
Designs, Codes and Cryptography (2023) 91:3995–4017
https://doi.org/10.1007/s10623-023-01286-6

Skew differential Goppa codes and their application to
Mceliece cryptosystem

José Gómez-Torrecillas1,3 · F. J. Lobillo1,3,4 · Gabriel Navarro2,3,4

Received: 26 September 2022 / Revised: 24 May 2023 / Accepted: 27 July 2023 /
Published online: 19 August 2023
© The Author(s) 2023

Abstract
A class of linear codes that extends classical Goppa codes to a non-commutative context is
defined. An efficient decoding algorithm, based on the solution of a non-commutative key
equation, is designed. We show how the parameters of these codes, when the alphabet is a
finite field, may be adjusted to propose a McEliece-type cryptosystem.

Keywords Skew-differential Goppa code · Decoding algorithm · McEliece-type
cryptosystem

Mathematics Subject Classification 94B35 · 94A60 · 16S36

1 Introduction

Code-based cryptography proposals are still alive after the Round 4 of the NIST Post-
Quantum Cryptography competition. The strength of these technologies rests upon the
hardness of the decoding problem for a general linear code. Of course, an efficient decoding
algorithm is required in practice. So, what is already needed is a family of codes with some
conveniently masked properties that facilitate their efficient decoding. The original McEliece

Communicated by G. Korchmaros.

B F. J. Lobillo
jlobillo@ugr.es

José Gómez-Torrecillas
gomezj@ugr.es

Gabriel Navarro
gnavarro@ugr.es

1 Department of Algebra, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain

2 Department of Computer Science and Artificial Intelligence, University of Granada, Periodista
Daniel Saucedo Aranda s/n, 18071 Granada, Spain

3 IMAG, University of Granada, Ventanilla, 11, 18001 Granada, Spain

4 CITIC, University of Granada, Periodista Rafael Gómez Montero, 2, 18071 Granada, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-023-01286-6&domain=pdf
http://orcid.org/0000-0002-7372-0442

3996 J. Gómez-Torrecillas et al.

cryptosystem took advantage of such characteristics that the classical binary Goppa codes
enjoy.

One way to introduce Goppa codes is the following. Let F ⊆ L be an extension of finite
fields and let g ∈ L[x] be a polynomial which, in this introduction, we assume irreducible
for sake of simplicity. A subset of the group of units of the field L[x]/〈g〉, whose elements
are represented by linear polynomials, is selected. Their inverses serve to build a parity check
matrix of the Goppa code. The arithmetic in L[x] is a main tool in the design of efficient
decoding algorithms for Goppa codes.

From an algebraic point of view, our proposal replaces, in the simplest case, the cyclic
group of units of L[x]/〈g〉 by a linear group, whose mathematical structure is more complex.
In order to design an efficient decoding algorithm, this non-commutative group is presented
as the group of units of a factor ring of the ring of Ore polynomials L[x; σ, ∂] modulo a
suitable invariant polynomial g. The arithmetic of this non-commutative polynomial ring is
used to design an efficient decoding algorithm. Classical Goppa codes become instances of
our construction. Therefore, the security of our cryptosystem is expected to be at least as
strong as the original one.

In Sect. 2 we recall some basic essentials on Ore polynomials and define skew differential
Goppa codes. A non-commutative key equation is derived for these codes (Theorem 1), which
turns out to be a left multiple of an equation computed with the help of the Left Extended
Euclidean Algorithm in L[x; σ, ∂].

The topic of Sect. 3 is the design of an efficient decoding algorithm for skew differential
Goppa codes. To this end, the position points are assumed to be P-independent in the sense
of [14]. Under this hypothesis, the non-commutative locator polynomial already finds the
error positions, and a decoding algorithm, based on the solution of the key equation, is
provided (Algorithm 2). This algorithm gives a solution in most cases, but it is possible that
its output falls in a decoding failure. An efficient backup algorithm solves any of these failures
(Algorithm 3). In resume, the combination of both algorithms correctly computes an error
added to a codeword up to the correction capability.

Section 4 describes how to construct parity check matrices and position points to define
skew Goppa codes suitable to be used in a code-based cryptosystem. The construction is
made for ∂ = 0, which guarantees the polynomial run-time of the algorithms, see Remark 4.

The cryptosystem is presented in Sect. 5. A discussion on the choice of the parameters of
the code is included.

There is a patent pending by University of Granada in order to protect some of the results
in this work, see [8].

2 Skew differential Goppa codes and their non-commutative key
equation

In this section, the required algebraic framework is introduced. Let σ be an automorphism
of finite order μ of a field L . An additive map ∂ : L → L is called a σ -derivation if it
satisfies ∂(ab) = σ(a)∂(b) + ∂(a)b for all a, b ∈ L . By R = L[x; σ, ∂] we denote the ring
of Ore polynomials built from (σ, ∂). This is a fundamental example of non-commutative
ring, introduced in [20], whose basic properties may be found in several texts. We follow [3,
Chap. 1, Sects. 3 and 4] and adopt its notation, see also [11]. In particular, R is a left and
right Euclidean domain. The left division algorithm computes, given f , d ∈ R with d �= 0,
two Ore polynomials q, r ∈ R such that f = qd + r with deg r < deg d , where deg denotes

123

Skew differential Goppa codes 3997

the degree (in x) function. Then we will write

l-quo-rem(f , d) = (q, r), l-quo(f , d) = q.

Given f , g ∈ R, the notation f |r g declares that f is a right divisor of g, which means
Rg ⊆ R f , that is, g = u f for some u ∈ R. The notation f |� g is used analogously, meaning
gR ⊆ f R. When (x −α) |r f , for f ∈ R and α ∈ L , we say that α is a right root of the Ore
polynomial f . Greatest common left/right divisors and least common left/right multiples are
well defined since all left/right ideals are principal. Concretely,

Rg + R f = R (g, f)r , gR + f R = (g, f)� R

and

Rg ∩ R f = R [g, f]� , gR ∩ f R = [g, f]r R.

Remark 1 Let f , g, f ′, g′ ∈ R nonzero such that f ′ f = g′g. Then [f , g]� = f ′ f if and only
if
(
f ′, g′)

�
= 1. In fact, assume [f , g]� = f ′ f = g′g and let d = (

f ′, g′)
�
. Then f ′ = d f ′′

and g′ = dg′′. Hence d f ′′ f = dg′′g, so [f , g]� |r f ′′ f = g′′g. Therefore f ′ f |r f ′′ f ,
i.e., f ′ |r f ′′. It follows that d is a unit, so d ∈ L and

(
f ′, g′)

�
= 1. Conversely, assume(

f ′, g′)
�

= 1. If [f , g]� = f ′′′ f = g′′′g, since [f , g]� |r f ′ f = g′g, there exists c ∈ R
such that c [f , g]� = f ′ f = g′g. It follows c f ′′′ = f ′ and cg′′′ = g′, hence c |l

(
f ′, g′)

�
.

Therefore c ∈ L and [f , g]� = f ′ f = g′g.
The analogous result for least common right multiples and greatest common right divisors

also holds.

There exist Left and Right Extended Euclidean algorithms (LEEA and REEA, for short)
that compute greatest common divisors and least common multiples on both sides. For our
forthcoming reasoning, we will need a very precise statement of the LEEA that provides the
Bezout coefficients in each step of the algorithm. This is given in Algorithm 1.

Algorithm 1 Left Extended Euclidean Algorithm
Require: f , g ∈ L[x; σ, ∂] with f �= 0, g �= 0.
Ensure: {ui , vi , ri }i=0,...,h,h+1 such that ri = ui f + vi g for every i , rh = (f , g)r , and uh+1 f = [f , g]�.
r0 ← f , r1 ← g.
u0 ← 1, u1 ← 0.
v0 ← 0, v1 ← 1.
i ← 1.
while ri �= 0 do

find qi , r such that ri−1 = qi ri + r and deg r < deg ri � Left division
ri+1 ← r
ui+1 ← ui−1 − qi ui
vi+1 ← vi−1 − qivi
i ← i + 1

end while
return {ui , vi , ri }i=0,...,h,h+1

The output of Algorithm 1 enjoys some properties that will be used later. We record them
in the following lemma, whose commutative version may be found in [23, Lemma 3.8].

Lemma 1 Let f , g ∈ R and {ui , vi , ri }i=0,...,h be the coefficients obtained when applying
the LEEA to f and g. Then, for all i = 0, . . . , h, we have:

123

3998 J. Gómez-Torrecillas et al.

1. ui f + vi g = ri .
2. (ui , vi)� = 1.
3. deg f = deg ri−1 + deg vi .

Proof The proof given in [6, Lemma 24] works here step by step. �
Let 0 �= g ∈ R be invariant, i.e. Rg = gR. Therefore, R/Rg is a ring. It is easy to

check that f h = g if and only if h′ f = g, where gh = h′g, so f |r g if and only if
f |l g. In particular, since x − γ is irreducible for all γ ∈ L , (x − γ, g)r = 1 if and only if
(x − γ, g)� = 1.

Observe that (x − γ, g)� = 1 means that x − γ + Rg is a unit in R/Rg, so there exists a
unique h ∈ R with deg(h) < deg(g) such that (x − γ)h − 1 ∈ Rg and h(x − γ) − 1 ∈ Rg.

Definition 1 Let F ⊆ L be a field extension. Let g ∈ R = L[x; σ, ∂] be a nonzero invariant
polynomial. Let α0, . . . , αn−1 ∈ L be different elements such that (x − αi , g)r = 1 for all
0 ≤ i ≤ n − 1, let hi ∈ R such that deg(hi) < deg(g) and

(x − αi)hi − 1 ∈ Rg, (1)

and let η0, . . . , ηn−1 ∈ L∗. A (generalized) skew differential Goppa code C ⊆ Fn is the set
of vectors (c0, . . . , cn−1) ∈ Fn such that

n−1∑

i=0

hiηi ci = 0. (2)

By a degree argument, (2) is equivalent to

n−1∑

i=0

hiηi ci ∈ Rg. (3)

We say that {α0, . . . , αn−1} are the position points, g is the (skew differential) Goppa poly-
nomial and h0, . . . , hn−1 are the parity check polynomials. If ∂ = 0, we just call it a
(generalized) skew Goppa code.

Remark 2 A classical Goppa code is an instance of the skew differential Goppa codes when
σ is the identity map, ∂ = 0 and ηi = 1 for all 0 ≤ i ≤ n − 1.

Remark 3 In [25], linearizedGoppa codes are introduced. Since the ring of linearized polyno-
mials over a finite field is isomorphic to the ring of Ore polynomials built from the Frobenius
automorphism with trivial skew derivation, linearized Goppa codes become instances of
skew differential Goppa codes. Nevertheless, there are some mistakes in this reference.
For instance, [25, Proposition 1] seems not to be correct. Indeed, following the notation
in [25], let q = 2, m = 3. The field Fqm is represented as F23 = F2[b]/〈b3 + b + 1〉. Let
g = 〈

g1 = b2 + b, g2 = b
〉
. We get

σg(x) = σ〈g1,g2〉(x) = x(x + b2 + b)(x + b)(x + b2) = x4 + x2 + x,

σg1(x) = σ〈g2〉(x) = x(x + b) = x2 + bx

and

σg1(x) ◦ (xq − gq−1
1 x) = (x2 + bx) ◦ (x2 + (b2 + b)x) = x4 + (b2 + b + 1)x,

so it is not true that σg(x) = σgi (x) ◦ (xq − gq−1
i x).

123

Skew differential Goppa codes 3999

For the rest of this section a skew differential Goppa code C is fixed. Let {εi | 0 ≤ i ≤
n − 1} be the canonical basis of Fn . Assume c ∈ C is transmitted and r ∈ Fn is received.
Therefore

r = c + e

for some e = ∑ν
j=1 e jεk j with e j �= 0 for 1 ≤ j ≤ ν. The syndrome polynomial is defined

and computed as

s =
n−1∑

i=0

hiηi ri .

By (2), it follows that

s −
ν∑

j=1

hk j ηk j e j =
n−1∑

i=0

hiηi ci ∈ Rg = gR. (4)

We define the (non-commutative) error locator polynomial as

λ = [{x − αk j | 1 ≤ j ≤ ν}]
�

∈ R.

Then deg(λ) ≤ ν and, for each 1 ≤ j ≤ ν, there exists ρk j ∈ R such that deg(ρk j) < ν and

λ = ρk j (x − αk j). (5)

The error evaluator polynomial is defined as

ω =
ν∑

j=1

ρk j ηk j e j .

It follows that deg(ω) < ν.
Our next aim is to derive and solve a non-commutative key equation that relates syndrome,

and error locator and error evaluator polynomials. The solution requires the following lemma.

Lemma 2 Let f , g ∈ R such that deg f < deg g = χ . Assume that there exist κ, λ, ω ∈ R
such that κg + λ f = ω, deg λ ≤ ⌊χ

2

⌋
and degω <

⌊χ
2

⌋
. Let u I , vI and rI be the (partial)

Bezout coefficients returned by the LEEA with input g and f , where I is the index determined
by the conditions deg rI−1 ≥ ⌊χ

2

⌋
and deg rI <

⌊χ
2

⌋
. Then there exists h ∈ R such that

κ = huI , λ = hvI and ω = hrI .

Proof Since κg + λ f = ω, deg λ ≤ ⌊χ
2

⌋
and degω <

⌊χ
2

⌋
, it follows that deg κ <

⌊χ
2

⌋
.

By Lemma 1, deg vI + deg rI−1 = χ , so that deg vI ≤ χ − ⌊χ
2

⌋
.

Write [λ, vI]� = aλ = bvI , where a, b ∈ R with deg a ≤ deg vI ≤ χ − ⌊χ
2

⌋
and

deg b ≤ deg λ ≤ ⌊χ
2

⌋
. Then (a, b)� = 1 by Remark 1.

From κg + λ f = ω we get

aκg + aλs = aω. (6)

By Lemma 1, we have uI g + vI f = rI , which we multiply on the left by b to get

buI g + bvI s = brI . (7)

Hence, from (6) and (7),

(aκ − buI)g = aω − brI . (8)

123

4000 J. Gómez-Torrecillas et al.

Since

deg(aω − brI) ≤ max {deg a + degω, deg b + deg rI }
< max

{
χ −

⌊χ

2

⌋
+
⌊χ

2

⌋
,
⌊χ

2

⌋
+
⌊χ

2

⌋}
= χ = deg g,

it follows, from (8), that aκ = buI and aω = brI . Actually, (a, b)� = 1 yields [κ, uI]� =
aκ = buI and [ω, rI]� = aω = brI by Remark 1. In particular, deg a ≤ deg rI <

⌊χ
2

⌋
.

Let [a, b]r = aa′ = bb′. Since [λ, vI]� is a right multiple of a and b, there exists
m ∈ R such that [λ, vI]� = [a, b]r m. Then aλ = bvI = aa′m = bb′m. Thus, λ = a′m
and vI = b′m and, by minimality, (λ, vI)r = m. Similar arguments prove that there exist
m′,m′′ ∈ R such that uI = b′m′ and κ = a′m′, and that rI = b′m′′ and ω = a′m′′.
Nevertheless, by Lemma 1, (uI , vI)� = 1, so b′ = 1. In this way, b = aa′ and we get
λ = a′vI , ω = a′rI and κ = a′uI . This completes the proof. �
Theorem 1 The error locator λ and the error evaluator ω polynomials satisfy the non-
commutative key equation

ω = κg + λs, (9)

for some κ ∈ R. Assume that ν ≤ t =
⌊
deg g
2

⌋
. Let u I , vI and rI be the Bezout coefficients

returned by the left extended Euclidean algorithm with input g and s, where I is the index
determined by the conditions deg rI−1 ≥ t and deg rI < t . Then there exists h ∈ R such that
κ = huI , λ = hvI and ω = hrI .

Proof Since (x −αi)hi + Rg = 1+ Rg for all 0 ≤ i ≤ n − 1, we get from (4) the following
computation in the ring R/Rg:

λs + Rg =
ν∑

j=1

λhk j ηk j e j + Rg

=
ν∑

j=1

ρk j (x − αk j)hk j ηk j e j + Rg

=
ν∑

j=1

ρk j ηk j e j + Rg

= ω + Rg.

This proves (9). By construction,

deg s ≤ max {deg(hi) | 0 ≤ i ≤ n − 1} < deg g,

so the second statement of the theorem follows from Lemma 2. �

3 Decoding algorithms

From now on we assume

ν ≤ t =
⌊
deg g

2

⌋
.

It follows from Theorem 1 that the condition (λ, ω)� = 1 implies that λ and ω are left
associated to vI and rI , respectively. Hence, under this condition the LEEA computes the

123

Skew differential Goppa codes 4001

error locator and evaluator polynomials. In the commutative case, it is easy to check that
locator and evaluator are always relatively prime. Although, in our experiments, most of
examples in this non-commutative setting already satisfy the condition (λ, ω)� = 1, this is
not always the case (see Example 3). For a correct decoding, we need to know when vI , rI
are actually the error locator and the error evaluator polynomials, and if the error locator
polynomial already locates the error positions.

In order to proceed, we need the notion of left P-independent set in the sense of [4, 15].
From now on, we assume the following hypothesis on the position points.

Hypothesis 1 We assume that {α0, . . . , αn−1} ⊆ L is left P-independent, that is,

deg [{x − αi | 0 ≤ i ≤ n − 1}]� = n. (10)

Observe that, by [4, Theorem 5.3], every subset of a P-independent set is P-independent.
As a consequence of Hypothesis 1, deg(λ) = ν. Let us deduce that λ already locates the

error positions.

Proposition 1 x − αk |r λ if and only if k ∈ {k1, . . . , kν}.
Proof If x−αk |r λwith k /∈ {k1, . . . , kν} then the set {αk, αk1 , . . . , αkν } is left P-dependent.

�

3.1 Decoding algorithmwith unlikely decoding failure

In this subsection we give a criterion on the partial outputs of LEEA to decide if λ is left
associated to vI (Proposition 2). This leads to a decoding algorithm (Algorithm 2) that turns
out to work in most cases. In the next subsection, we discuss how to correctly decode when
Algorithm 2 outputs a decoding failure. Our approach is adapted from [6, Lemma 26 and
Theorem 15].

Lemma 3 Let {i1, . . . , im} ⊆ {0, . . . , n − 1} with 1 < m ≤ n, and

f = [
x − αi1 , . . . , x − αim

]
�
.

Let f1, . . . , fm ∈ R such that f = f j (x − αi j) for all 1 ≤ j ≤ m. Then:

1. [f1, . . . , fm]r = f and (f1, . . . , fm)� = 1.
2. R/ f R = ⊕m

j=1 f j R/ f R.
3. For any h ∈ R with deg h < m there exist a1, . . . , am ∈ L such that h = ∑m

j=1 f j a j .
4. The set { f1, . . . , fm} gives, modulo f R, a basis of R/ f R as an L-vector space.

Proof (1) By Hypothesis 1, {αi1 , . . . , αim } is left P-independent. So, by (10), deg f = m and,
thus, deg f j = m − 1 for every j = 1, . . . ,m. Since m > 1, the degree of [f1, . . . , fm]r
must be at least m − 1 + 1 = m. But f is obviously a common left multiple of f1, . . . , fm ,
whence f = [f1, . . . , fm]�. It is straightforward to check that (f1, . . . , fm)� = 1, otherwise
there would be a left common multiple of x − αi j for 1 ≤ j ≤ m with degree smaller than
deg f .

(2) Since f R ⊆ f j R for all 1 ≤ j ≤ m and (f1, . . . , fm)� = 1, we get R/ f R =∑m
j=1 f j R/ f R. Observe that f j R/ f R ∼= R/(x − αi j)R is one-dimensional over L . Since

the dimension of R/ f R as an L–vector space is deg f = m, we get that the sum is direct.
(3) and (4) follow from (2). �

123

4002 J. Gómez-Torrecillas et al.

Proposition 2 Let u, v, r ∈ R such that ug + vs = r , hu = κ , hv = λ and hr = ω for some
h ∈ R. Let T = {l1, l2, . . . , lm} = {0 ≤ l ≤ n − 1 | (x − αl) |r v}. Then m = deg v if and
only if deg h = 0.

Proof Since v |r λ, every right root of v is a right root of λ, hence {l1, . . . , lm} ⊆ {k1, . . . , kν}
by Proposition 1. We reorder the set of error positions in such a way that T = {k1, . . . , km}
with m ≤ ν. If deg h = 0, then m = ν and deg v = ν by (10), since {αk1 , . . . , αkν } is left
P-independent. Conversely, if m = deg v, then

v = [{x − αk j | 1 ≤ j ≤ m}]
�

by (10) and Hypothesis 1. Recall that λ = ρk j (x − αk j) and write v = ρ′
j (x − αk j) for all

1 ≤ j ≤ m. Since

deg r = degω − deg h = degω + deg v − deg λ ≤ ν − 1 + m − ν = m − 1,

we get from Lemma 3 that r = ∑m
i=1 ρ′

i ai for some a1, . . . , am ∈ L . On the other hand,
λ = hv. Thus, for any 1 ≤ j ≤ m, ρk j (x − αk j) = hρ′

j (x − αk j), so ρk j = hρ′
j . Now,

hr = ω, so

m∑

j=1

ρk j a j = h

⎛

⎝
m∑

j=1

ρ′
j a j

⎞

⎠ = hr = ω =
m∑

j=1

ρk j e j +
ν∑

j=m+1

ρk j e j . (11)

By Lemma 3, {ρk1 , . . . , ρkν } is a basis of R/λR as a right L–vector space. Therefore, since
e j �= 0 for every 1 ≤ j ≤ ν, Eq. (11) implies that m = ν and, thus, deg h = 0. �

Theorem 1 and Proposition 2 ensure the correctness of the decoding algorithm described
in Algorithm 2.

3.2 Solving decoding failures

Proposition 2 gives a sufficient condition which tells us if we have actually found the solution
of (9), and, therefore, the output of Algorithm 2 is the error polynomial. Nevertheless, a
decoding failure may occur, see Example 3, and we might not had compute the error locator
polynomial, but only a proper right divisor. So we need to find new right roots of λ.

Proposition 3 Let u, v, r ∈ R such that ug + vs = r , hu = κ , hv = λ and hr = ω for some
h ∈ R. Let k ∈ {0, . . . , n − 1} such that x − αk �r v but x − αk |r λ. Set v′ = [x − αk, v]�
and let h′′ ∈ R such that h′′v = v′. Define u′ = h′′u and r ′ = h′′r . Then u′g + v′s = r ′,
h′u′ = κ , h′v′ = λ and h′r ′ = ω for some h′ ∈ R.

Proof Since λ = hv, it follows that [x − αk, v]� |r λ, so there exists h′ ∈ R such that λ =
h′ [x − αk, v]�. Then hv = λ = h′h′′v, hence h = h′h′′. Multiplying ug + vs = r by h′′ on
the left, we get u′g + v′s = r ′. Moreover, κ = hu = h′h′′u = h′u′, λ = hv = h′h′′v = h′v′
and ω = hr = h′h′′r = h′r ′. �
Proposition 4 Assume λ = hv with deg h ≥ 1. Let

{s1, . . . , sm} = {
i ∈ {0, . . . , n − 1} | (x − αi) |r v

}

and {l1, . . . , lr } = {0, . . . , n−1}\{s1, . . . , sm}. For any 1 ≤ i ≤ r , let fi = [
fi−1, x − αli

]
�

with f0 = v. Then:

123

Skew differential Goppa codes 4003

Algorithm 2 Decoding algorithm for skew differential Goppa codes with unlikely decoding
failure
Require: A skew differential Goppa code C of length n, correction capability t , position points

{α0, . . . , αn−1} ⊆ L , η0, . . . , ηn−1 ∈ L∗, skew differential Goppa invariant polynomial g ∈ L[x; σ, ∂]
with deg(g) = 2t , and parity check polynomials h0, . . . , hn−1 ∈ L[x; σ, ∂] of degree 2t − 1.

Require: A received word y = (y0, . . . , yn−1) ∈ Fn .
Ensure: A vector e ∈ Fn such that w(e) ≤ t and y − e ∈ C, or decoding failure.
1: s ← ∑n−1

i=0 hiηi yi
2: if s = 0 then
3: return the zero vector
4: end if
5: rprev ← g, rcurr ← s, vprev ← 0, vcurr ← 1 � LEEA
6: while deg(rcurr) ≥ t do
7: f , r ← l-quo-rem(rprev, rcurr)
8: v ← vprev − f vcurr , vprev ← vcurr , rprev ← rcurr , vcurr ← v, rcurr ← r
9: end while
10: pos ← {}, other = {0, . . . , n − 1} � Finding error positions
11: for 0 ≤ i ≤ n − 1 do
12: if αi is a right root of vcurr then
13: pos ← pos ∪ {i}, other = other \ {i}
14: end if
15: end for
16: if deg(vcurr) >| pos | then
17: ‘Decoding failure’
18: stop
19: end if
20: for j ∈ pos do � Finding error values
21: ρ j ← l-quo(vcurr , x − α j)
22: end for
23: Solve the linear system rcurr = ∑

j∈pos ρ jη j e j
24: e(x) ← ∑

j∈pos e j x
j

25: return the vector associated to the polynomial e(x)

1. There exists d ≥ 0 such that deg(fd−1) = deg(fd),
2. If d0 is the minimal index such that deg(fd0−1) = deg(fd0), then d0 ∈ {k1, . . . , kν}.
Proof For any 1 ≤ i ≤ r , let λi = [

λi−1, x − αli
]
�
with λ0 = λ. It is clear that fi |r λi

for any 1 ≤ i ≤ r . Suppose that the sequence {deg(fi)}0≤i≤r is strictly increasing. Hence
deg(fr) = r + deg(v) = n − m + deg(v) > n because, by Proposition 2, deg(v) > m.
This is not possible, since fr |r λr = [{x − αi | 0 ≤ i ≤ n − 1}]r whose degree is bounded
from above by n. So there exists a minimal d0 ≥ 0 such that deg(fd0−1) = deg(fd0). Now,

x − αid0
|r fd0−1 |r λd0−1 =

[
λ, x − αl1 , . . . , x − αld0−1

]

�
. Since, ld0 �= l1, . . . , ld0−1,

x − αld0
|r λ. Thus, d0 ∈ {k1, . . . , kν}. �

Propositions 3 and 4 provide a way to find the locator if a decoding failure happens. This
is presented in Algorithm 3.

Remark 4 Concerning the complexity, the run-time of Algorithm 2 is dominated by the
execution of the LEEA and a linear system resolution. In Algorithm 3, the internal loop,
that finds an error position, computes the least common left multiple of a linear polynomial
and vcurr , updating vcurr to this least common leftmultiple, until the process does not increase
the degree. Its theoretical complexity is then dominated by an n-times execution of a least
common left multiple of bounded polynomials. Now, this loop is executed, at most, the
number of error positions, so that the complexity of Algorithm 3 is bounded polynomially

123

4004 J. Gómez-Torrecillas et al.

Algorithm 3 Solving decoding failures
Require: A skew differential Goppa code C of length n, correction capability t , position points

{α0, . . . , αn−1} ⊆ L , η0, . . . , ηn−1 ∈ L∗, skew differential Goppa invariant polynomial g ∈ R with
deg(g) = 2t , and parity check polynomials h0, . . . , hn−1 ∈ R of degree 2t − 1.

Require: The polynomials vcurr , rcurr and the sets pos, other in Algorithm 2
Ensure: The locator polynomial λ.

while deg(vcurr) >| pos | do
f ← vcurr , e ← deg(f)
i ← one element in other , other = other \ {i}
f ← [

f , x − αi
]
�

5: while deg(f) > e do
e ← e + 1
i ← one element in other , other = other \ {i}
f ← [

f , x − αi
]
�

end while
10: pos = pos ∪ {i}, other = {0, . . . , n − 1} \ pos

v ← vcurr , vcurr ← [
v, x − αi

]
�
, h ← l-quo(vcurr , v), rcurr ← hrcurr

for i ∈ other do
if αi is a right root of vcurr then

pos ← pos ∪ {i}, other = other \ {i}
15: end if

end for
end while
return vcurr , rcurr , pos

with respect to the complexity of the LEEA. Consequently, in general, the conjunction of
Algorithms 2 and 3 has polynomial run-time, in the worst case, with respect to the execution
of the LEEA and a linear system resolution.

In the setting of the cryptosystem to be described in Sect. 5, that is, skew polynomials
over a finite field with ∂ = 0, according to [7, Lemma 3.3], the execution of the LEEA is
in O(n2) operations in the field, whilst the traditional approach to solve the linear system in
Line 23 of Algorithm 2 is byGaussian elimination, which can be done inO(t3). Therefore the
complexity of Algorithm 2 belongs to O(t3 + n2) operations in the field, whilst Algorithm 3
belongs to O(tn3).

It was noticed by one of the referees that there is a fast computation of the left extended
Euclidean algorithm in [2]. These results could be used to speed our algorithms up in the
finite field case.

Observe that, byTheorem1 andProposition 2, decoding failure cannot happen if (λ, ω)� =
1. Next, we analyze this condition.

Proposition 5 Under the notation of Sect.2, the following statements are equivalent:

1. (ω, λ)� = 1.
2. ω + λR generates R/λR as a right R–module.
3. The set {(ω + λR)xi | 0 ≤ i ≤ ν − 1} is right linearly independent over L.
Proof The equivalence between (1) and (2) is a direct consequence of Bezout’s Theorem. It
is clear that ω + λR generates the right R–module R/λR if and only if {(ω + λR)xi | 0 ≤
i ≤ ν − 1} spans R/λR as a right L–vector space. Since the dimension over L of R/λR is
ν, the equivalence between (2) and (3) becomes clear. �

In the skew case, i.e. ∂ = 0, a more precise analysis can be done. Besides the partial norms
Ni (a), for anya ∈ L and i ∈ N, the -i th normofa is defined asN−i (a) = Nσ−i (a) = Nσ−1

i (a),

123

Skew differential Goppa codes 4005

i.e.

N−i (a) = aσ−1(a) . . . σ−i+1(a).

Sinceσ has orderμ, it follows thatNμ(γ) = N−μ(γ).Moreover, for each f = ∑
j f j x j ∈ R

and all γ ∈ L , there exists h ∈ R such that

f = (x − γ)h +
∑

j

σ− j (f j)N− j (γ). (12)

Lemma 4 The j-coordinate of ωxi + λR with respect to the basis {ρk1 , . . . , ρkν } is
N−i (αk j)σ

−i (ηk j)σ
−i (e j), for any 1 ≤ j ≤ ν.

Proof By (12), αk j is a left root of xi − N−i (αk j). Then xi − N−i (αk j) ∈ (x − αk j)R.
Multiplying on the left by ρk j , ρk j x

i − ρk j N−i (αk j) ∈ λR. Thus, in R/λR,

ωxi =
ν∑

j=1

ρk j ηk j e j x
i

=
ν∑

j=1

ρk j x
iσ−i (ηk j)σ

−i (e j)

=
ν∑

j=1

ρk j N−i (αk j)σ
−i (ηk j)σ

−i (e j)

and the result follows. �
Proposition 6 (ω, λ)� = 1 if and only if

det
(
N−i (αk j)σ

−i (ηk j)σ
−i (e j)

)

0≤i≤ν−11≤ j≤ν
�= 0.

Proof It follows from Lemma 4 and Proposition 5. �
Remark 5 Example 3 shows a system providing, under certain carefully chosen errors, a
decoding failure.However, aswe have pointed out above, this unlikely occurs. In the setting of
Example 3, our experiments under randomized errors in the transmission result a probability
of 0.003 of obtaining a decoding failure. Whenever the field extension is not trivial, which
is the standard setting in practice, none of our experiments outputted a decoding error. For
instance, under parameters F = F22 , n = 512 and t = 5, after 4 millions executions, no
decoding failure was found. This suggests that, for non trivial extensions, there is no decoding
failure. Unfortunately, we have been unable to prove it, so we leave this assertion as an open
problem.

4 Parity checkmatrices and position points for skew Goppa codes

This section dealswith the computation of parity-checkmatrices and the choice of the position
points for skew Goppa codes. Although most of results are still valid in the skew differential
case, the presentation become less technical under the assumption ∂ = 0. On the other hand,
this level of generality suffices for our main purpose, namely, the design of a cryptosystem
based on skew Goppa codes over a finite field.

123

4006 J. Gómez-Torrecillas et al.

For a given skew differential Goppa code, a parity check matrix can be derived from (2).
Wemake it explicit in the skewGoppa case. So let R = L[x; σ], where L is a finite extension
of a given field F , and σ is a field automorphism of L of finite orderμ. Let C be a skewGoppa
code with Goppa polynomial g ∈ R, position points {α0, . . . , αn−1}, η0, . . . , ηn−1 ∈ L∗ and
parity check polynomials h0, . . . , hn−1. Let deg(g) = χ , hi = ∑χ−1

j=0 hi, j x
j and

Ĥ =

⎛

⎜
⎜
⎜
⎝

σ−0(h0,0)η0 σ−0(h1,0)η1 · · · σ−0(hn−1,0)ηn−1

σ−1(h0,1)η0 σ−1(h1,1)η1 · · · σ−1(hn−1,1)ηn−1
...

...
. . .

...

σ−χ+1(h0,χ−1)η0 σ−χ+1(h1,χ−1)η1 · · · σ−χ+1(hn−1,χ−1)ηn−1

⎞

⎟
⎟
⎟
⎠

.

Proposition 7 For each γ ∈ L, let v(γ) denote its F–coordinates, as a column vector, with
respect to a fixed F–basis of L. Let

H =
(
v(σ− j (hi, j)ηi)

)
0≤ j≤χ−1
0≤i≤n−1

∈ F (χm)×n .

Then H is a parity check matrix for C.
Proof Observe that

n−1∑

i=0

hiηi ci =
n−1∑

i=0

χ−1∑

j=0

hi, j x
jηi ci =

n−1∑

i=0

χ−1∑

j=0

x jσ− j (hi, j)ηi ci =
χ−1∑

j=0

x j
n−1∑

i=0

σ− j (hi, j)ηi ci ,

so (2) is also equivalent to

n−1∑

i=0

σ− j (hi, j)ηi ci = 0, 0 ≤ j ≤ χ − 1,

i.e.

(c0, c1, . . . , cn−1)Ĥ
T = 0.

Since C ⊆ Fn , (c0, c1, . . . , cn−1) ∈ C if and only if (c0, c1, . . . , cn−1)HT = 0. �
We gather from [4, 14] the information on P-independent sets needed to describe every

possible set of position points in the skew Goppa case.
It is well known that the center of R = L[x; σ] is K [xμ], where K = Lσ , the invariant

subfield of L under σ . So, for every a ∈ L , the polynomial xμ − N(a) is central, where

N(a) = aσ(a) · · · σμ−1(a)

is the norm of a. Define, following [13], the conjugate of a under c ∈ L∗ as ca = σ(c)ac−1,
and the conjugacy class of a as

�(a) = {ca : c ∈ L∗}.
By virtue of Hilbert’s 90 Theorem (see e.g. [16, Chap. VI, Theorem 6.1]), �(a) = �(b) if,
and only if, N(a) = N(b). Hence,

�(a) = {b ∈ L : N(a) = N(b)}. (13)

123

Skew differential Goppa codes 4007

Observe that these conjugacy classes form a partition of L .
For each f = ∑

j f j x j ∈ R and any b ∈ L , by [13, Lemma 2.4], there exists h ∈ R such
that

f = h(x − b) +
∑

j

f j N j (b), (14)

where N j (b) ∈ L is defined as

N0(b) = 1, and N j (b) = bσ(b) . . . σ j−1(b) for j ≥ 1.

Observe that N(b) = Nμ(b). We get thus from (14) and (13) that

�(a) = {b ∈ L : (x − b) |r xμ − N(a)}. (15)

We are now in a position to show how to build P-independent sets by using the general
theory as established in [4, 14].

Proposition 8 Given a ∈ L∗, the P-independent subsets of �(a) are those of the form
{c1a, . . . , cm a}, where m ≤ μ and {c1, . . . , cm} is a K–linearly independent subset of L.
Moreover, m = μ if and only if

[
x − c1a, . . . , x − cm a

]
�

= xμ − N(a).

Proof According to [4, Theorem 5.3], {c1a, . . . , cm a} is P-independent if and only if
{c1, . . . , cm} is linearly independent over the σ–centralizer of a, given by

Cσ (a) = {c ∈ L \ {0} : ca = a} ∪ {0},
which is a subfield of L . Indeed, Cσ (a) = K , so we obtain the first statement. The second
one is derived from (15). �
Proposition 9 A subset � ⊆ L∗ is P-independent of and only if

� = �1 ∪ · · · ∪ �r ,

where �i ⊆ �(ai) is P-independent for all i = 1, . . . , r , and a1, . . . , ar ∈ L are nonzero
elements of different norm.

Proof Since the conjugacy classes form a partition of L∗ and subsets of P-independent
sets are P-independent, we deduce that every P-independent set � ⊆ L∗ decomposes as
� = �1 ∪ · · · ∪ �r for �i ⊆ �(ai) for a1, . . . , ar ∈ L∗ of different norms.

To reason the converse, observe first that the equality (15) says that, for each a ∈ L∗, the
conjugacy class �(a) is precisely the set of all right roots, in the sense of [14], of the skew
polynomial xμ −N(a). So, these conjugacy classes are instances of full algebraic subsets of
L∗ to which [14, Corollary 4.4] can be applied. Thus, if �i ⊆ �(ai) is P-independent, then,
by virtue of Proposition 8, it corresponds to a K–linearly subset of L , which is a subset of a
K–basis Bi of L . Again by Proposition 8, Bi gives a maximal P-independent subset �i of
�(ai) (a P-basis, in the words of [14]), that contains�i . By [14, Corollary 4.4],�1∪· · ·∪�r

is a P-basis of �1(a1) ∪ · · · ∪ �r (ar). As a consequence, �1 ∪ · · · ∪ �r is P-independent. �
As for the selection of the skew Goppa polynomial concerns, we may state:

Proposition 10 Consider h ∈ K [xμ] without roots in K . Then g = xah ∈ L[x; σ] has no
right roots in L∗ for any a ≥ 0.

123

4008 J. Gómez-Torrecillas et al.

Proof If α ∈ L∗ is a right root of g, then α is a right root of h ∈ L[x; σ]. Then, by Proposition
8, xμ−N(α) is a right divisor in L[x; σ] of the central polynomial h. This gives that xμ−N(α)

is a divisor of h ∈ K [xμ], that is, N(α) ∈ K is a root of h(xμ). �

5 AMcEliece cryptosystem based on skew Goppa codes

To design a skew Goppa code C, we first choose, as alphabet, a finite field F = Fq , where
q = pd for a prime p. We set the length n and the correction capacity t < n/2. In practice,
this parameter t is much smaller than n, as we will see below. Algorithms 2 and 3 guarantee
that we may set

t =
⌊
deg g

2

⌋
, (16)

where g is the skewGoppapolynomial.Wemust build the skewpolynomial ring R = L[x; σ],
where L is an extension of F of degreem, so L = Fqm . We choose t, n,m such that 2mt ≤ n
since, from (2), a parity check matrix over F has size 2mt × n. If 2mt is too close or too far
from n, we get codes with very small or very large dimension. For instance, in the Classic
McEliece NIST’s Post-Quantum Cryptography Standardization Project proposal, see [1], the
proposed code rates, the ratios between dimension and length, are ≈ 0.75.

From the relation

dimF C = n − rank(H) ≥ n − 2mt, (17)

by choosing

m ≤ n

4t
,

we obtain that

dimF C
n

≥ 0.5.

If the dimension of C is strictly greater than n − 2mt, then we choose randomly a linear
subcode C� of C with that dimension. Setting

n

10t
≤ m ≤ n

4t
,

then

0.5 ≤ dimF C′

n
≤ 0.8.

The field automorphism σ of L is given as a power of the Frobenius automorphism τ , that
is τ(a) = a p , so we pick 1 ≤ s ≤ dm and set δ = gcd(s, dm). Define σ = τ s , which has
order

μ = dm

δ
,

and K = Lσ = Fpδ . If δ = dm, then the automorphism is the identity and we recover the
classical Goppa codes as observed in Remark 2.

The definition of the skew Goppa code C requires the specification of a P-independent
subset of L∗, the position points, and an invariant polynomial g ∈ R having no right root

123

Skew differential Goppa codes 4009

among these points. As for the first task concerns, we describe all maximal P-independent
subsets of L∗. Every other P-independent set is a subset of one of these.

Proposition 11 Let γ be a primitive element in L. Every maximal P-independent subset of
L∗ if of the form

{σ(ci j)γ
i c−1

i j : i = 0, . . . , pδ − 2, j = 0, . . . , μ − 1},
where {ci0, . . . , ciμ−1} is a K–basis of L for each i = 0, . . . , pδ − 2. As a consequence, if
a P-independent subset of L∗ has n elements, then n ≤ (pδ − 1)μ.

Proof It is well-known that N(γ) is a primitive element of K . Thus,

{N(γ i) : i = 0, . . . , pδ − 2}
is a set of representatives of the conjugacy classes of L∗ according to (13). The proposition
holds now from Propositions 8 and 9. �
Example 1 Let {α, σ (α), . . . , σμ−1(α)} be a normal basis of L/K . For 0 ≤ i ≤ μ − 1, set
βi = σ i+1(α)/σ i (α). Proposition 11 implies that

{
γ iβ j | 0 ≤ i ≤ pδ − 2, 0 ≤ j ≤ μ − 1

}

is a maximal P-independent set of L∗.

As for the choice of the skew Goppa polynomial concerns, we may set g = xah, for any
central non constant polynomial h ∈ K [xμ] without roots in K and a ≥ 0 (Proposition 10)
adjusted to condition (16).

Remark 6 If g = xah with h irreducible, we have an isomorphism of rings

R

Rg
∼= R

Rxa
× R

Rh
.

The first factor is a non-commutative serial ring of length a, while the second factor is
isomorphic to a matrix ring with coefficients in a field extension of K . So, the group of units
of R/Rg is a product of the group of units of a field (if a > 0) and a general linear group
over a field extension of K .

By Proposition 11 we get the inequality

n ≤ μ(pδ − 1) = dm

δ

(
pδ − 1

)
. (18)

So, given n, t, q = pd , we want to find m, δ such that

max

{
n

10t
,

nδ

d(pδ − 1)

}
≤ m ≤ n

4t
and δ | dm. (19)

Our proposal of a McEliece cryptosystem follows the dual version of Niederreiter [19],
by means of a Key Encapsulations Mechanism like the one proposed in [1].

5.1 Key schedule

The input is n � t and F = Fq with q = pd .

123

4010 J. Gómez-Torrecillas et al.

5.1.1 Construction of additional parameters

In order to generate the public and private keys for aMcEliece type cryptosystem, the param-
eters m and s have to be found. These can be computed randomly via an exhaustive search
to find pairs (m, δ) satisfying (19) and then looking for an s such that δ = gcd(s, dm). For
instance, if n = 4096, t = 25, q = pd = 2, we get the following combinations:

m 24 26 28 30 32 33 34 36 36 38 39 40
δ 12 13 14 15 16 11 17 12 18 19 13 20

plus those cases m = δ, which correspond to classical Goppa codes. If n = 2560, t =
22, q = pd = 24, we get 83 different combinations, among them 18 are classical Goppa
codes corresponding the case δ = dm, where 12 ≤ m ≤ 29 and 12 ≤ δ ≤ 116.

We set k = n − 2t
⌊ n
4t

⌋
, the smallest possible dimension, according to (19). Next pick

randomly 1 ≤ s ≤ dm, and let δ = gcd(s, dm), μ = dm
δ
, L = Fqm , K = Fpδ and

σ = τ s : L → L . Fix a basis of L over F and denote v : L → Fm the map providing the
coordinates with respect to this basis. Let also denote R = L[x; σ].

5.1.2 Left P-independent set

The set of position points may be selected amongst the points in amaximal left P-independent
set as computed in Example 1. So we need a normal basis and a primitive element of L .

Let first compute a normal basis of L over K . We point out that

{α, σ (α), . . . , σμ−1(α)} = {α, τ δ(α), . . . , τ δ(μ−1)(α)}
since both τ δ and σ are generators of the cyclic Galois group of the field extension L of K .

For each φ ∈ K [z], let ϕpδ (φ) be the number of polynomials in the indeterminate z of
degree smaller than degφ and relatively prime to φ. It is well known, see [17, Theorem 3.73],
that ϕpδ (zμ −1) is the number of α ∈ L such that {α, σ (α), . . . , σμ−1(α)} is a normal basis.
By [5, Theorem 2],

ϕpδ (zμ − 1) ≥ pδμ

e

⌈
logpδ μ

⌉ ,

so the probability ρ of picking randomly an element which generates a normal basis is
bounded from below by

ρ ≥ 1

e

⌈
logpδ μ

⌉ .

So, a random search should produce a normal element in a very few attempts. For instance,
the probability of choosing randomly an element which generates a normal basis when
n = 4096, t = 25, q = pd = 2 or n = 2560, t = 22, q = pd = 24 is ρ ≥ 0.36.

It remains to provide a fast method to check if an element generates a normal basis.
There are quite enough methods to do that for finite fields, see e.g. [12, 24], where random-
ized algorithms in O(μ2 + μ log pδ) and O(μ1.82 log pδ), respectively, are provided. In our
experiments we have just used the classical Hensel test, see [10] or [17, Theorem 2.39],

123

Skew differential Goppa codes 4011

which says that, for a given α ∈ L = Fpdm , {α, α pδ
, . . . , α p(μ−1)δ } is a normal basis if and

only if

gcd
(
zμ − 1, αzμ−1 + α pδ

zμ−2 + · · · + α p(μ−1)δ
)

= 1.

A similar analysis can be done for primitive elements. As mentioned in the introduction
of [21], all known algorithms to compute primitive elements work in two steps: compute a
reasonable small subset containing a primitive element and test all elements of this subset
until a primitive elements is found. Since the number of primitive elements in L is ϕ(| L |
−1) = ϕ(pdm − 1) and, by [9, Theorem 328], ϕ(pdm − 1)/(pdm − 1) is asymptotically
bounded from below by a constant multiple of log log(pdm − 1), a random search would
produce quite fast a primitive element. For instance, in case n = 4096, t = 25, q = pd = 2,
this lower bound is always greater than 0.168, or, in case n = 2560, t = 22, q = pd = 24,
than 0.127.

Testing if a randomly chosen γ ∈ L is primitive can be donewith the classical equivalence

γ is primitive ⇐⇒ γ
pdm−1

pi �= 1 for all prime factor pi of p
dm − 1

which requires factoring pdm − 1. Since pdm − 1 is reasonably small, this can also be done
efficiently.

Once a primitive element γ and a normal element α have been computed, a maximal set
of left P-independent elements is

P =
{
γ i σ j+1(α)

σ j (α)
| 0 ≤ i ≤ pδ − 2, 0 ≤ j ≤ μ − 1

}
.

In the classical case δ = dm, being P-independent just means different position points.

5.1.3 Position points, skew Goppa polynomial and parity check polynomials

The list E of position points is obtained by a random selection of n points in P. Observe that
we have chosen the parameter to have n ≤| P |.

E = {α0, . . . , αn−1} ⊆ P.

For the skewGoppa polynomial, we randomly choose amonic polynomial h(y) ∈ K [y]with-
out roots in K , see Proposition 10, such that degy(h) = �2t/μ� and set g = h(xμ)x2t mod μ,
which has degree 2t .

Finally, the REEA allow to compute h0, . . . , hn−1 ∈ R such that, for each 0 ≤ i ≤ n− 1,
deg(hi) < 2t and

(x − αi)hi − 1 ∈ Rg.

In fact deg(hi) = 2t − 1 by a degree argument.

5.1.4 Parity check matrix and public key

By Proposition 7, a parity check matrix for the skew Goppa code is

H =
(
v(σ− j (hi, j)ηi)

)
0≤ j≤2t−1
0≤i≤n−1

∈ F2tm×n

123

4012 J. Gómez-Torrecillas et al.

where hi = ∑2t−1
j=0 hi, j x j . Once H is computed, the public key of our cryptosystem can be

calculated as follows: set k = n − 2t
⌊ n
4t

⌋
, rH = rank(H) and A ∈ F (n−k−rH)×n , a random

full rank matrix. The matrix Hpub is formed by the non zero rows of the reduced row echelon
form of the block matrix

(
H
A

)
. If Hpub has less that n − k rows, pick a new A. This Hpub

defines a linear subcode of C of dimension k.
After this Key Schedule in the Key EncapsulationMechanism, the different values remain

as follows:

Parameters: t � n, q = pd and k = n − 2t
⌊ n
4t

⌋
.

Public key: Hpub ∈ F (n−k)×n .
Private key: L , σ , E = {α0, . . . , αn−1}, g and h0, . . . , hn−1.

Remark 7 The security of this system is limited by the strength of information-set decoding
attacks. From this point of view, the size of the public key has to be large enough to avoid
those kind of attacks. Therefore the key size cannot to be smaller than the ones in the
classic McEliece’s cryptosystem. However, there are interesting sets of parameters such that
the family of proper skew Goppa codes is larger than the classical ones. For instance, if
we pick the parameters, n = 6960, t = 119, pd = 2, there are around 285347 classical
binary Goppa codes. This number can be obtained by means of the Gauss formula which
computes the number of monic irreducible polynomials over Fq of degree t , see e. g. [17,
Theorem 3.25]. For these parameters there are three possible values for (m, δ), concretely
(24, 12), (26, 13), (28, 14), which can be used to build skew Goppa codes. In all cases h = δ

and μ = 2. Fixing a normal element, a primitive element and the corresponding maximal set
of P-independent elements, the number of skew Goppa codes can be bounded from below by
285236, 296470 and 2104922, respectively. If the alphabet Fpd is larger, there are usually more
options to build skew Goppa codes. For instance, the parameters n = 2560, t = 22, pd = 24

allow to build around 229722 classical Goppa codes with m = 3. According to 5.1.1 there are
65 pairs (m, δ) which we can use to build skew Goppa codes. Each one of these choices has
at least 264305 skew Goppa codes on average.

5.2 Encryption and decryption procedures

The encryption process goes as follows. We pick a random error vector, i.e. e ∈ Fn such that
w(e) = t , with corresponding error polynomial e(x) = ∑t

j=1 e j x
k j , and 0 ≤ k1 < k2 <

· · · < kt ≤ n − 1. The sender can easily derive a shared secret key from e by means of a
fixed and publicly known hash function H. The cryptogram is

c = eHT
pub ∈ Fn−k .

In order to decrypt, the receiver can easily compute y ∈ Fn such that

c = yHT
pub,

since Hpub is in row reduced echelon form. Algorithms 2 and 3 can be applied to y in order
to compute e. Then the shared secret key can be retrieved by the receiver as H(e).

5.3 Examples

Next, we give some concrete examples. All the computations have been done with aid of the
computational system SageMath [22].

123

Skew differential Goppa codes 4013

Example 2 Let us describe here a toy-example showing an execution of our cryptosystem. Let
F = F16 = F2[a]〈a4+a+1〉 be the field with 24 elements such that a4 + a + 1 = 0. The elements

of F may be represented by a hexadecimal character. For instance, a3 + a + 1 = 1011 = B.
Set n = 16 and t = 2. In this case, we can only consider m = 2 and δ = 4. Then μ = 2 and
we choose randomly s = 4.

Let L = F[b]
〈b2+Fb+B〉 , and consider {1, b} a basis as F-vector space. We choose randomly

γ = Bb + 2, a primitive element in L , and α = 9b + 8 ∈ L , an element that generates a
normal basis. We also choose randomly 16 position points in L ,

4α0 = 4b + 5 α1 = 1b + F α2 = 8b + 3 α3 = 3b + D

α4 = 3b + 7 α5 = 9 α6 = 8b + B α7 = 3b + A

α8 = 4b + 9 α9 = 5b + 2 α10 = Cb + 6 α11 = 7b + 6

α12 = 2b + 4 α13 = Ab + B α14 = Cb + 1 α15 = 1b + 1,

and 16 non-zero elements in L ,

4η0 = Fb + D η1 = 5b + F η2 = 1b + 9 η3 = 3b + 4

η4 = 3b + 4 η5 = 1b + D η6 = 4b + F η7 = 7b + B

η8 = 7b η9 = 2b + 8 η10 = Db + F η11 = 9b + 7

η12 = 2b + 6 η13 = Ab + B η14 = 3b + 6 η15 = Ab + 8.

We choose randomly the Goppa polynomial

g = x4 + 7x2 + 9 ∈ L[x; τ 4]
which allows the calculation of the parity check polynomials

h0 = 2x3 + (8b + B) x2

h1 = Dx3 + Dbx2 + 3x + 3b

h2 = Dx3 + (2b + 9) x2 + 3x + Bb + 6

h3 = 8x3 + (Bb + 1) x2 + 8x + Bb + 1

h4 = 3x3 + (5b + F) x2 + x + 3b + 5

h5 = 9x3 + Dx2 + 5x + B

h6 = Fx3 + (b + C) x2 + x + 8b + A

h7 = 3x3 + (5b + B) x2 + 8x + Bb + C

h8 = 3x3 + Cbx2 + 8x + 6b

h9 = 9x3 + (Bb + 2) x2 + 5x + 2b + 7

h10 = 8x3 + (Ab + 9) x2 + 5x + 9b + 3

h11 = 2x3 + (Eb + 9) x2

h12 = Fx3 + (Db + E) x2 + Ax + 7b + 5

h13 = Bx3 + (2b + 4) x2 + Ax + 8b + 3

h14 = 9x3 + (6b + D) x2 + Fx + 8b + E

h15 = Ex3 + (Eb + B) x2 + Fx + Fb + 5.

123

4014 J. Gómez-Torrecillas et al.

Hence, a parity check matrix is given by
⎛

⎜
⎜
⎝

0 8b + 3 9b + A Cb + C 5b + 6 Bb + 6 Bb + 3 2b + 7
0 Fb + 2 3b + 8 Bb + 6 3b + 4 5b + C 4b + F Db + 7

Eb + D Fb + D 5b + 8 Cb + C Fb + A Db + E 3b + 2 4b + E
Db + 9 Cb + 7 Db + F Bb + 6 5b + C 9b + F 9b + A 9b + E

Fb + B 4b + 7 1 0 Eb + 5 D 7b + B Db + 3
Db Ab + E Cb + 6 0 7b + 9 8b + 2 2b + 4 Cb + 1

Db + 5 5b + 2 7 Ab + E 9b + E E Fb + A Fb + 8
9b b + 4 2b + 1 b + E Db + 4 2b + 9 8b + 3 6b + 9

⎞

⎟
⎟
⎠ ,

whose expansion with coefficients in F is given by

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

0 3 A C 6 6 3 7 B 7 1 0 5 D B 3
0 8 9 C 5 B B 2 F 4 0 0 E 0 7 D
0 2 8 6 4 C F 7 0 E 6 0 9 2 4 1
0 F 3 B 3 5 4 D D A C 0 7 8 2 C
D D 8 C A E 2 E 5 2 7 E E E A 8
E F 5 C F D 3 4 D 5 0 A 9 0 F F
9 7 F 6 C F A E 0 4 1 E 4 9 3 9
D C D B 5 9 9 9 9 1 2 1 D 2 8 6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

.

Now, we compute the public key. Since k = 8 and the rank of H is n − k = 8, no additional
random row is needed, so the public key Hpub is simply the row reduced echelon form of H ,
that is,

Hpub =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 C 2 3 2 9 9 A 4
0 1 0 0 0 0 0 0 9 1 A C 7 3 8 6
0 0 1 0 0 0 0 0 A 8 2 4 D 6 5 B
0 0 0 1 0 0 0 0 9 0 1 3 B 7 8 9
0 0 0 0 1 0 0 0 E 9 B C F 2 6 6
0 0 0 0 0 1 0 0 A B 1 6 9 1 1 5
0 0 0 0 0 0 1 0 3 F 1 2 F B E 1
0 0 0 0 0 0 0 1 A D 8 6 4 1 2 B

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We select now the shared secret, a vector e ∈ F16 with t = 2 non-zero components,

(4, 0, 0, 0, 0, 0, 0, 0, 0, C, 0, 0, 0, 0, 0, 0) .

In this case the non-zero components correspond to the positions 0 and 9. We encrypt the
secret by multiplying by the transpose of Hpub obtaining a cyphertext

c = (F, C, A, 0, 6, D, 8, 3) ∈ F8.

The receiver solves the linear system c = yHT
pub obtaining, for instance,

y = (F, C, A, 0, 6, D, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0) .

Finally, applying the decoding algorithm in Algorithm 2 to y, we find the vector e, decrypting
the secret.

Example 3 This example shows that decoding failures, although quite unusual, can happen.
Let F = F28 = F2[z]〈z8+z4+z3+z2+1〉 , n = 16, and t = 2. The possible values for the pair (m, δ)

are (1, 4), (2, 1), (2, 4) and (2, 8). We fix then m = 1 and δ = 4. Choose the automorphism

123

Skew differential Goppa codes 4015

σ : L → L defined by σ(a) = a2
4
. So, μ = 2 and K = F24 , which may be presented as

K = F2[w]〈w4+w+1〉 , with embedding w �→ z34 into F . As a consequence, k = n − 2t� n
4t � = 8,

the smallest dimension for this set of given parameters. The chosen normal and primitive
elements are α = z37 and γ = z41.

The list E = {α0, . . . , α15} of evaluation points contains the elements

α0 = γ 0 σ(α)
α

= z45, α1 = γ 9 σ(α)
α

= z159,

α2 = γ 13 σ(α)
α

= z68, α3 = γ 13 σ 2(α)
σ (α)

= z233,

α4 = γ 10 σ 2(α)
σ (α)

= z110, α5 = γ 7 σ(α)
α

= z77,

α6 = γ 12 σ(α)
α

= z27, α7 = γ 10 σ(α)
α

= z200,

α8 = γ 2 σ 2(α)
σ (α)

= z37, α9 = γ 0 σ 2(α)
σ (α)

= z210,

α10 = γ 6 σ 2(α)
σ (α)

= z201, α11 = γ 3 σ(α)
α

= z168,

α12 = γ 11 σ 2(α)
σ (α)

= z151, α13 = γ 2 σ(α)
α

= z127,

α14 = γ 1 σ 2(α)
σ (α)

= z251, α15 = γ 12 σ 2(α)
σ (α)

= z192.

Let g = x4 + z238x2 + z68 be the skew Goppa polynomial. The corresponding parity
check polynomials are

h0 = z136x3 + z91x2 + z187x + z142, h1 = z68x3 + z62x2 + z136x + z130,

h2 = z102x3 + z170x2 + z204x + z17, h3 = z102x3 + z5x2 + z204x + z107,

h4 = z85x3 + z60x2 + z34x + z9, h5 = z238x3 + z195x2 + z204x + z161,

h6 = z85x3 + z7x2 + z170x + z92, h7 = z85x3 + z225x2 + z34x + z174,

h8 = z170x3 + z252x2 + z187x + z14, h9 = z136x3 + z181x2 + z187x + z232,

h10 = z102x3 + z3x2 + z238x + z139, h11 = z136x3 + z19x2 + z136x + z19,

h12 = z170x3 + z36x2 + z34x + z155, h13 = z170x3 + z162x2 + z187x + z179,

h14 = z51x3 + z242x2 + z221x + z157, h15 = z85x3 + z97x2 + z170x + z182.

From these parity check polynomials, we may compute the matrix H ∈ F4×16. Since H
has rank 4, according to Sect. 5.1.4, we append to H a random matrix in F4×16, whose row
reduced echelon form yields the following public key matrix

Hpub =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 z142 z92 z126 z156 z187 z178 z234 z88

0 1 0 0 0 0 0 0 z73 z103 z157 z113 z188 z253 z222 z152

0 0 1 0 0 0 0 0 z109 z109 z64 z165 z131 z204 z138 z145

0 0 0 1 0 0 0 0 z180 z78 z202 z230 z82 z81 z185 z224

0 0 0 0 1 0 0 0 z70 z247 z51 z65 z49 z162 z111 z36

0 0 0 0 0 1 0 0 z119 z236 z50 z243 z136 z56 z133 z225

0 0 0 0 0 0 1 0 z89 z172 z152 z209 z234 z22 z231 z96

0 0 0 0 0 0 0 1 z70 z152 z157 z32 z247 z180 z172 z106

⎞

⎟⎟⎟⎟⎟⎟
⎠

Let the error vector be

e = (
z249, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

)
.

Hence the cryptogram is

c = eHT
pub =

(
z133, z103, z109, z78, z247, z236, z172, z152)

)
,

123

4016 J. Gómez-Torrecillas et al.

which is transmitted to the receiver. A solution of

c = yHT
pub

is

y =
(
z133, z103, z109, z78, z247, z236, z172, z152, 0, 0, 0, 0, 0, 0, 0, 0

)
,

which allows to compute the syndrome polynomial

s = z36x3 + z81x2 + z87x + z132.

The LEEA applied to g, s until we find the first remainder with degree below 2, and we get

vI = z189x + z174, rI = z119.

The only right root of vI is z240, which is not in E. Therefore, the cardinal of the evaluation
points which are roots of vI is 0 < 1 = deg vI . There is a decoding failure which we can
solve with Algorithm 3. The 10th evaluation point, α9, does not increment the degree, so it
is a root of the locator polynomial λ. Since [vI , x − α9]� = x2 + 1 which have α0 and α9 as
roots, we get that λ = x2 + 1. The corresponding evaluator polynomial is ω = z155x + z200.
The error positions are 0 and 9, and the evaluator polynomial allows to compute the error
values, z249 and 1 respectively, as expected.

5.4 McEliece’s original approach

The approach in [18] can also be followed. Private key is computed as in Subsection 5.1. The
public key is obtained as follows: Let H be the matrix computed in 5.1.4 from Proposition
7. Compute a full rank generator matrix G for the left kernel of HT. Let S ∈ Fr×r a random
non singular matrix where r = rank(G). Then Gpub consists in the first k rows of SG. These
concludes the key schedule.

The encryption procedure starts with a message which is a word m ∈ Fk . In order to
encrypt, we select a random e ∈ Fn such that w(e) = t . The cryptogram is

y = mGpub + e ∈ Fn .

To decrypt, let y(x) = ∑n−1
i=0 yi xi . Apply Algorithms 2 and 3 in order to compute the vector

e. Then the message can be recovered multiplying y − e by a suitable right inverse of Gpub.

Acknowledgements Research funded by grant (PID2019-110525GB-I00 / AEI / 10.13039/501100011033)
and by the IMAG-María de Maeztu grant (CEX2020-001105-M / AEI / 10.13039/501100011033)

Funding Funding for open access publishing: Universidad de Granada/CBUA

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Skew differential Goppa codes 4017

References

1. Albrecht M.R., Bernstein D.J., Chou T., Cid C., Gilcher J., Lange T., Maram V., vonMaurich I., Misoczki
R., Niederhagen R., Paterson K.G., Persichetti E., Peters C., Schwabe P., Sendrier N., Szefer J., Tjhai C.J.,
Tomlison M., Wang W.: Classic McEliece: conservative code-based cryptography. Tech. Report. NIST’s
Post-Quantum Cryptography Standardization Project 10 (2020). https://classic.mceliece.org/.

2. Bartz H., Jerkovitz T., Puchinger S., Rosenkilde J.: Fast decoding of codes in the rank, subspace, and
sum-rank metric. IEEE Trans. Inform. Theory 67, 5026–5050 (2021). https://doi.org/10.1109/TIT.2021.
3067318.

3. Bueso J.L., Gómez-Torrecillas J., Verschoren A.: Algorithmic Methods in Non-commutative Algebra.
Applications to Quantum groups. Springer, Dordrecht (2003) https://doi.org/10.1007/978-94-017-0285-
0.

4. Delenclos J., Leroy A.: Noncommutative symmetric functions and w-polynomials. J. Algebra Appl. 06,
815–837 (2007). https://doi.org/10.1142/S021949880700251X.

5. Frandsen G.S.: On the density of normal bases in finite fields. Finite Fields Appl. 6, 23–38 (2000). https://
doi.org/10.1006/ffta.1999.0263.

6. Gómez-Torrecillas J., Lobillo F.J., Navarro G.: A Sugiyama-like decoding algorithm for convolutional
codes. IEEE Trans. Inform. Theory 63, 6216–6226 (2017). https://doi.org/10.1109/TIT.2017.2731774.
arXiv:1607.07187.

7. Gómez-Torrecillas J., Lobillo F.J., Navarro G.: Computing the bound of an Ore polynomial. Applications
to factorization. J. Symb. Comput. 92, 269–297 (2019).

8. Gómez-Torrecillas J., Lobillo F.J., Navarro G.: Procedimiento y dispositivo de cifrado/descifrado post-
cuántico usando códigos lineales (February 2022). OEPM, patente solicitud número P202230118.

9. Hardy G.H., Wright E.M.: An Introduction to the Theory of Numbers, 4th edn Oxford University Press,
Oxford (1960).

10. Hensel K.: Ueber die darstellung der zahlen eines gattungsbereiches für einen beliebigen primdivisor. J.
Reine Angew. Math. 103, 230–237 (1888). https://doi.org/10.1515/crll.1888.103.230.

11. Jacobson N.: Finite-Dimensional Division Algebras over Fields. Springer, Berlin (1996) https://doi.org/
10.1007/978-3-642-02429-0.

12. Kaltofen E., Shoup V.: Subquadratic-time factoring of polynomials over finite fields. Math. Comput. 67,
1179–1197 (1998). https://doi.org/10.1090/S0025-5718-98-00944-2.

13. Lam T., Leroy A.: Vandermonde and Wronskian matrices over division rings. J. Algebra 119, 308–336
(1988). https://doi.org/10.1016/0021-8693(88)90063-4.

14. Lam T., Leroy A.: Wedderburn polynomials over division rings, I. J. Pure Appl. Algebra 186, 43–76
(2004). https://doi.org/10.1016/S0022-4049(03)00125-7.

15. Lam T.Y., Leroy A.: Algebraic conjugacy classes and skew polynomial rings. In: van Oystaeyen F., Le
Bruyn L. (eds.) Perspectives in Ring Theory, pp. 153–203. Springer, Dordrecht (1988). https://doi.org/
10.1007/978-94-009-2985-2_15.

16. Lang S.: Algebra. Graduate Texts in Mathematics, vol. 211, revised 3rd edn. Springer, New York (2002).
17. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20. Cam-

bridge University Press, Cambridge (1997).
18. McEliece R.J.: A public-key cryptosystem based on algebraic coding theory. Tech. Report 42-44. National

Aeronautics and Space Administration, January and February (1978).
19. Niederreiter H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inform. Theory

15(2), 159–166 (1986).
20. Ore O.: Theory of non-commutative polynomials. Ann. Math. (2) 34, 480–508 (1933). https://doi.org/

10.2307/1968173.
21. Shparlinski I.E.: On constructing primitive roots in finite fields with advice. IEEE Trans. Inform. Theory

64, 7132–7136 (2018). https://doi.org/10.1109/TIT.2018.2810938.
22. Stein W.A. et al.: Sage Mathematics Software (Version 9.6). The Sage Development Team (2021). www.

sagemath.org.
23. von zur Gathen J., Gerhard J.: Modern Computer Algebra. Cambridge University Press, Cambridge

(2003).
24. von zur Gathen J., Giesbrecht M.: Constructing normal bases in finite fields. J. Symbol. Comput. 10,

547–570 (1990). https://doi.org/10.1016/S0747-7171(08)80158-7.
25. Wang, L.-P.: Linearized Goppa codes. In: 2018 IEEE International Symposium on Information Theory

(ISIT), pp. 2496–2500 (2018). https://doi.org/10.1109/ISIT.2018.8437579

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://classic.mceliece.org/
https://doi.org/10.1109/TIT.2021.3067318
https://doi.org/10.1109/TIT.2021.3067318
https://doi.org/10.1007/978-94-017-0285-0
https://doi.org/10.1007/978-94-017-0285-0
https://doi.org/10.1142/S021949880700251X
https://doi.org/10.1006/ffta.1999.0263
https://doi.org/10.1006/ffta.1999.0263
https://doi.org/10.1109/TIT.2017.2731774
http://arxiv.org/abs/1607.07187
https://doi.org/10.1515/crll.1888.103.230
https://doi.org/10.1007/978-3-642-02429-0
https://doi.org/10.1007/978-3-642-02429-0
https://doi.org/10.1090/S0025-5718-98-00944-2
https://doi.org/10.1016/0021-8693(88)90063-4
https://doi.org/10.1016/S0022-4049(03)00125-7
https://doi.org/10.1007/978-94-009-2985-2_15
https://doi.org/10.1007/978-94-009-2985-2_15
https://doi.org/10.2307/1968173
https://doi.org/10.2307/1968173
https://doi.org/10.1109/TIT.2018.2810938
www.sagemath.org
www.sagemath.org
https://doi.org/10.1016/S0747-7171(08)80158-7
https://doi.org/10.1109/ISIT.2018.8437579

	Skew differential Goppa codes and their application to Mceliece cryptosystem
	Abstract
	1 Introduction
	2 Skew differential Goppa codes and their non-commutative key equation
	3 Decoding algorithms
	3.1 Decoding algorithm with unlikely decoding failure
	3.2 Solving decoding failures

	4 Parity check matrices and position points for skew Goppa codes
	5 A McEliece cryptosystem based on skew Goppa codes
	5.1 Key schedule
	5.1.1 Construction of additional parameters
	5.1.2 Left P-independent set
	5.1.3 Position points, skew Goppa polynomial and parity check polynomials
	5.1.4 Parity check matrix and public key

	5.2 Encryption and decryption procedures
	5.3 Examples
	5.4 McEliece's original approach

	Acknowledgements
	References

