , cti ) = ⊥ holds for ∀i ∈ I . Therefore, B wins the ⊥-aware
game for �ow

p if i∗ ∈ I , that occurs with probability at least 1/n. ��
Lemma 4 If �ow

p is (1 − δ f )-correct, then �owII
t is (1 − δ′

f )-correct for δ′
f < nδ f .

Proof DecowIIt (SK, (ct1, . . . , ctn)) fails to decrypt, only if at least one of Decowp (ski , cti )
(i ∈ [n]) fails to decrypt. Therefore, δ′

f = 1 − (1 − δ f )
n < nδ f . ��

This completes the proof of Theorem 2.

5.2 Deterministic (t, n)-threshold PKE5owII
t

Wenow extend (n, n)-�owII
t into t-out-of-n setting for any t ≤ n. The extension is realized by

the replicated secret sharing scheme’s technique to turn an (n, n)-threshold access structure
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into a (t, n)-threshold one. More precisely, for each (t − 1)-subgroup G j (⊂ [n]), a key pair
(sk′

j ,pk
′
j ) is generated, and sk′

j is assigned to all parties Pi ∈ Ḡ j , where Ḡ j := [n]\G j .

Totally, N := ( n
t−1

)
key pairs are generated, and each party is assigned d = (n−1

t−2

)
secret keys

sk′
j . If t = 2 or t = n, then N = n holds. For example, in the (2, 3)-setting, there are three

key pairs and each Pi is assigned two sk′
j .

The concrete description of (t, n)-�owII
t = (KGenowIIt , EncowIIt ,DecowIIt ) is as follows.

• KGenowIIt (1λ): For each (t − 1)-subgroup G j of [n], parties in Ḡ j jointly generate
(pk′

j , sk
′
j ) ← KGenowp (1λ), and broadcast pk′

j . Set PK := (pk′
1, . . . ,pk

′
N ), where

N = ( n
t−1

)
. Each Pi sets ski := {sk′

j | Pi ∈ Ḡ j }.
• EncowIIt (PK, m̄): This is identical to EncowIIt of (N , N )-�owII

t . The ciphertext is CT =
(ct1, . . . , ctN ).

• DecowIIt (SK,CT): Eachparty Pi decrypts ct j (Pi ∈ Ḡ j )byusing sk
′
j ∈ ski , and broadcasts

the plaintextm j . If t ormore parties attend the protocol,m j for all j ∈ [N ] are broadcast.
If some of m j is ⊥, then the protocol outputs ⊥, otherwise, m̄ := (m1, . . . ,mN ) is
obtained.

The security of (t, n)-�owII
t is stated as follows.

Theorem 3 If �ow
p is OW-CPA secure, then (t, n)-�owII

t is OW-CPA secure.

Proof We show that if there exists an adversary A′ that breaks OW-CPA security of (t, n)-
�owII

t , then there exists an adversary B that breaks OW-CPA security of �ow
p .

Corrupting up to t −1 parties,A′ can get at most N −1 secret keys sk′
j . So,A′ is given the

same knowledge of A in the proof of Theorem 1. Therefore, we can construct B that breaks
OW-CPA of �ow

p with the same argument as Theorem 1. ��
We can show that (t, n)-�owII

t satisfies the desired properties.

Theorem 4 If �ow
p is deterministic, rigid, δc-collision free, δ⊥-⊥-aware, and (1−δ f )-correct,

then (t, n)-�owII
t is deterministic, rigid, δ′

c-collision free, δ′⊥-⊥-aware, and (1− δ′
f )-correct,

where δ′
c < Nδc, δ′⊥ ≤ Nδ⊥, δ′

f < Nδ f .

Proof The proof is identical to the proof of Theorem 2. ��

5.3 Second IND-CCA secure scheme5II
t

Let �owCM
p be the underlying PKE of �owII

t . Then �owII
t satisfies all requirements for CCMS

conversion, and it can be converted into an IND-CCA one. We slightly modify CCMS con-
version, because �owII

t ’s plaintext space (Mp)
N = (Wtc,nc )

N ⊂ F
Nnc
2 is a sparse set. More

precisely, we change the ranges of H′ and H′′ and the domain of the second input of G from
(Wtc,nc )

N to {0, 1}N�h for some �h that satisfies 2�h ≥ |Wtc,nc |. With such modification,
Proposition 2 can be proven in the same way, except |Mp| is replaced with 2N�h .6 So, our
construction uses the following hash functions:

H : (Wtc,nc )
N → Ks,

H′,H′′ : (Wtc,nc )
N → {0, 1}N�h ,

6 In the security proof, H′′(·) is treated as H̃(encode(·)) for some injective mapping encode : (Wtc,nc )N →
{0, 1}N�h and a hash function H̃ : {0, 1}N�h → {0, 1}N�h .
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G : {0, 1}∗ × {0, 1}N�h → {0, 1}�g .

�II
t = (KGenIIt , Enc

II
t ,Dec

II
t ) is described as follows.

• KGenIIt (1
λ): Parties execute KGenowIIt (1λ). The public key is PK = (pk′

1, . . . ,pk
′
N ), and

Pi has several sk
′
i as a partial secret key.

• EncIIt (PK,m): First k̄ := (k1, . . . , kN ) ←$ (Wtc,nc )
N is chosen randomly. Next k ←

H(k̄), μ ← H′(k̄), ct1, j ← EncowCMp (pk′
j , k j ) ( j ∈ [N ]), ct2 ← Encs(k,m), ct3 ←

G(ct2, μ), ct4 ← H′′(k̄) are computed. Output CT = (ct1,1, . . . , ct1,N , ct2, ct3, ct4).
• DecIIt (SK,CT): For CT = (ct1,1, . . . , ct1,N , ct2, ct3, ct4), each Pi decrypts ct1, j (Pi ∈

Ḡ j ) as k j ← DecowCMp (sk′
j , ct1, j ). For each j ∈ [N ], one of Pi ∈ Ḡ j (who knows

k j ) distributes k j by using a (t, n)-threshold secret sharing scheme. At this moment,
k̄ = (k1, . . . , kN ) is shared among all parties. Next, μ ← H′(k̄), c̃t3 ← G(ct2, μ) and
c̃t4 ← H′′(k̄) are computed secretly by using MPC for hash functions. Then equality
c̃t3 = ct3 and c̃t4 = ct4 are checked. If the check does not pass, ⊥ is output and the
protocol is aborted. Otherwise, k̄ is reconstructed. k ← H(k̄) andm ← Decs(k, ct2) are
locally computed.

6 Code-based threshold PKE from newmulti-party decryption protocol

The third code-based threshold PKE is constructed using the same approach Cong et al. used
to construct lattice-based threshold PKEs [16]. We design a practical MPC for computing
the decryption algorithm of the OW-CPA secure Classic McEliece PKE �owCM

p , and then
convert it to IND-CCA one applying CCMS conversion.

Recall that the decryption algorithm consists of three steps: (i) append kc zeros to the
ciphertext c, (ii) find e such that Hv = He = c by following Patterson’s decoding algorithm
shown in Algorithm 1, and (iii) check if wt(e) = tc and c = He. Steps (i) and (iii) are easily
computed by MPCs. On the other hand, Patterson’s decoding algorithm in step (ii) includes
processes for which efficient MPCs cannot be trivially constructed (Lines 2 and 4). So, we
first describe how to design an MPC for Patterson’s decoding algorithm, especially focusing
on Lines 2 and 4 (in Sect. 6.1). Next, we explain the MPC for the whole decryption algorithm
of �owCM

p including steps (i) and (iii) (in Sect. 6.2). Finally, we give the OW-CPA secure

code-based threshold PKE �owIII
t based on this MPC and the IND-CCA one �III

t obtained by
applying CCMS conversion in Sect. 6.3.

6.1 MPC for Patterson decoding

OfAlgorithm1 (PattersonDecoding), all procedures except Lines 2 and 4 are easily computed
byMPCs by using the existingMPC protocols for the equivalence decisionwith zero [11] and
the assignment calculation [20]. So, we first consider concrete (MPC-friendly) procedures
for the non-trivial parts Lines 2 and 4.

In both Lines 2 and 4 (Algorithm 1), it solves the following same problem; for given two
polynomials g(x), f (x) and the target degree d , find (some of) polynomials a(x), b(x), c(x)

such that a(x)g(x) + b(x) f (x) = c(x) and deg(c) = d . To solve this problem, instead of
the Euclidean algorithm which is not MPC-friendly, we use a new procedure based on the
idea used in [36] to design the MPC for a greatest common divisor (GCD) of polynomials.
Ours is much simpler than theirs because the degree of c is fixed, i.e., deg(c) = 0 in Line
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2 and deg(c) = tc/2 in Line 4. Now, we introduce the definition and some properties of a
subresultant matrix used in [36], then we describe our procedure.

Let g(x) = ∑tc
j=0 g j x j and f (x) = ∑u

j=0 f j x j be polynomials over F2m of degree tc
and u (u < tc), respectively. The subresultant matrix Si (i ∈ [u]) is defined by a (tc + u −
2i) × (tc + u − 2i) matrix of the form:

Si :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gtc fu
...

. . .
...

. . .

gtc−u+i+1 · · · gtc

...
. . .

...
... fu−tc+i+1 · · · · · · fu

...
...

...
...

g2i−u+1 · · · gi f2i−tc+1 · · · · · · fi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where g j = f j = 0 ( j < 0). For this matrix, the following two propositions hold.

Proposition 3 [47] If a polynomial c(x) of degree i appears as a remainder polynomial during
the computation of the extended Euclidean algorithm on input g(x) and f (x), det(Si ) �= 0
holds. Otherwise, det(Si ) = 0.

Proposition 4 [47] If det(Si ) �= 0, the linear system Si · yT = [0 . . . 0 1]T 7 has
a unique solution y = [y1 . . . yu+tc−2i ], and a(x) := y1xu−i−1 + · · · + yu−i and
b(x) := yu−i+1xtc−i−1 + · · · + yu+tc−2i satisfy a(x)g(x) + b(x) f (x) = c(x).

These propositions also work for polynomial f (x) whose exact degree u is unknown but
at most tc − 1.

Theorem 5 Let Si be the subresultant matrix constructed from g(x) = ∑tc
j=0 g j x j and

f (x) = ∑u
j=0 f j x j (u ≤ tc − 1) and let S̄i be the one from g(x) and f (x) =

∑tc−1
j=0 f j x j ( ftc−1, . . . , fu+1 = 0). Then, the following statements hold.

1. det(S̄i ) �= 0 if and only if det(Si ) �= 0.
2. The polynomials obtained from ȳT = S̄−1

i × [0 . . . 0 1]T and the one form yT =
S−1

i × [0 . . . 0 1]T is equivalent.

Proof From the definition of a subresultant matrix, we have

S̄i =
[

A O
B Si

]
,

A =
⎡

⎢
⎣

gtc
...

. . .

gu−2 · · · gtc

⎤

⎥
⎦ , B =

⎡

⎢
⎣

gu−3 · · · gtc−1
...

...

g2i−tc+2 · · · g2i−u

⎤

⎥
⎦ ,

where O is a zero matrix. As the matrix A is a lower triangular matrix, A is invertible.
Therefore, from the property of a partitioned matrix, we have that if det(Si ) �= 0, then

S̄−1
i =

[
A−1 O

−S−1
i B A−1 S−1

i

]
,

7 aT is a transposed vector of a.
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and if det(Si ) = 0, then det(S̄i ) = 0. Moreover, the value ȳT = S̄−1
i × [0 . . . 0 1]T is

value of tc − u − 1 zeros connected to the left of yT = S−1
i × [0 . . . 0 1]T . Thus, the two

polynomials a(x) and b(x) obtained from ȳ are equivalent to the ones from y. ��
From Theorem 5, we can define the subresultant matrix assuming deg( f ) = tc − 1 even

if the exact degree may be deg( f ) < tc − 1. Thus, we can use Propositions 3 and 4 and thus
we can describe the concrete procedure of Line 2 as follows.
2-1: Construct S0 from g(x) and f (x) := sv(x).
2-2: Compute the inverse matrix S−1

0 .
2-3: Compute yT = S−1

0 · [0 . . . 0 1]T = [y1 . . . y2tc−1]T .
2-4: Output s′

v(x) := b(x) = ytc−1xtc + · · · + y2tc−1.
Similarly, the procedure of Line 4 is described as follows.
4-1: Construct Stc/2 from g(x) and f (x) := u(x).
4-2: Compute the inverse matrix S−1

tc/2
.

4-3: Compute yT = S−1
tc/2

· [0 . . . 0 1]T = [y1 . . . ytc−1]T .

4-4: Let a(x) = y1xtc/2−2 + · · · + ytc/2−1 and b(x) = ytc/2xtc/2−1 + · · · + ytc−1.
4-5: Output β(x) := b(x) and α(x) := c(x) = a(x) · g(x) + b(x) · f (x).
We now show the MPC for Patterson’s algorithm. Assume that parties share a Goppa

polynomial g(x), supports γ1, . . . , γnc , polynomials (x −γi )
−1 determined by supports, and

the matrix T −1 determined by g(x).8 A word v ∈ {0, 1}nc is given to each party as input.
We also assume that a share of a polynomial is expressed as shares of its coefficients over
F2m . All these shares are generated in F2m . By using the procedures above, Lines 2 and 4
in Algorithm 1 can be evaluated in a distributed fashion with MPCs for inverting matrix [5]
and polynomial multiplication [36]. Since other lines in Algorithm 1 also can be computed
distributedly, we obtain an MPC for Patterson’s decoding algorithm.

The cost of the MPC for Patterson’s algorithm is O(t3c + nctc) times the invocation of an
MPC for multiplication. It is derived from the cost of the MPCs for inverting matrix in Lines
2 and 4 and the assignment calculation in Line 6 on Algorithm 1. We note that at the end of
the MPC, the output (i.e., error vector) is shared among the parties.

6.2 MPC for decryption of OW-CPA classic McEliece PKE

Wenow provide anMPC for the decryption ofOW-CPA secure ClassicMcEliece PKE. Given
a ciphertext c, the parties can jointly perform DecowCMp (sk, c) as follows.

1. Each party Pi sets v := [c 0 . . . 0] by appending kc zeros.
2. Parties perform theMPC for Patterson’s algorithm shown in Sect. 6.1 on input v and secret

key’s share ski , and obtain shared error vector e = (e1, . . . , enc ). (Each ei is 0 or 1, but is
shared as an element of F2m .)

3. Parties jointly compute w := wt(e) = ∑nc
i=1 ei . In this summation, each addition is done

by an MPC that simulates a full-adder circuit, but each XOR gate and AND gate are
evaluated by the MPC for addition (i.e., local computation) and multiplication in F2m ,
respectively.
As the result, each party obtains shares ofw1, . . . , wn′

c
where (wn′

c
, . . . , w1)2 is the binary

representation of w and n′
c = �log2 nc� + 1.

8 By sharing (x − γi )
−1 and T −1 in advance, we can save nc invocations of the MPC for inverting matrix

and compute a square root by an MPC for matrix multiplication.
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4. Parties jointly compute o1 := ∏n′
c

i=1(wi − ti + 1), where (tn′
c
, . . . , t1)2 is the binary

representation of tc. Clearly, o1 = 1 if wt(e) = tc, o1 = 0 otherwise.
5. Each party compute the share of e′ := He − c = (e′

1, . . . , e′
nc

) in F2m . Note that only e is
shared, so this can be done by linear combinations. In addition, all components of H , e, c
are 0 or 1, so e′

i are also 0 or 1.
6. Parties jointly compute o2 := ∏nc

i=1(e
′
i +1). Clearly, o2 = 1 if He = c, o2 = 0 otherwise.

7. Finally parties compute o1 × o2 by running the MPC and reconstruct the product. If the
result is 0, ⊥ is output, otherwise, reconstruct e and output it.

The number of invocations of an MPC for multiplication in the MPCs other than Patterson’s
algorithm is O(nc). Therefore, the total cost of the MPC for the decryption mainly comes
from evaluating Patterson’s algorithm i.e. O(t3c + nctc) as above.

6.3 Third IND-CCA secure scheme5III
t

Using the MPC for decryption of �owCM
p shown in Sect. 6.2, we obtain the threshold version

of �owCM
p . We call it �owIII

t = (KGenowIIIt , EncowIIIt ,DecowIIIt ).

• KGenowIIIt (1λ): The parties run the MPC to generate random parameters of (kc, nc, tc)-
binary Goppa codes g(x), γ = {γi }i and it’s parity check matrix H = [Inc−kc | Hkc ], the
inverse matrix T −1 and polynomials (x − γi )

−1 mod g(x). The public key is PK = Hkc

and Pi ’s partial secret key ski consists of shares of g(x), {γi }i , T −1, {(x − γi )
−1}i .

• EncowIIIt (PK, e):This is identical to EncowCMp . The ciphertext of e ∈ Wtc,nc is c := He.

• DecowIIIt (SK, c): Parties run the MPC shown in Sect. 6.2 and get e that satisfies He = c.

We do not describe the details of the key generation protocol, because any algorithm can be
evaluated in a distributed fashion using MPCs theoretically. The key generation protocol is
performed only once, so some degree of inefficiency is not a practical problem.

We can show �owIII
t is OW-CPA secure and takes over the properties of �owCM

p .

Theorem 6 If �owCM
p is OW-CPA secure, then the threshold PKE �owIII

t is OW-CPA secure.

Proof The partial secret key of each party is all share values. Further, its key-generation and
decryption protocols KGenowIIIt and DecowIIIt leak no additional information to parties other
than they should know (i.e., Pi learns only PK and its ski duringKGenowIIIt , while the decrypted
plaintext m during DecowIIIt ). Therefore, it is easy to construct an adversary algorithm B of
OW-CPA for�owCM

p by using an adversary algorithmA ofOW-CPA for�owIII
t as a subroutine.

Therefore, OW-CPA security of �owCM
p implies OW-CPA security of �owIII

t . ��
Theorem 7 If the MPCs in the threshold decryption do not fail, �owIII

t is perfectly correct
and rigid.

Proof Given a valid ciphertext c = He for some plantext e ∈ Wtc,nc , Patterson’s algorithm
recovers the error vector e with probability 1. Also, no failure happens during theMPCs from
the assumption. Therefore,�owIII

t is perfectly correct. ThusDecowIIIt (SK, c) = e always holds,
and we have EncowIIIt (PK,DecowIIIt (SK, c)) = c because �owIII

t is deterministic. Therefore,
�owIII

t is rigid. ��
Theorem 7 implies that CCMS conversion is adaptable to �owIII

t . Thus, we obtain the
IND-CCA secure threshold PKE, called �III

t = (KGenIIIt , EncIIIt ,DecIIIt ), described as follows.
Its plaintext space is Ms.
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• KGenIIIt (1λ): The parties run KGenowIIIt (1λ). The public key PK = Hkc determines H =
[Inc−kc | Hkc ].

• EncIIIt (PK,m): First e ∈ Wtc,nc is chosen randomly. Next k ← H(e), μ ← H′(e), ct1 ←
He, ct2 ← Encs(k,m), ct3 ← G(ct2, μ), ct4 ← H′′(e) are computed. Output CT =
(ct1, ct2, ct3, ct4).

• DecIIIt (SK,CT): For CT = (ct1, ct2, ct3, ct4), parties first execute DecowIIIt (SK, ct1). Note
that the result e is shared at this moment. If ⊥ is output, they abort the protocol and
output ⊥. Otherwise, μ ← H′(e), c̃t3 ← G(ct2, μ) and c̃t4 ← H′′(e) are computed,
equality c̃t3 = ct3 and c̃t4 = ct4 are checked by using MPCs. If the check does not pass,
⊥ is output and the protocol is aborted. Otherwise, e is reconstructed. k ← H(e) and
m ← Decs(k, ct2) are locally computed.

From Proposition 2, �III
t is IND-CCA secure in the QROM.

7 Efficiency comparison

In this section, we compare three IND-CCA secure code-based threshold PKEs�I
t ,�

II
t and�III

t
according to their ciphertext size and communication complexity of threshold decryption.We
instantiate the components used in �I

t , �
II
t and �III

t with the parameters for 128-bit security
as follows.

• ClassicMcEliece�CM
k and�owCM

p : we use the parameter set kem/mceliece348864
in [2].

• Signature scheme �
Sig3
sig : we use the 128-bit security parameter based on the hardness of

the syndrome decoding problem in [8].
• Hash functions H�, Hcm and H: we use SHAKE-256.
• Hash functions H′ and H′′: we use an MPC-friendly hash Vision9 [3]. As the parameters

of Vision, the bit-size of the base field nv , the number of field elements in the state mv ,
capacity cv , and rate rv , we set (nv1 , mv1 , cv1 , rv1) = (12, 12, 2, 10).

• Hash function G: we use a combination of SHA-3 and Vision similar to [16]. We set
(nv2 , mv2 , cv2 , rv2) = (12, 24, 2, 22).

• Symmetric-key encryption �s: We use AES-CTR with �key = 256 bits key (i.e., Ks =
{0, 1}256). For simplicity, we assume the ciphertext length is identical to the plaintext
length, i.e., |Encs(k,m)| = |m|.

From the above parameters, we have:

• output length of H�: �hash = 32 bytes,
• output length of H′ and H′′: �h = 64 bytes.10,
• output length of G: �g = 32 bytes,
• ciphertext length of �CM

k : |ctk| = 96 bytes,
• ciphetrext length of �owCM

p : |ctowp | = 96 bytes,

• verification key length of �
Sig3
sig : |vk| = 165 bytes,

• signature length of �
Sig3
sig : |σ | = 15,355 bytes.

9 The original CCMS conversion [16] uses Rescue that is suitable for MPCs over a large prime field since
Lattice-based PKEs are working on such fields. In this work, we choose Vision that is suitable for MPC over
characteristic two fields since hash input is a binary string in our constructions.
10 For security, the output length of H′ and H′′ must be larger than �(nc

tc

)� = 457 bits where nc = 3488 and
tc = 64 in kem/mceliece348864 Thus, we set �h = 512 bits.
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Table 1 Comparison of ciphertext overhead in the code-based (t, n)-threshold PKEs

|Ciphertext| − |plaintext| (bytes)
�I
t (Sect. 4) n(|ctk| + �hash + �key) + |σ | + |vk| = 16,000 B

�II
t (Sect. 5)

( n
t−1

)
(|ctowp | + �h) + �g = 512 B

�III
t (Sect. 6) |ctowp | + �h + �g = 192 B

For concrete value, we consider the case (t, n) = (2, 3) and 128-bit security

Table 2 Comparison of communication complexity during threshold decryption in the code-based (t, n)-
threshold PKEs

�owCM
p .Decp MPC for hashing

�I
t (Sect. 4) – –

�II
t (Sect. 5) –

2 · 7mv1

(
max

(⌈
( n
t−1)nc
nv1 rv1

⌉
,10

)
+

⌈
( n
t−1)�h
nv1 rv1

⌉)

+7mv2

(
max

(⌈
( n
t−1)�h
nv2 rv2

⌉
, 10

)
+

⌈
�g

nv2 rv2

⌉ ) = 18, 816

�III
t (Sect. 6) O(t3c + nctc)

> 485, 376

2 · 7mv1

(
max

(⌈
nc

nv1 rv1

⌉
,10

)
+

⌈
�h

nv1 rv1

⌉)

+7mv2

(
max

(⌈
�h

nv2 rv2

⌉
,10

)
+

⌈
�g

nv2 rv2

⌉ ) = 7728

We give the complexity as the number of invocations of the multiplication protocol over F212 . For the concrete
values, we consider the case (t, n) = (2, 3) and the 128-bit security parameters explained in the main body.
“–” indicates the scheme does not perform the corresponding MPC

Table 1 shows the ciphertext overheads (the ciphertext length minus the plaintext length)
of the (2, 3)-threshold PKEs. The ciphertext length of �I

t comes from n IND-CCA PKE
ciphertexts, one signature, and one verification key. Due to its large signature (about 15 kB),
it is the largest overhead (about 16 kB) among the three threshold PKEs. The ciphertext
overhead of �II

t consists of N = ( n
t−1

)
OW-CPA PKE ciphertexts and one hash digest of G

and one hash digest of H′′. Note that the digest length of H′′ is N · �h . Although its overhead
depends on the number of parties, it is much smaller than that of �I

t since it does not require
signature schemes. The ciphertext length of�III

t is derived from oneOW-CPA PKE ciphertext,
one digest of G, and one digest of H′′. Thanks to the independence of the number of parties
and the unnecessity of signatures, �III

t has the smallest ciphertext overhead.
Table 2 shows the communication complexity of threshold decryption. We measure it by

counting the number of invocations of the MPC for multiplication. The decryption protocol
of �I

t is non-interactive. So, parties need minimum communication costs. �II
t can compute

the decryption process of �owCM
p and that of SKE locally. Therefore, the parties only need

to communicate in the MPC of hashing for the validity check of ciphertexts. The MPC of
Vision requires 7 ·mv multiplications to absorb or extract nv · rv bits in each round. Note that
the minimum absorption round is 10 in the parameters above.�III

t performs, in addition to the
MPC of hashing as in�II

t , the MPC for decryption of�owCM
p . In Table 2 we evaluate the cost

dividing into two parts, one for decryption of�owCM
p , the other for hashing for verification. It

shows that the MPC for decryption of �owCM
p gives much more impact than that for hashing.

From the above discussion, we conclude that:
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• �I
t achieves non-interactive threshold decryption but has much larger ciphertexts due to

the impractical code-based signature scheme. So, this construction is not practical.
• �II

t has smaller ciphertext than�I
t by eliminating the use of a signature scheme. Also,�II

t
achieves non-interactive decryption of OW-CPA secure PKE using parallel encryption.
AlthoughMPC for hashing needs to process longer input than�III

t , the input length would
not impact so much. It means that �II

t is more efficient threshold PKE than �III
t . Overall,

we can say that this construction has a well-balanced performance.
• �III

t has the worst efficiency for threshold decryption but the smallest ciphertext length.
It also has the smallest public-key length, unlike the other two constructions that need
three times longer public keys even in the (2, 3)-setting. Therefore, this construction is
the best solution, if decryption parties can devote ample communication cost.

8 Conclusion

In this paper, we have proposed three code-based threshold PKE schemes from Classic
McEliece. These three schemes have a trade-off between ciphertext lengths and communi-
cation costs of threshold decryption. The first one has a very long ciphertext, but it allows
decrypting ciphertexts non-interactively, i.e., without MPCs. The second one has about 97%
shorter ciphertext than the first one, and requires only MPCs for computing hash functions.
The third one has the shortest ciphertext but requires heavy MPCs to decrypt a ciphertext.
Among the three schemes, the second one has a good balance between ciphertext size and
communication complexity.

The first scheme is impractical at this moment because of lengthy ciphertexts. 96% of the
ciphertext length comes from the signature-related data appended to guarantee CCA secu-
rity. Recently, code-based signature schemes have been actively studied, and new schemes
have been proposed one after another [8, 13, 25]. So, once highly efficient code-based signa-
ture schemes with strong one-time EUF-CMA security are developed, the first scheme could
become fascinating.

We note that the approach we take to construct the second scheme is applicable not only
to code-based PKEs but also to any PKEs with some properties. So, we immediately obtain
other post-quantum instantiations, once we prepare a PKE with the properties. Unlike the
Dodis–Katz conversion, which uses a signature scheme (with strong one-time EUF-CMA
security), our conversion does not utilize signature schemes. Therefore, our approach allows
us to derive a threshold PKE scheme whose ciphertext is only constant times longer than the
standard PKE, regardless of whether post-quantum signatures are large.

If we want more short ciphertexts, we can take the third approach but need to design
an efficient MPC for decryption. It is an interesting open problem to construct other post-
quantum threshold PKEs which utilize efficient threshold decryption.

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed during
the study.
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