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Abstract
Private Simultaneous Messages (PSM) model is a minimal model for secure multiparty
computation. Feige, Kilian, and Naor (STOC 1994) and Ishai (Cryptology and Information
Security Series 2013) constructed PSM protocols based on quadratic residues. In this paper,
we define QR-PSM protocols as a generalization of these protocols. A QR-PSM protocol is a
PSM protocol whose decoding function outputs the quadratic residuosity modulo p of what
is computed from messages. We design a QR-PSM protocol for any symmetric function
f : {0, 1}n → {0, 1} of communication complexity O(n2). As far as we know, it is the
most efficient PSM protocol for symmetric functions since the previously known best PSM
protocol was of O(n2 log n) (Beimel et al., CRYPTO 2014). We also study the sizes of the
underlying finite fields Fp in the protocols since the communication complexity of a QR-
PSM protocol is proportional to the bit length of the prime p. We show that there is a prime
p ≤ (1 + o(1))N 222N−2 such that any length-N pattern of quadratic (non)residues appears
modulo p (and hence it can be used for general QR-PSM protocols), which improves the
Peralta’s known result (Mathematics of Computation 1992) by a constant factor (1 + √

2)2.
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1 Introduction

Private Simultaneous Messages (PSM) model introduced by Feige et al. [19] and named by
Ishai and Kushilevitz [22] is a minimal model for non-interactive secure multiparty com-
putation with information-theoretic security. In the PSM model, there are n players and a
special party called the referee. Each player Pi computes a message mi from Pi ’s input
xi and a shared randomness r , and sends mi to the referee. Here, the shared randomness
r is known by all players but the referee. Given n messages m1,m2, . . . ,mn , the referee
computes an output value y, which is expected to be y = f (x1, x2, . . . , xn) for a function
f agreed upon by all players and the referee. The security of the protocol ensures that the
referee cannot learn anything about the secret inputs beyond what can be inferred from the
output value. The efficiency of PSM protocols is mainly measured by the communication
complexity

∑n
i=1 |mi |, where | · | denotes the bit length.

1.1 PSM protocols based on quadratic residues

We review two existing PSMprotocols based on quadratic residues. Feige et al. [19] proposed
such a protocol for comparing two numbers x and y, i.e., deciding whether x ≥ y or not.
Ishai [23] designed such a protocol for any function f : {0, 1}n → {0, 1}.

1.1.1 Feige–Kilian–Naor’s protocol

The protocol based on quadratic residues by Feige et al. [19] is a two-player PSM protocol
computing the comparison function COMP : {0, 1, 2} × {0, 1, 2} → {−1, 0, 1} as follows:

COMP(x1, x2) =

⎧
⎪⎨

⎪⎩

1 if x1 > x2,

0 if x1 = x2,

−1 if x1 < x2.

The shared randomness of the protocol is a pair (r1, r2) of an element r1 of Z/7Z and a
nonzero quadratic residue r2 modulo 7. The first player P1 computes a message m1 ∈ Z/7Z
as m1 := r1 + r2x1 (mod 7), and the second player P2 computes a message m2 ∈ Z/7Z as
m2 := −r1 − r2x2 (mod 7). Given m1,m2, the referee computes the quadratic residuosity
of m := m1 + m2 (mod 7), and outputs 1 if m is a non-zero quadratic residue, −1 if m is a
quadratic nonresidue, and 0 if m = 0.

1.1.2 Ishai’s protocol

The protocol based on quadratic residues by Ishai [23] is an n-player PSMprotocol computing
any function f : {0, 1}n → {0, 1}. Let p be a prime and 0 < a ≤ p− 2n an integer such that
a+∑n

i=1 2
i−1bi is a quadratic residue modulo p if and only if f (b1, b2, . . . , bn) = 1. From

the result by Peralta [25], such a prime p with p = 2O(n) exists. The shared randomness of
the protocol is a tuple (r0, r1, r2, . . . , rn) of a nonzero quadratic residue r0 modulo p and
r1, r2, . . . , rn ∈ Z/pZ such that

∑n
i=1 ri ≡ 0 (mod p). The player Pi holding xi ∈ {0, 1}

computes a message mi ∈ Z/pZ as mi := 2i−1r0xi + ri (mod p) if 2 ≤ i ≤ n and
m1 := r0(a + x1) + r1 (mod p) if i = 1. Given m1,m2, . . . ,mn , the referee computes the
quadratic residuosity of m := ∑n

i=1 mi (mod p), and outputs 1 if m is a quadratic residue
and −1 otherwise. The communication complexity of this protocol is O(n · 2n).
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Private simultaneous messages based... 3917

Table 1 The communication complexity of QR-PSM protocols (see Sect. 3.2 for the notations)

function comm. complexity

Ishai [23] any function O(n · 2n)

Corollary 7 symmetric function O(n2)

Corollary 8 weighted threshold function with weight w O(n · ∑n
i=1 |wi |)

Proposition 20 AND function o(n2)

Proposition 21 equality (EQ) function o(n2)

1.2 Our contributions

First, we introduce the notions of quadratic residue based PSM (QR-PSM) protocols and
linear QR-PSM (LQR-PSM) protocols. Let p be a prime. A QR-PSM protocol modulo p
is a PSM protocol such that the decoding function of the protocol outputs the quadratic
residuosity (Legendre symbol) of φ(m1,m2, . . . ,mn) modulo p, where φ is a function from
messages toZ/pZ, andmi is the i-th message for 1 ≤ i ≤ n. An LQR-PSM protocol modulo
p is a QR-PSM protocol modulo p such that φ(m1,m2, . . . ,mn) = ∑n

i=1 mi (mod p). We
remark that Feige-Kilian-Naor’s protocol and Ishai’s protocol are LQR-PSM protocols.

Next, we construct new QR-PSM and LQR-PSM protocols. For any symmetric function
f : {0, 1}n → {0, 1}, which is a function whose value is independent of the order of the
inputs, we obtain an LQR-PSM protocol of communication complexity O(n2). We note
that this is the most efficient PSM protocol for symmetric functions so far since the previ-
ously known best protocol was of O(n2 log n) proposed by Beimel et al. [9]. (We note that
some concrete symmetric function can have more efficient LQR-PSM protocols. Indeed, we
obtain LQR-PSM protocols with communication complexity o(n2) for AND and equality
(EQ) functions.) For any weighted threshold function f : {0, 1}n → {0, 1} with weight
vectorw and threshold t , we also obtain an LQR-PSM protocol of communication complex-
ity O(n · ∑n

i=1 |wi |). We remark that these protocols are more efficient than the protocols
obtained by applying Ishai’s protocol to these specific functions (see Table 1for efficiency
comparison). In addition, we show that QR-PSM protocols can be obtained from decompos-
able randomized encodings (DRE). In particular, we show that if a function f is “embedded”
into another function g and g admits a DRE of output length s, we have a QR-PSM proto-
col with communication complexity O(s · l(g)), where l(g) is the “embedding length” of
g (see Sect. 3.2 for the definition of the embedding). This construction can be viewed as a
generalization of our LQR-PSM protocols since it admits not only linear polynomials but
also higher-degree polynomials.

InQR-PSMprotocols, the communication complexity is dominated by the size ofmodulus
p. Thus, it is important to give upper and lower bounds on the primes. We study two kinds
of primes which we name the Peralta primes and the LQR-PSM primes: the n-th Peralta
prime Pn is the smallest prime p such that every n-bit string appears in the “quadratic residue
sequence modulo p” as a subsequence; and the n-th LQR-PSM prime Ln is the smallest
prime p such that every function f : {0, 1}n → {0, 1} has an LQR-PSM protocol modulo

p. We first show that Ln ≤ P2n−1 and Ln ≥ 2
2n−2
n . We show that Pn ≤ (1 + o(1))n222n−2,

an upper bound on the Peralta primes, by using graph theory. As a result, we also obtain a
lower bound on the LQR-PSM primes. We note that our upper bound on the Peralta primes
is tighter than that implied from the result by Peralta [25].
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3918 K. Shinagawa et al.

1.3 Related work

The PSM model was firstly introduced by Feige et al. [19]. Besides the QR-PSM protocol
described in Sect. 1.1.1, they also constructed a two-player PSM protocol for any function f :
{0, 1}n × {0, 1}n → {0, 1} of complexity O(2n). Beimel, Ishai, Kumaresan, and Kushilevitz
[10] improved it to O(2n/2) by introducing a decomposable private information retrieval
protocol. This is still the state-of-the-art two-player PSM protocol among those applicable
to arbitrary function f : {0, 1}n × {0, 1}n → {0, 1}. As an impossibility result, Applebaum,
Holenstein, Mishra, and Shayevitz [4] showed that any two-player PSM protocol computing
a random function f : {0, 1}n × {0, 1}n → {0, 1} requires the complexity 3n − O(log n).
Narrowing this exponential gap between the upper and lower bounds is an important open
problem in cryptography [27].

For the case of k players for k ≥ 3, Beimel et al. [11] constructed a k-player PSM protocol
for any function f : ({0, 1}n)k → {0, 1} of complexity O(poly(k) · 2nk/2). Assouline and
Liu [5] improved it to O(2n(k−1)/2) for infinitely many k’s and conjectured that it holds for
any k.

For a specific class of functions, Ishai and Kushilevitz [22] constructed a PSMprotocol for
aBooleanmodulo-p branchingprogram BP : {0, 1}n → {0, 1}of sizeawith communication
complexity O(log p · n · a2).

Ball,Holmgren, Ishai, Liu, andMalkin [7] andBall andRandolph [8] showed lower bounds
of the communication complexity of PSMprotocols for certain functions. They also designed
LQR-PSM protocols for “computing quadratic residuosity” as pseudorandom functions.

1.4 Organization

In Sect. 2, we introduce the basic notations (Sect. 2.1), PSM protocols (Sect. 2.2), decom-
posable randomized encodings (Sect. 2.3), and the notations related to quadratic residues
(Sect. 2.4). In Sect. 3,we defineQR-PSMprotocols (Sect. 3.1), construct LQR-PSMprotocols
for symmetric functions andweighted threshold functions (Sect. 3.2), and construct QR-PSM
protocols from decomposable randomized encodings (Sect. 3.3). In Sect. 4, we show upper
and lower bounds on the LQR-PSM primes (Sect. 4.1), define Paley graphs and tournaments
(Sect. 4.2), and give an upper bound on Peralta primes (Sect. 4.3). In Appendix, we show that
AND and EQ functions have LQR-PSM protocols with communication complexity o(n2).

2 Preliminaries

2.1 Notations

For an integer n ≥ 2, we denote [n] := {1, 2, . . . , n} andZn := Z/nZ. For a set S, we denote
by #S the cardinality of S. For a bit string m ∈ {0, 1}∗, we denote by |m| the bit length of m.
For an integer a ∈ Z, we denote by |a| the absolute value of a.

Let A be a ring. An arithmetic formula over A is a rooted binary tree, where each leaf is
labeled by either an input variable xi (1 ≤ i ≤ n) or a constant c ∈ A, and each intermediate
node called a gate is labeled by either addition or multiplication. Its depth is defined by the
length of the longest path from the root to a leaf. An arithmetic formula can be regarded as a
function f : An → A naturally. A Boolean formula is an arithmetic formula over A = Z2.
In this paper, the basis of Boolean formulas is always {∧,⊕}.
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Private simultaneous messages based... 3919

A polynomial over A is a polynomial whose coefficients are elements of A. A polynomial
can be regarded as a function f : An → A naturally. Every arithmetic formula over A can
be represented by a polynomial over A. In particular, every Boolean formula f : {0, 1}n →
{0, 1} can be represented by a polynomial over Z2 (over the basis {∧,⊕}), which is called
the Reed-Muller canonical form of f .

2.2 PSM protocols

Definition 1 (PSM protocol) Let n ≥ 2 be an integer, and X1, X2, . . . , Xn, Y , R, M1, M2,

. . . , Mn finite sets. Set X = ∏
1≤i≤n Xi and M = ∏

1≤i≤n Mi . Let Enci : Xi × R → Mi

(1 ≤ i ≤ n) and Dec : M → Y be functions. Here, Xi , Y , R, Mi , Enci ,Dec (1 ≤ i ≤ n) are
called the i-th input space, the output space, the randomness space, the i-th message space,
the i-th encoding function, and the decoding function, respectively. A private simultaneous
messages (PSM) protocol � for a function f : X → Y is a 7-tuple

� = (n, X , Y , R, M, (Enci )1≤i≤n,Dec),

satisfying the following conditions:

Correctness. For any (x1, . . . , xn) ∈ X and any r ∈ R, it holds that

Dec((Enc1(x1, r), . . . , Encn(xn, r)) = f (x1, . . . , xn).

Security. For any m ∈ M and x = (x1, . . . , xn), x ′ = (x ′
1, . . . , x

′
n) ∈ X with f (x) =

f (x ′), it holds that

Pr
r∈R

[
(Enc1(x1, r), . . . , Encn(xn, r)) = m

] = Pr
r∈R

[
(Enc1(x ′

1, r), . . . , Encn(x
′
n, r)) = m

]
,

where r ∈ R is chosen uniformly at random.

The communication complexity is defined by
∑n

i=1 log2(#Mi ) and the randomness com-
plexity is defined by log2(#R).

2.3 Decomposable randomized encodings

In this section,we define the notions of randomized encodings and decomposable randomized
encodings (DRE). A DRE over Zp for a prime p is used as a building block for constructing
QR-PSM protocols.

Definition 2 (Randomized encoding) Let X , Y , Ŷ , R be finite sets, and f : X → Y a
function. A randomized encoding f̂ : X × R → Ŷ is a function satisfying the following
conditions:

Correctness. There exists a function Dec : Ŷ → Y called a decoder such that for any x ∈ X
and r ∈ R, it holds Dec( f̂ (x, r)) = f (x).

Security. For any ŷ ∈ Ŷ and x, x ′ ∈ X such that f (x) = f (x ′), it holds that

Pr
r∈R

[
f̂ (x, r) = ŷ

] = Pr
r∈R

[
f̂ (x ′, r) = ŷ

]
,

where r ∈ R is chosen uniformly at random.
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Definition 3 (DRE) Let A be a finite ring, and f : An → A a function. A decomposable
randomized encoding (DRE) of f is a randomized encoding f̂ : An × Am → As as follows:

f̂ ((x1, x2, . . . , xn), r) = ( f̂0(r), f̂1(x1, r), f̂2(x2, r), . . . , f̂n(xn, r))

where f̂0 : Am → As0 and f̂i : A × Am → Asi (1 ≤ i ≤ n) are functions such that∑n
i=0 si = s. The integer s is called the output length of the DRE.

For a function f : Zn → Z, we define the DRE complexity of f .

Definition 4 (DRE complexity) Let f : Z
n → Z be a function. For a prime p, define

f p : Z
n
p → Zp as the function such that f p ≡ f (mod p). The DRE complexity of f ,

denoted by D( f ), is defined by the minimum integer s such that for every prime p, there
exists a DRE of f p with output length at most s.

BasedonCleve’s result [16] on straight-line programs,Cramer, Fehr, Ishai, andKushilevitz
designed a constant-round multiparty computation protocol for arithmetic formulas [18,
Theorem 3]. This construction can be viewed as a DRE of arithmetic formulas.

Theorem 1 (Cramer-Fehr-Ishai-Kushilevitz [18]) Let f : An → A be an arithmetic formula

of depth d. Then, there exists a DRE of f with output length 2d+O(
√
d).

Corollary 2 Let f : Zn → Z be an arithmetic formula of depth d. Then, we have D( f ) ≤
2d+O(

√
d).

Based on Theorem 1, we have a DRE of polynomials.

Theorem 3 Let f : An → A be a degree-k polynomial having m terms. Then, there exists a
DRE of f with output length m · k · 2O(

√
log k).

Proof Let g : Ak+1 → A be a function such that g(y0, y1, . . . , yk) = y0 + ∏k
i=1 yi . Since

g can be represented by an arithmetic formula of depth d = �log2 k + 1, it has a DRE with

output length 2d+O(
√
d) = k · 2O(

√
log k) from Theorem 1. Suppose that the i-th term of f

is a degree-k′ term of the form cx j1x j2 · · · x jk′ (c ∈ A, k′ ≤ k). Let r1, r2, . . . , rm ∈ A be
random numbers such that

∑m
i=1 ri = 0. Then, we have a DRE of cx j1x j2 · · · x jk′ + ri from

the DRE of g, by setting

(y0, y1, y2, . . . , yk′ , yk′+1, yk′+2, . . . , yk) ← (ri , cx j1 , x j2 , . . . , x jk′ , 1, 1, . . . , 1).

Juxtaposing them for each term, we obtain the DRE of f with output lengthm · k ·2O(
√
log k).

��

Let f : An → A be a degree-k polynomial having m terms. Since f can be represented
by an arithmetic formula of depth d = �log2 k + �log2 m, Theorem 1 results in a DRE of

f with output length 2log2 d+O(
√
d) = m · k · 2O(

√
log k+logm). On the other hand, Theorem 3

results in a DRE of f with output length m · k · 2O(
√
log k). Thus, Theorem 3 is more efficient

than Theorem 1 by the factor 2O(
√
logm) in this case.
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2.4 Quadratic residues

We denote by Rp ⊂ Zp the set of non-zero quadratic residues modulo p and by Np ⊂ Zp

the set of quadratic nonresidues modulo p. For an integer a ∈ Z, the Legendre symbol
(
a
p

)

is defined as follows:

(
a

p

)

=

⎧
⎪⎨

⎪⎩

1 if a �≡ 0 (mod p) is a quadratic residue modulo p,

0 if a ≡ 0 (mod p),

−1 if a is a quadratic nonresidue modulo p.

For a prime p, we define the quadratic residue sequence modulo p as the string Sp ∈
{0, 1}p−1 such that for every i ∈ [p − 1], the i-th bit (from the left) of Sp is equal to 1

if
(

i
p

)
= 1 and 0 otherwise. If a string t ∈ {0, 1}∗ is a substring of Sp , then we say that

Sp contains t . The quadratic residue sequences modulo primes from 2 to 19 are shown as
follows:

p Sp

2 1
3 10
5 1001
7 110100
11 1011100010
13 101100001101
17 1101000110001011
19 100111101010000110

By Weil’s character sum estimation over finite fields, Peralta [25] gave a sufficient
condition on primes for containing every n-bit string t ∈ {0, 1}n .
Theorem 4 (Peralta [25]) Let p be a prime. If p · ( 12

)n
> n(

√
p+ 3), then Sp contains every

n-bit string t ∈ {0, 1}n.
We say that a prime p is n-Peralta if Sp contains every n-bit string t ∈ {0, 1}n . We

define the n-th Peralta prime Pn as the smallest n-Peralta prime. The n-th Peralta primes for
1 ≤ n ≤ 8 obtained by computer experiments are shown as follows:

n 1 2 3 4 5 6 7 8

Pn 3 7 11 37 67 181 367 1091

Applying the Baker-Harman-Pintz theorem on prime gaps in [6], we obtain the following
corollary.

Corollary 5 For any sufficiently large n, there exists an n-Peralta prime p with p ≤ c+c0.525,
where c = (1 + √

2)2n222n−2. Hence, log Pn = O(n) holds.
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Proof From Theorem 4, any prime p satisfying

√
p > n2n−1 +

√
n222n−2 + 3n2n

is n-Peralta. As
√
2n2n−1 >

√
n222n−2 + 3n2n for all n ≥ 3, any prime p satisfying

√
p > (1 + √

2)n2n−1

is also n-Peralta. By the Baker-Harman-Pintz theorem on prime gaps, there exists a prime p
in [c, c + c0.525] for c = (1 + √

2)2n222n−2, as desired. ��
In Sect. 4.3, we improve the upper bound on Peralta primes by a constant factor (1+√

2)2.

3 QR-PSM protocols

3.1 Definition of QR-PSM protocols

We define quadratic residue based PSM protocols. It is a PSM protocol whose decoding
function outputs the Legendre symbol of an element ofZp which is computed frommessages.

Definition 5 (QR-PSM protocol) Let � = (n, X , Y , R, M, (Enci )1≤i≤n,Dec) be a PSM
protocol such that Y = {−1, 0, 1}. Let p be a prime. We say that � is a quadratic residue
based PSM (QR-PSM) protocol modulo p if there exists a function φ : M → Zp such that
for any (m1, . . . ,mn) ∈ M ,

Dec(m1,m2, . . . ,mn) =
(

φ(m1,m2, . . . ,mn)

p

)

.

We remark that Feige-Kilian-Naor’s protocol (see Sect. 1.1.1) is a QR-PSM protocol
modulo 7. We also point out that Ishai’s protocol (see Sect. 1.1.2) is a QR-PSM protocol
modulo a prime p.

Let f : {0, 1}n → {0, 1} be a Boolean function.We say that a QR-PSMprotocol computes
f if it outputs (−1) f (x). Throughout this paper, we focus on the QR-PSM protocols for
Boolean functions in this sense.

3.2 LQR-PSM protocols

We say that a function f : {0, 1}n → {0, 1} is embedded into a function g : Zn → Z if
g(x) = g(x ′) implies f (x) = f (x ′) for any x, x ′ ∈ {0, 1}n . The function g is called an
embedding of f . The embedding length of g, denoted by l(g), is defined as follows:

l(g) := max
x∈{0,1}n(g(x)) − min

x∈{0,1}n(g(x)) + 1.

If a function f : {0, 1}n → {0, 1} can be embedded into a linear function g = a1x1 +
a2x2 + · · · + anxn , we obtain an efficient QR-PSM protocol which we call a linear QR-PSM
(LQR-PSM) protocol.

Definition 6 (Linear QR-PSM protocol) Let p be a prime and a0, a1, a2, . . . , an ∈ Zp .
A linear QR-PSM (LQR-PSM) protocol modulo p, denoted by [a0, a1, a2, . . . , an]p , is a
QR-PSM protocol � = (n, {0, 1}n, {−1, 0, 1}, R,Zn

p, (Enci )1≤i≤n,Dec) modulo p in the
following.
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• The randomness space R is

R =
{

(r0, r1, r2, . . . , rn) ∈ Z
n+1
p

∣
∣
∣
∣
∣
r0 ∈ Rp,

n∑

i=1

ri ≡ 0 (mod p)

}

.

• The encoding function Enci : {0, 1} × R → Zp is

Enci (xi , r) =
{
r0(a0 + ai xi ) + ri (mod p) if i = 1,

r0ai xi + ri (mod p) otherwise,

where r = (r0, r1, r2, . . . , rn) ∈ R and xi ∈ {0, 1}.
• The decoding function Dec : (Zp)

n → {−1, 0, 1} is

Dec(m1,m2, . . . ,mn) =
(∑n

i=1 mi

p

)

.

Remark 1 Let [a0, a1, a2, . . . , an]p be an LQR-PSM protocol for a function f : {0, 1}n →
{0, 1}. Then for any quadratic nonresidue a′ ∈ Np , [a0, a′a1, a′a2, . . . , a′an]p is an LQR-
PSM protocol for the negated function f ′ such that f ′(x) = f (x) ⊕ 1 for all x ∈ {0, 1}n .
Thus, in general, an LQR-PSM protocol for a function implies an LQR-PSM protocol for
the negated function with the same efficiency.

Theorem 6 Let f : {0, 1}n → {0, 1} be a function. Let g : Zn → Z be an embedding of f
such that g = a1x1 + a2x2 + · · · + anxn for some a1, a2, . . . , an ∈ Z. Then, there exists an
LQR-PSM protocol for f with communication complexity n · log2 Pl(g), where Pl(g) is the
l(g)-th Peralta prime.

Proof Set p := Pl(g). Since p is the l(g)-th Peralta prime, there exists a0 ∈ Zp such that(
a0 + g(x)

p

)

= (−1) f (x) for all x ∈ {0, 1}n . We claim that [a0, a1, a2, . . . , an]p is an

LQR-PSM protocol for f . By setting mi := Enci (xi , r), we have

(m1,m2, . . . ,mn) = (r0(a0 + a1x1) + r1, r0a2x2 + r2, . . . , r0anxn + rn).

Since r0 is a nonzero quadratic residue, we have
(∑n

i=1 mi

p

)

=
(
r0(a0 + a1x1 + · · · + anxn)

p

)

=
(
r0(a0 + g(x))

p

)

=
(
a0 + g(x)

p

)

.

Thus, it correctly computes f . The communication complexity of the protocol is n ·log2 Pl(g).
��

Theorem 6 implies a protocol for any symmetric function.

Corollary 7 For any symmetric function f : {0, 1}n → {0, 1}, there exists an LQR-PSM
protocol with communication complexity n · log2 Pn+1 = O(n2).

Proof It follows from Theorem 6 since any symmetric function is embedded to a linear
function g(x1, x2, . . . , xn) = x1 + x2 + · · · + xn of embedding length n + 1. ��

A weighted threshold function fw,t associated with w = (w1, w2, . . . , wn) ∈ Z
n and

t ∈ N is defined as

fw,t (x1, x2, . . . , xn) =
{
1 if

∑n
i=1 wi xi ≥ t,

0 otherwise.
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Corollary 8 For any w ∈ Z
n and t ∈ N, there exists an LQR-PSM protocol for the

weighted threshold function fw,t : {0, 1}n → {0, 1} associatedwithw, t with communication
complexity n · log2 PW+1 = O(n · W ) for W = ∑n

i=1 |wi |.

Proof It follows from Theorem 6 since a weighted threshold function associated withw, t is
embedded to a linear function g(x1, x2, . . . , xn) = w1x1+w2x2 +· · ·+wnxn of embedding
length

∑n
i=1 |wi | + 1. ��

Theorem 6 also implies Ishai’s protocol (see Subsect. 1.1.2).

Corollary 9 (Ishai [23]) For any function f : {0, 1}n → {0, 1}, there exists an LQR-PSM
protocol with communication complexity n · log2 P2n = O(n · 2n).

Proof It follows from Theorem 6 since any function f : {0, 1}n → {0, 1} is embedded to
a linear function g(x1, x2, . . . , xn) = x1 + 2x2 + · · · 2i−1xi + · · · + 2n−1xn of embedding
length 2n . ��

We also obtain an LQR-PSM protocol for a composition of symmetric functions.

Corollary 10 Let h : {0, 1}m → {0, 1} be any function and gi : {0, 1}k → {0, 1} (1 ≤ i ≤ m)
be symmetric functions. Set n = mk. Define a function f : {0, 1}n → {0, 1} as follows:

f (x1, x2, . . . , xn) = h(g1(x1, . . . , xk), g2(xk+1, . . . , x2k), . . . , gm(xn−k+1, . . . , xn)).

Then, there exists an LQR-PSM protocol for f with communication complexity n · log2 PL =
O(n · L) for L = (k + 1)n/k .

Proof We can observe that the function f can be embedded to a linear function g : Zn → Z

in the following:

g(x1, . . . , xn)=
k∑

i=1

xi+
2k∑

i=k+1

(k + 1)xi+
3k∑

i=2k+1

(k + 1)2xi + · · · +
mk∑

i=(m−1)k+1

(k + 1)m−1xi .

We have

l(g) = 1 + k + (k + 1)k + (k + 1)2k + · · · + (k + 1)m−1k = (k + 1)n/k .

From Theorem 6, we have an LQR-PSM protocol with communication complexity n ·
log2 PL = O(n · L) for L = (k + 1)n/k . ��

Remark 2 By setting (m, k) = (1, n), we obtain Corollary 7. By setting (m, k) = (n, 1), we
obtain Corollary 9. In this sense, Corollary 10 is a generalization of Corollaries 7 and 9.

By computer experiment, it is possible to enumerate all LQR-PSM protocols for small
prime numbers, thereby identifying a minimal LQR-PSM protocol for computing a specific
function. By this way, we obtain LQR-PSM protocols for several symmetric functions with
minimum communication complexity in Table 2: AND is the logical AND function, XOR
is the logical exclusive OR function, EQ is a function that outputs 1 if and only if all bits are
equal, and MAJ is a function which outputs 1 if and only if half or more bits are 1. Note that
these protocols are more efficient than those of Corollary 7.
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Table 2 The list of LQR-PSM protocols for AND, XOR, EQ, and MAJ

nAND XOR EQ MAJ

2 [2, 1, 1]5 [2, 2, 4]5 [1, 1, 2]5 [2, 2, 2]5
3 [6, 1, 1, 1]11 [6, 3, 3, 3]7 [1, 1, 1, 1]5 [3, 3, 3, 2]7
4 [5, 1, 1, 1, 1]13 [12, 1, 1, 1, 7]17 [5, 1, 1, 1, 1]11 [6, 2, 2, 2, 2]11
5 [11, 1, 1, 1, 1, 1]41 [14, 2, 2, 2, 2, 2]19 [4, 1, 1, 1, 1, 1]13 [6, 2, 2, 2, 2, 2]11
6 [18, 1, 1, 1, 1, 1, 1]53 [15, 1, 1, 1, 1, 1, 6]41 [10, 1, 1, 1, 1, 1, 1]41 [21, 3, 3, 3, 3, 3, 3]31
7 [52, 1, 1, 1, 1, 1, 1, 1]83 [35, 1, 1, 1, 1, 1, 1, 1]79 [17, 1, 1, 1, 1, 1, 1, 1]53 [21, 3, 3, 3, 3, 3, 3, 2]31

3.3 QR-PSM protocols fromDREs

In this subsection, we construct QR-PSM protocols from DREs.

Theorem 11 Let f : {0, 1}n → {0, 1} be a function, and g : Zn → Z an embedding of f . Let
h : Zn+2 → Z be a function such that h(x1, x2, . . . , xn+2) := (g(x1, x2, . . . , xn) + xn+1) ·
xn+2. Then, there exists a QR-PSM protocol computing f with communication complexity
O(D(h) · l(g)).
Proof From Theorem 4 and Corollary 5, there exists a prime p with log2 p = O(l(g))
containing every l(g)-bit string. Since g(x) = g(x ′) implies f (x) = f (x ′), we can take an

offset a0 ∈ Zp such that

(
a0 + g(x)

p

)

= (−1) f (x) for all x ∈ {0, 1}n .
From the assumption of the statement, there exists a DRE of h = (g + xn+1) · xn+2

with output length D(h). Set s := D(h). Let ĥ : Zn+2
p × Z

m
p → Z

s
p be the DRE of h =

(g + xn+1) · xn+2 with output complexity s. It has the following form:

ĥ((x1, x2, . . . , xn+2), r) = (ĥ0(r), ĥ1(x1, r), ĥ2(x2, r), . . . , ĥn+2(xn+2, r))

where ĥ0 : Zm
p → Z

s0
p and ĥi : Zp × Z

m
p → Z

si
p (1 ≤ i ≤ n + 2) are functions such that

∑n+2
i=0 si = s. Let dec : Zs

p → Zp be the decryption function of the DRE.
The QR-PSM protocol � = (n, {0, 1}n, {−1, 0, 1}, R, M, (Enci )1≤i≤n,Dec) modulo p

is defined as follows:

• M1 = Z
s0+s1+sn+1+sn+2
p and Mi = Z

si
p for all 2 ≤ i ≤ n.

• R = Z
m
p × Rp . (Recall that Rp is the set of nonzero quadratic residues modulo p).

• Enc1(x1, (r , r ′)) = (ĥ0(r), ĥ1(r ′ · x1, r), ĥn+1(a0, r), ĥn+2(r ′, r)) and
Enci (xi , (r , r ′)) = ĥi (xi , r) for 2 ≤ i ≤ n, where r ∈ Z

m
p and r ′ ∈ Rp .

• Dec(m1,m2, . . . ,mn) =
(
dec(m1,m2, . . . ,mn)

p

)

.

The correctness of the protocol follows from the correctness of the DRE, i.e.,
dec(m1,m2, . . . ,mn) = (g(x) + a0) · r ′. The security of the protocol follows from
the security of the DRE ĥ directly. The communication complexity of the protocol is
s log2 p = O(D(h) · l(g)). ��
Corollary 12 Let f : {0, 1}n → {0, 1} be a function which is embedded into a degree-d
polynomial g : Zn → Z having m terms. Then, there exists a QR-PSM protocol computing
f with communication complexity m2 · d · 2O(

√
log d).
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Proof Let h : Zn+2 → Z be a function defined by h := (g + xn+1) · xn+2. By expanding
the formula, h can be regarded as a degree-(d + 1) polynomial having m + 1 terms. From
Theorem 3, we have a DRE of h with output length m · d · 2O(

√
log d). From Theorem 11, we

have a QR-PSM protocol computing f with communication complexity O(D(h) · l(g)) =
m2 · d · 2O(

√
log d) since the embedding length of g is l(g) = m + 1. ��

4 Upper bound on primes for QR-PSM protocols

4.1 LQR-PSM primes

We define the n-th linear QR-PSM (LQR-PSM) prime Ln as the smallest prime p such that
for any function f : {0, 1}n → {0, 1}, there exists a linear QR-PSM protocol modulo p
computing f . The n-th LQR-PSM prime for 1 ≤ n ≤ 4 are: L1 = 3, L2 = 7, L3 = 11,
and L4 = 37. Although Pi = Li for 1 ≤ n ≤ 4, it does not hold in general. Indeed, from
Theorem 14 and Corollary 5, we have Ln > Pn for sufficiently large n.

An LQR-PSM prime is upper bounded by a Peralta prime. A trivial bound is Ln ≤ P2n
since the length of the truth table is 2n . The following lemma gives a somewhat non-trivial
bound on LQR-PSM primes.

Lemma 13 We have Ln ≤ P2n−1 .

Proof Set p = P2n−1 . Let f : {0, 1}n → {0, 1} be any function. For a bit b ∈ {0, 1}, let fb :
{0, 1}n−1 → {0, 1} be a function such that fb(x1, x2, . . . , xn−1) = f (x1, x2, . . . , xn−1, b),
and tb ∈ {0, 1}2n−1

a string such that the i-th bit (0 ≤ i < 2n−1) of tb is fb(i1, i2, . . . , in−1)

if i = ∑n−1
j=1 2

j−1i j , i.e., tb is the truth table of fb. From the property of Peralta prime, Sp
contains both t0 and t1. Let b0, b1 ∈ Zp be the offset of the truth tables t0, t1, i.e., t0 (resp.
t1) starts at the b0-th (resp. the b1-th) bit of Sp . Without loss of generality, we can assume
b0 ≤ b1. Now we have a LQR-PSM protocol [a0, a1, a2, . . . , an]p computing f , where
a0 = b0, ai = 2n−1−i for 1 ≤ i ≤ n− 1, and an = b1 − b0. Therefore, we have Ln ≤ P2n−1 .

��
We obtain a lower bound on LQR-PSM primes via counting the number of LQR-PSM

protocols.

Theorem 14 We have Ln ≥ 2
2n−2
n .

Proof We say that two protocols [a0, a1, . . . , an]p and [b0, b1, . . . , bn]p are conjugate if
there exists a quadratic residue s ∈ Rp such that bi = sai for 0 ≤ i ≤ n. Note that if two
protocols are conjugate, they compute the same function. Since the number of n-variable

Boolean functions 22
n
is a lower bound on the number of protocols 2pn+1

p−1 (up to conjugate),

we have 2pn+1

p−1 ≥ 22
n
. Since it holds 4 ≥ 2p

p−1 for every prime p, we have 4pn ≥ 22
n
. Taking

logarithms, we have p ≥ 2
2n−2
n . ��

4.2 Paley graphs and Paley tournaments

We introduce Paley graphs and Paley tournaments, which play important roles in many areas,
such as graph theory and additive combinatorics. In this paper, a graph is an undirected graph
without multiple edges and loops, and a tournament is an oriented complete graph.
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Fig. 1 G17

Fig. 2 T7

Definition 7 (Paley graph) Let p ≡ 1 (mod 4) be a prime. Then, the Paley graph G p with
p vertices is a graph with vertex set Zp in which two distinct vertices x and y are adjacent
if and only if x − y ∈ Rp .

Note that the adjacency of x, y is independent of the order of x, y since
(−1

p

)
= 1, which

follows from the assumption of p.

Definition 8 (Paley tournament) Let p ≡ 3 (mod 4) be a prime. Then, the Paley tournament
Tp with p vertices is a tournament with vertex set Zp in which for two distinct vertices x and
y, there is a directed edge from x to y if and only if x − y ∈ Rp .

Note that the Paley tournament is a tournament, i.e., every distinct vertex x, y have either

a directed edge from x to y or a directed edge from y to x since
(−1

p

)
= −1 holds, which

follows from the assumption of p.
Figure1 shows Paley graph G17 and Fig. 2 shows Paley tournament T7 as examples.
Paley graph (tournament) is known as a typical example of graphs (tournaments) satisfying

various “random-like" properties, which means properties that random graphs (tournaments)
realize with high probability [1, Chapter 9], [14, 26].

The following property is one of such random-like properties.

Definition 9 Let n ≥ 1 be an integer. Then, a graph G with vertex set Zp is said to have the
property (∗)n if for any set S of n consecutive elements ofZp and any pair of disjoint (possibly
empty) sets of elements, say A and B, with A ∪ B = S, there exists a vertex zA,B /∈ S such
that zA,B is adjacent to all vertices in A, but none in B. Similarly, a tournament T with vertex
set Zp is said to have the property (∗)n if for any set S of n consecutive elements of Zp and
any pair of disjoint (possibly empty) sets of elements A and B with A ∪ B = S, there exists
a vertex zA,B /∈ S such that for every vertex a ∈ A and b ∈ B, there exist an edge from zA,B

to a and an edge from b to zA,B .
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Remark 3 The property (∗)n is a weaker version of the n-existentially closed (n-e.c.) property
which is known as a finite-analogue of the axiom of the countable random graph (a.k.a.
the Rado graph, see, e.g., [15]). The details of the n-e.c. property and its application to
constructing circulant almost orthogonal arrays can be found in [14] and [28].

4.3 Upper bound on Peralta primes

The following theorem establishes a connection between Paley graphs, tournaments and
Peralta primes. The fundamental idea to prove this theorem can be found in [28].

Theorem 15 Let n ≥ 1 be an integer and p > n denote an odd prime. When p ≡ 1 (mod 4),
p is n-Peralta if and only if G p has the property (∗)n. Similarly, when p ≡ 3 (mod 4), p is
n-Peralta if and only if Tp has the property (∗)n.

Proof Let n ≥ 1 and assume that p ≡ 1 (mod 4) is a prime with p > n; the discussion
below works for the case of a prime p ≡ 3 (mod 4) as well. Suppose that the Paley graph
Gp has the property (∗)n . Let t := (t1, t2, . . . , tn) ∈ {0, 1}n be an arbitrarily given sequence.
Set A := {i ∈ {1, 2, . . . , n} | ti = 1} and B := {i ∈ {1, 2, . . . , n} | ti = 0}. Notice
that A ∪ B = {1, 2, . . . , n}. Then, from the assumption of Gp , there exists some z =
zA,B ∈ Zp\{1, 2, . . . , n} such that ( i−z

p ) = 1 if and only if i ∈ A. Here notice that for any

i ∈ {1, 2, . . . , n} we have ( i−z
p ) �= 0 since z /∈ {1, 2, . . . , n}. Now consider the sequence

Sz :=
(
1

2
+ 1

2

(
1 − z

p

)

,
1

2
+ 1

2

(
2 − z

p

)

, . . . ,
1

2
+ 1

2

(
n − z

p

))

.

Since z /∈ {1, 2, . . . , n}, Sz forms a consecutive subsequence of Sp , and we now have Sz = t .
Conversely if p is an n-peralta prime, then Sp contains any sequence t ∈ {0, 1}n . Since the
permutation x �→ x + 1 on Zp is an automorphism of Gp , to prove that Gp has the property
(∗)n , it suffices to check that there exists zA,B with respect to the subsets A, B defined above,
which is obvious from the assumption of p. ��

Thus, we immediately obtain the following corollary.

Corollary 16 For n ≥ 1, let m(G)
n be the least prime p ≡ 1 (mod 4) such that G p has the

property (∗)n, and similarly, m(T )
n denotes the least prime p ≡ 3 (mod 4) such that Tp has

the property (∗)n. Set mn := min{m(G)
n ,m(T )

n }. Then, we have Pn = mn.

Substantially, the following theorem was proved by Graham and Spencer [21], Blass,
Exoo and Harary [12], Bollobás and Thomason [13] in the context of graph theory.

Theorem 17 ( [12, 13, 21]) For n ≥ 1 and every prime p > n222n−2, both G p and Tp have
the property (∗)n. In particular, mn > n222n−2 for n ≥ 1.

Furthermore, it was proved in [2, 3] that for an odd prime p, both Gp and Tp have the
property (∗)n if p > {(n − 3)2n−1 + 2}√p + (n + 1)2n−1 − 1.

The following corollary is a direct consequence of Theorems 15, 17 and Corollary 16,
which improves Corollary 5 by a constant factor (1 + √

2)2 � 5.828.

Corollary 18 If an odd prime p satisfies that p > n222n−2, then p is n-Peralta. As a
consequence, we have Pn < n222n−2 for n ≥ 1.

123



Private simultaneous messages based... 3929

Applying the Baker-Harman-Pintz theorem on prime gaps in [6], we obtain the following
corollary.

Corollary 19 For any sufficiently large n, there exists an n-Peralta prime p with p ∈
[n222n−2, n222n−2 + (n222n−2)0.525], which means that p = (1 + o(1))n222n−2.

Remark 4 A modification of the proof of [17, Theorem 4.1] shows that for each n ≥ 1 there
is a graph (and tournament) with vertex set Zp such that p = O(n2n) satisfying the property
(∗)n , where such a graph can be constructed from random Cayley graphs over Zp . Since it
is known that the Paley graph Gp has various properties that random Cayley graphs over
Zp satisfy with high probability, we guess that in fact mn = Pn = o(n222n). Although
at present there seems to be no known direct approach toward this conjecture, it may be
possible to obtain some supporting evidences by considering the following “random" graph,
for example. Suppose that p ≡ 1 (mod 4) is a prime and 1/2 ≤ q ≤ 1 is a real number.
Then the setRp can be partitioned into two non-empty setsR+

p andR−
p with same size such

thatR−
p = {−r | r ∈ R+

p }. Then for each r ∈ R+
p choose a pair {r ,−r} independently with

probability q and form the set Up ⊆ Rp consisting of all chosen quadratic residues in R+
p

and their additive inverses inR−
p . Then construct a graph (denoted by Gp(q)) with vertex set

Zp and connect two vertices x and y if and only if x − y ∈ Up . (A similar construction for
primes p ≡ 3 (mod 4) can be established as well.) Notice thatGp(q) is a spanning subgraph
of Gp , and the “closer” Gp(q) is to Gp , the closer q is to 1 (in particular Gp(q) = Gp if
q = 1). We believe that for q = 1 − ε with any ε > 0 the probability that Gp(q) with
p = o(n222n) has the property (∗)n tends to 1 (as n → ∞). At present it is possible to
confirm this claim for q < 3/4. Indeed by the union bound the probability that Gp(q) does
not have the property (∗)n is at most 2n(1 − (1 − q)n)p−n , which is o(1) if q < 3/4 and
p = o(n222n).
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Appendix

LQR-PSM protocols for AND and EQ functions

In this section, we discuss LQR-PSM protocols for some particular symmetric functions,
namely,ANDandEQfunctions.Recall thatCorollary 7 shows that for any symmetric function
f : {0, 1}n → {0, 1} there exists an LQR-PSM protocol with communication complexity
O(n2). It is natural to ask whether this upper bound could be improved or not. The following
two propositions show that it is possible to improve the bound of communication complexity
for AND and EQ functions by choosing appropriate primes.

Proposition 20 LetANDn : {0, 1}n → {0, 1} be the n-bit AND function. Then for any positive
integer n there exists an LQR-PSM protocol for ANDn with communication complexity o(n2).

Proposition 21 Let EQn : {0, 1}n → {0, 1} be the n-bit EQ function. Then for infinitely many
n there exists an LQR-PSM protocol for EQn with communication complexity o(n2).

To prove these propositions we introduce the following theorem and corollary from
analytic number theory.

Theorem 22 (Graham–Ringrose [20]) For an odd prime p let n p denote the least positive
integer that is a quadratic non-residue modulo p. Then there exist infinitely many primes p
with n p = �(log p · log log log p).

Corollary 23 There exist infinitely many primes p such that n p = �(log p · log log log p)
and all integers in the interval (n p, 2n p) are quadratic residues modulo p.

Proof First notice that n p is a prime and 2n p is the least composite number of which n p

is a prime factor. Hence all composite numbers in (n p, 2n p) are quadratic residues modulo
p because all primes less than n p are quadratic residues modulo p. Since there exists at
least one prime in (n p, 2n p) by Bertrand’s postulate, it suffices to prove that all primes in
(n p, 2n p) are quadratic residues. To that end we use the following discussion which is a
slight modification of the proof of Theorem 22 in [20]. Let y be a prime and let P2y be the

set of primes p such that
(
y
p

)
= −1 and for all primes p1 ≤ 2y with p1 �= y we have

(
p1
p

)
= 1. For a prime y and a real number x > 0 consider the following weighted sum.

Sx,2y :=
∑

p∈P2y
x1/2<p≤x2

(log p)

(

exp
(
− p

2x

)
− exp

(
− p

x

))

.

Notice that (log p)(exp(−p/2x) − exp(−p/x)) > 0 whenever x > 0 and p ≥ 2. Hence for
given x and y we have Sx,2y > 0 if and only if there exists a prime p ∈ P2y with x1/2 < p ≤
x2. By this fact it suffices to prove that there exists x0 > 0 such that for any x > x0 we have
Sx,2y > 0 when y ≥ c1 log x · log log log x for some c1 > 0. Indeed if p ∈ P2y satisfies that
x1/2 < p ≤ x2 then we have y = n p and the inequality y ≥ c1 log x · log log log x implies
that y ≥ c2 log p · log log log p for some c2 > 0, proving the corollary. It is not difficult to
obtain that

Sx,2y =
∑

x1/2<p≤x2

(log p)

(

exp
(
− p

2x

)
− exp

(
− p

x

))

· Tp,2y
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where

Tp,2y := 2−π(2y)
(

1 −
( y

p

)) ∏

p1≤2y
p1 �=y

(

1 +
( p1
p

))

and π(·) denotes the prime-counting function. Indeed by the definition of P2y we have

Tp,2y =
{
1 p ∈ P2y;
0 otherwise.

Hereafter for two integers a and b the notation a|b means that a is a divisor of b. Let Q2y be
the product of all primes p1 ≤ 2y, and for an integer m with m|Q2y define εm as

εm :=
{−1 y|m;
1 otherwise.

Then expanding Tp,2y implies that

Sx,2y = 2−π(2y)
∑

m|Q2y

εm
∑

x1/2<p≤x2

(log p)

(

exp
(
− p

2x

)
− exp

(
− p

x

)) ∏

p1|m

( p1
p

)
.

Now we can use the same discussion in [20]. Indeed there exists x0 > 0 such that for any
x > x0 the last sum is at least c3 · x2−π(2y) for some c3 > 0 when y ≥ c1 log x · log log log x
with sufficiently small constant c1 > 0, which follows from Theorems 2 and 4 in [20] and
(2.5) in [20], together with the discussion in Section 9 in [20]. In summary for any x > x0
we have Sx,2y > 0 when x1/2 < p ≤ x2 and y ≥ c2 log p · log log log p. ��

Now we are ready to prove Propositions 20 and 21.

Proof of Proposition 20 Let n be a given positive integer. By Theorem 22, it is possible to
choose a prime p with n ≤ n p and n ≥ c log p · log log log p (with sufficiently small
constant c > 0). Since log log log(·) is unbounded and monotonically increasing it must hold
that p = 2o(n), implying that log2 p = o(n). Since Sp contains 1n0 as subsequence, we have
an LQR-PSM protocol for the n-bit NAND function. By Remark 1, we have an LQR-PSM
protocol for ANDn . ��

Proof of Proposition 21 By Corollary 23, there exist infinitely many primes p with n p =
�(log p·log log log p) and all integers 0 < x < 2n p except n p are quadratic residuesmodulo

p. Let n′
p be the second least quadratic nonresidue modulo p. Then Sp contains 01

n′
p−n p−10

as a subsequence. By Remark 1, we have an LQR-PSM protocol for EQn′
p−n p−1.

Remark 5 There are known PSM protocols for AND and EQ functions with communication
complexity O(n log n) [19]. Hence LQR-PSM protocols in Propositions 20 and 21 would
not realize the best known complexity. On the other hand these propositions suggest that the
communication complexity of LQR-PSM protocols in Corollary 7 could be reduced for other
symmetric functions.

Remark 6 If the generalized Riemann hypothesis is true then the lower bound of n p in
Theorem 22 and Corollary 23 can be improved to n p = �(log p · log log p) [24, Chapter 13].
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