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Abstract
In this paper,we study the security of theKey-Alternating Feistel (KAF) ciphers, a class of key
alternating ciphers with the Feistel structure, where each round of the cipher is instantiated
with n-bit public round permutation Pi , namely the i-th round of the cipher maps

(XL , XR) �→ (XR, Pi (XR ⊕ Ki ) ⊕ Ki ⊕ XL).

We have shown that our 5 round construction with independent round permutations and
independent round keys achieves 2n/3-bit security in the random permutation model, i.e.,
the setting where the adversary is allowed to make forward and inverse queries to the round
permutations in a black box way.

Keywords Key alternating cipher · Feistel cipher · Even Mansour cipher · H-coefficient
technique

Communicated by M. Eichlseder.

B Ritam Bhaumik
ritam.bhaumik@epfl.ch

B Avijit Dutta
avirocks.dutta13@gmail.com

Arghya Bhattacharjee
bhattacharjeearghya29@gmail.com

Mridul Nandi
mridul.nandi@gmail.com

Anik Raychaudhuri
anikrc1@gmail.com

1 Indian Statistical Institute, Kolkata, India

2 EPFL, Lausanne, Switzerland

3 Institute of Advancing Intelligence, TCG-CREST, Kolkata, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-023-01288-4&domain=pdf
http://orcid.org/0000-0002-2883-4870


14 A. Bhattacharjee et al.

1 Introduction

A block-cipher is a length-preserving encryption function that takes a k-bit key K and an
n-bit message X and outputs an n-bit ciphertext Y . The primary security requirement from
a block-cipher is its pseudorandomness. Unfortunately, we cannot establish the theoretical
soundness of the security of block-ciphers. Therefore, researchers have focused on proving
security results of block-ciphers by idealising some of its components. In this direction, two
popular design approaches of block-ciphers have been extensively studied—Feistel networks
and Substitution-Permutation networks (SPNs). As of today the design of almost every block-
cipher roughly falls into one of the above two categories.
Feistel Scheme. Most of the provable security results for Feistel networks fall under the Luby-
Rackoff (LR) framework, in reference to the seminal work by Luby and Rackoff [27], where
the round-functions of the Feistel scheme are pseudorandom functions which are idealised
as being uniformly random (and secret) via the standard hybrid argument. It was shown
in [27] that the 3-round Feistel scheme is a pseudorandom permutation. Later on, Patarin [34]
proved that the 4-round Feistel scheme yields a strong pseudorandom permutation, which
means that the scheme is secure even if the adversary is allowed to make inverse queries
to the permutation oracle. Following [34], a long series of works either have established
better security bounds for the Feistel scheme with a larger number of rounds [1, 23, 29, 30,
37] or have reduced the security of the scheme [31, 32, 35, 42]. Ramzan and Reyzin [40]
proved that the (n/2)-bit security of 4-round Feistel scheme holds even if the adversary has
black-box access to the two inner functions of the construction. Naor and Reingold [33]
showed that the similar security bound holds even if one replaces the first and last round of
the 4-round Feistel construction with pairwise independent permutations, and even weaker
constructions were proven secure in [39]. Gentry and Ramzan [19] showed that the public
random permutation of the one-round Even-Mansour cipher [18] X �→ K1 ⊕ P(X ⊕ K1)

can be replaced by a four-round public Feistel scheme, and the resulting construction is still
a strong pseudorandom permutation that achieves O(2n/2) security bound.

Patarin [36] proved (3n/4)-bit strong pseudorandomness security for the 6-round Feistel
scheme with the conjecture of proving better bounds of the construction. In [29], Maurer
and Pietrzak have proved that the r -round Feistel scheme is secure up to 2n(r−1)/r queries.
In [37], Patarin analysed the security of Feistel scheme with five or more rounds. He showed
that the 5-round Feistel scheme is secure against all attacks that make only the forward
queries, as long as the number of queries is less than 2n . Moreover, he has also showed that
6-round Feistel is secure against all attacks that make both forward and inverse queries to
the construction as long as the number of queries is limited to 2n . Hoang and Rogaway [23]
studied the beyond-birthday-bound security of generalised Feistel networks. In 2010 [38],
Patarin showed O(2n/n) security bound for four, five and six rounds of balanced Feistel
schemes in Known Plaintext Attack (KPA) model, Chosen Plaintext Attack model against
adaptive adversaries (CPA2), and Chosen Plaintext Ciphertext Attack model against adaptive
adversaries (CPCA2) respectively. In the same paper, Patarin also proved beyond birthday
bound security for unbalancedFeistel schemewith 2n-bit ton-bit contracting round functions.
A detailed literature study on the security of the Feistel scheme can be found in [30].
Substitution-Permutation Networks. Earlier provable security results for SPN ciphers were
only limited to resistance to specific attacks such as differential [6] and linear attacks [28].
Recently, a series of works have studied the ideal key-alternating cipher, a.k.a. the Iterated
Even-Mansour (IEM) cipher. Chen and Steinberger [10] proved a tight security bound (where
the bound matches the best known attack on the construction) of 2rn/(r+1) for the r -round
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BBB Security for 5 round EM Based KAF Cipher 15

IEM cipher. In the last couple of years research has focussed on analysing the security of
the IEM cipher with fewer permutations and keys. Chen et al. [11] have shown a (2n/3)-bit
security bound for the 2-round IEM cipher based on a single permutation and one n-bit key.
This result was extended by Wu et al. [47] to three rounds of the IEM cipher based on a
single n-bit public random permutation that was shown secure up to O(23n/4) queries. A
recent work by Tessaro and Zhang [45] showed the existence of non-trivial distributions of
the limited independence of the round key for which the r -round IEM cipher achieves optimal
security. Along with the study of the IEM cipher, security of the tweakable IEM cipher, where
the tweak is mixed with each round key of the IEM cipher, has also been extensively studied
in [12, 13, 17].
Key-Alternating Feistel Cipher. Despite the extensive research along the line of Luby and
Rackoff [27], which has been very generic and covers many possible choices of round func-
tions for the Feistel scheme, a concrete scheme is yet to be established to design a keyed
block-cipher from some simple key-less primitive (e.g. unkeyed round function). Therefore,
to design a keyed block-cipher, it remains necessary to design some keyed round functions
Fi (Ki , X), a task which, unfortunately, is not known to be easier than designing the keyed
block-cipher itself. On the other hand, concrete block-ciphers following Feistel designs like
DES, GOST, Camellia, LBlock [46], Twine [44] usually employ length-preserving key-less
functions in each round by XOR-ing each round-key before applying the corresponding
round function. This idea naturally corresponds to the Feistel scheme with round functions
instantiated with Fi (Ki ⊕ Xi ), where Fi is a key-less public round-function and therefore,
at the i-th round of the Feistel scheme, the intermediate state is updated as

(Xi
L , Xi

R) �→ (Xi
R, Fi (X

i
R ⊕ Ki ) ⊕ Xi

L),

where XL and XR are two n-bit halves of the state. This model of Feistel design was named
the Key-Alternating Feistel (KAF) cipher by Lampe and Seurin [26]. One can see that two
rounds of a KAF cipher can be rewritten as a single-key one-round EM cipher, where the
permutation P is a two-round public and unkeyed Feistel scheme. When the round functions
of the KAF cipher are uniform random public functions, we refer to it as an ideal KAF cipher.
Thus, the ideal KAF cipher differs from the usual LR framework in two ways: (a) first, the
ideal KAF cipher considers complex round-functions (i.e., random function oracles) instead
of the keyed round-functions in LR framework; (b) second, it considers the simplest keying
procedure, namely key-XOR-ing. As a result, KAF is likely to capture well the structural
properties of practical Feistel ciphers and the practical security of Feistel designs compared
to the LR framework.

However, the security gap between LR and KAF ciphers is non-negligible. The best known
generic key-recovery attacks with complexity 22n break four rounds LR [34], which is in
sharp contrast with six rounds KAF [22]. Moreover, Patarin has shown [30, 38] that six (resp.
five) rounds of LR achieve optimal pseudorandom (resp. strong-pseudorandom) security.
However, Guo and Wang. [20] have shown a generic distinguishing attack against the r -
round KAF cipher using O(2n(r−2)/(r−1)) queries, which implies that the n-round KAF cipher
achieves asymptotically optimal security.

The theoretical security analysis of ideal KAF ciphers is generally done using the random
functionmodel,where onemodels the key-less round-functions Fi as public random functions
that can be queried by the adversary in a black-boxway, and try to establish the indistinguisha-
bility of (KAFF1,F2,...,FrK , F1, F2, . . . , Fr ) from (P, F1, F2, . . . , Fr ) in the random function
model, where P is a 2n-bit uniform random permutation and K = (K1, K2, . . . , Kr ) con-
tains r uniformly random n-bit keys. This indistinguishability notion implies that the ideal

123



16 A. Bhattacharjee et al.

KAF cipher with a secret random key K is indistinguishable from a 2n-bit uniform ran-
dom permutation P , even if the adversary is given access to the r random round-functions
F1, F2, . . . , Fr . Note that this security model is closely related to the security model used in
proving the security of the IEM cipher.

In this direction, the first reported work is by Ramzan and Reyzin [40] who proved
the (n/2)-bit strong pseudorandom security of the 4-round Feistel scheme even when the
adversary has black-box access to the middle two functions of the construction. Gentry and
Ramzan [19] showed the (n/2)-bit strong pseudorandom security of the one-round EM cipher
when its underlying public permutation is replaced by a four-round public Feistel scheme.
Lampe and Seurin [26] proved that an r -round ideal KAF cipher achieves security up to
O(2tn/(t+1)) queries of the adversary, where t = �r/3� in the non-adaptive setting with the
adversary prohibited in making inverse queries to the construction, and t = �r/6� in the
adaptive setting with the adversary allowed to make bi-directional queries to the construc-
tion. More recently, Guo and Wang [20] have shown that a 4-round ideal KAF cipher with a
single round function F and four n-bit round keys (K1, K2, K3, K4) such that K1, K4 and
K2 ⊕K3 are all uniform is (n/2)-bit secure in the multi-user setting; they have further shown
that a 6-round ideal KAF cipher with six independent round functions is (2n/3)-bit secure in
the multi-user setting as long as the six round keys (K1, K2, K3, K4, K5, K6) are all uniform
and adjacent round keys are independent. In a follow up work of [20], Shen et al. [43] have
studied a 4-round ideal KAF cipher with an even more optimised key schedule, in which an
n-bit master key K is XORed only in the first and last rounds of the cipher and a one-bit
rotation is applied on the output of the first layer round function, and proved the (n/2)-bit
strong pseudorandom security of the construction.

1.1 Our contribution

All the earlier research on the security of ideal KAF ciphers is largely based on round func-
tions and all these round functions are mostly length-preserving unkeyed functions. In reality,
length-preserving unkeyed functions are rarely available unlike compressing unkeyed func-
tions (e.g., [25]); moreover, it is not easy to design the former over the latter. This situation
is similar to the fact that designing pseudorandom functions is harder than designing pseu-
dorandom permutations. On the other hand, unkeyed permutations are available in plenty [2,
4, 7, 15, 21] and used in numerous sponge based designs [3, 5, 7–9, 14, 16, 41]. In addition,
designing unkeyed permutations is a lot easier than designing unkeyed length-preserving
functions: examples include [2, 4, 7, 15, 21]. To the best of our knowledge, there has been
no prior security result on permutation-based ideal KAF ciphers. In this paper, we for the
first time study the security of an ideal KAF cipher based on unkeyed permutations. In par-
ticular, we prove that a five-round ideal KAF cipher based on five independent instances of
one-round EM cipher is secure up to O(22n/3) queries in the random permutation model
against all adversaries that are allowed to make both encryption and decryption queries to the
construction. We depict existing provable security results on idealised KAF cipher in Table 1.

Remark 1 Wewould like to point out here that Guo andWang [20] shows that public function
based 4-round KAF (resp. 6-round KAF) is birthday-bound (resp. beyond-birthday-bound)
secure. However, the security for 5-round KAF based on public functions still remains open.
We believe that 5-round KAF based on public round function can achieve beyond-birthday-
bound security and the proof should follow the similar technique as adopted in our paper.
Moreover, in case of public round function, we do not have to bother about the constraint
that distinct inputs should map to distinct outputs, which in turn reduces both the number
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BBB Security for 5 round EM Based KAF Cipher 17

Table 1 Existing provable security results for ideal KAF cipher

#Rounds Key-size Primitive #Round-primitives Bound Model Ref

3 n R 1 n/2 CPA [43]

4 4n R 2 n/2 CCA [19]

4 n R 1 n/2 CCA [20]

6 2n R 6 2n/3 CCA [20]

12 12n R 12 2n/3 CCA [26]

6t 6tn R 6tn tn/(t + 1) CCA [26]

5 5n P 5 2n/3 CCA This Paper

R denotes that the primitive is a function and P denotes that the primitive is a permutation. n denotes the domain
size of the primitive. CPAdenotes the adversarialmodelwhere the adversary canmake only encryption queries,
and CCA denotes the adversarial model where the adversary can make both encryption and decryption queries

and the complexity of analyzing the bad events. However, as there is almost no practical
candidates of length preserving public round functions designed from scratch (as they are
hard to design), we chose to analyze the security of the KAF using public round permutation,
which are abundance in practice (e.g., Keccak [4], SPONGENT [7], Beetle [8] etc.). It is
worth mentioning that constructions based on a permutation with feed-forward (like unkeyed
Davies-Meyer) or with the XOR of multiple permutations meets our goal of designing round
function, but notice that they are essentially built out of public random permutations as their
underlying primitives.

Open problems In this paper, we study the security analysis of a five-round of ideal KAF
cipher based on five independent public round permutations and five independent round keys.
However, we believe that one can reduce the number of keys and round permutations of the
construction and achieve the similar security bound. Unfortunately, the security proof for
such a construction will be extremely tedious due to the increased degree of input–output
dependency at each round, which forces one to use technical machinery like sum-capture
lemma [10] and its variants [45] in the security proof. Establishing the tightness of the proven
bound or improving the bound of the construction from 2n/3-bits to 3n/4-bits is also left as
a future research problem

2 Preliminaries

Notation. We denote integers and indices using lowercase letters, uppercase letters (e.g., X,
Y) will be used to denote binary strings and functions, and calligraphic uppercase letters
(e.g., X , Y) will be used for denoting sets and spaces. For a given non-empty set X , we write
X ←$ X to denote that the random variable X is chosen uniformly at random from the set
X .

For a natural number m, we write the m-times Cartesian product of the set {0, 1} with
itself as {0, 1}m , which equivalently denotes the set of all m-bit binary strings. 0m (resp. 1m)
denotes the concatenation of m 0-bits (resp. m 1-bits). We write {0, 1}≥m to denote the set
of all binary strings of length at least m and {0, 1}∗ = ∪∞

m=0{0, 1}m to denote the set of all
binary strings. In this paper we’ll fix a natural number n as the width of the primitives, and
we’ll often refer to an element of {0, 1}n as a block. For a given subset X of {0, 1}n , we write
X c to denote the complement of X in {0, 1}n .
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18 A. Bhattacharjee et al.

For any X ∈ {0, 1}∗, |X | denotes the bit-length of X . For two binary strings X , Y ∈ {0, 1}∗,
X‖Y denotes the concatenation of X andY . For two n-bit binary strings X , Y ∈ {0, 1}n , X+Y
denotes the field addition of X and Y , equivalent to their bit-wise XOR. For any X ∈ {0, 1}∗,
we denote the parsing of X into n-bit blocks as X1 · · · Xr ←n X , where |Xi | = n for all
1 ≤ i < r and 1 ≤ |Xr | ≤ n such that X = X1‖ · · · ‖Xr . We write ‖X‖ = �|X |/n� to
denote the number of blocks in X .

We write X = (X1, X2, · · · , Xt ) ∈ ({0, 1}n)t to denote a t tuple of n-bit binary strings.
Given any such t-tuple of n-bit binary strings X = (X1, X2, · · · , Xt ) and for any two
integers a, b such that 1 ≤ a ≤ b ≤ t , we write the subtuple (Xa, Xa+1, · · · , Xb) of length
(b−a+1) as X [a, b]. For two integers a, b such that a ≤ b, we write [a, b] to denote the set
{a, a + 1, · · · , b}. Moreover, when a = 1, we write [1, b] as [b] to denote the set {1, . . . , b}.
We writeMSBx (X) and LSBx (X) to denote the most significant x bits and the least significant
x bits of the binary string X respectively. For any two integers a, b such that a ≥ b, we write
(a)b to denote a(a − 1)(a − 2) . . . (a − b + 1).

We write Fn to denote the set of all functions F from {0, 1}n to {0, 1}n and Pn to
denote the set of all permutations P over {0, 1}n . For a positive integer r , we write
Fr = (F1, F2, . . . , Fr ) ∈ (Fn)

r to denote a tuple of r n-bit to n-bit functions. Similarly,
Pr = (P1, P2, . . . , Pr ) ∈ (Pn)

r denotes a tuple of r n-bit permutations. For any two tuples
of n-bit binary strings X = (X1, X2, . . . , Xt ) and Y = (Y1, Y2, . . . , Yt ) having length t and
for any n-bit to n-bit function F , we write F(X) = Y to denote F(Xi ) = Yi for i ∈ [t]. We
say that the pair of n-bit binary string tuples (X , Y ) is function compatible, if there exists at
least one function F : {0, 1}n → {0, 1}n such that F(X) = Y . Note that, for (X , Y ) to be a
function compatible pair, Xi = X j ⇒ Yi = Y j . Similarly, for an n-bit permutation P , we
write P(X) = Y to denote that P(Xi ) = Yi for i ∈ [t] and in that case, we say that the pair of
n-bit binary string tuples (X , Y ) is permutation compatible, if there exists at least one n-bit
permutation P such that P(X) = Y . Note that, for (X , Y ) to be a permutation compatible
pair, Xi = X j ⇔ Yi = Y j . We write Fr (X) = Y (resp. Pr (X) = Y ) to denote Fi (X) = Y
(resp. Pi (X) = Y ) for i ∈ [r ].

2.1 Definition of EM-based key-alternating Feistel cipher

Given an n-bit public permutation P , and an n-bit key K , the one-round keyed Feistel
permutation is the permutation on {0, 1}2n that is defined as follows:

Ψ P
K (L‖R) = (R, L + P(R + K ) + K ).

Note that, an equivalent way of writing the above permutation Ψ P
K (·) is as follows:

Ψ P
K (L‖R) = (R, L + EMP

K (R)),

where EMP
K (R) := P(R + K ) + K is the one round Even-Mansour (EM) cipher based

on n-bit public round permutation P and an n-bit key K . Now, we define r -round EM-
based key-alternating Feistel cipher based on r many n-bit public round permutations Pr =
(P1, P2, . . . , Pr ) ∈ (Pn)

r and a r -tuple of n-bit keys K = (K1, K2, . . . , Kr ) ∈ ({0, 1}n)r ,
which is denoted as EM-KAFP

r
. It maps an 2n-bit plaintext X ∈ {0, 1}2n to an 2n-bit ciphertext

as follows:
EM-KAFP

r

K (X) = Ψ
Pr
Kr

◦ Ψ
Pr−1
Kr−1

◦ . . . ◦ Ψ
P1
K1

(X).

A pictorial description of EM-based key-alternating cipher is shown in Fig. 1a.
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BBB Security for 5 round EM Based KAF Cipher 19

2.2 Security notion of EM-based key-alternating Feistel cipher

We consider distinguisher D interacting with r permutation oracles Pr = (P1, P2, . . . , Pr ),
where each Pi is an n-bit random permutation, and a 2n-bit random permutation oracle (and
potentially its inverse), which is either the EM-based KAF cipher EM-KAFP

r

K specified by a
uniformly sampled Pr from (Pn)

r with a uniformly random key K = (K1, K2, . . . , Kr ) or
a perfectly 2n-bit random permutation P (independent from Pr ). We refer to EM-KAFP

r

K / P
as the construction oracle and Pr as the primitive oracles. We assume that the distinguisher
D is adaptive, i.e., the i-th query of D is determined from the previous query-response and
it is also bi-directional (i.e., it can make encryption and decryption queries to its oracles).
Moreover, D is also allowed to make bi-directional queries to the primitive oracles (i.e., both
forward and inverse queries) in an interleave fashion with the construction oracle queries. We
assume thatDmakes at most q queries to the construction oracle and at most qi queries to the
permutation oracle Pi such that qp = q1+q2+· · ·+qr . We callD to be a (q, q1, q2, . . . , qr )
distinguisher. We define the distinguishing advantage of D in distinguishing the outputs of
the real oracle Ore = (EM-KAFP

r

K , (EM-KAFP
r

K )−1,Pr ) from the outputs of the ideal oracle
Oid = (P, P−1,Pr ) as follows:

AdvOre
Oid

(D) :=
∣
∣
∣Pr[DOre ⇒ 1] − Pr[DOid ⇒ 1]

∣
∣
∣, (1)

where DO ⇒ 1 denotes the event that D outputs 1 after interacting with the oracle O. The
first probability in Eq. (1) is defined over the randomness of K and Pr , whereas the second
probability is defined over the randomness of P and Pr . We say that EM-KAFP

r

K is an ε-strong
pseudorandom permutation in the random permutation model if for each (q, q1, q2, . . . , qr )-
distinguisher D, Eq. (1) is upper bounded by ε. This is the security notion that we require
in the paper. In the rest of the paper we assume that D is computationally unbounded and
hence a deterministic distinguisher. We call such a distinguisher an information theoretic
distinguisher. We also assume that D does not repeat queries and never makes pointless
queries, i.e., queries whose answer can be deduced from previous query-responses.

2.3 H-coefficient technique

We consider an information theoretic deterministic distinguisherDwith access to the follow-
ing tuple of oracles: in the real world, it interacts with the oracle Ore := (EM-KAFP

r

K ,Pr ) for
an uniformly chosen Pr from (Pn)

r and uniformly chosen keyK from ({0, 1}n)r . In the ideal
world, it interacts with the oracle Oid := (P,Pr ), where P is a 2n-bit to 2n-bit uniformly
sampled permutation fromP2n and Pr is uniformly chosen from (Pn)

r . After this interaction
is over, D outputs a decision bit b ∈ {0, 1}. The collection of all queries and responses that
is made by D to and from the oracle O during the interaction is summarized in a transcript
(ρ, τ ), whereρ summarizes the overall interaction of the distinguisherDwith all the primitive
oracles and τ is the transcript that summarizes the interaction with the construction oracle.
More formally, τ = {(L1, R1, S1, T1), (L2, R2, S2, T2), . . . , (Lq , Rq , Sq , Tq)} is the set of
all construction queries and responses and

ρ =
r

⋃

i=1

{(Ui
1, V

i
1 ), (Ui

2, V
i
2 ), . . . , (Ui

qi , V
i
qi )}

is the set of all primitive queries and responses across all the primitive oracles, where we
assume that D makes q construction queries and qi for i ∈ [r ] primitive queries to the i-th

123



20 A. Bhattacharjee et al.

primitive oracle Pi . We define for j ∈ [r ], dom j and ran j be the sets of inputs and outputs
of the primitive queries respectively to Pj , which we enumerate as dom j = {U 1

j , . . . ,U
qj
j }

and ran j = {V 1
j , . . . , V

q j
j }. Since D is bidirectional, D can make either forward construction

query (L, R) and receives response (S, T ) or can make inverse construction query (S, T )

and receives response (L, R). Similarly, for primitive queryD can either make forward query
Ui

j to its primitive Pi and receives response V i
j or can make inverse query V i

j to P−1
i and

receives response Ui
j . Since, we assume that D never makes pointless queries, none of the

transcripts contain any duplicate elements.
We modify the experiment by releasing internal information to D after it has finished

the interaction but has not output yet the decision bit. In the real world, we reveal the key
K = (K1, K2, . . . , Kr )which is used in the construction and in the ideal world, we sample a
dummy keyK uniformly at random from ({0, 1}n)r and reveal it to the distinguisher. 1 In all
the following, the complete transcript is (ρ, τ,K). Note that, the modified experiment only
makes the distinguisher more powerful and hence the distinguishing advantage of D in this
experiment is no way less than its distinguishing advantage in the former one.

Let Xre (resp. Xid) denote the random variable representing the real world and the ideal
world transcript respectively. The probability of realizing a transcript (ρ, τ,K) in the ideal
(resp. real) world is called ideal (resp. real) interpolation probability. A transcript (ρ, τ,K)

is said to be attainable with respect to D if its ideal interpolation probability is non zero. We
denote the set of all such attainable transcripts by Ω . Following these notations, we state the
main theorem of H-Coefficient Technique as follows.

Theorem 1 (H-Coefficient Technique) Let Ω = Ωg � Ωb be some partition of the set of
attainable transcripts. Suppose there exists εratio ≥ 0 such that for any η = (ρ, τ,K) ∈ Ωg,

H[η] := Pr[Xre = η]
Pr[Xid = η] ≥ 1 − εratio,

and there exists εbad ≥ 0 such that Pr[Xid ∈ Ωb] ≤ εbad. Then,

AdvOre
Oid

(D) ≤ εratio + εbad.

3 Security result of 5-round EM-KAF

Here we formally state the main finding of this paper: the five-round key-alternating Feistel
cipher based on Even-Mansour, which is depicted in Fig. 1a, and its encryption and the
decryption steps are listed in Fig. 2, is a strong pseudorandom permutation, secure against all
adversaries that make O(N 2/3) construction and primitive queries in the random permutation
model, where N = 2n , n being the state size of each permutation and the size of each key.
We formally state this as the following theorem, the proof of which is deferred to Sect. 4.

Theorem 2 (SecurityResult of EM-KAFP
5

K )LetP5 = (P1, P2, P3, P4, P5) be five independent
n-bit public random permutations and K = (K1, K2, K3, K4, K5) be five independent n-bit
keys. Then the strong pseudorandom permutation advantage for any (q, q1, q2, q3, q4, q5)-
distinguisher against the construction in the random permutation model making at most q
queries to the construction andqi primitive queries to Pi , where q1+2(

√
q+1) ≤ q2+q3+q4,

1 Depending on the context, oracle may also release some additional internal information.
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Fig. 1 a Even-Mansour based 5-round key-alternating Feistel cipher. (Diagram adapted from an example on
[24]). b Splitting the construction transcript into τ , K, γ, μ and γ . (The primitive transcript ρ is not shown
here)

q5 + 2(
√
q + 1) ≤ q2 + q3 + q4 and q + (q1 + q2 + · · · + q5) ≤ N/2, is given by

Advsprp-rp
EM-KAFP

5
K

(q, q1, . . . , q5) ≤ ε,

where

ε = 6q2

N 2 + 20q3

N 2 + 2qq1q5
N 2 + q2

N 2 (11q1 + 16q2 + 16q3 + 16q4 + 11q5) + 4q4

N 3

+ q

N 2 (2q1q2 + q1q5 + 5q2q3 + 4q2q4 + 3q2q5 + 2q1q3 + 5q3q4 + 2q3q5 + 3q1q4 + 2q4q5)

+ 2q3

N 3 (q1 + q5) + q1/2

N
(q2 + q3 + q4) + 10q3/2

N
.
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Fig. 2 Encryption (left) and decryption (right) algorithm of 5-round Even-Mansour Based Key-Alternating
Feistel Cipher with five independent round permutations and five independent round keys

The implication of the conditions q1+2(
√
q+1) ≤ q2+q3+q4, q5+2(

√
q+1) ≤ q2+q3+q4

is that the security holds if the total number of primitive queries to the permutation P2, P3
and P4 is at least the total number of queries to permutation P1 and the square root of the
construction queries and it is also at least the total number of queries to permutation P5 and
the square root of the construction queries. With the simplifying assumption q1, q2, q3, q4
and q5 roughly in the order of q, we have

Advsprp-rp
EM-KAFP

5
K

(q, q1, . . . , q5) ≤ 6q2

N 2 + 121q3

N 2 + 8q4

N 3 + 10q3/2

N
.

Remark 2 From the above two conditions (i.e.,q1+2(
√
q+1) ≤ q2+q3+q4, andq5+2(

√
q+

1) ≤ q2+q3+q4), one can askwhatwould happen to the bound if the adversary does notmake
any primitive queries to the underlying permutations P2, P3 and P4.Wewould like tomention
here that we have considered an adversary that queries to the underlying permutations over
an adversary that does not. Since the distinguishing advantage of the former is always greater
than the distinguishing advantage of the latter, we only focus on bounding the distinguishing
advantage against an adversary that makes queries to the permutations. In particular, if the
above conditions do not hold for an adversary, we ask the adversary to make some dummy
queries to P2, P3 and P4, till the conditions hold.

Proof of Theorem 2 is the technical core of this paper. In the remainder of this section, we
give an overview of our proof technique, following which the rest of the paper is devoted to
the formal proof.

3.1 Computation order in the real world and transcript notation

For each j ∈ [5], let J f
j denote the set of forward queries to Pj and J b

f denote the set of

backward queries to Pj , so that J f
j � J b

j = [q j ]. Similarly we split the set of construction
queries into the set of encryption queries Ienc and the set of decryption queries Idec, with
Ienc � Idec = [q]. For each i ∈ Ienc, the computation proceeds from the query (Li , Ri ) as
shown on the left side of Fig. 2 to obtain (Si , T i ), which is returned to D immediately as
the response to the i-th query, while the intermediate variables R̂i , Xi , X̂ i , Y i , Ŷ i , Zi , Ẑ i ,
and Ŝi are stored in a cache. Similarly, for each i ∈ Idec, the computation proceeds from the
query (Si , T i ) as shown on the right side of Fig. 2 to obtain (Li , Ri ), which is returned to D
immediately as the response to the i-th query, while the intermediate variables are stored in
a cache.
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For the transcript τ := {(Li , Ri , Si , T i ) | i ∈ [q]}, we define the transcript slices τ i :=
(Li , Ri , Si , T i ) for each i ∈ [q], and τI := {τ i | i ∈ I} for each I ⊆ [q]. At the end of
the online phase, K is revealed to D, along with all the cached intermediate variables for
each i ∈ [q]. This we call the internal transcript, which we split into a few parts for ease of
reference. For i ∈ [q], define γ i := (R̂i , Ŝi ), μi := (Xi , Ŷ i , Zi ), and λi := (X̂ i , Y i , Ẑ i ).
Analogous to τ , we define γ := {γ i | i ∈ [q]}, μ := {μi | i ∈ [q]}, and λ := {λi | i ∈ [q]}
as well as the slices γ I := {γ i | i ∈ I}, μI := {μi | i ∈ I}, and λI := {λi | i ∈ I} for each
I ⊆ [q]. The division is illustrated in Fig. 1b.

For each i ∈ [q],μi is related to γ i and τ i through the equations Xi = R̂i +Li = Ŷ i + Zi

and Zi = Ŷ i + Xi = Ŝi + T i , and λi is related to τ i through the equations Y i = X̂ i + Ri =
Ẑ i + Si . Thus, μi can be computed from τ i and γ i , while λi still retains one degree of
freedom when all of τ i , γ i , and μi are fixed. Thus, in some sense, λ is the innermost part of
the transcript, and the one that we sample at the very end in the ideal world, as described in
Sect. 4.1.

For I ⊆ [q], we also define the following counting sets (along with their sizes) on the τI
and μI , which will help us in describing the ideal-world sampling mechanism in Sect. 4.1,
as well as in analysing various sampling probabilities:

– RI := {Ri | i ∈ I};
– SI := {Si | i ∈ I};
– XI := {Xi | i ∈ I};
– ŶI := {Ŷ i | i ∈ I};
– ZI := {Zi | i ∈ I};

– qIR := |RI |;
– qIS := |SI |;
– qIX := |XI |;
– qI

Ŷ
:= |ŶI |;

– qIZ := |ZI |.

Maintaining notational consistency with τ, . . . , λ, when I = [q] we drop the superscript
and simply call the counting sets R, . . . ,Z and their sizes qR, . . . , qZ .

3.2 A brief overview of the proof strategy

We use a standard approach to bound the advantage of D with the H-Coefficient Technique.
As discussed in Sect. 3.1, in the real world, at the end of the online phase, all the internal
variables are released to D. In the ideal world, we need to sample these internal variables so
that their distribution is close to that in the real world. Our proof hinges on this sampling
mechanism, discussed at length in Sect. 4.1.

The basic idea behind our approach to sampling is as follows: when the online phase
ends, we first sample the keys K1, . . . , K5 randomly, so that all the inputs to P1 and P5 are
determined. We next check for collisions with dom1 and dom5, and mark these collision
sets as IR and IS . We also mark the queries where an R (resp. S) in the output has collided
with a previous R (resp. S). The rest of the queries we bunch together as I∗.

The next step is to sample γ . We need to do this carefully on I∗, since if two queries have
the same R (resp. S), the Y ’s are forced to be different, but the Ŷ ’s can collide depending
on the choice of Ŝ’s (resp. R̂’s). For this, we arrange the queries in a tree (we can do this
since we have left the collision indices out of I∗), and sample along this tree avoiding the
Ŷ -collision described above. For the indices outside I∗ we can choose γ randomly, since
a Ŷ -collision together with the previous collisions will constitute a low probability event,
which we classify as bad.
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Once we have sampled γ for all indices, we can compute μ, which can be seen as one
of the two internal strands. Here we repeat what we did in the outer layer, marking all
collision indices (both with primitives and among themselves) into separate sets, and putting
the remaining indices into I∗∗. We avoid the same index lying in two distinct collision sets,
which needs the careful bounding of a large number of bad events.

Then we come to the final step of the sampling, where we need to sample λ, maintaining
consistency over P2, P3 and P4. Again the set where we need to be cautious is I∗∗, since
the consistency being accidentally violated on any of the collision sets can be classified as
a bad event. Since we have kept all the collisions out of I∗∗, we have all the μ variables
distinct. Thus, the task boils down to sampling three sets of distinct variables, each of size
q∗∗ = |I∗∗|, subject to 2q∗∗ bi-variate equations. Again we sample along the tree previously
formed, manually avoiding collisions on any of the three variables. Outside I∗∗, we again
choose λ randomly.

The proof is then broken into two parts: bounding the probability of the bad events, and
bounding the ratio of the good probabilities. The first task is long and tedious, but not too
challenging. For lack of space, we have put these calculations in the appendix. For bounding
the ratio of good probabilities, the challenge is to find a tight enough bound for probabilities
of γ I∗ and λI∗∗. Handling them separately does not give us a good enough bound. The key
idea of the proof is the observation that the two balance each other in a way: for each previous
query with the same R or same S, we have an extra constraint to take care of on γ , but we
have one fewer constraint to worry about on λ, since we get the distinctness of Y for free
when we ensure X̂ and Ẑ are distinct. We bank on this observation to bound the two together,
and successfully arrive at the desired bound.
BBB Security of 5-round KAF Based on Public Random Functions from Our Results. The
security bound of 5-round KAF based on public random function cannot be directly derived
from our security result. Nonetheless, the proof approach for proving the security of 5-round
KAF based on public random function closely follow that of ours and we believe that 5-
round KAF based on public round function can be proven secured upto 22n/3 queries. First
of all, we would like to mention that masking round keys at the output of every round is
not required in KAF based on public random function, because in the security analysis of
public random function based KAF, adversary would not make any inverse primitive queries.
Therefore, we only care about the input collision to the round function. As before, we sample
the keys K1, . . . , K5 randomly and check for collisions with dom1 and dom5, and mark
these collision sets as IR and IS . We also mark the queries where an R (resp. S) in the output
has collided with a previous R (resp. S). The rest of the queries we bunch together as I∗.
Then one needs to accordingly compute γ and μ. Note that, in the computation of γ , we
cannot say that Y values will be distinct for two different queries with same R. Similarly,
for computing μ, we repeat the computation that we did in the outer layer. Moreover, we
avoid the same index lying in two distinct collision sets, which needs the careful bounding
of a large number of bad events. Then, our analysis is splitted into two parts, where we upper
bound the probability of several bad events in the ideal world and lower bound the ratio of
the real to ideal interpolation probability for a good transcript.

4 Proof of Theorem 2

We deal with three principal components in the proof: (i) the sampling procedure in the ideal
world which enables us to define the transcript, (ii) defining and bounding the probability
of bad transcripts and (iii) finally, lower bounding the ratio of the real to ideal interpolation
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Table 2 Sampling steps in the ideal world and the corresponding bad events that can be triggered

Step name Sampling Bad events triggered

Step-τa ∀i ∈ Ienc, (Si , T i ) ←$ {0, 1}2n
Step-τb ∀i ∈ Idec, (Li , Ri ) ←$ {0, 1}2n

badτ -switch, badτ -Ŷ , badτ -3path, badτ -3coll

Step-K K ←$ {0, 1}5n
badK -outer, badK -source

Step-γ a ∀d ∈ [q∗], γ d∗ ←$ Γ d∗
Step-γb ∀S ∈ SIR∗ , Ŝ ←$ {0, 1}n
Step-γ c ∀R ∈ RIS∗ , R̂ ←$ {0, 1}n

badγ -prim, badγ -coll, badγ -Ŷ , badμ-in&out,
badμ-source, badμ-inner, badμ-3coll, badμ-size

Step-λa ∀h ∈ [q∗∗], λh∗∗ ←$ Λh∗∗
Step-λb ∀X ∈ XIR�IXX , X̂ ←$ {0, 1}n
Step-λc ∀Z ∈ ZIS�IZ Z , Ẑ ←$ {0, 1}n
Step-λd ∀Ŷ ∈ ŶIŶ Ŷ , Y ←$ {0, 1}n
Step-λe ∀i ∈ IRR � ISS , Y i ←$ {0, 1}n

badλ-prim, badλ-coll

probability for any good transcript. We begin with the sampling procedure in the ideal world
in Sect. 4.1.

4.1 Sampling procedure in the ideal world

In the online phase, every query from D is answered with a response sampled uniformly at
random from {0, 1}2n , as shown in Step-τa and Step-τb in Table 2. (We’ll refer to this table
throughout this section for the exact description of the sampling steps.) This leaves D with
τ at the end of the online phase. Next begins the offline sampling phase of the ideal oracle,
during which K1, K2, K3, K4, K5, γ , μ and λ are sampled and released to D, such that they
bear the same relations between them as their counterparts in the real world, as described in
Sect. 3.1.

In the rest of this section, we describe step-by-step the sampling procedure in the offline
phase of the ideal world. The sampling steps are intertwined with checking for several bad
events. Whenever we delineate a bad event and then either resume our description of the
sampling procedure or proceed to describe further bad events, we implicitly assume that we
are in the scenario where the bad event just described and all bad events described before
that have not happened. Other than the usual bad events involving one or several undesirable
collisions of the sampled intermediate variables either with primitive queries or between
themselves, there is one specific bad event that we are keen on avoiding: for a pair of queries,
say the i-th and the j-th query, with Ri = R j or Si = S j , Y i can never equal Y j without
breaking consistency with the internal relations described earlier; however, if for the same
pair of queries R̂i + R̂ j + Ŝi + Ŝ j = Li + L j + T i + T j , Ŷ i is forced to be equal to Ŷ j ,
leading to an inconsistency in P3. We’ll avoid scenarios where this can happen, and we’ll
indicate this by including a Ŷ in the name of the corresponding bad event.
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Fig. 3 badτ .

Fig. 4 badK .

4.1.1 Bad events on �

Beforemoving on to the online part of the sampling, we check for some bad events on τ itself.
The event badτ -switch comes from the PRP-PRF switch we perform when we respond to
the adversaries queries with replacement, instead of without replacement, as a permutation
would do. The event badτ -Ŷ is the forced collision on Ŷ we mentioned earlier. badτ -3path
involves a simultaneous 3-collision on R and S, which must involve a path of length 3. (For
instance, one way to achieve this is as follows: an encryption query (L1, R) giving (S, T1);
then a decryption query (S, T2) yielding (L2, R), making a path of length 2; and finally, a
second encryption query with (L3, R) giving (S, T3), extending the path to length 3.) Finally,
the event badτ -3coll involves a 3-collision on R or S where the last two come from oracle
outputs. The precise definitions of these bad events are given in Fig. 3.

4.1.2 Sampling K and bad events thereof

Once none of the bad events on τ has happened, we move on to the offline phase of the
sampling. Let IRR := {i ∈ Idec | Ri = R j for some j ∈ [i − 1]} and ISS := {i ∈ Ienc |
Si = S j for some j ∈ [i − 1]} be the index-sets where an R or S obtained from an oracle
response collides with a previously seen one (either as part of a query or as part of a response).

The first step in the offline phase is to sample the keys K1, K2, K3, K4 and K5 indepen-
dently and uniformly at random from {0, 1}n . This determines all the inputs to P1 and P5.
We define the index-sets IR := {i ∈ [q] | Ri + K1 ∈ dom1} and IS := {i ∈ [q] | Si + K5 ∈
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dom5}, where the outputs of P1 and P5 are already determined from ρ, where recall that ρ

is the tuple of the primitive queries and responses.
Sampling the keys can trigger two bad events:badK -outer is the eventwhen an encryption

query index lies in two of the sets IR , IS , and ISS at the same time, or a decryption query
index lies in two of the sets IR , IS , and IRR at the same time; and badK -source, where the
source of a collision index in IRR (resp. ISS) (the earlier R (resp. S) value where it collided)
lies in one of IR , IS , and ISS (resp. IRR). The definitions can be found in Fig. 4.

4.1.3 Defining and computing G[�∗]

When sampling γ , we begin with I∗. Since queries in I∗ do not come from another collision
event, we need to avoid bad collision events manually while sampling γ I∗ .

Define τ∗ := τI∗ , R∗ := RI∗ , S∗ := SI∗ . Consider the directed bipartite graph G[τ∗]
with vertices in R∗ and S∗, where we put an edge between R ∈ R∗ and S ∈ S∗ if there
is a query i ∈ I∗ with Ri = R and Si = S; the direction of the edge is from R to S if
i ∈ Ienc∗ := Ienc ∩ I∗ and S to R if i ∈ Idec∗ := Idec ∩ I∗.

Since we are in I∗, we know that there are no cycles in G[τ∗], making it a forest. Let M
be the number of trees in G[τ∗]. Define q∗ := |I∗|, qR∗ := |R∗|, qS∗ := |S∗|. Since G[τ∗]
has qS∗ + qR∗ vertices and q∗ edges, we have

qR∗ + qS∗ = q∗ + M . (2)

We observe further that a new tree is added to this forest exactly on each query in the set
{i ∈ Ienc∗ | Ri /∈ R[i−1]} � {i ∈ Idec∗ | Si /∈ S[i−1]}, i.e., on each encryption query in I∗
with a fresh R and each decryption query in I∗ with a fresh S; we call the resulting trees
R-rooted (with root Ri ) and S-rooted (with root Si ) respectively.

We label R∗ and S∗ as follows: first, the trees are arranged in query order of the roots;
next, within each tree, we begin with the root and do a breadth-first traversal, discovering
R-generations and S-generations alternately. Finally, we orderR∗ and S∗ separately, first by
trees, then within the same tree by generations, then within the same generation by parents’
order, and finally among siblings by order of appearance. This gives us a total order on both
R∗ and S∗, and allow us to label them R1, . . . , RqR∗ and S1, . . . , SqS∗ respectively. We also
extend the notation R̂� := R̂i for i such that R� = Ri , and Ŝm := Ŝi for i such that Sm = Si .

We will also find it convenient to refer to the queries by the end-labels of the edge it
corresponds to: a query i ∈ Ienc∗ with Ri = R� and Si = Sm will be referred to as (�,m),
while a query i ∈ Idec∗ with Si = Sm and Ri = R� will be referred to as (m, �). We order
the queries as follows: two encryption queries (�,m) and (�′,m′) have the same order as m
and m′, while two decryption queries (m, �) and (m′, �′) have the same order as � and �′;
finally, to compare an encryption query (�,m) and a decryption query (m′, �′) we note that
they must be either in different trees, or in different generations of the same tree, and order
them as we ordered the vertices in the corresponding cases. Figure 5 illustrates the forest
structure.

For each i ∈ I∗, let di denote the rank of i in the new ordering. Then i �→ di is a bijection
from I∗ to [q∗]. We’ll use d = di interchangeably with the end-labels (�,m) or (m, �) to
refer to a query in I∗. We write �d and md to denote the end-labels of d , irrespective of the
direction of the query. (Note that we’ll often write rank to mean the rank of some node in
this ordering; it is not to be confused with the rank of a matrix.)
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Fig. 5 The forest structure on I∗. For instance, the node R3 (here circled) represents a decryption query
(S2, T ) for some T , that outputs (L, R3) for some L . This is the first query where R3 appears, and to count
the number of earlier queries in which S2 appears, we only need to look at this node’s grandparent and elder
siblings (R1 and R2 respectively, here underlined)

4.1.4 Sampling �

Before sampling γ , we set the values already determined from primitive collisions: for each
i ∈ IR we set R̂i ← V j

1 + K1 where j is such that U j
1 = Ri + K1; and for each i ∈ IS we

set Ŝi ← V j
5 + K5 where j is such that U j

5 = Si + K5. Using the graph G[τ∗], we describe
a sampling mechanism for γ I∗ . For I ⊆ I∗ we call a γ I valid if it satisfies the following
conditions:

– R̂i + K1 /∈ ran1 for each i ∈ I\IR ;
– Ŝi + K5 /∈ ran5 for each i ∈ I\IS ;

and for each distinct i, j ∈ I:
– Ri = R j ⇐⇒ R̂i = R̂ j ;
– Si = S j ⇐⇒ Ŝi = Ŝ j ;
– Ri = R j �⇒ Ŝi + Ŝ j �= Li + T i + L j + T j ;
– Si = S j �⇒ R̂i + R̂ j �= Li + T i + L j + T j .

Let dI := {di | i ∈ I}. Let γ
di∗ := γ i for each i ∈ I∗, and γ

dI∗ := γ I for any I ⊆ I∗. Let
Γgood be the set {γ I | I ⊆ I∗, γ I is valid}. Given a γ

[d−1]∗ ∈ Γgood, let Γ d∗ := Γ d∗ [γ [d−1]∗ ]
be the set of values that γ d∗ can take, such that γ [d]∗ remains in Γgood. We note that unless the
edge corresponding to query d begins in a root node, one half of γ d∗ will already be fixed from
γ

[d−1]∗ . For instance, for a query (�d ,md) with a non-root source R�d , there is a previous
query (mc, �c) with c < d such that R�c = R�d , so R̂�d is determined from γ c∗ . For this case,
each value in Γ d∗ will look like (R̂�c , Ŝ) for some candidate value Ŝ for Ŝmd .

Then we sample γ I∗ = γ
[q∗]∗ as follows: for each d ∈ [q∗], having sampled γ

[d−1]∗ , we
sample γ d∗ uniformly at random from Γ d∗ . This is shown as Step-γ a in Table 2. Then we
proceed to compute the index sets IR∗ := {i ∈ IR � IRR | Si /∈ S∗} and IS∗ := {i ∈
IS � ISS | Ri /∈ R∗}. Finally, for each S ∈ SIR∗ (resp. R ∈ RIS∗ ), we sample Ŝ (resp.
R̂) uniformly at random from {0, 1}n , as shown in Step-γb (resp. Step-γ c) in Table 2. This
completes our sampling of γ .

4.1.5 Bad events on �

The bad events on γ come from evaluating the conditions for γ I∗ being valid on the entire
γ . badγ -prim arises from a primitive collision outside on the range of P1 (resp. P5) outside
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Fig. 6 badγ .

Fig. 7 badμ.

IR (resp. IS). badγ -coll is the event of a collision of R̂ (resp. Ŝ) on two distinct values of
R (resp. S). Finally, badγ -Ŷ is the event of a collision on R̂ + Ŝ + L + T on two queries
with the same R or same S (both of which forces Y to be distinct on these two queries). The
definitions can be found in Fig. 6.

4.1.6 Bad events on�

Next we compute μ from τ and γ using the equations in Sect. 3.1. Define the collision sets
IX := {i ∈ [q] | Xi + K2 ∈ dom2}, IŶ := {i ∈ [q] | Ŷ i + K3 ∈ ran3}, IZ := {i ∈
[q] | Zi + K4 ∈ dom4}, IXX := {i ∈ Ic

R | Xi = X j for some j ∈ [q]}, IŶ Ŷ := {i ∈
[q] | Ŷ i = Ŷ j for some j ∈ [q]}, IZ Z := {i ∈ Ic

S | Zi = Z j for some j ∈ [q]}. Further
define Iouter := IR ∪ IRR ∪ IS ∪ ISS and Iinner := IX ∪ IXX ∪ IŶ ∪ IŶ Ŷ ∪ IZ ∪ IZ Z , and
I∗∗ := I∗\Iinner. The event badμ-in&out occurs when one of the outer collision indices in
Iouter is also in Iinner. The event badμ-inner occurs when an index lies at once in two inner
collision sets IX , IXX , IŶ , IŶ Ŷ , IZ and IZ Z . badμ-source checks for a collision index in
IXX (resp. IZ Z ) with its source index in IR (resp. IS). (Note that unlike in badK -source, the
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query-order of these two indices is not important here.) badμ-3coll captures 3-collisions on
any of the variables X , Ŷ or Z . Finally, badμ-size is the event that the set of inner collisions
grows too big. The definitions can be found in Fig. 7.

4.1.7 Sampling �

Before sampling λ, we set the values already determined from primitive collisions: for each
i ∈ IX we set X̂ i ← V j

2 + K2 where j is such that U j
2 = Xi + K2; for each i ∈ IŶ

we set Y i ← V j
3 + K3 where j is such that U j

3 = Ŷ i + K3; and for each i ∈ IZ we set

Ẑ i ← V j
4 + K4 where j is such thatU j

4 = Zi + K4. To describe a sampling mechanism for
λI∗∗ , we return to the graph G[τ∗]. For I ⊆ I∗∗ we call a λI valid if it satisfies the following
conditions:

– X̂ i + K2 /∈ ran2 for each i ∈ I\IX ;
– Y i + K3 /∈ dom3 for each i ∈ I\IŶ ;
– Ẑ i + K4 /∈ ran4 for each i ∈ I\IZ .
– X̂ i + Y i = Ri for each i ∈ I;
– Y i + Ẑ i = Si for each i ∈ I;

and for each distinct i, j ∈ I:

– Xi = X j ⇐⇒ X̂ i = X̂ j ;
– Ŷ i = Ŷ j ⇐⇒ Y i = Y j ;
– Zi = Z j ⇐⇒ Ẑ i = Ẑ j .

Define q∗∗ := |I∗∗|. Suppose we take the relabeled queries 1, . . . , q∗, drop the queries
pertaining to I∗ \ I∗∗, and renumber the remaining indices 1, . . . , q∗∗. We call hi the index
of query i under this new renumbering. Thus, hi is obtained by subtracting from di the number
of queries in [di−1] that come fromoutside I∗∗. Let hI := {hi | i ∈ I}. Letλhi∗∗ := λi for any
i ∈ I∗∗, and λ

hI∗∗ := λI for any I ⊆ I∗∗. Let Λgood be the set {λI | I ⊆ I∗∗, λI is valid}.
Given a λ

[h−1]∗∗ ∈ Λgood, let Λh∗∗ := Λh∗∗[λ[h−1]∗∗ ] be the set of values λh∗∗ can take such that

λ
[h]∗∗ remains in Λgood.

Then we sample λI∗∗ = λ
[q∗∗]∗∗ as follows: for each h ∈ [q∗∗], having sampled λ

[h−1]∗∗ , we
sample λh∗∗ uniformly at random from Λh∗∗. This is shown as Step-λa in Table 2. Sampling
the rest of λ is straightforward: for each distinct X on IR � IXX , X̂ is sampled uniformly at
random from {0, 1}n (Step-λb); and we similarly sample Ẑ for each distinct Z on IS � IZ Z
(Step-λc) andY for each distinct Ŷ on IŶ Ŷ (Step-λd). Finally, for each query in IRR�ISS , we
sample Y i uniformly at random. Since fixing one of the variables in λi determines the other
two, this completes the sampling of λ, and brings us to the end of our sampling procedure.

4.1.8 Bad events on �

The bad events on λ come from evaluating the conditions for λI∗ being valid on the entire
λ. badλ-prim arises from a primitive collision outside on the range of P2 (resp. domain of
P3; range of P4) outside IX (resp. IŶ ; IZ ). badλ-coll is the event of a collision of X̂ (resp.
Y ; Ẑ ) on two distinct values of X (resp. Ŷ ; Z ). The definitions can be found in Fig. 8.
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Fig. 8 badλ.

4.1.9 Definition of bad transcripts, bad lemma and good lemma

In this sampling procedure, if none of the above bad events happen, we release all the
internal variables, i.e., γ, μ, λ and the round keys (K1, K2, K3, K4, K5) alongwith the input–
output query responses (L, R, S, T ) to the adversary. After the interaction is over with the
construction oracle and the primitive oracles, we summarize the interaction in a transcript that
records all the inputs and outputs of the interaction along with the corresponding internal
variables, i.e, η = (ρ, τ,K, γ, μ, λ), where τ = {(Li , Ri , Si , T i ) : i ∈ [q]} and ρ =
{(Ui

1, V
i
1 ), (Ui

2, V
i
2 ), . . . , (Ui

qi , V
i
qi ) : i ∈ [5]}, where Ui

j (resp. V
i
j ) is the j-th primitive

input (resp. primitive output) to the i-th permutation Pi .

Definition 1 (Bad Transcript) A transcript η = (ρ, τ,K, γ, μ, λ) is said to be bad if any of
the above bad events i.e., badτ , badK, badγ , badμ, badλ happen.

Lemma 1 (Bad Lemma) Let η = (ρ, τ,K, γ, μ, λ) be any attainable transcript. Let Xid and
Θb be defined as above. Then

Pr[Xid ∈ Ωb] ≤ 6q2

N 2 + 14q3

N 2 + 4q4

N 3 + 2q3

N 3 (q1 + q5) + q1/2

N
(q2 + q3 + q4) + 2q3/2

N

+2qq1q5
N 2 + q2

N 2 (11q1 + 12q2 + 12q3 + 12q4 + 11q5)

+ q

N 2 (2q1q2 + q1q5 + 3q2q3 + 2q2q4 + 3q2q5 + 2q1q3 + 3q3q4

+2q3q5 + 3q1q4 + 2q4q5).

By assuming q1, q2, q3, q4 and q5 roughly in the order of q, then we have

Pr[Xid ∈ Ωb] ≤ 6q2

N 2 + 97q3

N 2 + 8q4

N 3 + 5q3/2

N
.

This lemma is proved by an exhaustive case-by-case analysis of all the listed bad events
and all possible sub-events that give rise to them. The trickiest part of the proof is to bound
the probability of badγ , which is given below. Due to the limits on the number of pages,
we have postponed the (more straightforward) remainder of the proof of the bad lemma to
Appendix A.
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4.2 Bounding bad�-prim

Proposition 1 Having defined the bad event badγ -prim in Fig. 6, we have

Pr[badγ − prim] ≤ qq5(q1 + q2)

N 2 + (q1 + q5)
(q
2

)

N 2 .

Now, to bound badγ -prim, we further split it into the following two cases:

– badγ -prim-1. ∃i ∈ IR∗ and j ∈ [q5] such that Ŝi + K1 = V j
5 .

– badγ -prim-2. ∃i ∈ IS∗ and j ∈ [q1] such that R̂i + K1 = V j
1 .

4.2.1 Bounding bad�-prim-1

We split the event into the following sub-cases and bound the probabilities of each of them.

– badγ -prim-1a. ∃i ∈ IR∗ ∩ IR and j ∈ [q5] such that Ŝi + k5 = V j
5 .

In other words, ∃i ∈ q , j ∈ [q5] and l ∈ [q2] such that Ri +K1 = Ul
1 and Ŝ

i +K5 = V j
5 .

Let’s first fix the values for the indices i , j and l. The probability of each of the events
comes out to be (1/N ) due to the n-bit randomness over the keys K1 and K5 respectively.
As we can choose the indices i , j and l in q , q5 and q2 ways, we use the union bound
over all those possible choices to obtain

Pr[badγ − prim − 1a] ≤ qq2q5
N 2 . (3)

– badγ -prim-1b. ∃i ∈ IR∗ ∩ IRR and j ∈ [q5] such that Ŝi + K5 = V j
5 .

In other words, ∃i ∈ Idec, j ∈ [q5] and l ∈ [i −1] such that Ri = Rl and Ŝi +K5 = V j
5 .

Let’s first fix the values for the indices i , j and l. The probability of the event Ri = Rl

comes out to be (1/N ) due to the n-bit randomness over Ri as i > l and i ∈ Idec. The
probability of the event Ŝi +K5 = V j

5 comes out to be (1/N ) due to the n-bit randomness
over the key K5. As we can choose the pair of indices (i, l) in

(q
2

)

ways and the index j
in q5 ways, we use the union bound over all those possible choices to obtain

Pr[badγ − prim − 1b] ≤ q5
(q
2

)

N 2 . (4)

Adding the probabilities of the above two cases, we obtain

Pr[badγ − prim − 1] ≤ qq2q5
N 2 + q5

(q
2

)

N 2 . (5)

4.2.2 Bounding bad�-prim-2

As before, we split the event into the following sub-cases and bound the probabilities of each
of them.

– badγ -prim-2a. ∃i ∈ IS∗ ∩ IS and j ∈ [q1] such that R̂i + K1 = V j
1 .

In other words, ∃i ∈ q , j ∈ q1 and l ∈ q2 such that Si + K5 = V l
5 and R̂i + K1 = V j

1 .
Let’s first fix the values for the indices i , j and l. The probability of each of the events
comes out to be (1/N ) due to the n-bit randomness over the keys K1 and K5 respectively.
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As we can choose the indices i , j and l in q , q5 and q1 ways, we use the union bound
over all those possible choices to obtain

Pr[badγ − prim − 2a] ≤ qq1q5
N 2 . (6)

– badγ -prim-2b. ∃i ∈ IS∗ ∩ ISS and j ∈ [q1] such that R̂i + K1 = V j
1 .

In other words, ∃i ∈ Ienc, j ∈ [q1] and l ∈ [i −1] such that Si = Sl and R̂i + K1 = V j
1 .

Let’s first fix the values for the indices i , j and l. The probability of the event Si = Sl

comes out to be (1/N ) due to the n-bit randomness over Si as i > l and i ∈ Ienc.
The probability of the event R̂i + K1 = V j

1 comes out to be (1/N ) due to the n-bit
randomness over the key K1. As we can choose the pair of indices (i, l) in

(q
2

)

ways and
the index j in q1 ways, we use the union bound over all those possible choices to obtain

Pr[badγ − prim − 2b] ≤ q1
(q
2

)

N 2 . (7)

Adding the probabilities of the above two cases, we obtain

Pr[badγ − prim − 2] ≤ qq1q5
N 2 + q1

(q
2

)

N 2 . (8)

By combining Eqs. (5) and (8), we have

Pr[badγ − prim] ≤ qq5(q1 + q2)

N 2 + (q1 + q5)
(q
2

)

N 2 . (9)

4.3 Bounding bad�-coll

Proposition 2 Having defined the bad event badγ -coll in Fig. 6, we have

Pr[badγ − coll] ≤ q2(q1 + q5)

N 2 + 4q4

N 3 + 2q3(q1 + q5)

N 3 .

As before, to bound badγ -coll, we further split it into the following two cases:

– badγ -coll-1. ∃i, j ∈ IR∗ and i �= j such that Si �= S j and Ŝi = Ŝ j .
– badγ -coll-2. ∃i, j ∈ IS∗ and i �= j such that Ri �= R j and R̂i = R̂ j .

4.3.1 Bounding bad�-coll-1

As before, we split the event into the following sub-cases and bound the probabilities of each
of them.

– badγ -coll-1a. ∃i, j ∈ IR∗ ∩ IR and i �= j such that Si �= S j and Ŝi = Ŝ j .
In other words, ∃i, j ∈ IR , such that i �= j , and k, l ∈ [q1] such that

Ri + K1 = Uk
1 , R j + K1 = Ul

1, Ŝ
i = Ŝ j .

We can write the above event in an equivalent way as

Ri + K1 = Uk
1 , Ri + R j = Uk

1 +Ul
1, Ŝ

i = Ŝ j .

Let’s first fix the values for the indices i , j, k and l and without loss of generality, we
assume that i > j . The probability of the event Ri + K1 = Uk

1 comes out to be (1/N )
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due to the n-bit randomness over the key K1. Moreover, the probability of the event
Ŝi = Ŝ j comes out to be at most 2/N due to the randomness of Ŝi . However, the number
of choices of indices (i, j, k, l) such that Ri + R j = Uk

1 +Ul
1 holds is at most

(q
2

)

q1. By
using the union bound over all those possible choices to obtain

Pr[badγ − coll − 1a] ≤ 2q1
(q
2

)

N 2 ≤ q2q1
N 2 . (10)

– badγ -coll-1b. ∃i, j ∈ IR∗ ∩ IRR and i �= j such that Si �= S j and Ŝi = Ŝ j .
In other words, ∃i, j ∈ IRR , such that i �= j ∈ Idec, and k ∈ [i − 1], l ∈ [ j − 1] such
that

Ri = Rk, R j = Rl , Ŝi = Ŝ j .

Let’s first fix the values for the indices i , j, k and l. The probability of the first two events
Ri = Rk and R j = Rl comes out to be (1/N 2) due to the n-bit randomness over Ri and
R j . Moreover, the probability of the event Ŝi = Ŝ j comes out to be at most 2/N due to
the randomness of Ŝi . However, the number of choices of indices (i, j, k, l) is at most
q4. By using the union bound over all those possible choices to obtain

Pr[badγ − coll − 1b] ≤ 2q4

N 3 . (11)

– badγ -coll-1c. ∃i ∈ IR∗ ∩ IR and j ∈ IR∗ ∩ IRR such that Si �= S j and Ŝi = Ŝ j .
In other words, ∃i ∈ IR, j ∈ IRR , such that i �= j and j ∈ Idec, and k ∈ [q1], l ∈ [ j−1]
such that

Ri + K1 = Uk
1 , R j = Rl , Ŝi = Ŝ j .

Let’s first fix the values for the indices i , j, k and l. The probability of the first two events
Ri + K1 = Uk

1 and R j = Rl comes out to be (1/N 2) due to the n-bit randomness over
k1 and R j . Moreover, the probability of the event Ŝi = Ŝ j comes out to be at most 2/N
due to the randomness of Ŝi . However, the number of choices of indices (i, j, l) is at
most q3 and the number of choices for k is at most q1. By using the union bound over
all those possible choices to obtain

Pr[badγ − coll − 1c] ≤ 2q3q1
N 3 . (12)

Adding the probabilities of the above three cases, we obtain

Pr[badγ − coll − 1] ≤ q2q1
N 2 + 2q4

N 3 + 2q3q1
N 3 . (13)

4.3.2 Bounding bad�-coll-2

As before, we split the event into the following sub-cases and bound the probabilities of each
of them.

– badγ -coll-2a. ∃i, j ∈ IS∗ ∩ IS and i �= j such that Ri �= R j and R̂i = R̂ j .
In other words, ∃i, j ∈ IS , such that i �= j , and k, l ∈ [q5] such that

Si + K5 = Uk
5 , S j + K5 = Ul

5, R̂
i = R̂ j .

We can write the above event in an equivalent way as

Si + K5 = Uk
5 , Si + S j = Uk

5 +Ul
5, R̂

i = R̂ j .
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Let’s first fix the values for the indices i , j, k and l and without loss of generality, we
assume that i > j . The probability of the event Si +K5 = Uk

5 comes out to be (1/N ) due
to the n-bit randomness over the key K5. Moreover, the probability of the event R̂i = R̂ j

comes out to be at most 2/N due to the randomness of R̂i . However, the number of
choices of indices (i, j, k, l) such that Si + S j = Uk

5 + Ul
5 holds is at most

(q
2

)

q5. By
using the union bound over all those possible choices to obtain

Pr[badγ − coll − 2a] ≤ 2q5
(q
2

)

N 2 ≤ q2q5
N 2 . (14)

– badγ -coll-2b. ∃i, j ∈ IS∗ ∩ ISS and i �= j such that Ri �= R j and R̂i = R̂ j .
In other words, ∃i, j ∈ ISS , such that i �= j ∈ Ienc, and k ∈ [i − 1], l ∈ [ j − 1] such
that

Si = Sk, S j = Sl , R̂i = R̂ j .

Let’s first fix the values for the indices i , j, k and l. The probability of the first two events
Si = Sk and S j = Sl comes out to be (1/N 2) due to the n-bit randomness over Si and
S j . Moreover, the probability of the event R̂i = R̂ j comes out to be at most 2/N due to
the randomness of R̂i . However, the number of choices of indices (i, j, k, l) is at most
q4. By using the union bound over all those possible choices to obtain

Pr[badγ − coll − 2b] ≤ 2q4

N 3 . (15)

– badγ -coll-2c. ∃i ∈ IS∗ ∩ IS and j ∈ IS∗ ∩ ISS such that Ri �= R j and R̂i = R̂ j .
In other words, ∃i ∈ IS, j ∈ ISS , such that i �= j and j ∈ Ienc, and k ∈ [q5], l ∈ [ j −1]
such that

Si + K5 = Uk
5 , S j = Sl , R̂i = R̂ j .

Let’s first fix the values for the indices i , j, k and l. The probability of the first two events
Si + K5 = Uk

5 and S j = Sl comes out to be (1/N 2) due to the n-bit randomness over
K5 and S j . Moreover, the probability of the event R̂i = R̂ j comes out to be at most 2/N
due to the randomness of R̂i . However, the number of choices of indices (i, j, l) is at
most q3 and the number of choices for k is at most q5. By using the union bound over
all those possible choices to obtain

Pr[badγ − coll − 2c] ≤ 2q3q5
N 3 . (16)

Adding the probabilities of the above three cases, we obtain

Pr[badγ − coll − 2] ≤ q2q5
N 2 + 2q4

N 3 + 2q3q5
N 3 . (17)

By combining Eqs. (13) and (17), we have

Pr[badγ − coll] ≤ q2(q1 + q5)

N 2 + 4q4

N 3 + 2q3(q1 + q5)

N 3 . (18)
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4.4 Bounding bad�-̂Y

Proposition 3 Having defined the bad event badγ -Ŷ in Fig. 6, we have

Pr[badγ − Ŷ ] ≤ 4q2(q1 + q5)

N 2 + 4q3

N 2 .

As before, to bound badγ -Ŷ , we further split it into the following two cases:

– badγ -Ŷ -1. ∃i ∈ Ic∗, j ∈ [q] and i �= j such that Ri = R j and Ŝi + Ŝ j = Li + T i +
L j + T j .

– badγ -Ŷ -2. ∃i ∈ Ic∗, j ∈ [q] and i �= j such that Si = S j and R̂i + R̂ j = Li + T i +
L j + T j .

4.4.1 Bounding bad�-̂Y -1

As before, we split the event into the following sub-cases and bound the probabilities of each
of them.

– badγ -Ŷ -1a ∃i ∈ IR, j ∈ [q] and i �= j such that Ri = R j and Ŝi + Ŝ j = Li + T i +
L j + T j .
In other words, ∃i ∈ IR, j ∈ [q], with i �= j and k ∈ [q1] such that

Ri + K1 = Uk
1 , Ri = R j , Ŝi + Ŝ j = Li + T i + L j + T j .

Let’s first fix the values for the indices i , j and k. The probability of the first event comes
from the n-bit randomness over K1 and the probability of the last event comes from
the randomness over Ŝi . Hence, the joint probability comes out to be at most (2/N 2).
However, the number of choices of indices i and j is at most

(q
2

)

and the number of
choices for k is at most q1. By using the union bound over all those possible choices to
obtain

Pr[badγ − Ŷ − 1a] ≤ q2q1
N 2 . (19)

– badγ -Ŷ -1b. ∃i ∈ IS, j ∈ [q] and i �= j such that Ri = R j and Ŝi + Ŝ j = Li + T i +
L j + T j .
In other words, ∃i ∈ IS, j ∈ [q], with i �= j and k ∈ [q5] such that

Si + K5 = Uk
5 , Ri = R j , Ŝi + Ŝ j = Li + T i + L j + T j .

Now, we consider that j ∈ IS , as the analysis of this case is the involved one. Therefore,
we have

Si + K5 = Uk
5 , S j + K5 = Ul

5, R
i = R j , V k

5 + V l
5 = Li + T i + L j + T j , (20)

for some l ∈ [q5] and we equivalently write Eq. (20) as

Si + K5 = Uk
5 , Si + S j = Uk

5 +Ul
5, R

i = R j , V k
5 + V l

5 = Li + T i + L j + T j . (21)

Now, we analyze this case in separate subcases:
Case (a): We first assume the construction queries appear after the primitive queries
and let i < j and let j be an encryption query index (analysis for j to be a decryption
query will be similar). Then from the first equation we use the randomness of K5 and
from the second equation, we use the randomness of S j which allows us to bound the
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probability of the event for a fixed choice of indices, to at most 2/N 2. Moreover, the
number of tuples (i, j, k, l) such that Eq. (21) holds is at most

(q
2

)

for choices of i and
j and the number of choices for k is at most q5 which leaves a unique choice for l such
that V k

5 + V l
5 = Li + T i + L j + T j holds. Therefore, by varying all possible choices of

indices, we bound the probability to at most q2q5/N 2.
Case (b): Now, we consider the case where the primitive queries appear after the con-
struction queries and let k < l and let l be a forward query index. Then from the first
equation we use the randomness of K5 and from the fourth equation, we use the random-
ness of V l

5 which allows us to bound the probability of the event for a fixed choice of
indices, to at most 2/N 2. Moreover, the number of tuples (i, j, k, l) such that Eq. (21)
holds is at most

(q
2

)

for choices of i and j and the number of choices for k is at most q5
which leaves a unique choice for l such that Si + S j = Uk

5 + Ul
5 holds. Therefore, by

varying all possible choices of indices, we bound the probability to at most q2q5/N 2.
Case (c): Similarly, if l is an inverse query index. Then from the first equation we use the
randomness of K5 and from the second equation, we use the randomness of Ul

5 which
allows us to bound the probability of the event for a fixed choice of indices, to at most
2/N 2. Moreover, the number of tuples (i, j, k, l) such that Eq. (21) holds is at most

(q
2

)

for choices of i and j and the number of choices for k is at most q5 which leaves a unique
choice for l such that V k

5 + V l
5 = Li + T i + L j + T j holds. Therefore, by varying all

possible choices of indices, we bound the probability to at most q2q5/N 2.
By taking the union of all the above cases, we obtain

Pr[badγ − Ŷ − 1b] ≤ 3q2q5
N 2 . (22)

– badγ -Ŷ -1c. ∃i ∈ IRR, j ∈ [q] and i �= j such that Ri = R j and Ŝi + Ŝ j = Li + T i +
L j + T j .
In other words, ∃i ∈ IRR, j ∈ [q], with i �= j and i ∈ Idec and k ∈ [i − 1] such that

Ri = Rk, Ri = R j , Ŝi + Ŝ j = Li + T i + L j + T j .

Let’s first fix the values for the indices i , j and k. The probability of the first event comes
from the n-bit randomness over Ri and the probability of the last event comes from
the randomness over Ŝi . Hence, the joint probability comes out to be at most (2/N 2).
However, the number of choices of indices i and j is at most

(q
2

)

and the number of
choices for k is at most q . By using the union bound over all those possible choices to
obtain

Pr[badγ − Ŷ − 1c] ≤ q3

N 2 . (23)

– badγ -Ŷ -1d . ∃i ∈ ISS, j ∈ [q] and i �= j such that Ri = R j and Ŝi + Ŝ j =
Li + T i + L j + T j .
Analysis of this case is identical to the analysis of badγ -Ŷ -1c., where we use the ran-
domness of Si as i ∈ Ienc. Hence, we obtain

Pr[badγ − Ŷ − 1d] ≤ q3

N 2 . (24)

Adding the probabilities of the above four cases, we obtain

Pr[badγ − Ŷ − 1] ≤ q2(q1 + 3q5)

N 2 + 2q3

N 2 . (25)
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4.4.2 Bounding bad�-̂Y -2

As before, we split the event into the following sub-cases and bound the probabilities of each
of them.

– badγ -Ŷ -2a. ∃i ∈ IR, j ∈ [q] and i �= j such that Si = S j and R̂i + R̂ j = Li + T i +
L j + T j .
In other words, ∃i ∈ IR, j ∈ [q], with i �= j and k ∈ [q1] such that

Ri + K1 = Uk
1 , Si = S j , R̂i + R̂ j = Li + T i + L j + T j .

Now, we consider that j ∈ IR as this the analysis of this case is the involved one.
Therefore, we have

Ri + K1 = Uk
1 , R j + K1 = Ul

1, S
i = S j , V k

1 + V l
1 = Li + T i + L j + T j , (26)

for some l ∈ [q1] and we equivalently write Eq. (26) as

Ri + K1 = Uk
1 , Ri + R j = Uk

1 +Ul
1, S

i = S j , V k
1 + V l

1 = Li + T i + L j + T j . (27)

Now, we analyze this case in separate subcases:
Case (a)As before, we assume the construction queries appear after the primitive queries
and let i < j and let j be an encryption query index (analysis for j to be a decryption
query will be similar). Then from the first equation we use the randomness of K1 and
from the third equation, we use the randomness of S j which allows us to bound the
probability of the event for a fixed choice of indices, to at most 2/N 2. Moreover, the
number of tuples (i, j, k, l) such that Eq. (27) holds is at most

(q
2

)

for choices of i and
j and the number of choices for k is at most q1 which leaves a unique choice for l such
that V k

1 + V l
1 = Li + T i + L j + T j holds. Therefore, by varying all possible choices of

indices, we bound the probability to at most q2q1/N 2.
Case (b) Analysis for this case is exactly identical to the case (b) of bounding badγ -Ŷ -
1c. Therefore, by varying all possible choices of indices, we bound the probability to at
most q2q1/N 2.
Case (c)Analysis for this case is exactly identical to the case (c) of bounding badγ -Ŷ -1c.
Therefore, by varying all possible choices of indices, we bound the probability to at most
q2q1/N 2.
By taking the union of all the above cases, we obtain

Pr[badγ − Ŷ − 2a] ≤ 3q2q1
N 2 . (28)

– badγ -Ŷ -2b. ∃i ∈ IS, j ∈ [q] and i �= j such that Si = S j and R̂i + R̂ j = Li + T i +
L j + T j .
In other words, ∃i ∈ IS, j ∈ [q], with i �= j and k ∈ [q5] such that

Si + K5 = Uk
5 , Ri = R j , R̂i + R̂ j = Li + T i + L j + T j .

Let’s first fix the values for the indices i , j and k. The probability of the first event comes
from the n-bit randomness over K5 and the probability of the last event comes from
the randomness over R̂i . Hence, the joint probability comes out to be at most (2/N 2).
However, the number of choices of indices i and j is at most

(q
2

)

and the number of
choices for k is at most q5. By using the union bound over all those possible choices to
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obtain

Pr[badγ − Ŷ − 2b] ≤ q2q5
N 2 . (29)

– badγ -Ŷ -2c. ∃i ∈ IRR, j ∈ [q] and i �= j such that Si = S j and R̂i + R̂ j = Li + T i +
L j + T j .
In other words, ∃i ∈ IRR, j ∈ [q], with i �= j and i ∈ Idec and k ∈ [i − 1] such that

Ri = Rk, Si = S j , R̂i + R̂ j = Li + T i + L j + T j .

Let’s first fix the values for the indices i , j and k. The probability of the first event comes
from the n-bit randomness over Ri and the probability of the last event comes from
the randomness over R̂i . Hence, the joint probability comes out to be at most (2/N 2).
However, the number of choices of indices i and j is at most

(q
2

)

and the number of
choices for k is at most q . By using the union bound over all those possible choices to
obtain

Pr[badγ − Ŷ − 2c] ≤ q3

N 2 . (30)

– badγ -Ŷ -2d . ∃i ∈ ISS, j ∈ [q] and i �= j such that Si = S j and R̂i + R̂ j =
Li + T i + L j + T j .
Analysis of this case is identical to the analysis of badγ -Ŷ -2c., where we use the ran-
domness of Si as i ∈ Ienc. Hence, we obtain

Pr[badγ − Ŷ − 2d] ≤ q3

N 2 . (31)

Adding the probabilities of the above four cases, we obtain

Pr[badγ − Ŷ − 2] ≤ q2(3q1 + q5)

N 2 + 2q3

N 2 . (32)

By combining Eqs. (25) and (32), we have

Pr[badγ − Ŷ ] ≤ 4q2(q1 + q5)

N 2 + 4q3

N 2 . (33)

5 Bounding the ratio of good probabilities

Lemma 2 Let η = (ρ, τ,K, γ, μ, λ) be any attainable transcript such that η ∈ Θg. Let Xre
and Xid be defined as above. Suppose q1 + 2(

√
q + 1) ≤ q2 + q3 + q4, q5 + 2(

√
q + 1) ≤

q2 + q3 + q4 and q + (q1 + q2 + · · · + q5) ≤ N/2. Then, we have

Pr[Xre = η]
Pr[Xid = η] ≥ 1 −

(
6q3 + 4q2(q2 + q3 + q4) + 2qq2q3 + 2qq2q4 + 2qq3q4

N 2 + 8q3/2

N

)

.

Proof Let η = (ρ, τ,K, γ, μ, λ) be a good transcript. We’ll calculate the exact probability
of obtaining η in the real world, and an upper bound on its probability in the ideal world. ��
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5.1 Real world

In the real world, there are N 5 choices forK. Let Q j denote the number of distinct queries to
Pj for each j ∈ [5]. We first set aside the q j primitive queries to Pj for each j , and hereafter
count the additional distinct queries to each Pj that comes from the construction queries.

P1 gets qR∗ distinct queries in I∗, and qIS∗
R distinct queries in IS ; and P5 gets qS∗ distinct

queries in I∗, and qIR∗
S distinct queries in IR . Thus we have

Q1 = q1 + qR∗ + qIS∗
R , (34)

Q5 = q5 + qS∗ + qIR∗
S . (35)

For P2, there are q
IR
X + |IS | distinct queries in Iouter, |IXX |/2 distinct queries in IXX ,

and q∗ − |IX | − |IXX | distinct queries in I∗\(IX ∪ IXX ), bringing the total to

qIR
X + |IS | + |IXX |/2 + q∗ − |IX | − |IXX |
= qIR

X + |IS | + q − |IR | − |IS | − |IX | − |IXX |/2
= q − |IX | − |IXX |/2 − |IR | + qIR

X .

By a similar argument, we have q − |IZ | − |IZ Z |/2 − |IS | + qIS
Z distinct queries to P4

in the construction queries. This gives us

Q2 = q2 + q − |IX | − |IXX |/2 − |IR | + qIR
X , (36)

Q4 = q4 + q − |IZ | − |IZ Z |/2 − |IS | + qIS
Z . (37)

Finally we note that all queries to P3 outside IŶ ∪ IŶ Ŷ are distinct, and in addition there
are |IŶ Ŷ |/2 distinct queries in IŶ Ŷ . This gives us

Q3 = q3 + q − |IŶ | − |IŶ Ŷ |/2. (38)

We have

Pr[Xre = η] = 1

N 5
· 1

(N )Q1

· 1

(N )Q2

· 1

(N )Q3

· 1

(N )Q4

· 1

(N )Q5

, (39)

with Q1, . . . , Q5 as in Eqs. (34)–(38). (We’ll substitute the expressions later in Eq. (39)
when cancelling out the terms.)

5.2 Ideal world

In the ideal world, we first observe that ρ, τ , K are sampled independently of everything
else, γ is sampled conditioned on (ρ, τ,K), and λ is sampled conditioned on (ρ, τ,K, γ ).
This gives

Pr[Xid = η] = Pr
Oid

[ρ] · Pr
Oid

[τ ] · Pr
Oid

[K] · Pr
Oid

[γ | ρ, τ,K] · Pr
Oid

[λ | ρ, τ,K, γ, μ]. (40)

Primitive queries are answered honestly, giving

Pr
Oid

[ρ] = 1

(N )q1
· 1

(N )q2
· 1

(N )q3
· 1

(N )q4
· 1

(N )q5
. (41)
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Next, from Step-τa and Step-τb of the sampling, we get

Pr
Oid

[τ ] = 1

N 2q , (42)

and from Step-K , we get

Pr
Oid

[K] = 1

N 5
. (43)

5.2.1 A bound for �

We recall that the tricky part of sampling γ is how we sample it over I∗. For each d ∈ [q∗]
we try to find an upper bound for the probability of sampling γ d∗ given γ

[d−1]∗ has already
been sampled. We define

ad := min
γ

[d−1]∗

∣
∣
∣Γ

d∗
[

γ [d−1]∗
]∣
∣
∣ . (44)

Then Step-γ a gives

Pr
Oid

[

γ d∗ | ρ, τ,K, γ [d−1]∗
]

≤ 1

ad
. (45)

Substituting Eq. (44) in Eq. (45) and taking the product over d ∈ [q∗] gives

Pr
Oid

[

γ I∗ | ρ, τ,K
] = Pr

Oid

[

γ
[q∗]∗ | ρ, τ,K

]

≤
q∗∏

d=1

1

ad
. (46)

This takes care of γ I∗ . In Iouter, Step-γb and Step-γ c involve taking uniform samples
of size qIR∗

S and qIS∗
R , so we have

Pr
Oid

[

γ IR∗�IS∗ | ρ, τ,K
] = 1

Nq
IR∗
S +q

IS∗
R

. (47)

From Eqs. (46) and (47) we get

Pr
Oid

[γ | ρ, τ,K] ≤
( q∗∏

d=1

1

ad

)

· 1

Nq
IR∗
S +q

IS∗
R

. (48)

5.2.2 A bound for �

Again we recall that the tricky part of sampling λ is over I∗∗. For each h ∈ [q∗∗] we try
to find an upper bound for the probability of sampling λh∗∗ given λ

[h−1]∗∗ has already been
sampled. We define

bh := min
λ

[h−1]∗∗

∣
∣
∣Λ

h∗∗
[

λ[h−1]∗∗
]∣
∣
∣ . (49)

Then Step-λa gives

Pr
Oid

[

λh∗∗ | ρ, τ,K, γ, μ, λ[h−1]∗∗
]

≤ 1

bh
. (50)

From the definition of bh and by taking the product of Eq. (50) over h ∈ [q∗∗] gives

Pr
Oid

[

λI∗∗ | ρ, τ,K, γ, μ
] = Pr

Oid

[

λ
[q∗∗]∗∗ | ρ, τ,K, γ, μ

]

≤
q∗∗∏

h=1

1

bh
. (51)

123



42 A. Bhattacharjee et al.

This takes care of λI∗∗ . On Iouter and Iinner, in Step-λb we take a uniform sample of size
|XIR�IXX | = qIR

X + |IXX |/2, so that

Pr
Oid

[

λIR�IXX | ρ, τ,K, γ, μ
] = 1

Nq
IR
X +|IXX |/2

; (52)

similarly from Step-λc we get

Pr
Oid

[

λIS�IZ Z | ρ, τ,K, γ, μ
] = 1

Nq
IS
Z +|IZ Z |/2

; (53)

and finally, Step-λd and Step-λe give

Pr
Oid

[

λIŶ Ŷ | ρ, τ,K, γ, μ
] = 1

N |IRR |+|ISS | (54)

To keep the combined exponent of N readable, we’ll use the notation

q† := qIR
X + qIS

Z + |IRR | + |ISS | + (|IXX | + |IŶ Ŷ | + |IZ Z |)/2. (55)

Combining Eqs. (51), (52), (53), and (54) and substituting Eq. (55) yields

Pr
Oid

[λ | ρ, τ,K, γ, μ] ≤
( q∗∗∏

h=1

1

bh

)

· 1

Nq†
. (56)

5.3 Bounding the ratio

Plugging Eqs. (41), (42), (48), and (56) in Eq. (40) gives

Pr
Oid

[η] ≤ 1

(N )q1
· 1

(N )q2
· 1

(N )q3
· 1

(N )q4
· 1

(N )q5
· 1

N 5
· 1

N 2q

·
( q∗∏

d=1

1

ad

)

· 1

Nq
IR∗
S +q

IS∗
R

·
( q∗∗∏

h=1

1

bh

)

· 1

Nq†
. (57)

From Eqs. (39) and (57), on writing (N )Q j /(N )q j as (N −q j )Q j−q j for each j ∈ [5] and
denoting N j := N − q j and Q†

j := Q j − q j , we can calculate the H-ratio of η as

H[η] := Pr[Xre = η]
Pr[Xid = η] ≥ Nq

IR∗
S +q

IS∗
R · ∏q∗

d=1 ad
(N1)Q†

1
(N5)Q†

5

· N 2q+q† · ∏q∗∗
h=1 bh

(N2)Q†
2
(N )Q†

3
(N4)Q†

4

. (58)

Note that, we have

Q2 − q2 = q − |IX | − |IXX |/2 − |IR | + qIR
X

= q∗∗ + qIR
X + |IRR | + |IS | + |ISS |

+ |IXX |/2 + |IŶ | + |IŶ Ŷ | + |IZ | + |IZ Z |, (59)

so

(N2)Q†
2

≤ (N2)q∗∗N
q
IR
X +|IXX |/2+|IRR |+|IS |+|ISS |+|IŶ |+|IŶ Ŷ |+|IZ |+|IZ Z |. (60)

Similarly,

(N3)Q†
3
≤ (N3)q∗∗N

|IRR |+|ISS |+|IŶ Ŷ |/2+|IR |+|IS |+|IX |+|IXX |+|IZ |+|IZ Z |, (61)
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(N4)Q†
4
≤ (N4)q∗∗N

q
IS
Z +|IZ Z |/2+|IR |+|IRR |+|ISS |+|IZ |+|IZ Z |+|IŶ |+|IŶ Ŷ |. (62)

We observe that the exponents of N on the right-hand-side of Eqs. (60), (61), and (62)
add up to 2(q − q∗∗) + q†. Multiplying Eqs. (60), (61), and (62) gives

(N2)Q†
2
(N3)Q†

3
(N4)Q†

4
≤ (N2)q∗∗(N3)q∗∗(N4)q∗∗N

2q−2q∗∗+q† . (63)

It follows that

N 2q+q†

(N2)Q†
2
(N3)Q†

3
(N4)Q†

4

≥ N 2q∗∗

(N2)q∗∗(N3)q∗∗(N4)q∗∗
. (64)

Since (N1)Q†
1

≤ (N1)qR∗N
q
IS∗
R and (N5)Q†

5
≤ (N5)qS∗N

q
IR∗
S , we also have

Nq
IR∗
S +q

IS∗
R

(N1)Q†
1
(N5)Q†

5

≥ 1

(N1)qR∗(N5)qS∗
. (65)

Substituting Eqs. (64) and (65) in Eq. (58) gives

H[η] ≥ N 2q∗∗ ∏q∗∗
h=1 bh

(N2)q∗∗(N3)q∗∗(N4)q∗∗
·

∏q∗
d=1 ad

(N1)qR∗(N5)qS∗
. (66)

We count
∏

d ad · ∏

h bh on each tree in sequence. Let q( j) be the number of queries in

the j-th tree, and define q( j)
R∗ := |{� ∈ [qR∗] | R� is on the j-th tree}|, q( j)

S∗ := |{m |
Sm is on the j-th tree}|. Also define the cumulative sums

q+( j) :=
j

∑

l=1

q(l), q+( j)
R∗ :=

j
∑

l=1

q(l)
R∗, q+( j)

S∗ :=
j

∑

l=1

q(l)
S∗ . (67)

By our ordering, the queries in the j-th tree are precisely the ones with labels d( j)
1 :=

q+( j−1) + 1, . . . , d( j)
q( j) := q+( j).

5.3.1 Bounding ad

First we consider the root node of the j-th tree. Here both R and S are fresh, so we do not
have to worry about badγ -Ŷ . We just have to exclude the ranges of P1 and P5 sampled in
primitive queries and earlier trees, giving

a
d( j)
1

≥
(

N1 − q+( j−1)
R∗

)

·
(

N5 − q+( j−1)
S∗

)

. (68)

For a query d( j)
k let td

( j)
k be the number of elder siblings of its target node, plus the number

of grandparents (0 for root or second-generation nodes and 1 for all subsequent nodes).
Then, for an encryption query d( j)

k , the number of earlier nodes with the same R (which can

potentially give rise to badγ -Ŷ ) is exactly td
( j)
k , and the number of distinct Ŝ already sampled

before this node is md( j)
k − 1. Thus we have

a
d( j)
k

≥ N5 −
(

md( j)
k − 1

)

− td
( j)
k , (69)
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Reasoning similarly for a decryption query d( j)
k we get

a
d( j)
k

≥ N1 −
(

�d
( j)
k − 1

)

− td
( j)
k . (70)

We note that Eqs. (69) and (70) do not depend on the tree except for the count td , and can
simply be written as

ad ≥ N5 − (md − 1) − td (71)

and

ad ≥ N1 − (�d − 1) − td (72)

for non-root encryption and decryption queries respectively. Similarly, Eq. (68) can be
written as

ad ≥
(

N1 − (�d − 1)
) (

N5 − (md − 1)
)

(73)

for root queries, where td = 0. Let t(�) (resp. t(m)) be defined as td where d is the first
query (in the tree ordering) where R� (resp. Sm) appears. Then

q∗∏

d=1

ad ≥
qR∗∏

�=1

[N1 − (� − 1) − t(�)] ·
qS∗∏

m=1

[N5 − (m − 1) − t(m)] . (74)

5.3.2 Bounding bh

For h ∈ [q∗∗] let th∗∗ be the number of elder siblings of its target node that come from I∗∗, plus
the number of grandparents that come from I∗∗. While sampling λh∗∗, we need tomaintain the
three validity conditions on X̂ , Y , and Ẑ ; since X , Ŷ , and Z are all distinct on I∗∗, we need to
avoid collisions on X̂ , Y , and Ẑ as well. For each of these three, in addition to the primitive
queries, h − 1 distinct values have been sampled in the earlier nodes (in the tree-ordering),
giving a total of q2 + q3 + q4 + 3(h − 1) candidates to avoid.

However, it turns outwe cando slightly better. Thekeyobservation here is that for all earlier
nodeswith the same R or same S as this node,we avoid one of the three collisions for free! (For
instance, Ri = Ri ′ and X̂ i �= X̂ i ′ automatically imply that Y i = X̂ i +Ri �= X̂ i ′ +Ri ′ = Y i ′ .)
Thus, for the th∗∗ earlier nodes with the same R or same S, we have one collision less to worry
about. This shows that

bh ≥ N − (q2 + q3 + q4) − 3(h − 1) + th∗∗. (75)

Denote N234 := N − (q2 + q3 + q4). Taking product over [q∗∗] yields
q∗∗∏

h=1

bh ≥
q∗∗∏

h=1

[

N234 − 3(h − 1) + th∗∗
]

. (76)

This th∗∗ term that we save here is crucial for the proof, as we use it to cancel out the
corresponding −td∗ in the bound for ad . That leaves us with reasonably simple bounds which
we can approximate using standard techniques.

However, we still need to be careful, because I∗∗ is slightly smaller than I∗, which means
that (i) each th∗∗ will be slightly smaller than the corresponding td∗ , and (ii) there will be
slightly fewer th∗∗ terms than −td∗ terms, leaving a few −td∗ terms that we can cancel out.
Fortunately, the restrictions we have put in the bad events will be enough to bound these
corner cases. We devote the rest of the section to deriving this concrete bound.
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5.3.3 Completing the proof

For i ∈ I∗∗ (returning for the moment to the original query-order labelling), we look at
adi bhi . Suppose i is a non-root encryption query. Then from Eqs. (71) and (75) we get

adi bhi ≥
[

N5 − (mdi − 1) − tdi
]

·
[

N234 − 3(hi − 1) + thi∗∗
]

. (77)

We want to transfer the thi∗∗ from the right parentheses to the left. For any N ′, N ′′, to
claim N ′(N ′′ + thi∗∗) ≥ (N ′ + thi∗∗)N ′′, we just need to show that N ′ ≥ N ′′ (since thi∗∗ is
positive). Here we have N ′ = N5 − (mdi − 1) − tdi = N − [q5 + (mdi − 1) + tdi ] and
N ′′ = N234 − 3(hi − 1) = N − [(q2 + q3 + q4) + 3(hi − 1)], so we just need to show that
(q2 + q3 + q4) + 3(hi − 1) ≥ q5 + (mdi − 1) + tdi . Since mdi ≤ di , and tdi ≤ di , we get

q2 + q3 + q4 + 3(hi − 1) − q5 − (mdi − 1) − tdi

≥ q2 + q3 + q4 + 3hi − 3 − q5 − di + 1 − di

≥ q2 + q3 + q4 − 2(di − hi ) − q5 − 2

≥ q2 + q3 + q4 − 2|Iinner| − q5 − 2

≥ q2 + q3 + q4 − (2
√
q + q5 + 2) ≥ 0, (78)

since q2 + q3 + q4 ≥ 2
√
q + q5 + 2. This allows us to carry out the intended transfer in

Eq. (77) and get

adi bhi ≥
[

N5 − (mdi − 1) − (tdi − thi∗∗)
]

· [N234 − 3(hi − 1)]

≥
[

N5 − (mdi − 1) − |Iinner|
]

· [N234 − 3(hi − 1)]

≥
[

N5 − (mdi − 1) − √
q
]

· [N234 − 3(hi − 1)] . (79)

Similarly, when i is a non-root decryption query, we use the inequality q2 + q3 + q4 ≥
2
√
q + q1 + 2 to get

adi bhi ≥
[

N1 − (�di − 1) − √
q
]

· [N234 − 3(hi − 1)] . (80)

Here on, we can proceed to bound the two branches separately. For the parentheses on the
right of Eq. (80), taking product over I∗∗ gives

∏

i∈I∗∗
[N234 − 3(hi − 1)] =

∏

h∈[q∗∗]
[N234 − 3(h − 1)] . (81)

We observe that

N 2(N − q2 − q3 − q4 − 3(h − 1))

= (N − q2 − (h − 1))(N − q3 − (h − 1))(N − q4 − (h − 1))

− N [(q2 + (h − 1))(q3 + (h − 1)) + (q2 + (h − 1))(q4 + (h − 1))

+(q3 + (h − 1))(q4 + (h − 1))] + (q2 + (h − 1))(q3 + (h − 1))(q4 + (h − 1))

≥ (N − q2 − (h − 1))(N − q3 − (h − 1))(N − q4 − (h − 1))

·
[

1 − 2

N 2 · {(q2 + (h − 1))(q3 + (h − 1))

+(q2 + (h − 1))(q4 + (h − 1)) + (q3 + (h − 1))(q4 + (h − 1))}] . (82)
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Taking product over h gives

N 2q∗∗ ·
q∗∗∏

h=1

(N234 − 3(h − 1)) ≥ (N2)q∗∗ · (N3)q∗∗ · (N4)q∗∗ · (1 − ε0), (83)

where ε0 = 2q[(q2 + q∗∗)(q3 + q∗∗) + (q2 + q∗∗)(q4 + q∗∗) + (q3 + q∗∗)(q4 + q∗∗)]/N 2.
This completes the bounding of the branch on the right of Eq. (80). The final task that

remains is to bound the branch on the left, combined with the ad terms in Iinner (where the
td did not get cancelled out). For each i ∈ I∗, let wi denote

√
q if i ∈ I∗∗ (corresponding to

the
√
q in the left parentheses of Eq. (80)) and q if i ∈ Iinner (corresponding to the t(�) or

t(m) in Eq. (74)). Let w(�) (resp. w(m)) be defined as wi where di is the first query where
R� (resp. Sm) appears. Then

qR∗∏

�=1

[N1 − (� − 1) − w(�)] ·
qS∗∏

m=1

[N5 − (m − 1) − w(m)]

≥ (N1)qR∗(N5)qS∗

[

1 − 2

N
·
(qR∗∑

�=1

w(�) +
qS∗∑

m=1

w(m)

)]

≥ (N1)qR∗(N5)qS∗

[

1 − 4

N
· (√

q · |I∗∗| + q · |Iinner|
)
]

≥ (N1)qR∗(N5)qS∗

(

1 − 8q3/2

N

)

. (84)

From Eqs. (79), (80), (83) and (84) we have

q∗∏

d=1

ad

q∗∗∏

h=1

bh ≥ (N2)q∗∗(N3)q∗∗(N4)q∗∗
N 2q∗∗ · (N1)qR∗(N5)qS∗

(

1 − ε0 − 8q3/2

N

)

. (85)

Plugging in the value of ε0 in Eq. (85), using the inequality q∗∗ ≤ q and substituting
Eq. (85) in Eq. (66) gives

H[η] ≥ 1 −
(
6q3 + 4q2(q2 + q3 + q4) + 2qq2q3 + 2qq2q4 + 2qq3q4

N 2 + 8q3/2

N

)

, (86)

which completes the proof.
Impact on the Security After Removing Output Masking Keys. At this point, it is natural to
wonder about the impact on the security bound if we remove masking the round keys at
the output of every round of the construction, i.e., each round function is P(x + k) instead
of P(x + k) + K . First of all, it is interesting to investigate the security of this modified
construction. However, it seems that wemay not get same level of security from this modified
construction as we obtained it from the analysis of our proposed construction. This is partly
because in the modified construction, the output of each round permutation is “open”, in
the sense that the output of those permutation can be directly controlled by the adversary
through inverse permutation queries. Nonetheless, if the security goes through, we believe
that the argument would be far complex and may require some combinatorial results like

123



BBB Security for 5 round EM Based KAF Cipher 47

Sum-Capture Lemma [11] to prove the security of the construction without the output round
keys.
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