
Designs, Codes and Cryptography (2023) 91:3527–3561
https://doi.org/10.1007/s10623-023-01292-8

Sok: vector OLE-based zero-knowledge protocols

Carsten Baum1 · Samuel Dittmer2 · Peter Scholl3 · Xiao Wang4

Received: 16 August 2022 / Revised: 4 June 2023 / Accepted: 27 July 2023 /
Published online: 1 October 2023
© The Author(s) 2023

Abstract
A zero-knowledge proof is a cryptographic protocol where a prover can convince a verifier
that a statement is true, without revealing any further information except for the truth of the
statement. This article is a surveyof recent developments in buildingpractical zero-knowledge
proof systems using vector oblivious linear evaluation (VOLE), a tool from secure two-party
computation. In this work, we attempt to systematize the recent works on VOLE-based
Zero-Knowledge proofs and make the state of the art accessible in one document.

Keywords Zero-knowledge proofs · Vector OLE · Correlated randomness

Mathematics Subject Classification 68-02 · 68Q99 · 94A60

1 Introduction

A zero-knowledge proof is a cryptographic protocol where a prover can convince a verifier
that a statement is true, without revealing any further information except for the truth of the
statement. More precisely, if x is a statement from an NP language verified by an efficient

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue:
Mathematics of Zero Knowledge”.

B Peter Scholl
peter.scholl@cs.au.dk

Carsten Baum
cabau@dtu.dk

Samuel Dittmer
samdittmer@stealthsoftwareinc.com

Xiao Wang
wangxiao@cs.northwestern.edu

1 Technical University of Denmark, Copenhagen, Denmark

2 Stealth Software Technologies Inc., Los Angeles, USA

3 Aarhus University, Aarhus, Denmark

4 Northwestern University, Evanston, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-023-01292-8&domain=pdf
http://orcid.org/0000-0003-0018-6354

3528 C. Baum et al.

machine M , then a zero-knowledge proof aims to prove to the verifier that there exists a
witness w such that M(x, w) = 1, without revealing any further information about w. We
say that the proof is a proof of knowledge, if the prover additionally convinces the verifier
that it knows the witness w, rather than just of its existence. For example, a prover can use
a ZK protocol to convince others that it knows an input that can cause stack overflow for
some public program (e.g., when submitting a bug report to the Common Vulnerabilities and
Exposures system) without revealing the input.

This article is a survey of recent developments in building practical zero-knowledge proof
systems using vector oblivious linear evaluation (VOLE), a tool from secure two-party com-
putation. This approach offers several advantages:

Fast prover. VOLE-based proof systems are scalable, meaning that the computational
resources required by the prover and verifier are not much larger than what’s needed to
verify the statement when given the witness in the clear.1 Concretely, for statements given
in a boolean circuit C , a multi-threaded prover incurs essentially no overhead in wall-clock
evaluation time over a single-threaded evaluation of C in the clear. As a more concrete
example, the authors of [2] recently demonstrated that evaluating AES as an optimized C-
program (without using AES-specific CPU instructions) is 50x faster than evaluating AES
in the ZK-proof system of [2].

Small memory.An attractive feature of manyVOLE-based protocols is their lowmemory
overhead: just as with plain computation, memory requirements are often only proportional
to the cost of verifying the statement (given thewitness). This is especially useful for complex
statements, where for instance, the witness may be so large that it does not fit into memory,
even though the proof can be verified efficiently in a streaming manner.

Post-quantum. With the possibility of large-scale quantum computing on the horizon,
protocols based on traditional factoring or discrete log assumptions could become insecure
to a quantum attacker. VOLE-based protocols, however, are instead based on variants of the
learning parity with noise (LPN) assumption, which is related to the hardness of decoding
random linear codes and currently believed to be resistant to quantum attacks.

Conceptual simplicity. VOLE-based protocols can be divided into two phases: a pre-
processing phase, which usually consists of running the VOLE protocol on random inputs
and which is essentially independent of the statement, and an online phase, where the proof
takes place. By abstracting away the properties of the preprocessing, the online phase is very
simple to describe, and can even be information-theoretically secure. As one of the simplest,
practical ways of constructing zero-knowledge proofs for general statements, it may also be
a valuable pedagogical resource.

These benefits also come with a few drawbacks, that can be seen as tradeoffs. Firstly, most
VOLE-based ZK proofs have a large communication cost, that is, the amount of data sent
between the prover and verifier often scales linearly with the size of the circuit that verifies
the statement being proven. This inherently means that the runtime of the verifier must also
scale linearly. Another possible drawback is that current constructions of VOLE-based ZK
require a designated verifier. That is, the verifier must store a private state needed to verify a
proof, which cannot be made public. It’s therefore more difficult to prove the same statement
to many different verifiers, or in public, with these techniques.

1 We suggest to classify proof systems with an explicit focus on fast prover runtime as FLARKs: Fast Linear
Arguments of Knowledge.

123

SoK: vector OLE-based zero-knowledge protocols 3529

1.1 Overview of this survey

In this work, we attempt to systematize the recent works on VOLE-based Zero-Knowledge
proofs and make the state of the art accessible in one document.

In Sect. 2 we will outline the notation and tools that are the foundation for all VOLE-
based ZK. This includes how proven statements can be formalized, the definition of Zero-
Knowledge that we achieve as well as an overview of VOLE.

We will then, in Sect. 3, introduce a general abstraction that unifies the ideas behind
the main VOLE-based ZK proofs into an Arithmetic Black Box, and how most of the ZK
constructions follow given access to VOLE.

Section 4 is devoted to the main differences in which existing works implement the
Multiplication in the Arithmetic Black Box, which is one of the main sources of interaction
in the proof.Here,we give an introduction into how theWolverine,Mac’n’Cheese, Line-Point
ZK and QuickSilver protocols work.

Section 5 will discuss how follow-up works have added different operations to the Arith-
metic Black Box, thus allowing the prove certain statements more efficiently. This includes
ideas such as more efficient proofs of polynomial evaluation, SIMD circuits, disjunctions,
conversions or proofs over rings instead of fields. We will moreover consider proofs of RAM
programs based on VOLE protocols.

Finally, we will mention some interesting open questions in Sect. 6.

1.2 Related techniques in ZK

Zero-knowledge proofs were first introduced by Goldwasser, Micali and Rackoff in 1985
[30]. Since then, there has been a vast body of research in both theoretical and applied
settings. Below, we mention a few of the techniques that are most relevant for those in this
survey. For a more in-depth coverage, the ZKProof Community Reference2 aims to give a
comprehensive overview of the state-of-the-art.

1.2.1 Garbled circuits

Zero-knowledge proofs based on garbled circuits were first proposed by Jawurek et al. [35],
with the key insight that garbled circuits already provide one-sided malicious security and
ZK only needs one-sided privacy. It has many advantages of VOLE-based ZK but requires κ

bits of communication per AND gate even after optimizations [27, 53]. More recent works
have also expanded this approach to support more efficient disjunctive proofs [33].

1.2.2 MPC-in-the-head

MPC-in-the-head by Ishai et al. [34] is an elegant way of constructing ZK proofs based on
secure multi-party computation. Its concrete efficiency was first studied by Giacomelli et
al. [29], which has led to a long line of practical ZK proofs in recent years, particularly for
designing digital signatures. It could bemade non-interactive but often needs communication
linear in the circuit size.

2 https://docs.zkproof.org/reference

123

https://docs.zkproof.org/reference

3530 C. Baum et al.

1.2.3 SNARKs

In recent years, there has been a large focus on Succint non-interactive arguments of knowl-
edge (SNARKS) [28], which are protocols where the communication complexity, that is, the
size of the proof, is very small, potentially even constant size or logarithmic in the witness
length. A drawback of most SNARKs is that succinctness comes at the cost of a more expen-
sive prover, which often has super-linear computational complexity (with a few exceptions
[31, 54]) and large memory requirements (linear to the statement size).

1.3 Applications

VOLE-based ZK proofs enjoy high efficiency and scalability: they could prove tens of mil-
lions of gates even under a small bandwidth connection and low-configured hardware. As a
result, it has the potential to enable many exciting applications.

1. Proofs of programproperties.Whenexpressing properties about a program� formally,
automated theoremprovers can allow formally attesting the presence of certain properties
using a proof π . By encoding the verification of a given proof for a public� as the input
to a ZK proof system, a prover can e.g. show that a program shows certain information
leakage, without revealing the proof π that explains this behavior [43].

2. Proofs of machine-learning tasks.Machine-learning tasks often involve sensitive data
(e.g. biometric information) or valuable data (e.g., large models) where ZK proofs could
help to enhance privacy. Until recent, ZK for ML is limited because statements on ML
are usually large. Recent works have shown the feasibility of proving inference of deep
neural networks in ZK [37, 49].

3. Proofs of signature validity on private messages. [45] considers a case where appli-
cants would like to prove their medical qualification without revealing how they qualify
and which healthcare provider signed the evidence. This requires proving that a private
digital document is signed by someone from an public authorized list and that the same
document implies medical validity.

4. Proofs of unsatisfiability. The correctness verification of computer programs is com-
monly done by showing the unsatisfiability of a certain SAT formula, which is decided
by the program and the property to be proven. Proving formula unsatisfiability in ZK [38]
could enable applications like 1) showing the correctness of a public program without
revealing why; and 2) showing the correctness of a private program.

2 Preliminaries

We use lower case, bold symbols for vectors x and upper case, bold symbols for matrices
A. We use κ as the computational and σ as the statistical security parameter. Generally, the
prover is denoted asP while the verifier is V . In our UC functionalities and proofs,Z denotes
the environment, and S is the simulator, whileAwill refer to the adversary.When we say that
an algorithm is Probabilistic Polynomial Time (PPT), then we mean that it can be expressed
as a probabilistic interactive turing machine whose worst-case runtime can be expressed as
a polynomial in κ . For any finite set S, we denote by |S| the cardinality of S. If instead s is a
string, then |s| denotes its length. If s1, s2 are strings then s1 ++ s2 denotes the concatenation
of strings.

123

SoK: vector OLE-based zero-knowledge protocols 3531

2.1 The computational model: arithmetic circuits

The zero-knowledge proofs in this survey are used by a PPT prover P to convince a PPT
verifier V that a certain statement is true, and furthermore, that P knows a witness for the
statement. This means they are proofs of knowledge. Abstractly, both P and V consider a
languageL together with a relationRL. For a string x input to bothP and V ,P will convince
V that it knows a w such that (x, w) ∈ RL, i.e. x ∈ L. Here, RL is an NP relation, which
means that there exists a Turing Machine (TM) M which, on input x, w, accepts in time
poly(|x |) iff x ∈ L. Instead of expressing computation as happening on a Turing machine
M , we will require that each x can, in time poly(|x |), be converted into a circuit C over a
ring (R,+,×) whose gates correspond to efficiently computable3 functions defined over R.
We require that C(w) = 0 iff (x, w) ∈ RL, except with negligible probability in κ . This
requirement is without loss of generality, as such a circuit can always be constructed using
the Cook-Levin Theorem.

More concretely, our statements are circuits C over a ring R. We define their semantics
as follows: Consider the tuple C = (nin, nout , ng,I,G) where

• nin ≥ 2 is the number of input wires, nout ≥ 1 the number of output wires and ng ≥ 1
the number of gates in the circuit. We let nw = nin + ng be the number of wires.

• We define the sets I nputs ← {1, . . . , nin}, Wires ← {1, . . . , nw} as well as
Outputs ← {nw − nout + 1, . . . , nw} and Gates ← {nin + 1, ..., nw} to identify
the respective elements in the circuit.

• The poly-time computable function I : Gates �→ 2Wires\Outputs identifies the incoming
wires for each gate, with the restrictions that:

– ∀g ∈ Gates : I(g) �= ∅.
– ∀g ∈ Gates : maxs∈I(g){s} < g.

• The poly-time computable mapping G : Gates �→ (
R+ �→ R

)
determines the function

that is computed by a gate. We require that

1. ∀g ∈ Gates : The input length of G(g) is identical to |I(g)|.
2. ∀g ∈ Gates : The function G(g) can be computed in time poly(|I(g)|, log(|R|)).

To obtain the outputs of the above circuit when evaluating it on an input
w = w1 ++ · · · ++ wnin ∈ Rnin one evaluates C as follows:
eval(C, w):

1. For i ∈ {1, . . . , nin} set xi = wi .
2. For g ∈ {nin + 1, . . . , nw}:

(a) (s1, . . . , s|I(g)|) ← I(g) where si < si+1

(b) f ← G(g)
(c) xg ← f (xs1 , . . . , xs|I(g)|)

3. Output xnw−nout+1 ++ · · · ++ xnw

We denote by C(w) the aforementioned evaluation of C on input w.

3 Here, efficiently computable means that evaluating the gate should take time polynomial in the input- and
output length of the gate as well as log(|R|).

123

3532 C. Baum et al.

Fig. 1 Functionality for ZK proofs over the ring R

2.2 Zero knowledge proofs for circuits

We define Zero-Knowledge Proofs (of Knowledge) in the Ideal-Real paradigm. Let � be an
interactive protocol between two PPT interactive Turing Machines (iTMs) P,V . This means
that parties might send messages to each other, as well as to idealized functionalities. Define
the functionality FZK as in Fig. 1.

LetA be a PPT iTM algorithm, called the adversary.A is allowed to corrupt either of the
parties, or none at all. If a party is corrupted, thenAwill have full control over that party and
be allowed to read all its secrets and send any messages on its behalf. It has to specify in the
beginning which party, if at all, A will corrupt.

We define security with respect to a PPT iTM Z called environment. The environment
provides inputs to and receives outputs from the parties. Furthermore, the adversary A will
corrupt a party in the name of Z. To define security, let � ◦ A be the distribution of the
output of an arbitrary Z when interacting withA in a real protocol instance �. Furthermore,
let S denote an ideal world adversary and FZK ◦ S be the distribution of the output of Z
when interacting with parties which run with FZK instead of � and where S takes care of
adversarial behavior.

Definition 2.1 (Zero-Knowledge Proof of Knowledge) We say that � is a Zero-Knowledge
Proof of Knowledge if for every PPT iTM A that maliciously corrupts at most 1 party there
exists a PPT iTM S (with black-box access to A) such that no PPT environment Z can
distinguish � ◦ A from FZK ◦ S with non-negligible probability in κ .

2.3 Vector oblivious linear evaluation (VOLE)

AVOLE correlation is a pair of random variables (u, x) and (v,�), where x,u, v are vectors
and � is a scalar, which are all random subject to the constraint that

ui = vi + xi · �

One party, in our case the prover P , is given u, x, while the verifier V learns (v,�).
We model the generation of VOLE correlations as an ideal functionality Fd

VOLE, given in
Fig. 2. Here d is the length of the vectors u, x, and v. The functionality works over a ring
R; in most cases, we require that R is a finite field, but in Sect. 5.5 we also discuss how
to support non-field rings such as R = Z2k , the integers modulo 2k . On initialization, the
functionality samples aMAC key� ∈ Rt

key, where Rkey ⊂ R for some parameter t ≥ 1 such

123

SoK: vector OLE-based zero-knowledge protocols 3533

Fig. 2 Functionality for VOLE over Rt with a message from the ring R, and scalar � from Rt
key , where

Rkey ⊂ R

that |Rt
key| is exponentially large in the security parameter. When R is a field, we typically

choose Rkey = R. After initialization, the Extend command may be called repeatedly. On
each call, it samples one more “element” of the VOLE correlation, which we view as a
MAC M[x] on a random element x given to the prover, where the verifier learns only the
corresponding key K [x] (as well as the global key �).

In the rest of this paper, we assume that such a functionality can be efficiently realized
using a secure VOLE protocol. To justify this, we outline which approaches currently exist
to implement Fd

VOLE efficiently with active security.

2.3.1 InstantiateFd
VOLE directly

The two most popular approaches use linearly homomorphic encryption or OT extension
protocols. For homomorphic encryption, the approach is usually that V samples a public
key/private key pair, then sends an encryption of � to P . P picks x, M[x] and, using the
homomorphism, computes an encryption of K [x] that it sends toV . Finally,V can decrypt this
result. While it is easy to achieve passive security by rerandomizing the ciphertext containing
K [x] appropriately, achieving active security usually requires additional consistency checks
such as specialized zero-knowledge proofs. See e.g. [3, 20, 21] for variants on this approach.
An alternative solution is to use Oblivious Transfers to perform the multiplications, leading
to highly efficient protocols such as [36, 46], or [47] when R is a ring such as Z2k . The
disadvantage of all these protocols is that the communication betweenP and V scales at least
linearly in the number of VOLE correlations n, which can easily become a bottleneck when
a large number of correlations are needed.

123

3534 C. Baum et al.

2.3.2 Extend VOLEs efficiently

Current state-of-the-art VOLE extension protocols all stem from the approach of Boyle et al.
[10], which builds a pseudorandom correlation generator based on (variants of) the learning
parity with noise (LPN) assumption. This approach exploits the fact that sparse LPN errors
can be used to compress secret-sharings of pseudorandom vectors, allowing the two parties
to generate a long, pseudorandom instance of a VOLE correlation in a succinct manner from
a short vector of VOLE correlations.

These protocols usually proceed along the following lines:

1. Construct a protocol for single-point VOLE, where the sender’s input vector has only a
single non-zero entry.

2. The single-point VOLE protocol is repeated t times, to obtain a t-point VOLE where
the sender’s input is viewed as a long, sparse, LPN error vector.

3. Combine t-point VOLE and the LPN assumption, allowing the parties to locally obtain
pseudorandom VOLE by applying a linear mapping.

Using this blueprint leads to (random)VOLEprotocols with communicationmuch smaller
than the output length, which is sufficient to build Zero-Knowledge protocols as we shall
see. It can be seen as a form of VOLE extension, where in the first step, a small “seed”
VOLE of length m � n is used to create the single-point VOLEs, and then extended into a
longer VOLE of length n. In the Ferret protocol [51], it was additionally observed that when
repeating this process, it can greatly help communication if m of the n extended outputs are
reserved and used to bootstrap the next iteration of the protocol, saving generation of fresh
seed VOLEs whose computation is usually more involved as outlined above.

To use VOLE as part of a ZK protocol, we will need that it is actively secure. If R is a field,
then VOLE extension can efficiently be done by picking a protocol such as [11, 48]. These
also allow the secret x to be from a subfield of R, which yields more efficient constructions
when the proof circuit is defined over a small field such as F2. For R = Z2k , the recent
work of [1] described how to adapt [10, 48] with a consistency check that is secure if the
underlying LPN instance tolerates a small amount of leakage on the noise vector.

2.4 Schwartz–Zippel Lemma

A crucial building block in all presented protocols is the Schwartz-Zippel Lemma over finite
fields, which allows for efficient polynomial identity tests. The version which we use, proven
by Ore [42], works as follows:

Lemma 2.1 (Schwartz-Zippel Lemma) Let F be a finite field, S ⊆ F and P ∈ F[X] be a
non-zero polynomial of degree d ≥ 0. Then

Pr
s

$←−S

[P(s) = 0] ≤ d

|S| .

123

SoK: vector OLE-based zero-knowledge protocols 3535

3 A general framework for VOLE-based ZK

3.1 Homomorphic MACs fromVOLE

VOLE can be used to build a simple, information-theoretic MAC scheme with useful
homomorphic properties. Prior works have shown numerous MAC schemes with differ-
ent properties that follow a similar paradigm [6, 14, 18, 19]. The MAC scheme is oblivious,
in the sense that the prover will hold MACs on certain values, while only the verifier knows
the corresponding MAC key. For example, consider running VOLE over a finite field F, i.e.
Fd
VOLE with R = F, Rkey = R and t = 1. A single output from a random VOLE can be seen

as a MAC on the value x ∈ F obtained by the prover. The prover also learns the MAC M[x],
while the verifier holds the MAC key, which consists of a random K [x] ∈ F and the fixed
key � ∈ F, satisfying

K [x] = M[x] − � · x
If the prover wants to send x to the verifier, this can be authenticated by additionally sending
M[x]: the verifier simply checks the above equation holds.

The MAC cannot be forged with probability larger than 1/|F|. To see this, consider a
cheating prover who sends x ′ �= x together with a MAC M[x ′]. If verification succeeds,
we have M[x] − � · x = M[x ′] − � · x ′, and so (M[x] − M[x ′]) · (x − x ′)−1 = �. This
implies that the prover must have guessed �, by coming up with x ′, M[x ′] that pass the
check. Crucially, this check relies on x − x ′ being invertible, which in the given case4 is of
course always true.

3.1.1 Linear homomorphism

Since the MAC equation is linear, and � is fixed for every VOLE output, it’s easy to see that
any public, linear function can be applied to MACs. The parties can also create a MAC on a
public constant c ∈ F, by definingM[c] = 0 and K [c] = −c·�; this allowshomomorphically
computing affine functions.

3.1.2 Multiplicative homomorphism

TheMACsare alsomultiplicatively homomorphic,with the caveat that the storage complexity
increases. To see this, let (x, M[x]) held by the prover define a linear polynomial p(s) =
M[x] + x · s in s. The verifier then holds the random key �, and the evaluation p(�). Now
consider a second suchMACon y, and polynomial q(s) = M[y]+y ·s. The product p(s)q(s)
is now a degree-two polynomial, whose coefficients are held by the prover.

The drawback of homomorphically multiplying MACs is that the size of the resulting
MAC scales with the number of multiplications (i.e. the degree of the function). However,
this can still be exploited, as we see in Sects. 4.3 and 4.3.3.

3.1.3 MACs over small fields

The approach outlined above does not achieve sufficient security if |F| is small. For example,
when F = F2, the MAC only delivers 1 bit of security! Luckily, the approach generalizes to

4 We will later in Sect. 5.5 see an example where this is not the case and why this leads to problems.

123

3536 C. Baum et al.

arbitrary t > 1. Namely, let Rkey = Rt where R = F for an arbitrary finite field. The same
security argument as before does apply: if a cheating prover who sends x ′ �= x together with
a MAC M[x ′] succeeds in verification, then we have M[x] − � · x = M[x ′] − � · x ′, and
therefore (M[x]−M[x ′])·(x−x ′)−1 = �which can be computed over Rt by coordinate-wise
division by x − x ′. Therefore, a forgery can now only happen with probability 1/|F|t .

Fd
VOLE for this setting can efficiently be instantiated by considering R as a subfield of

Rt using the machinery from [12]. It also lends itself to updates on the MACed value x
with low communication, since only a value over R but not Rt must be communicated to
do so. The linear homomorphism of the MAC scheme again follows directly from its setup.
By considering Rt as the degree-t extension field of R instead of just a vector space, the
multiplicative homomorphism (and how it is exploited in this work) can also be recovered.

In Sect. 5.5, we show how this type of homomorphic MAC can also be made to work over
rings, with some differences to the soundness guarantees and repercussions on ring size.

3.2 Arithmetic black box for ZK

The functionality FZK introduced in Fig. 1 is only able to process a circuit C over a ring in
a block. However, VOLE-based ZK can often provide a more flexible functionality where
parties can prove the circuit progressively in a gate-by-gate manner. This is crucial e.g. for
memory-friendliness, since wires which are no longer needed can be dropped from memory.
To abstract this capability in VOLE-based ZK, we now refine FZK into FABB in Fig. 3 which
performs exactly this job. To use FABB to realize FZK , two parties can use the Input to obtain
handles to the committed witness; then they can traverse the circuit following topological
order: each linear gate can be computed using Affine combination and each non-linear gate
can be computed using multiplication check. In the end, two parties hold a handle for the
output wire which can be asserted using CheckZero.

This functionality FABB is what protocols such as [2, 48] and follow-ups actually imple-
ment. Their observation is that Vector-OLEs output by Fd

VOLE can be used to securely store
inputs by P such that linear functions of secrets can be computed without interaction. In
the following, whenever a value x is stored inside FABB, then we denote it as [x]. This is
equivalent to the value x being MACed (as outlined in Sect. 3.1), which is why the same
notation is used. If R = Zs for some s ∈ N, then we write [x]s to clarify the modulus used
in FABB. We leave out the subscript if the ring is clear from the context.

To realizeFABB for the case where R = F, both parties initially call Init ofFd
VOLE to make

commitments available. Then they proceed as follows.
Random

1. The parties call Extend on Fd
VOLE and assign the returned (r , M[r], K [r]) the id id.

Input

1. The parties call Extend on Fd
VOLE, which returns (r , M[r]) to P and K [r] to V .

2. P computes δ = x − r over R and sends δ to V .
3. P sets M[x] ← M[r] while V sets K [x] ← K [r] − �δ and both parties assign

(x, M[x], K [x]) the id id.

Check Zero If only one id needs to be checked, then this can be done as follows:

1. P looks up M[0] for the id id, while V looks up K [0]. If it is undefined, then abort.
2. P sends M[0] to V , who checks that K [0] = M[0].

If more than one id needs to be checked, then P,V can also apply a Collision-Resistant Hash
Function to compress their values and save communication bandwidth.

123

SoK: vector OLE-based zero-knowledge protocols 3537

Fig. 3 Functionality modeling an arithmetic black box over the ring R

Affine Combination

1. P looks up x1, . . . , xn, M[x1], . . . , M[xn] for the ids id1, . . . , idn , while V looks up
K [x1], . . . , K [xn]. If either of these is undefined, or id0 is already defined, then abort.

2. P locally sets x0 ← α0 + ∑
i αi xi and M[x0] ← ∑

i αi M[xi], while V locally sets
K [x0] = ∑

i αi K [xi] − α0�.

In the case where R = F then one can easily write a simulator, following Definition 2.1, to
show that the aforementioned subprotocols implement the desired parts of the functionality
FABB securely. The main idea is that V does not learn any information, since the outputs of
Fd
VOLE leak no information about the outputs given to P , while every input during Input is

blinded using a uniformly-random value from Fd
VOLE. Affine Combination is entirely non-

interactive, while the value that V obtains during Check Zero is predetermined. A cheating
P can only change the outputs during Check Zero such that V accepts a non-zero value, but
as shown in Sect. 3.1, this reduces to P being able to guess �. This value is never revealed to
P by Fd

VOLE, which finishes the claim. The exact details are shown in the referenced works5.

5 The case where R is of different form will be treated in Sect. 5.5.

123

3538 C. Baum et al.

Fig. 4 The Wolverine multiplication check protocol

What is left to implement is the Multiplication Check of FABB. This is actually the
core of much of the early work on VOLE-based Zero Knowledge. We will summarize the
state-of-the-art in the following section.

4 Multiplication checks

4.1 Wolverinemultiplication check

TheWolverine multiplication check protocol [48] can be viewed as a direct application of the
bucketing technique introduced in the context of malicious secure computation [19, 40, 41].
The only difference is that only the prover has a privacy requirement (i.e. zero-knowledge)
and thus the bucketing only needs to be done for one layer. In more detail, the protocol
proceeds in the following steps:

1. Given a list of authenticated tuples to be checked, two parties generate nB+c number of
extra random authenticated multiplication tuples that are correct if the prover is honest.

2. The verifier randomly picks c tuples out of the nB + c newly generated ones and checks
if they have the correct relationship. If so, the remaining nB random authenticated
multiplication triples must have a high proportion of good triples. Since all tuples are
committed, the check can be done at the end of the protocol as well.

123

SoK: vector OLE-based zero-knowledge protocols 3539

3. For the remaining nB triples, the verifier specifies a random permutation to group them
randomly into n buckets each with B triples per bucket.

4. For the i-th input triple, all triples in the i-th bucket are “sacrificed” to check the correct-
ness one at a time. The sacrifice procedure does detect cheating unless both the “input”
triple and the “sacrificed” triple are incorrect simultaneously.

Details of the protocol can be found in Fig. 4. A careful analysis shows that by setting c, B
appropriately, we can ensure that the proportion of incorrect triples that survive after step
2 of the outlined protocol is low. Then, with overwhelming probability during Step 4 not
all B “sacrificing” tuples in a bucket can be faulty, as the permutation is chosen at random.
Therefore, if any “input” multiplication tuple was faulty, it would be detected during Step 4
and the check would fail. In summary:

Theorem 4.1 For any field R = F and integer t and if c ≥ B, the protocol in Fig.4 securely
instantiates CheckMult in Fig.3 with statistical error of 1/

(
	
B

) + O(/|F|t).

4.2 Mac’n’Cheesemultiplication check

The protocol from Sect. 4.1 requires 3B sent ring elements per verified multiplication. We
now discuss two different approaches. The first only sends 2 ring elements per multiplication
check for large fields and builds on Beaver’s circuit randomization technique [5]. The second
builds on a protocol fromBoneh et al. [9], where the idea is to reduce proving nmultiplicative
relations to checking a dot product of length n. This comes at the cost of communicating
n+ O(log(n)) R-elements. In particular, for R = Fp for p = 261 − 1 their protocol requires
around 64.3 bits of communication per multiplication.

4.2.1 Warm-up: multiplication checks using circuit randomization

Consider P has created [x], [y], [z] and wants to show that z = x · y. To do so, first both
P,V use Fd

VOLE to create a random [a]. Additionally, P creates [c] where c = a · y.
Upon obtaining a challenge e from V , both parties now compute [ε] = e · [x]− [a] and P

sends ε to V . Then, P shows that both [ε] − ε and e · [z] − [c] − ε[y] are commitments to 0.
Assuming that [ε]was indeed opened correctly, consider the casewhere [z] = [x ·y+δ] for

a non-zero δ, while [c] = [ay+γ] for a possibly non-zero γ . Assume that e ·[z]−[c]−ε[y] is
indeed a commitment to 0. Then once can easily show that this implies that eδ = γ , implying
that e = γ /δ for γ, δ that P has to choose before it knows e. This in turn only succeeds with
probability 1/pk , as e is chosen uniformly at random. Therefore, for small fields this test has
to be repeated multiple times to achieve low enough soundness error.

4.2.2 Multiplication checks via inner product checks

Boneh et al. [9] introduce a logarithmic-sized proof for “parallel-sum” circuits. In a “parallel-
sum” circuit, identical subcircuits C ′ are evaluated in parallel on possibly different inputs,
with the sum of the outputs of each C ′ being the output of the overall circuit. The high-level
idea of the proof protocol is to embed checks for different instances of C ′ within a single
polynomial, allowing V to verify n instances of C ′ in parallel. When letting C ′ be a single
multiplication of its two inputs, can then be used to simultaneously verify the sum of n
multiplications, which is equivalent to a dot product. Denote the protocol that checks the dot
product AssertDotProduct.

123

3540 C. Baum et al.

The AssertDotProduct protocol works as follows. Suppose P wants to prove that [z] =∑
i∈[n][xi][yi]. P begins by defining n polynomials f1, . . . , fn/2, g1, . . . , gn/2 such that

fi (j) = x(j−1)n/2+i and gi (j) = y(j−1)n/2+i for j ∈ {1, 2}, and then computing h =∑
i∈[n/2] fi gi . P then commits to h by committing to its coefficients (denoted as [h]). V

defines its own polynomials f ′
i , g

′
i over the values [x(j−1)n/2+i] and [y(j−1)n/2+i] that are

stored in FABB to check that
∑

i∈[n/2] f ′
i g

′
i = h. By Schwartz-Zippel, this can be done by

checking that
∑

i∈[n/2] f ′
i (r)g

′
i (r) = h(r)

for a random r chosen by V . Here, observe that the evaluation of f ′
i , g

′
i , h in a public constant

r boils down to multiplying the committed coefficients of each polynomial with appropriate
powers of r and summing up the result, both of which are linear operations inFABB that do not
require any interaction. Then, verifying the above equation after fixing r is again a dot product
check, although over vectors of length n/2, and we can recursively apply AssertDotProduct
until n is of constant size. Note that only 4 R-elements are communicated during one iteration
ofAssertDotProduct: 3when committing to h and onewhen sending r . See Fig. 5 for a formal
presentation of the protocol. There, for the base-case of AssertDotProduct, one can e.g. use
the multiplication checking procedure from Sect. 4.2.1.

Given AssertDotProduct, we can batch-verify n multiplications as follows:

1. Assume that n tuples [xi], [yi], [zi] have been committed by P .
2. V chooses a randomization factor r that it sends to P .
3. P shows that 〈r i [xi], [yi]〉 = ∑

i∈[n] r i [zi]. Since r is public, computing r i [xi] and∑
i∈[n] r i [zi] is local.

This protocol, called AssertMultVec, is presented in Fig. 5.
It is clear that both AssertDotProduct and AssertMultVec are complete and zero-

knowledge. The following theorem, proven in [2], shows they are also sound.

Theorem 4.2 If R = Fpk and the protocolAssertMultVec passes, then the input commitments

have the required relation except with probability n+4 log n+1
pk−2

The number of rounds of interaction in AssertDotProduct is logarithmic in the number
of multiplications n. [2] also show that, using the Fiat-Shamir transform [25], the number of
rounds can be made constant by assuming a random oracle.

An alternative version of AssertMultVec with a soundness error that is only logarithmic
in n can be achieved as follows:
AssertMultVec′({([xi], [yi], [zi])}i∈[n]):
1. V samples r1, . . . , rn ∈R R and sends them to P .
2. AssertDotProduct(r1[x1], . . . , rn[xn], [y1], . . . , [yn],∑i∈[n] ri [zi]).

One can easily show that AssertMultVec′ has the desired soundness, although at the expense
of communicating more random elements from V to P . In practice, one can optimize this by
having V choose a random PRG seed that it sends to P , with r1, . . . , rn derived determinis-
tically from the seed.

4.3 LPZKmultiplication check

The Line Point Zero Knowledge (LPZK) work of [23] introduces the concept of an LPZK
proof system, where the prover constructs a line and the verifier queries a single point on

123

SoK: vector OLE-based zero-knowledge protocols 3541

Fig. 5 Protocols for efficient multiplications. See text for necessary notation

that line, and determines from this point whether to accept or reject the proof (see Fig. 6).
This geometric presentation emphasizes the simplicity and algebraic character of the VOLE
commitment scheme, which will be used in a non-black box construction.

In the LPZK multiplication check, the witness and all intermediate wire values are stored
in the vector a (see Fig. 6). The underlying intuition is that the verifier will perform a series of
calculations on the vector v := aα + b and the prover will mirror the verifier by performing
the same calculations on the vector of formal polynomial expressions given by at+b, treating
t as an indeterminate.

The results of these calculations are a collection of values held by the verifier that are
the evaluations at α of corresponding polynomials held by the prover. Conditions on the
coefficients of these polynomials correspond to conditions on the vectors a,b, and so can
be used to prove that the extended witness satisfies the desired relation. Concretely, the
LPZK multiplication check builds a series of quadratic polynomials (one per multiplication
gate) whose leading coefficients are zero if and only if the corresponding gates are evaluated
correctly. The resulting “polynomial checks” we need to verify these coefficients are zero
can be efficiently batched together, saving on communication.

123

3542 C. Baum et al.

Fig. 6 Geometry of line point zero knowledge

4.3.1 Single gate example

To demonstrate how the above language of LPZK translates into proving multiplication
relations, we give a commit-and-prove protocol for the relation R(x, y, z) := xy − z as an
LPZK over F with binding and soundness error ≤ 2/|F|.

The (honest) prover chooses some triple (x, y, z) and constructs a line at + b by setting

a = (a1, a2, a3, a4) := (x, y, z, xb2 + yb1 − b3)

with b1, b2, b3 chosen uniformly at random and b4 := b1b2. We write

v(t) := at + b,

for the line held by the prover, and v = aα + b for the point received by the verifier, for a
random α ∈ F. We likewise write the prover’s view of the entries as

v(t) = (v1(t), v2(t), v3(t), v4(t)),

and write vi for vi (α). The verifier now checks whether

v1v2 − αv3 − v4 = 0.

If the prover is honest, we have

v1v2 − αv3 − v4 =(xy − z)α2 + (xb2 + yb1 − b3 − (xb2 + yb1 − b3))α

+ b1b2 − b4

=0

identically, as long as xy − z = 0. In other words, v1v2 − αv3 − v4 is a quadratic in α that is
identically zero if and only if the prover is honest. For a cheating prover, v1v2−αv3−v4 will
be equal to some nonzero polynomial in α, and so breaking the binding property would be
equivalent to P guessing α, while breaking soundness would be equivalent to P constructing
a polynomial of degree 2 which has α as a root, which gives binding and soundness error
≤ 2/|F|, by the Schwartz-Zippel Lemma, as desired. Note that this is a special case of the
LPZK construction sketched above, since being identically zero is a stronger condition than
having a zero leading coefficient.

123

SoK: vector OLE-based zero-knowledge protocols 3543

When constructing LPZK from a random VOLE, this protocol requires communication
for each entry of a and bwhich cannot be set randomly by the prover. Here, we require com-
munication of five field elements: four elements for the values a1, . . . , a4 and an additional
element of communication for the value b4.

4.3.2 Polynomial checks

To emphasize the similarity of the one gate example to the IT-MAC that we defined in
Sect. 3.1, we can instead write the triple (a,b, v) as (x, M[x], K [x]). Then setting values
of a or x is accomplished by the Input step of FABB, and setting values of b or M[x] is
accomplished similarly by sending the difference between a random value M[r] and the
desired value M[xi].

When extending this construction to a larger circuit, we generate an authenticatedwire [w]
for each input wire and each output wire of a multiplication gate, and get authentications of
the remaining wires from affine transformations. There are then two variant LPZK protocols,
one with information theoretic security without a random oracle, and one in the random
oracle model, which we call IT-LPZK and ROM-LPZK.

In both protocols, the prover constructs some quadratic polynomial in � for each multi-
plication gate, and the verifier learns the evaluation of those polynomials. The�2 coefficient
of the polynomial is the value xy− z, so if the prover is honest, the polynomial will be degen-
erate. For IT-LPZK, the polynomial will also have zero � coefficient, that is, the polynomial
constructed by an honest prover is equal to a constant. For ROM-LPZK, the polynomial is
linear.

For the ROM-protocol, the degenerate polynomial held by the prover is

K [x]K [y] − K [z]� = (xy − z)�2 + (y · M[x] + x · M[y] − M[z])� + M[x] · M[y],
whichwill be linear if xy = z, with the prover holding the coefficients of the linear polynomial
and the verifier holding the evaluation at�. For the IT-LPZK protocol, we set u := xM[y]+
yM[x] − M[z] and subtract M[u] := u� + K [u] from this polynomial, so that the prover
and verifier hold the putative constant

K [x]K [y] − K [z]� − K [u] = M[x]M[y] − M[u].
We therefore need two gadgets for ROM-LPZK and IT-LPZK that certify that a batch of
quadratic polynomials are degenerate and actually of degree 1 or degree 0, respectively.

In the IT-LPZKprotocol, we treat multiplication gates in batches of size n, (not necessarily
equal to the total number of multiplication gates in the circuit) resulting in a soundness
error of 2n/|F|. For each batch of n gates xi yi = zi , the prover authenticates an additional
ui := xi M[yi]+ yi M[xi]−M[zi], so that the prover holds (ui , M[ui]) and the verifier holds
K [ui] = ui� + M[ui]. The verifier then computes the product of n successive instances of
the polynomial above

m :=
n∏

i=1

ι(K [xi]K [yi] − K [zi]� − K [ui]),

where ι is the identity function on nonzero values, with ι(0) = 1 to ensure the product is
nonzero. The prover sends the term m̂ := ∏n

i=1 ι(M[xi]M[yi] − M[ui]), and the verifier
aborts if m �= m̂.

The value the verifier has computed is now the evaluation of a polynomial of degree 2n,
which is a constant polynomial if and only if the prover acted honestly on each of the n gates

123

3544 C. Baum et al.

Fig. 7 The LPZK and QuickSilver multiplication check protocols

in the batch. Otherwise, a cheating prover must construct a non-constant polynomial that has
� as a root, and we can apply the Schwartz-Zippel lemma as above to bound the binding and
soundness error. The correctness and security are proven in [23].

Theorem 4.3 The protocol in Fig.7, using Step 3 securely instantiates CheckMult in Fig.3
with soundness error 2n/|F|.

4.3.3 QuickSilver extension

The circuit-based QuickSilver [52] multiplication check can be viewed as an extension of
the ROM version of the Line-Point ZK protocol [23] to support any field. We provide an
overview of the protocol. The key idea to support any field size is by extending the checking

123

SoK: vector OLE-based zero-knowledge protocols 3545

on an extension field of the original field. We will abuse the notation and use Ft to also refer
to the extension field; this means that multiplications between two Ft elements are performed
according to field-extension multiplication. For each multiplication gate, the prover P has
(x, M[x]), (y, M[y]), (z, M[z]) ∈ F × F

t ; the verifier V holds K [x], K [y], K [z],� ∈ F
t

such that the following four equations hold:

z = x · y and M[i] = K [i] − i · � for i ∈ {x, y, z}.
IfP is malicious, the first equation could potentially be incorrect and themain task is to check
that this relationship holds for all multiplication gates. Although the last three equations are
linear equations from the perspective of the verifier, the first equation is not linear. The crucial
observation from line-point ZK is that it is possible to convert the non-linear checking to a
linear checking. Specifically, for the i-th multiplication gate with wire values (x, y, z), if it
is computed correctly (i.e., z = x · y), then we have:

known to V︷ ︸︸ ︷
Bi = K [x] · K [y] − K [z] · �

= (M[x] + x · �) · (M[y] + y · �) − (M[z] + z · �) · �

= M[x] · M[y] + (y · M[x] + x · M[y] − M[z]) · � + (x · y − z) · �2

= M[x] · M[y]
︸ ︷︷ ︸
known to P

denoted as A0,i

+ (y · M[x] + x · M[y] − M[z])
︸ ︷︷ ︸

known to P
denoted as A1,i

· �︸︷︷︸
known to V
global key

We can see that the above relationship is now linear and very similar to the IT-MAC relation-
ship. What’s more, if the underlying wire values (i.e., x, y, z) are not computed correctly,
then the above relationship can hold only with probability 2/|F|t due to Schwartz-Zippel
lemma: now it becomes a quadratic equation of �, where there are at most two values of �

that satisfy the equation.
Now when we look at a circuit with t multiplication gates, we can obtain one such rela-

tionship for each multiplication gate. Namely, for each i ∈ [n], P has A0,i , A1,i ∈ F
t and V

has Bi ∈ F
t such that Bi = A0,i + A1,i ·�.We can check all t linear relations in a batch using

a random linear combination. In particular, the verifier samples a uniform element χ ∈ F
t

after the above values have been defined, and then checks that the following relationship
holds:

∑

i∈[n]
Bi · χ i

︸ ︷︷ ︸
known to V
denoted as B

=
∑

i∈[n]
A0,i · χ i

︸ ︷︷ ︸
known to P
denoted as A0

+
(∑

i∈[n]
A1,i · χ i

)

︸ ︷︷ ︸
known to P
denoted as A1

· �︸︷︷︸
known to V
global key

By the verifier sending just one field element (i.e., χ), we are able to reduce checking
t equations in the circuit to checking the above single equation, that is B = A0 + A1 · �,
where V has B and �, while P has A0 and A1. This could be easily checked by using a
random linear relationship B∗ = A∗

0 + A∗
1 · � with B∗, A∗

0, A
∗
1 ∈ F

t to mask field elements
A0 and A1, and then opening the masked elements. In particular, P sends U = A0 + A∗

0
and V = A1 + A∗

1 to V , who checks that B + B∗ = U + V · �. Finally, this random linear
relationship over Ft can be easily obtained by generating subfield VOLE correlations on Fp

and packing them to Ft .
The details of the protocol can be found in Fig. 7 and we have the following theorem.

123

3546 C. Baum et al.

Theorem 4.4 For any field F and integer t , the protocol in Fig. 7 using Step 2 securely
instantiates CheckMult in Fig. 3 with statistical error of (n + 3)/|F|t .

Note that the online phase of the ZK protocol where the circuit and witness are known,
can be made non-interactive by computing χ using a random oracle to hash the transcript up
to that point when |F|t ≥ 2κ .

4.4 Comparing themultiplication check protocols

To compare the different Multiplication check protocols presented in this section, we focus
on the number of communication rounds as well as elements in R that have to be sent per
verifiedmultiplication.Moreover, sinceWolverine andMac’n’Cheese becomemore efficient
as n increases, we assume n = 1, 000, 000.

In the arithmetic case, i.e. when R = Zp for a large p, Wolverine has to send 4 R-elements
per multiplication, to achieve statistical security 2−40 with B = 3. The warm-up version of
Mac’n’Cheese (Sect. 4.2) reduces this to 3 elements. The interactive versions of LPZK &
QuickSilver only need to communicate 1 R-element per multiplication in 3 rounds of inter-
action, while the non-interactive and information-theoretic version of LPZK communicates
2 R-elements. In comparison, using the batch multiplication check in Mac’n’Cheese gives
an amortized communication cost of 1 R-element per multiplication and requires 17 rounds
with n = 1 000 000. Note that all of these protocols can be collapsed to be non-interactive
(excluding the VOLE preprocessing) in the random oraclemodel using the Fiat-Shamir trans-
form. The main advantage ofMac’n’Cheese over QuickSilver (which has better concrete and
asymptotic performance) is that it supports so-called stacking proofs (see Sect. 5.3) which
are not known to carry over to QuickSilver as easily. If R = Z2, i.e. for binary circuits, then
Wolverine for n = 1, 000, 000 has to communicate 7 bits per proven multiplicative relation.
In comparison, QuickSilver and Mac’n’Cheese both take approximately 1 bit. LPZK, on the
other hand, only supports computations over large fields.

In terms of practical performance, [2] argue that QuickSilver shows approximately
twice the throughput in proven multiplicative relations per time unit in comparison to
Mac’n’Cheese. They caution, though, that the systems have not been compared on iden-
tical hardware. The benchmarking of [22] shows that the information-theoretic version of
LPZK is twice as fast as the interactive version of LPZK in terms of online computational
costs, perhaps due to eliminating the cost of invoking a hash function, and only around 2.5×
slower than evaluating the circuit in the clear.

5 Extensions

In Sects. 3 and 4, we provided an overview how to efficiently prove any computation provided
that it can bewritten as a circuit over a fieldwith linear and degree-2multiplication gates only.
However, in many settings, representing the statement as a such a circuit may not be ideal: 1)
this specific circuit representation may be huge and thus lead to high overhead in the proof
as it has to fit into this specific representation; 2) it prevents us from designing customized
gadgets and gates that exploit the semantics of the problem and could be potentially more
efficient than degree-2 circuit-based protocols.

In this section, we discuss efficient gadgets that are out of the regular degree-2 circuit-
modal computation. The modular design of our approach means that these gadgets can be

123

SoK: vector OLE-based zero-knowledge protocols 3547

integrated with the main protocol easily, and can e.g. be expressed as higher-degree gates
which the model from Sect. 2.1 permits.

5.1 Low-degree polynomials proofs

We introduce proofs for low-degree polynomials from [52]. As a starter, let us first generalize
the multiplication check in Sect. 4.3.3 to prove an inner product between two vectors with
communication of 1 field element.

5.1.1 Proving degree-2 polynomials

Let f be a degree-2 polynomial such that f (x1, . . . , xn) = c0 + ∑
i∈[n/2] ci · xi · xn/2+i .

Both parties hold authenticated values [w1], . . . , [wn], and the prover wants to prove
f (w1, . . . , wn) = 0. Using a circuit-based approach, this would need n/2 multiplication
gates and thus at least n/2 communication. Here, we show a protocol that can use less
communication: Observe that

f (K [w1], . . . , K [wn]) = c0 +
∑

i∈[n/2]
ci · K [wi] · K [wn/2+i]

= c0 +
∑

i∈[n/2]
ci · (M[wi] + wi · �) · (M[wn/2+i] + wn/2+i · �)

= c0 +
∑

i∈[n/2]

(
ci · M[wi] · M[wn/2+i]

+ci · (M[wi] · wn/2+i + M[wn/2+i] · wi) · � + ci · wi · wn/2+i · �2)

=
(
c0 +

∑

i∈[n/2]
ci · M[wi] · M[wn/2+i]

)

+
(∑

i∈[n/2]
ci · M[wi] · wn/2+i + ci · M[wn/2+i] · wi

)
· �+

(∑

i∈[n/2]
ci · wi · wn/2+i

)
· �2

=
(
c0 +

∑

i∈[n/2]
ci · M[wi] · M[wn/2+i]

)

+
(∑

i∈[n/2]
ci · M[wi] · wn/2+i + ci · M[wn/2+i] · wi

)
· � − c0 · �2.

The last equation is due to the fact that f (w1, . . . , wn) = c0+∑
i∈[n/2] ci ·wi ·wn/2+i = 0.

Reorganizing the above equation a bit, we can obtain the following:

f (K [w1], . . . , K [wn]) + c0 · �2
︸ ︷︷ ︸

known to V, denoted as B

=
(
c0 +

∑

i∈[n/2]
ci · M[wi] · M[wn/2+i]

)

︸ ︷︷ ︸
known to P, denoted as A0

123

3548 C. Baum et al.

+
(∑

i∈[n/2]
ci · M[wi] · wn/2+i + ci · M[wn/2+i] · wi

)

︸ ︷︷ ︸
known to P, denoted as A1

·�.

This is still a linear relationship B = A0 + A1 · �, which could be proven just as in the
Quicksilver protocol. Essentially, we can prove a degree-2 polynomial with n/2 multipli-
cations with a communication cost of just O(1), in addition to the cost of committing the
witness. This is independent of the number of multiplications in the polynomial, which could
be as many as n/2 = O(n). One immediate observation is that if we have t such polynomials
to be proven, the total communication cost is still O(1) rather than O(t), by using the same
random-linear-combination idea to reduce all linear checks to a single check.

5.1.2 Generalizing to any low-degree polynomial

Nowwe generalize the above to support checking of low-degree polynomials.We assume that
the witness is (w1, . . . , wn) ∈ F

n ; there are t polynomials to be proven and each multivariate
polynomial fi (X1, . . . , Xn) over F has a degree at most d . The prover wants to prove that
fi (w1, . . . , wn) = 0 for all i ∈ [t]. Below, we show how to prove such polynomial set in
communication ofd field elements overFt , in addition to then field elements overF to commit
the witness. For every n-variable d-degree polynomial f ∈ { f1, . . . , ft }, we will represent
it as f (X1, . . . , Xn) = ∑

h∈[0,d] gh(X1, . . . , Xn), where gh is a degree-h polynomial such
that all terms in gh have exactly degree h. Here we assume that each polynomial f has
been written in a “degree-separated” format, and thus do consider the computation of this
decomposition to be beyond scope.

We write each polynomial in a “degree-separated” format and shift each sub-polynomial.
The verifier now computes

∑

h∈[0,d]
gh(K [w1], . . . , K [wn]) · �d−h

=
∑

h∈[0,d]
gh(M[w1] + w1 · �, . . . , M[wn] + wn · �) · �d−h

=
∑

h∈[0,d]

(
gh(w1, . . . , wn) · �d +

∑

j∈[0,h−1]
A j
h · � j+d−h

)

=
∑

h∈[0,d]
gh(w1, . . . , wn) · �d +

∑

h∈[0,d−1]
Ah · �h

= f (w1, . . . , wn) · �d +
∑

h∈[0,d−1]
Ah · �h

=
∑

h∈[0,d−1]
Ah · �h .

Here A j
h is defined as above, and Ah is the aggregated coefficient for all terms with �h .

Note that the prover with witnesses wi and MACs M[wi] can compute all the coefficients
locally. The coefficients Ah are polynomial coefficients when we treat it as a single-variable
polynomial on �. Therefore, the prover can compute all Ah efficiently by evaluating the
polynomial on d + 1 points and then computing the polynomial coefficients using Lagrange
interpolation. In many practical applications, the polynomial is usually simple and thus the
coefficients can be derived without using the above generic approach. This relationship can

123

SoK: vector OLE-based zero-knowledge protocols 3549

be viewed as an oblivious polynomial evaluation (OPE), where the verifier has � and the
prover has a polynomial P(x) = ∑

h∈[0,d−1] Ah · xh over Ft . The verifier wants to check that
the resulting evaluation in the above equation is the same as P(�). It is not hard to check the
above polynomial relation, as sVOLE can be used to generate (V)OPE in an efficient way.
Similarly, we can perform the checks for all t polynomials in a batch using a random linear
combination. This results in a total communication of (n+dr) log |F| bits in theFd

VOLE-hybrid
model. When using the interpolation approach to compute the coefficients Ah , we have that
the computational cost of the prover and verifier is O(td2z + dn) and O(tdz) respectively,
where z is the maximum number of terms in all t polynomials.

5.2 LPZKv2

The follow-up work to LPZK, [22], presents another extension of of VOLE-based ZK that
uses an extension of the VOLE correlation and is specialized for particular circuit formats.
LPZKv2 improves the online communication cost of LPZKv1 by a factor of roughly two for
both the information-theoretic and random oracle variants (IT-LPZKv2 and ROM-LPZKv2,
respectively).

There are two technical ideas that enable the improvements of LPZKv2 over LPZKv1.
The first technical idea is to store the message in the constant term of the VOLE, instead of
the linear term, i.e. to write K ∗[x] := �M∗[x] + x instead of K [x] := �x + M[x]. Storing
the value in the constant term instead of the linear term reduces the verifier’s computation,
since on the step Input of FABB described in 3.2, when the P sends δ = x − r to V , V now
computes K ∗[x] ← K ∗[r] − δ instead of K [x] ← K [r] − �δ. Because each multiplication
gate requires an additional call to Input, this change reduces the verifier’s computation by
one multiplication per gate in both the information theoretic and random oracle variants.

The second technical idea is the use of an extension of VOLE, quadratically certified
VOLE, or qVOLE, which allows for the imposition of additional quadratic relations on
the entries of an instance of random VOLE. These quadratic relations essentially allow
certain terms needed in LPZK to be precomputed, reducing the communication and com-
putation required in the online step. For example, using qVOLE, we could generate three
authenticated random values ([p], [q], [r]) with the guarantee that the quadratic relation
M∗[p]·M∗[q]−M∗[r] = 0 is satisfied,which in turnwould imply that K ∗[p]·K ∗[q]−K ∗[r]
is a polynomial with zero �2 coefficient. This property still holds after calling the modified
Input protocol described above to shift (p, q, r) → (x, y, r), a fact whichwe use extensively
in the construction below.

The qVOLE functionality can be realized either by bootstrapping off of an existing instance
of VOLE, which requires a linear amount of communication in the preprocessing phase
(effectively pushing 50%of the communication ofLPZKv1 to an offline phase).Alternatively,
we can use ring-LPN to give a sublinear-communication qVOLE generation protocol that
is concretely efficient in the SIMD setting or for circuits with repeated subcircuits (such as
hash trees).

5.2.1 General circuits

The information-theoretic protocol IT-LPZKv2 can be used efficiently with general circuits
by realizing the qVOLE functionality by bootstrapping off of an existing instance of VOLE.
Then IT-LPZKv2 requires 1 + 1

n elements of communication in the online phase, nearly
matching the communication cost ofROM-LPZKv1,Quicksilver orMac’n’Cheese over large

123

3550 C. Baum et al.

fields. Here n is a constant representing batch size, as in IT-LPZKv1. For a multiplication
gate xy = z, we have

K ∗[x] · K ∗[y] = M∗[x]M∗[y]�2 + (xM∗[y] + yM∗[x])� + xy,

where the leading coefficient can be pre-computed from the qVOLE functionality, and the
constant coefficient xy = z is the constant coefficient of the authenticated output value K ∗[z].
If K ∗[r] = M∗[x]M∗[y]� + M∗[r] is the precomputed qVOLE entry, then K ∗[x]K ∗[y] −
K ∗[r]� − K ∗[z] will be a linear polynomial in � with zero constant term, which can
be checked using the same batched proof given in Step 3 of Fig. 7. Therefore the total
online communication cost is 1 element for K ∗[z] and an amortized cost of 1/n per gate
for the batched proofs. Additionally, 1 element of communication per gate is required in a
preprocessing step for the generation of the values K ∗[r].

5.2.2 Layered circuits and other specialized circuits

As mentioned above, both IT-LPZKv2 and ROM-LPZKv2 give efficiency gains in the SIMD
setting or for circuits with repeated subcircuits, since then qVOLE functionality can be
efficiently realizedusingRing-LPN.Additionally, the polynomial techniques described above
allow us to extend the LPZKv2 constructions from arithmetic circuits containing only fan-in
2 addition and multiplication gates to circuits with arbitrary degree 2 polynomial gates.

The ROM-LPZKv2 protocol offers some additional speed-up in online communication
time for a broad class of circuits with a certain colorability property described below.
The key observation behind the ROM-LPZKv2 protocol change is that the expression
K ∗[x]K ∗[y] − K ∗[p]� is a linear polynomial with constant term xy, and so already rep-
resents an authentication of xy without any communication required at all. However, for
the authenticated value K ∗[z] := K ∗[x]K ∗[y] − K ∗[p]�, the linear term is equal to
M∗[z] := xM∗[y] + yM∗[x] − M∗[p], which depends on the prover’s input. Therefore
if we wish to use z as the input wire to another multiplication gate with inputs z, t the
prover can no longer compute the quadratic coefficient M∗[z]M∗[t] using only precomputed
randomness. This is the motivation behind the colorability property.

For the coloring, we use the color red to denote wires for which the value M∗[t] is
determined purely by the correlated randomness, and use blue to denote wires for which the
valueM∗[t] depends on the prover’s input. Color the input wires red, then color the remaining
wires of the circuit such that, for any degree 2 polynomial gate with all blue inputs, or a mix
of blue and red inputs, the output wire is red, while for a gate with all red inputs, the output
wire may be red or blue. Then the communication cost of ROM-LPZKv2 under this coloring
is equal to the number of red wires.

For layered circuits, where each gate is assigned to some layer k, and all the inputs to
gates at layer k are outputs to gates at layer k − 1, either all odd layers or all even layers
can be colored red, so the amortized communication per degree 2 polynomial gate is at
most 1

2 elements of communication per gate in a layered circuit. For a broad class of non-
layered circuits, substantial savings are also possible. For example, as described in [22], for a
random circuit made up entirely of multiplication gates and colored with a greedy algorithm,
approximately 38% of the wires will be blue, so that one can achieve an approximately 38%
reduction in communication.

123

SoK: vector OLE-based zero-knowledge protocols 3551

5.3 Disjunctions and r-out-of-n proofs

[2] consider the setting where both P and V agree on m circuits C1, . . . ,Cm that define
protocols based on a committed vector [w]. Let these protocols each be public coin HVZK
proofs over the same field Fpk . For this, they construct a communication-efficient protocol
showing that from [w] one can extract a satisfying input wi∗ to at least one of the circuits.

The classic OR-proof technique by Cramer et al. [16] can be used to construct such a proof
withmessage complexity≈ ∑

i∈[m] αi whereαi is the communication necessary for the proof
�i ofCi . This would be done by running allm proofs for all circuits in parallel (which means
sending messages for evaluating all of them) and having their outputs being committed as
[y1], . . . , [ym]. The prover would then show that at least one finished successfully with the
expected output using the OR-proof of [16] on [y1], . . . , [ym]. [2] show how to reduce the
message complexity of such a proof to 2mk + max{αi }, where the soundness error grows
by an additional additive ≈ p−k . What is required for the technique of [2] to work is that
all messages from the prover in each protocol �i appear uniformly random. Moreover, they
require that protocol messages in each round are of identical length, for any�i ,� j . Towards
this, observe that it is always possible to defer zero-tests in a protocol �i that relies on FABB
to the end, as a verifier doesn’t have a secret that could be leaked through late application of
the zero check. Achieving messages of identical length (and same number of rounds in each
�i) can be achieved using padding.

At the same time, not all implementations ofFABB are compatiblewith the requirement that
messages from the prover are uniform, even with padding: The multiplication checks from
Sects. 4.1 and 4.2 reduce to the prover making auxiliary commitments, the verifier sending
random challenges and the prover then doing a zero-test. This can be made compatible with
the desired protocol structure. Unfortunately, this is not true for the approach from Sect. 4.3.3
as it works directly on a MAC level.

Assume that we start m proofs �i , over Fpk , proving the individual circuits Ci . Note that
p can be any prime power, with no restrictions on size. We make the simplifying assumption
that each Ci has the same number of linear gates and that each �i has the same number of
rounds of interaction and that prover messages in each round are of the same length. [2] show
the more general case where these restrictions are not necessary.

5.3.1 Constructing the protocol

We construct a protocol �OR, defined over Fpk , for the aforementioned task as follows:

1. P , having only wi∗ for one of the circuits Ci∗ , will commit to [w] such that �i∗ can
access wi∗ . It then in its head runs each of the �i on inputs derived from [w]. For this,
it extends wi∗ with a random padding if necessary.

2. P and V will simultaneously run all �1, . . . , �m , with the following modification: P’s
message ch to V in round h will be chosen as the message created from running �i∗ ,
while V uses the samemessage from the prover in all instances. Since the messages of all
protocols by assumption appear uniformly random and are therefore indistinguishable,
V can now execute all instances in parallel but cannot tell which of these is the true one.

3. Conversely, since all�i are public coin, V sends a randomness string that is long enough
for any of the m instances in round h. P uses this identical randomness string in all
simulated proofs �1, . . . , �m .

The challenge now, is that V cannot simply perform the verification for all �i using
the CheckZero queries for each instance, since this would reveal the index i∗ of the true

123

3552 C. Baum et al.

statement. Towards resolving this, we first observe that any “pure” zero-test can be turned
into a �-protocol-like argument as follows:

1. For each i ∈ {1, . . . ,m}, let [μi] be the output of the circuit Ci run on [w]. Assume
that there exists a uniformly random commitment [ri], which can be generated without
additional interaction from Fd

VOLE.
2. P sends ri to V , but crucially does not open the commitment [ri] yet.
3. V sends a challenge fi to P .
4. P uses CheckZero to show that [ri] + fi [μi] − ri opens to 0.

This check, crucially, has a soundness error of 1/pk , as any prover knowing fi in advance
can generate ri appropriately in order to cheat during the sigma-protocol.

[2] now perform a [16]-style OR-proof to show that at least one of the outputs [μi] is
zero, using the �-protocol version of CheckZero. The basic idea behind [16] is that given m
�-protocols for proving relations, an OR proof can be done by having the prover choose the
random challenge fi form−1 of the instances, so it can simulate the correct messages ri to be
sent in every false instance using the simulator for the sigma protocol. This makes the verifier
accept for the “false” instances automatically. For the correct instance i∗, P will choose ri
as in the correct �-protocol, which it can complete because the statement is actually true for
one instance. Hence, after receiving them initial messages of each�-protocol (honest in one
case, simulated in all others), the verifier picks a challenge f , which defines the challenge
fi∗ = f − ∑

i �=i∗ fi corresponding to the true instance i∗. The prover sends all these fi to
the verifier.

Finally, V checks that the fi add up to f and that each CheckZero test for each Ci is
indeed valid.

5.3.2 Threshold proofs

In [16] the authors describe how to additionally construct proofs of partial knowledge for any
threshold, i.e., how to show that r out of the m statements are true. Their technique, together
with a modification of �OR, can be used to construct a proof in the VOLE setting where we
implicitly only communicate the transcript of r statements, and not all m of them.

Towards this, �OR can then be seen as a special case where r = 1. To generalize to
arbitrary r one now simulates the m − r possibly false proofs using false challenges. The
prover then, based on the challenge f , computes the unique degree-m − t polynomial s that
evaluates to f at point 0 and to the simulated challenge fi for each i where the sigma-protocol
was simulated. It then derives the honest challenges by evaluating this polynomial at their
indices, and sends s to the verifier. Towards compressing the messages, [2] then consider the
r messages for the true branches as evaluations of a polynomial t of degree r − 1. Namely,
for each true evaluated branch i , they let t(i) be the message sent by �i . The prover then
computes this unique polynomial in canonical coefficient form and sends it to V , who derives
the inputs to each simulated �i from t . Since both s, t are of canonical form, they do not
leak which of the branches are actually true.

5.3.3 log-overhead disjunctions

The drafted protocol �OR has the drawback that to verify one out of m statements, we still
need O(m) communication complexity in the OR-proof. One can construct an alternative
protocol that obtains an overhead only logarithmic in m, as follows:

123

SoK: vector OLE-based zero-knowledge protocols 3553

1. Any �i accepts iff CheckZero is true, i.e. the output commitment [μi] is 0.
2. If the prover can then compute the product μ1 · · · μm , and prove that this is 0, then at

least one μ j was 0 to begin with, i.e. one output was true.

A naive instantiation of the above approach is to performm−1multiplications between the
m implicit variables μi , and open the result. However, this would still give O(m) overhead.
Instead, one can carefully apply recursion to make this overhead logarithmic, using the fact
that after augmenting the parallel evaluation of two protocols �1,�2 with a multiplication,
we obtain a protocol which can recursively be fed into the same process.

5.4 Conversions between F2 and Fp

In [4] the authors show how, given two simultaneously running instances of FABB for moduli
2, p, one can efficiently prove that [c0]2, . . . , [cm]2 is the correct binary decomposition of
[c]p . These correct decompositions, called Edabits, were introduced to secure computation
protocols in [24] and are useful for computing/proving truncations and comparisons.

On a high level, in [24] first a set of random Edabits is created during a preprocessing
phase. Later, one of these Edabits is used to perform the actual conversion in the online phase.
[4] adapt and optimize the approach of [24] in multiple ways, mainly by observing that, since
the prover already knows the conversions ahead of time, these can directly be checked using
the preprocessing protocol and there is no need for the intermediary random Edabits. We
want to stress that, concurrently to [4], Weng et al. [49] also introduced an adaptation of
Edabits to the ZK setting with a similar construction. In the following, we use the notation
of [4].

5.4.1 The protocol

To define the check let us first, in addition to Edabits, define Dabits as pairs of commitments
[x]2, [x]p that are consistent. On a high level, the Edabits checking protocol of [4] consists
of four phases, using a bucketing approach similar to the one already introduced in Sect. 4.1:

1. Initially,P commits to auxiliary randomEdabits andDabits necessary for the check. The
Dabits are verified separately for consistency, and then V chooses a random permutation.

2. After permuting the auxiliary Edabits, both parties run an implicit cut-and-choose phase.
Here, P opens C of the auxiliary Edabits, which are checked by V for consistency.

3. Place each input Edabit (that we want to test for correctness) into one of N buckets,
each of which also contains a set of B auxiliary Edabits {([r0]2, . . . , [rm−1]2, [r]p)}B−1

i=0
that we use to perform verification. None of these auxiliary Edabits have been proven
consistent, but C Edabits coming from the same pool have been opened in the previous
step.

4. Now, over B iterations the prover and verifier for each j ∈ [B] compute [c +
r j]p = [c]p + [r j]p and use an addition circuit to check that ([e0]2, . . . , [em]2) =
([c0]2, . . . , [cm−1]2) + ([r0]2, . . . , [rm−1]2). The addition circuit is evaluated using the
FABB operations.

For the checks within each bucket, [4] use an additional protocol which converts an
authentication of a bit [b]2 into an arithmetic authentication [b]p which is necessary to do
so [c + r j]p does not reveal any information. Additionally, the authors also observe that
their protocol is still secure if the Dabits are “approximately correct”, meaning that each pair
[x]2, [x]p has the same parity and x is bounded but [x]p necessarily commits to a bit. For
this, they present a cheaper protocol to check this property.

123

3554 C. Baum et al.

5.4.2 Truncation and Comparison

[4] provide protocols for verifying integer truncation and comparison. Here, truncationmeans
that given integers l,m and two authenticated values x, x ′ of l and l − m bits, verify that x ′
corresponds to the upper l−m bits of x , i.e. x ′ = � x

2m � over the integers. Integer comparison
is then the problem of taking two authenticated integers and outputting 0 or 1 (authenticated)
depending on which input is the largest. Integers are considered as signed in the interval
[−2l−1, 2l−1).

5.4.3 Truncation

To perform a truncation check with one call to the conversion check introduced above, the
prover in addition to each input [a]p also provides:

• the truncated value [atr]p of [a]p and its bit decomposition ([a0tr]2, . . . , [al−m−1
tr]2)

• the lower m bits of [a]p; [a′]p = [a mod 2m]p as well as its bit decomposition
([a′

0]2, . . . , [a′
m−1]2).

Having access to [atr]p and [a′]p which are shown to have consistend decompositions then
allows the verifier then to check that a = 2m · atr + a′, which proves the claim.

5.4.4 Comparison

The authors also present a protocol to compare two signed, l-bit integers α and β. The way
their protocol works is by having the prover (and verifier) compute [α]p −[β]p and have the
prover compute the truncation of this which is only the most significant bit. Now one can run
the aforementioned truncation verification protocol and use the truncation as the output of the
comparison. Similarly to previous works in the MPC setting [15, 24], this gives the correct
result as long as α, β ∈ [−2l−2, 2l−2), so that α − β ∈ [−2l−1, 2l−1), so this introduces a
mild restriction on the range of values that can be supported

5.5 Zero-Knowledgemodulo 2k

Assume thatP wants to commit to secrets x ∈ Z2k usingFd
VOLE, such that also�, K [x], M[x]

come fromZ2k . Assuming onewould follow the approach from Sect. 3, thenP sends x, M[x]
to open [x], such that V checks that K [x] + �x = M[x] mod 2k .

Unfortunately, since Z2k is not a ring, such a check is not constraining P to only one valid
opening x, M[x]. For example, if � = 2�′ which happens with probability 1/2, then by
setting x ′ = x + 2k−1 we have that

x ′ · � = (x + 2k−1)(2�′) = x� + 2k = x� mod 2k ,

meaning that x ′, M[x] is also a valid opening.
Instead, [1, 4] choose the information-theoretic MAC scheme from [17] as their starting

point. For this, let s be an additional parameter, and 	 = k + s. To authenticate a value
x ∈ Z2k known to P towards V (denoted as [x]), we choose the MAC keys � ∈ Z2s and
K [x] ∈ Z2	 , and compute the MAC tag as

M[x] := � · x̃ + K [x] ∈ Z2	 (1)

123

SoK: vector OLE-based zero-knowledge protocols 3555

where x = x̃ mod 2k , i.e. x̃ is a representative of the corresponding congruence class of
integers modulo 2k . Then P gets x̃ and M[x], whereas V receives � and K [x]. As before,
linear operations can be applied in the same way. One can show that this again leads to P not
being able to cheat, unless it can guess � which only succeeds with probability 2−s . Setting
s = σ then achieves the required statistical security.

Observe that initially x̃ may be chosen as x̃ = x ∈ {0, . . . , 2k − 1}. Applying arithmetic
operations can result in larger values though, which do not get reduced modulo 2k because
all computation happens modulo 2	. Therefore, to safely open [x] or show that x = 0, first
the upper s bits of x̃ need to be randomized, by computing [z] ← [x] + 2k · [r] with random
r̃ ∈R Z2	 and then opening [z].

5.5.1 Extending Line-Point Multiplication checks toZ2k

It is clear that Equation 4.3.3 from the efficient multiplication check from Sect. 4.3.3 still
holds. Therefore, onemight hope that the same security argument still applies. Unfortunately,
when just considering general quadratic equations

f (x) = ax2 + bx + c

modulo 2	, then these may have many more than just 2 solutions.
It is clear that Equation 4.3.3 from the efficient multiplication check from Sect. 4.3.3 still

holds. Therefore, onemight hope that the same security argument still applies. Unfortunately,
when just considering general quadratic equations

f (x) = ax2 + bx + c

modulo 2	, then these may have many more than just 2 solutions.
In [1] the authors observe that f (x) actually is constrained in the given setting, since a

cannot be chosen from the entire ring by P , as a �= 0 mod 2k for P to successfully cheat.
Moreover, P may have to guess a root � of f (x) that comes from {0, . . . , 2s − 1}. They
therefore show the following:

Lemma 5.1 Let f (x) ∈ Z[x] be a quadratic equation such that 2r is the largest power of
2 dividing all coefficients. Then for any 	, s, s′ ∈ N such that 	 − r > s′ there are at most
2max{(2s−s′)/2,1} solutions to f (x) = 0 mod 2	 in {0, . . . , 2s − 1}.

This implies that by choosing 	 = k + 2s, one can achieve the required bound on the
number of solutions.

5.5.2 Amortizing multiplication checks inZ2k

Also with respect to checking many multiplications simultaneously, the solution of Quick-
Silver from Equation 4.3.3 does not directly carry over. [1] solve this by generalizing the
techniques from [17] to their MAC scheme.

Here, [1] show that by letting V choose the χi independently from the set {0, . . . , 2s − 1}
and requiring s = σ + log(σ) + 3 and σ ≥ 7, then this modified check from Equation 4.3.3
when done modulo 2	 is sound except with probability 2−σ .

123

3556 C. Baum et al.

5.6 RAM-based Zero-knowledge Proofs

RAM-based zero-knowledge proofs have been studied in the context of zkSNARKs (starting
from [7]). As we show below, the main components needed are zero-knowledge proofs of
permutation, packing, and integer comparison. When representing the integers as a list of
authenticated values in F2, proving integer comparison is a fair easy task since comparison
becomes a straightforward circuit. For efficient permutation and packing, the problems are
somewhat related. The folkloremethod to prove a permutation is by letting the prover commit
to the permuted values and prove equality of the sets, which in turn can be converted to a
polynomial identity check [39]. When the field is large, it can be checked in linear time by
checking the evaluation on a random point, where the soundness if ensured by the Schwartz-
Zippel Lemma. However, converting between F2 and a large field can be costly even after
optimizations such as in Sect. 5.4.

The key observation in [26] is that the Schwartz-Zippel Lemma works for any field as
long as it is sufficiently large and thus one can choose a field that is friendly to conversions.
In particular, we can embed a bit string either as Fκ

2 or as F2κ . Their authentications are
different: authenticating elements in Fκ

2 requires IT-MACs on each F2 value; authenticating
F2κ only requires one IT-MAC for the whole element. Just like cleartext operation, conver-
sions between authenticated elements in F

κ
2 and F2κ can also be done efficiently with no

communication: if we fix a degree-κ irreducible polynomial f (X) and identify F2κ with
F2[X]/(f (X)), then it can be derived that x = ∑

i∈[κ] xi ·Xi , where X ∈ F2κ denotes the ele-
ment corresponding to X ∈ F2[X]/(f (X)). The parties can compute [x] by having the prover
compute M[x] = ∑

i∈[κ] M[xi] · Xi and the verifier compute K [x] = ∑
i∈[κ] K [xi] · Xi ; we

then have

M[x] =
∑

i∈[κ]
M[xi] · Xi

=
∑

i∈[κ]
(K [xi] ⊕ xi�) · Xi

=
∑

i∈[κ]
K [xi] · Xi ⊕

(∑

i∈[κ]
xi · Xi

)
· �

= K [x] ⊕ x · �.

This means that given a vector of bits, we can prove a Boolean predicate by treating them
as authenticated bits and, without communication, we can prove arithmetic predicates on
vectors of bits by treating vectors as extension field elements. Below we use ZK proof of
read-only RAM as an example.

5.6.1 Read-only ZKRAM

Consider the case where the prover wants to prove in zero knowledge to the verifier that there
exists an index i for which Memi = t (where t is a public value). The protocol in this case
roughly proceeds as follows:

1. The prover commits to the list of values L = (
(0,Mem0), (1,Mem1), . . . , (N −

1,MemN−1)
)
. (This can be done once-and-for-all, and before t is known.)

2. The prover commits to (i, t), where t is known to the verifier but i is not, and appends
(i, t) to L.

123

SoK: vector OLE-based zero-knowledge protocols 3557

3. The prover then sorts the tuples in L by their first entry, giving an updated list L′, and
commits to the tuples in that list.

4. The prover proves that L′ is consistent, namely, that if two tuples in L′ agree in their
first entry, then they also agree in their second entry. This can be done in a natural way
by comparing all adjacent entries in L′. All operations should be proven as a Boolean
circuit over F2.

5. The prover proves thatL′ is a permuted version ofL using the polynomial equality check
ensured by Schwartz-Zippel. Specifically, letL = (

x0, . . .
)
denote the tuples inL (where

nowwe represent each tuple as elements in F2κ), and letL′ = (
x ′
0, . . .

)
denote the tuples

inL′. If one defines the polynomials L(R) = ∏
i (xi −R) and L ′(R) = ∏

i (x
′
i −R), then

note that L and L′ are permutations of each other iff L(R) = L ′(R). The verifier can
efficiently test the equality of these polynomials by choosing a uniform field element r
and verifying that L(r) = L(r ′).

To extend the above idea to support write, one just needs to take the timestamp into
consideration since a value can be updated in the middle of the execution. The sorting needs
to respect both index and time stamp, and the consistency checks need to incorporate the
update after the initialization.

6 Open questions

We will now mention some research directions which we believe are interesting to develop
VOLE-based ZK protocols further.

6.1 Theoretical questions

There are many intriguing theoretical aspects of VOLE-based Zero Knowledge protocols
that are yet unexplored. In the following, we provide a list of interesting theoretical research
directions.

1. Using other correlations. The efficiency of VOLE-based Zero Knowledge protocols
relies on the recent breakthroughs in efficient VOLE extension. But also other pseudo-
random correlations (see e.g. [13]) can be efficiently generated. The question is if these,
or other, correlations can benefit ZK proofs in a similar way. One step into this direction
was already done in [22] (see Sect. 5.2) by using qVOLE.

2. Sublinear communication and verification. The idea of ZK proofs with sublinear
communication and verification has flourished in the past 10 years, starting from [8,
28, 44] and leading to recent Blockchain-optimized proof systems. In VOLE-based ZK,
similar propertiesmay be interesting although non-interactivity is less important. Having
a verifier with sublinear (in |C |) computation while keeping a concretely efficient, linear
prover has to the best of our knowledge not yet been achieved. For the special case of
disjunctions one could achieve an asymptotic solution by extending the techniques of
[32], but concrete efficiency is unclear.

3. Sublinear communication, also in the input length.A recent work [50], which extends
VOLE-based ZK, enables communication sublinear to |C |. Their protocol relies on
vector oblivious polynomial evaluation (VOPE), an extension of VOLE. At the same
time, it requires the proof to be of size at least |w| (i.e. the circuit input) for knowledge
extraction. It would be interesting to explore if VOLE-based protocols can be both

123

3558 C. Baum et al.

sublinear in |C | and |w| by introducing a knowledge assumption or using a random
oracle, while keeping the concrete efficiency of [50].

6.2 Practical questions

VOLE-based ZK enjoys many advantages that are intriguing to practical deployment. Here
we summarize a list of interesting practical future directions.

1. More efficient VOLE. The concrete efficiency of the whole proof system relies on
efficient VOLE protocols. Thus it is crucial to design more efficient VOLE protocols
with improved computation and communication overhead.

2. More applications. State-of-the-art VOLE-based ZK can prove tens of millions of gates
with ease. This opens the possibility of proving very large statements, something not fea-
sible before this line of work. It would be interesting to explore the space of applications
that need ZK but were limited so far by the scalability problems of existing schemes.
The fact that this type of proof is designated-verifier could affect the design and thus
poses new questions in designing ZK-based applications.

3. Lowering the gap between Z2k and Fp . In their work, [1] provide a software imple-
mentation of their instantiation of FABB that operates over Z2k . Their implementation
achieves � 1mio multiplications over Z264 , which is up to an order of magnitude slower
than what the implementations of the protocols from Sect. 4 can perform in similar set-
tings over fields of similar size. Lowering this gap may be helpful if Z2k proof systems
should be used for proofs of programs on current hardware architectures.

Acknowledgements This work was funded by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR001120C0085 and HR001120C0087. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
the Defense Advanced Research Projects Agency (DARPA). Distribution Statement “A” (Approved for Public
Release, Distribution Unlimited).

Funding Open access funding provided by Royal Danish Library, Aarhus University Library.

Data Availability Statement Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.

Declarations

Competing Interests The authors declare no competing financial interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Baum C., Braun L., Munch-Hansen A., Scholl P.: MozZ2k arella: Efficient Vector-OLE and Zero-
Knowledge Proofs Over Z2k . To appear at IACR CRYPTO 2022 (2022)

2. Baum C., Malozemoff A.J., Rosen M.B., Scholl P.: Mac’n’cheese: Zero-knowledge proofs for boolean
and arithmetic circuits with nested disjunctions. In: Malkin T., Peikert C. (eds.) CRYPTO 2021, Part

123

http://creativecommons.org/licenses/by/4.0/

SoK: vector OLE-based zero-knowledge protocols 3559

IV. LNCS, vol. 12828, pp. 92–122. Springer, Virtual Event (2021). https://doi.org/10.1007/978-3-030-
84259-8_4.

3. Baum C., Escudero D., Pedrouzo-Ulloa A., Scholl P., Troncoso-Pastoriza J.R.: Efficient protocols for
oblivious linear function evaluation from ring-LWE. In: Galdi C., Kolesnikov V. (eds.) SCN 20. LNCS,
vol. 12238, pp. 130–149. Springer, Amalfi, Italy (2020). https://doi.org/10.1007/978-3-030-57990-6_7.

4. BaumC., Braun L., Munch-Hansen A., Razet B., Scholl P.: Appenzeller to brie: Efficient zero-knowledge
proofs for mixed-mode arithmetic and Z2k. In: Vigna G., Shi E. (eds.) ACM CCS 2021, pp. 192–211.
ACM Press, Virtual Event, Republic of Korea (2021). https://doi.org/10.1145/3460120.3484812.

5. Beaver D.: Foundations of secure interactive computing. In: Feigenbaum J. (ed.) CRYPTO’91. LNCS,
vol. 576, pp. 377–391. Springer, Santa Barbara, CA, USA (1992). https://doi.org/10.1007/3-540-46766-
1_31.

6. Bendlin R., Damgård I., Orlandi C., Zakarias S.: Semi-homomorphic encryption and multiparty compu-
tation. In: Paterson K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Tallinn,
Estonia (2011). https://doi.org/10.1007/978-3-642-20465-4_11.

7. Ben-Sasson E., Chiesa A., Genkin D., Tromer E., VirzaM.: SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In: Canetti R., Garay J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 90–108. Springer, Santa Barbara, CA, USA (2013). https://doi.org/10.1007/978-3-642-40084-
1_6.

8. Bitansky N., Chiesa A., Ishai Y., Ostrovsky R., Paneth O.: Succinct non-interactive arguments via linear
interactive proofs. In: Sahai A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Tokyo, Japan
(2013). https://doi.org/10.1007/978-3-642-36594-2_18.

9. Boneh D., Boyle E., Corrigan-Gibbs H., Gilboa N., Ishai Y.: Zero-knowledge proofs on secret-shared data
via fully linear PCPs. In: Boldyreva A., Micciancio D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694,
pp. 67–97. Springer, Santa Barbara, CA, USA (2019). https://doi.org/10.1007/978-3-030-26954-8_3.

10. Boyle E., Couteau G., Gilboa N., Ishai Y.: Compressing vector OLE. In: Lie D., Mannan M., Backes M.,
Wang X. (eds.) ACM CCS 2018, pp. 896–912. ACM Press, Toronto, ON, Canada (2018). https://doi.org/
10.1145/3243734.3243868.

11. Boyle E., Couteau G., Gilboa N., Ishai Y., Kohl L., Rindal P., Scholl P.: Efficient two-round OT extension
and silent non-interactive secure computation. In: Cavallaro L., Kinder J., Wang X., Katz J. (eds.) ACM
CCS 2019, pp. 291–308. ACM Press, London, UK (2019). https://doi.org/10.1145/3319535.3354255.

12. Boyle E., Couteau G., Gilboa N., Ishai Y., Kohl L., Scholl P.: Efficient pseudorandom correlation gen-
erators: Silent OT extension and more. In: Boldyreva A., Micciancio D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 489–518. Springer, Santa Barbara, CA, USA (2019). https://doi.org/10.1007/978-
3-030-26954-8_16.

13. Boyle E., Couteau G., Gilboa N., Ishai Y., Kohl L., Scholl P.: Efficient pseudorandom correlation genera-
tors from ring-LPN. In: Micciancio D., Ristenpart T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp.
387–416. Springer, Santa Barbara, CA, USA (2020). https://doi.org/10.1007/978-3-030-56880-1_14.

14. Catalano D., Fiore D.: Practical homomorphic MACs for arithmetic circuits. In: Johansson T., Nguyen
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–352. Springer, Athens, Greece (2013). https://
doi.org/10.1007/978-3-642-38348-9_21.

15. Catrina O., de Hoogh S.: Improved primitives for secure multiparty integer computation. In: Garay J.A.,
Prisco R.D. (eds.) SCN 10. LNCS, vol. 6280, pp. 182–199. Springer, Amalfi, Italy (2010). https://doi.
org/10.1007/978-3-642-15317-4_13.

16. Cramer R., Damgård I., Schoenmakers B.: Proofs of partial knowledge and simplified design of witness
hiding protocols. In: Desmedt Y. (ed.) CRYPTO’94. LNCS, vol. 839, pp. 174–187. Springer, Santa
Barbara, CA, USA (1994). https://doi.org/10.1007/3-540-48658-5_19.

17. Cramer R., Damgård I., Escudero D., Scholl P., Xing C.: SPD Z2k : Efficient MPC mod 2k for dishonest
majority. In: Shacham H., Boldyreva A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 769–798.
Springer, Santa Barbara, CA, USA (2018). https://doi.org/10.1007/978-3-319-96881-0_26.

18. Damgård I., Zakarias S.: Constant-overhead secure computation of Boolean circuits using preprocessing.
In: Sahai A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 621–641. Springer, Tokyo, Japan (2013). https://doi.
org/10.1007/978-3-642-36594-2_35.

19. Damgård I., Pastro V., Smart N.P., Zakarias S.: Multiparty computation from somewhat homomorphic
encryption. In: Safavi-Naini R., Canetti R. (eds.) CRYPTO2012. LNCS, vol. 7417, pp. 643–662. Springer,
Santa Barbara, CA, USA (2012). https://doi.org/10.1007/978-3-642-32009-5_38.

20. deCastroL., JuvekarC.,Vaikuntanathan,V.: Fast vector oblivious linear evaluation from ring learningwith
errors. In: WAHC ’21: Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography, Virtual Event, Korea, 15 November 2021, pp. 29–41. WAHC@ACM, (2021).
https://doi.org/10.1145/3474366.3486928.

123

https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-57990-6_7
https://doi.org/10.1145/3460120.3484812
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/3474366.3486928

3560 C. Baum et al.

21. de Castro L., Hazay C., Ishai Y., Vaikuntanathan V., Venkitasubramaniam M.: Asymptotically quasi-
optimal cryptography. In: Dunkelman O., Dziembowski S. (eds.) EUROCRYPT 2022, Part I. LNCS, vol.
13275, pp. 303–334. Springer, Trondheim, Norway (2022). https://doi.org/10.1007/978-3-031-06944-
4_11.

22. Dittmer S., Ishai Y., Lu S., Ostrovsky R.: Improving Line-Point Zero Knowledge: Two Multiplications
for the Price of One. To appear at CCS 2022 (2022)

23. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-Point Zero Knowledge and Its Applications. In: 2nd Conference
on Information-Theoretic Cryptography (ITC 2021). Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021)

24. Escudero D., Ghosh S., Keller M., Rachuri R., Scholl P.: Improved primitives for MPC over mixed
arithmetic-binary circuits. In: Micciancio D., Ristenpart T. (eds.) CRYPTO 2020, Part II. LNCS, vol.
12171, pp. 823–852. Springer, Santa Barbara, CA, USA (2020). https://doi.org/10.1007/978-3-030-
56880-1_29.

25. Fiat A., Shamir A.: How to prove yourself: Practical solutions to identification and signature problems.
In: Odlyzko A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer, Santa Barbara, CA, USA
(1987). https://doi.org/10.1007/3-540-47721-7_12.

26. Franzese N., Katz J., Lu S., Ostrovsky R., Wang X., Weng C.: Constant-overhead zero-knowledge for
RAM programs. In: Vigna G., Shi E. (eds.) ACM CCS 2021, pp. 178–191. ACM Press, Virtual Event,
Republic of Korea (2021). https://doi.org/10.1145/3460120.3484800.

27. Frederiksen T.K., Nielsen J.B., Orlandi C.: Privacy-free garbled circuits with applications to efficient
zero-knowledge. In: Oswald E., Fischlin M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
191–219. Springer, Sofia, Bulgaria (2015). https://doi.org/10.1007/978-3-662-46803-6_7.

28. Gennaro R., Gentry C., Parno B., Raykova M.: Quadratic span programs and succinct NIZKs without
PCPs. In: Johansson T., Nguyen P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Athens, Greece (2013). https://doi.org/10.1007/978-3-642-38348-9_37.

29. Giacomelli I., Madsen J., Orlandi C.: ZKBoo: Faster zero-knowledge for Boolean circuits. In: Holz T.,
Savage S. (eds.) USENIX Security 2016, pp. 1069–1083. USENIXAssociation, Austin, TX, USA (2016).

30. Goldwasser S., Micali S., Rackoff C.: The knowledge complexity of interactive proof-systems (extended
abstract). In: 17th ACM STOC, pp. 291–304. ACM Press, Providence, RI, USA (1985). https://doi.org/
10.1145/22145.22178

31. GolovnevA., Lee J., Setty S., Thaler J.,WahbyR.S.: Brakedown: Linear-time and post-quantumSNARKs
for R1CS. Cryptology ePrint Archive, Report 2021/1043 (2021)

32. Haque A., Heath D., Kolesnikov V., Lu S., Ostrovsky R., Shah A.: Garbled Circuits With Sublinear
Evaluator. Cryptology ePrint Archive, Paper 2022/797 (2022)

33. Heath D., Kolesnikov V.: Stacked garbling for disjunctive zero-knowledge proofs. In: Canteaut A., Ishai
Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 569–598. Springer, Zagreb, Croatia (2020).
https://doi.org/10.1007/978-3-030-45727-3_19.

34. Ishai Y., Kushilevitz E., Ostrovsky R., Sahai A.: Zero-knowledge from secure multiparty computation.
In: Johnson D.S., Feige U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press, San Diego, CA, USA (2007).
https://doi.org/10.1145/1250790.1250794.

35. Jawurek M., Kerschbaum F., Orlandi C.: Zero-knowledge using garbled circuits: how to prove non-
algebraic statements efficiently. In: Sadeghi A.-R., Gligor V.D., Yung M. (eds.) ACM CCS 2013, pp.
955–966. ACM Press, Berlin, Germany (2013). https://doi.org/10.1145/2508859.2516662.

36. Keller M., Orsini E., Scholl P.: MASCOT: Faster malicious arithmetic secure computation with oblivious
transfer. In: Weippl E.R., Katzenbeisser S., Kruegel C., Myers A.C., Halevi S. (eds.) ACM CCS 2016,
pp. 830–842. ACM Press, Vienna, Austria (2016). https://doi.org/10.1145/2976749.2978357.

37. Liu T., Xie X., Zhang Y.: zkCNN: Zero knowledge proofs for convolutional neural network predictions
and accuracy. In: Vigna G., Shi E. (eds.) ACM CCS 2021, pp. 2968–2985. ACM Press, Virtual Event,
Republic of Korea (2021). https://doi.org/10.1145/3460120.3485379.

38. LuoN.,AntonopoulosT.,HarrisW.R., PiskacR., TromerE.,WangX.: ProvingUNSAT in zero knowledge.
In: Yin H., Stavrou A., Cremers C., Shi E. (eds.) ACM CCS 2022, pp. 2203–2217. ACM Press, Los
Angeles, CA, USA (2022). https://doi.org/10.1145/3548606.3559373.

39. Neff C.A.: A verifiable secret shuffle and its application to e-voting. In: Reiter M.K., Samarati P. (eds.)
ACM CCS 2001, pp. 116–125. ACM Press, Philadelphia, PA, USA (2001). https://doi.org/10.1145/
501983.502000.

40. Nielsen J.B., Orlandi C.: LEGO for two-party secure computation. In: Reingold, O (ed.) TCC 2009.
LNCS, Vol. 5444, pp. 368–386. Springer (2009). https://doi.org/10.1007/978-3-642-00457-5_22

41. Nielsen J.B., Nordholt P.S., Orlandi C., Burra S.S.: A new approach to practical active-secure two-party
computation. In: Safavi-Naini R., Canetti R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700.
Springer, Santa Barbara, CA, USA (2012). https://doi.org/10.1007/978-3-642-32009-5_40.

123

https://doi.org/10.1007/978-3-031-06944-4_11
https://doi.org/10.1007/978-3-031-06944-4_11
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/3460120.3484800
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/2508859.2516662
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3548606.3559373
https://doi.org/10.1145/501983.502000
https://doi.org/10.1145/501983.502000
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-642-32009-5_40

SoK: vector OLE-based zero-knowledge protocols 3561

42. Ore Ø.: Über höhere kongruenzen. Norsk Mat. Forenings Skrifter 1(7), 15 (1922).
43. Parker J., HarrisW., Pernsteiner S., Cuellar S., Tromer E.: Proving Information Leaks in Zero Knowledge.

private communication, to appear soon
44. Parno B., Howell J., Gentry C., RaykovaM.: Pinocchio: Nearly practical verifiable computation. In: 2013

IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society Press, Berkeley, CA,
USA (2013). https://doi.org/10.1109/SP.2013.47

45. PROVENANCE: Making complex zero-knowledge proofs more practical. accessed on Jun 30th 2022
46. Roy L.: SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt model. In:

Dodis Y., Shrimpton T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 657–687. Springer, Santa
Barbara, CA, USA (2022). https://doi.org/10.1007/978-3-031-15802-5_23.

47. Scholl P.: Extending oblivious transfer with low communication via key-homomorphic PRFs. In: Abdalla
M., Dahab R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 554–583. Springer, Rio de Janeiro, Brazil
(2018). https://doi.org/10.1007/978-3-319-76578-5_19.

48. Weng C., Yang K., Katz J., Wang X.: Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In: 2021 IEEE Symposium on Security and Privacy,
pp. 1074–1091. IEEE Computer Society Press, San Francisco, CA, USA (2021). https://doi.org/10.1109/
SP40001.2021.00056

49. Weng C., Yang K., Xie X., Katz J., Wang X.: Mystique: Efficient conversions for zero-knowledge proofs
with applications to machine learning. In: Bailey M., Greenstadt R. (eds.) USENIX Security 2021, pp.
501–518. USENIX Association (2021)

50. Weng C., Yang K., Yang Z., Xie X., Wang X.: AntMan: Interactive zero-knowledge proofs with sublinear
communication. In: Yin H., Stavrou A., Cremers C., Shi E. (eds.) ACMCCS 2022, pp. 2901–2914. ACM
Press, Los Angeles, CA, USA (2022). https://doi.org/10.1145/3548606.3560667.

51. Yang K., Weng C., Lan X., Zhang J., Wang X.: Ferret: Fast extension for correlated OT with small
communication. In: Ligatti J., Ou X., Katz J., Vigna G. (eds.) ACM CCS 2020, pp. 1607–1626. ACM
Press, Virtual Event, USA (2020). https://doi.org/10.1145/3372297.3417276.

52. Yang K., Sarkar P., Weng C., Wang X.: QuickSilver: Efficient and affordable zero-knowledge proofs for
circuits and polynomials over any field. In: Vigna G., Shi E. (eds.) ACMCCS 2021, pp. 2986–3001. ACM
Press, Virtual Event, Republic of Korea (2021). https://doi.org/10.1145/3460120.3484556.

53. Zahur S., Rosulek M., Evans D.: Two halves make a whole - reducing data transfer in garbled circuits
using half gates. In: Oswald E., Fischlin M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
220–250. Springer, Sofia, Bulgaria (2015). https://doi.org/10.1007/978-3-662-46803-6_8.

54. Zhang J., Liu T., Wang W., Zhang Y., Song D., Xie X., Zhang Y.: Doubly efficient interactive proofs
for general arithmetic circuits with linear prover time. In: Vigna G., Shi E. (eds.) ACM CCS 2021,
pp. 159–177. ACM Press, Virtual Event, Republic of Korea (2021). https://doi.org/10.1145/3460120.
3484767.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-319-76578-5_19
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3548606.3560667
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1145/3460120.3484767
https://doi.org/10.1145/3460120.3484767

	Sok: vector OLE-based zero-knowledge protocols
	Abstract
	1 Introduction
	1.1 Overview of this survey
	1.2 Related techniques in ZK
	1.2.1 Garbled circuits
	1.2.2 MPC-in-the-head
	1.2.3 SNARKs

	1.3 Applications

	2 Preliminaries
	2.1 The computational model: arithmetic circuits
	2.2 Zero knowledge proofs for circuits
	2.3 Vector oblivious linear evaluation (VOLE)
	2.3.1 Instantiate F-VOLE directly
	2.3.2 Extend VOLEs efficiently

	2.4 Schwartz–Zippel Lemma

	3 A general framework for VOLE-based ZK
	3.1 Homomorphic MACs from VOLE
	3.1.1 Linear homomorphism
	3.1.2 Multiplicative homomorphism
	3.1.3 MACs over small fields

	3.2 Arithmetic black box for ZK

	4 Multiplication checks
	4.1 Wolverine multiplication check
	4.2 Mac'n'Cheese multiplication check
	4.2.1 Warm-up: multiplication checks using circuit randomization
	4.2.2 Multiplication checks via inner product checks

	4.3 LPZK multiplication check
	4.3.1 Single gate example
	4.3.2 Polynomial checks
	4.3.3 QuickSilver extension

	4.4 Comparing the multiplication check protocols

	5 Extensions
	5.1 Low-degree polynomials proofs
	5.1.1 Proving degree-2 polynomials
	5.1.2 Generalizing to any low-degree polynomial

	5.2 LPZKv2
	5.2.1 General circuits
	5.2.2 Layered circuits and other specialized circuits

	5.3 Disjunctions and r-out-of-n proofs
	5.3.1 Constructing the protocol
	5.3.2 Threshold proofs
	5.3.3 log-overhead disjunctions

	5.4 Conversions between F_2 and F_p
	5.4.1 The protocol
	5.4.2 Truncation and Comparison
	5.4.3 Truncation
	5.4.4 Comparison

	5.5 Zero-Knowledge modulo 2k̂
	5.5.1 Extending Line-Point Multiplication checks to Z 2k̂
	5.5.2 Amortizing multiplication checks in Z 2k̂

	5.6 RAM-based Zero-knowledge Proofs
	5.6.1 Read-only ZKRAM

	6 Open questions
	6.1 Theoretical questions
	6.2 Practical questions

	Acknowledgements
	References

