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Abstract
This paper considers coding for so-called partially stuck (defect)memory cells. Suchmemory
cells can only store partial information as some of their levels cannot be used fully due to,
e.g., wearout. First, we present new constructions that are able to mask u partially stuck cells
while correcting at the same time t random errors. The process of “masking” determines a
word whose entries coincide with writable levels at the (partially) stuck cells. For u > 1
and alphabet size q > 2, our new constructions improve upon the required redundancy of
known constructions for t = 0, and require less redundancy for masking partially stuck
cells than former works required for masking fully stuck cells (which cannot store any
information). Second, we show that treating some of the partially stuck cells as erroneous
cells can decrease the required redundancy for some parameters. Lastly, we derive Singleton-
like, sphere-packing-like, and Gilbert–Varshamov-like bounds. Numerical comparisons state
that our constructionsmatch theGilbert–Varshamov-like bounds for several code parameters,
e.g., BCH codes that contain all-one word by our first construction.
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1 Introduction

The demand for reliable memory solutions and in particular for non-volatile memories such
as flash memory and phase change memories (PCMs) for different applications is steadily
increasing. These multi-level devices provide permanent storage and a rapidly extendable
capacity. Recently developed devices exploit an increased number of cell levels while at the
same time the physical size of the cells was decreased. Therefore, coding and signal pro-
cessing solutions are essential to overcome reliability issues. The key characteristic of PCM
cells is that they can switch between two main states: an amorphous state and a crystalline
state. PCM cells may become defect (also called stuck) [8, 13, 17, 20] if they fail in switch-
ing their states. This occasionally happens due to the cooling and heating processes of the
cells. Therefore, cells can only hold a single phase [8, 20]. In multi-level PCM cells, failure
may occur at a position in either of extreme states or in the partially programmable states of
crystalline.

The work [29] investigates codes that mask so-called partially stuck (partially defective)
cells, i.e., cells which cannot use all levels. For multi-level PCMs, the case in which the
partially stuck level s = 1 is particularly important since this means that a cell can reach all
crystalline sub-states, but cannot reach the amorphous state.

Figure 1 depicts the general idea of reliable and (partially) defective memory cells. It
shows two different cell level representations: Representation 1 forms the binary extension
field F22 and Representation 2 forms the set of integers modulo q = 4, i.e., Z/4Z.

1.1 RelatedWork

Coding for memories with stuck cells, also known as defect-correcting codes for memories
with defects, dates back to the 1970s, cf. the work by Kuznetsov and Tsybakov [15]. They
proposed binary defect-correcting codes in finite and asymptotic regimes whose required
redundancy is at least the number of defects. Later works [2–7, 12, 14, 16, 19, 25–27]
investigated the problem of defective cells under various aspects: binary and non-binary, only
defect-correcting coding and error-and-defect-correcting coding, and finite and asymptotic
length analysis.

In binary defect-correcting coding models, e.g. [2–5, 16, 19, 26], the authors dealt with
masking stuck cells without considering additional substitution errors. In these studies, it is
unclear if the proposed constructions are optimal in terms of their required redundancy. The
works [12, 14, 27] considered masking stuck memory cells while at the same time correcting
potential random errors. In [12], so-called partitioned cyclic code and partitioned BCH codes
were proposed for this task.

The asymptotic model of stuck-cell-masking codes also received considerable attention in
the previously mentioned papers. Moreover, there is work devoted to asymptotically optimal
codes for a fixed number of defects [6] or for a number of defects proportional to the codeword
length [7]. The proposed constructions, for example [7, Section 4] and its extended version
in [7, Section 5] that can additionally correct substitution errors, show that u check symbols
are sufficient for masking u defects. However, they use codes with a property that is not well
studied in coding theory. Therefore, we do not dwell on [6] and [7], and also our goal is to
obtain code constructions for finite code length n.

The recent work [29] considers partially stuck memory cells (see Figure 1. C), and
improves upon the redundancy necessary for masking compared to all prior works for classi-
cal stuck cells. However, the paper does not consider error correction in addition to masking.
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Fig. 1 Illustration of reliable and (partially) defective memory cells. In this figure, there are n = 5 cells with
q = 4 possible levels. The cell levels ∈ F22 are mapped to (0, 1, α or 1 + α) shown in Representation 1
or ∈ Z/4Z are mapped to (0, 1, 2 or 3) shown in Representation 2. Case (A) illustrates fully reliable cells
which can store any of the four values in both representations. In the stuck scenario as shown in case (B), the
defective cells can store only the exact stuck level s. Case (C) is more flexible (partially defective scenario).
Partially stuck cells at level s ≥ 1 can store level s or higher

1.2 Our contribution

In this paper, we consider the problem of combined error correction and masking of partially
stuck cells. Compared to the conventional stuck-cell case in [12], we reduce the redundancy
necessary for masking, similar to the results in [29], and even reduce further compared to
[29, Construction 5].

If cells are partially stuck at level 1, we can simply use a (q −1)-ary error correcting code
as mentioned in [29, Section III]. However, this approach could require toomuch redundancy
if a cell is partially stuck at different levels rather than 1. For instance, using (q − s)-ary
codes for 2 ≤ s ≤ q − 1 reduces the cardinality of the code because exempting s out of the
available q levels is quite expensive. Further, for relatively few partially stuck-at-1 cells, even
a (q − 1)-ary error correcting code is not a competitor to our constructions (cf. Figure6).
Therefore, considering sophisticated coding schemes is favorable.

We provide code constructions for any number of partially stuck cells; see Table 3 for
an overview of our constructions and their required redundancies. For the error-free case,
where only masking is necessary, our redundancies coincide with those from [29] or are even
smaller.
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Our paper also investigates a technique where the encoder, after a first masking step,
introduces errors at some partially stuck positions of a codeword in order to satisfy the
stuck-at constraints. The decoder uses part of the error-correcting capability to correct these
introduced errors.

We also derive bounds on our code constructions, namely a Singleton-type, sphere-
packing-type, and Gilbert-Varshamov-type bounds. We provide a numerical analysis by
comparing our code constructions and the derived bounds with other trivial codes and known
limits.

Our focus is on long codes over small alphabets, i.e., the code length n is larger than the
field size q . Otherwise, one could instead mask by a code of length n < q (by using, e.g.,
[24]).

The remainder of the paper is arranged as follows. In Sect. 2, we provide notations and
define the models of joint errors and partially defective cells examined in this study. Our code
constructions along with their encoding and decoding algorithms are presented in Sect. 3 and
4. Section5 generalizes the previous constructions tomask partially stuck cells at any arbitrary
level and correct errors additionally. Section6 investigates exchanging error correction capa-
bility toward more partially stuck cells masking possibility. Upper- and lower-like bounds on
our constructions are derived in Sect. 7 and 8, respectively. In Sect. 9, we provide numerical
and analytical comparisons. Finally, Sect. 10 concludes this work.

2 Preliminaries

2.1 Notations

For a prime power q , let Fq denote the finite field of order q and Fq [x] be the set of all
univariate polynomials with coefficients in Fq . For g, f ∈ Z>0, denote [ f ] = {0, 1, . . . , f −
1} and [g, f ] = {g, g + 1, . . . , f − 1}.

As usual, an [n, k, d]q code is a linear code overFq of length n, dimension k andminimum
(Hamming) distance d . The (Hamming) weight wt(x) of a vector x ∈ F

n
q equals its number

of non-zero entries.
In order to simplify notation, we sometimes identify x ∈ Fq with the number of field

elements not larger than x , that is, with the integer q − |{y ∈ Fq | x ≥ y}|. The meaning of
x will be clear from the context. Figure1 depicts the two representations that are equivalent
in this sense. Finally, we denote the q-ary entropy function by hq , that is

hq(0) = 0, hq(1) = logq(q − 1), and hq(x) = −x logq(x)

− (1 − x) logq(1 − x) + x logq(q − 1) for 0 < x < 1.

2.2 Definitions

2.2.1 Defect and partially defect cells

A cell is called defect (stuck-at level s), if it can only store the value s. A cell is called partially
defect (partially-stuck-at level s), if it can only store values which are at least s. Note that a
cell that is partially defect at level 0 is a non-defect cell which can store any of the q levels
and a cell that is partially defect at level q − 1 is a (fully) defect cell.
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2.2.2 (n,M)q(6, t) PSMC

For Σ ⊂ F
n
q and non-negative integer t , a q-ary (Σ , t)-partially-stuck-at-masking code C of

length n and size M is a coding scheme consisting of a message setM of size M , an encoder
E and a decoder D satisfying:

1. The encoder E is a mapping from M × Σ to F
n
q such that

for each (m, s) ∈ M × Σ, E(m, s) ≥ s,

2. For each (m, s) ∈ M × Σ and each e ∈ F
n
q such that

wt(e) ≤ t and E(m, s) + e ≥ s,

it holds that

D(E(m, s) + e) = m.

2.2.3 (n,M)q(u, 1, t) PSMC

A q-ary (u, 1, t) PSMC of length n and cardinality M is a q-ary (Σ, t) PSMC of length n
and size M where

Σ = {s ∈ {0, 1}n | wt(s) ≤ u}.
In this special case, the partially stuck-at condition means that the output of the encoder is
non-zero at each position of the support φ of s.

3 Code construction for masking up to q − 1 partially stuck-at-1 Cells

3.1 Code construction

In this section, we present a coding scheme over Fq that can mask up to q − 1 partially
stuck-at-1 cells and additionally can correct errors. We adapt the construction from [29],
which allows to mask up to q−1 partially stuck-at-1 (si = 1 for all i) cells with only a single
redundancy symbol, but cannot correct any substitution errors.

Construction 1 Assume that there is an [n, k, d]q code C with a k × n generator matrix of
the form

G =
[
G1

G0

]
=

[
0(k−1)×1 Ik−1 P (k−1)×(n−k)

1 1k−1 1n−k

]
,

where Ik−1 is the (k − 1) × (k − 1) identity matrix, P ∈ F
(k−1)×(n−k)
q , and 1� is the all-one

vector of length �. From the code C, a PSMC can be obtained, whose encoder and decoder
are shown in Algorithm 1 and Algorithm 2.

Theorem 1 The coding scheme in Construction 1 is a (q − 1, 1, � d−1
2 �) PSMC of length n

and cardinality qk−1.
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Algorithm 1: Encoding
Input:
– Message: m = (m0,m1, . . . ,mk−2) ∈ F

k−1
q

– Positions of partially stuck-at-1 cells: φ

1 Compute w = (w1, w2, . . . , wn−1) = m · G1
2 Find v ∈ Fq \ {wi | i ∈ φ}
3 Compute c = w − v · G0
Output: Codeword c ∈ F

n
q

Algorithm 2: Decoding
Input:
– Retrieve y = c+ e , y ∈ F

n
q

1 ĉ ← decode y in C
2 v̂ ← first entry of ĉ
3 ŵ = (ŵ0, ŵ1, · · · , ŵn−1) ← (ĉ− v̂ · G0)
4 m̂ ← (ŵ1, . . . , ŵk−1)

Output: Message vector m̂ ∈ F
k−1
q

Proof To mask the partially stuck-at-1 positions, the codeword has to fulfill:

ci ≥ 1, for all i ∈ φ. (1)

Since | φ | < q , there is at least one value v ∈ Fq such that wi 	= v, for all i ∈ φ. Thus,
ci = (wi − v) 	= 0 and (1) is satisfied.

The decoder (Algorithm 2) gets y, which is c corrupted by at most � d−1
2 � substitution

errors. The decoder of C can correct these errors and obtain c.
Due to the structure of G, the first position of c equals−v. Hence, we can compute ŵ = w

(cf. Algorithm 2) and m̂ = m. 
�
Corollary 1 If there is an [n, k, d]q code containing a word of weight n, then there is a q-ary
(q − 1, 1, � d−1

2 �) PSMC of length n and size qk−1.

3.2 Comparison to the conventional stuck-cell scenario

Theorem 1 combines [12, Theorem 1] and [29, Theorem 4] to provide a code construction
that can mask partially stuck cells and correct errors. The required redundancy is a single
symbol for masking plus the redundancy for the code generated by the upper part of G,
needed for the error correction. In comparison, [12, Theorem 1] requires at least

min{n − k : ∃ [n, k, d]q code with d > u} ≥ u

redundancy symbols to mask u stuck cells, where the inequality follows directly from the
Singleton bound.

Throughout this work, we use q-ary cyclic codes, in particular BCH codes, to describe
our coding methods and to show some examples. In the following, we present Tables 1 and 2
to compare ternary cyclic codes of length n = 8 for masking partially stuck cells to masking
stuck cells [12], both with error correction. Here, the defining set, denoted by Dc, is the set
of indices of zeros of the code, that is, c is a codeword if and only if c(αb) = 0 for all b in
Dc, where α ∈ Fq is the primitive nth root of unity in Fq . These code classes are unique,
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Table 1 Ternary Codes for
Partially Stuck-at-1 Memory
Cell for n = 8

Cardinality Overall redundancy u t The defining set Dc

37 1 2 0 {4}
36 2 2 0 {4}
35 3 2 0 {5, 7}
34 4 2 1 {4, 5, 7}
33 5 2 1 {1, 2, 3, 6}
32 6 2 1 {1, 2, 3, 4, 6}
32 6 2 1 {1, 3, 4, 5, 7}
3 7 2 1 {1, 2, 3, 5, 6, 7}

practical, and explicit in their applications. The minimum distance d can be bounded from
below by the BCH bound, which is the number of consecutive elements in Dc plus one, or
more involved bounds such as the Hartmann-Tzeng bound [11] or the Roos bound [21].

The tables show that masking partially stuck cells requires less redundancy than masking
stuck cells, both with and without additional error correction. The reason is that there is only
one forbidden value in each partially stuck-at-1 cell, while there are q − 1 forbidden values
in each stuck-at cell.

3.3 Remarks on construction 1

Remark 1 The special case of Theorem 1 with n < q was used in [24] for constructing a
(q − 1)-ary error-correcting code from a q-ary Reed-Solomon code, which can be of interest
if q − 1 is not the power of a prime.

Remark 2 The code constructions in Theorem 1 also work over the ring of integers modulo
q (Z/qZ) in which q is not necessarily a prime power, similar to the construction for u < q
in [29].

Remark 3 According to [29, Construction 3], it is possible to further decrease the required
redundancy for masking u partially stuck-at-1 cells to 1 − logq� q

u+1�. We can use the same
strategy here. Let z = �( q

u+1 )�. We choose disjoint sets A1, A2, .., Az of size u + 1 in Fq .
As additional information, the encoder picks j ∈ {1, 2, . . . , z}. In Step 2 of Algorithm 1, it
selects v from A j . As the decoder acquires v, it can obtain j as well.

4 Code constructions for maskingmore than q − 1 partially stuck-at-1
cells

The masking technique in the previous section only guarantees successful masking up to a
number of q − 1 partially stuck-at-1 cells. In this section, we present two code constructions
for simultaneous masking and error correction when q ≤ u < n. One is based on the
masking-only construction in [29, Construction 4] and the other is based on [29, Section VI],
which are able to mask u ≥ q partially stuck positions, but cannot correct any errors. We
generalize these constructions to be able to cope with errors. The latter construction may lead
to larger code dimensions for a given pair (u, t), in a similar fashion as [29, Construction 5]
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4026 H. Al Kim et al.

Table 2 Ternary Codes for Stuck-at Memory [12] for n = 8

Cardinality Overall Redundancy u t The defining set Dc

37 1 1 0 {0}
36 2 1 0 {0}
35 3 1 0 {5, 7}
34 4 1 1 {0, 1, 3}
33 5 1 1 {1, 2, 3, 6}
32 6 1 2 {0, 1, 2, 3, 6}
32 6 2 1 {0, 1, 3}
3 7 2 1 {1, 2, 3, 6}

improves upon [29, Construction 4]. Further, taking t = 0 it achieves larger codes sizes than
[29, Construction 5] if the all-one word is in the code.

4.1 Code construction over Fq for masking up to q + d0 − 3 partially stuck cells

We recall that [29, Construction 4] can mask more than q − 1 partially stuck-at-1 cells and it
is a generalization of the all-one vector construction [29, Theorem 4]. Hence, replacing the
1n vector in Theorem 1 by a parity-check matrix as in [29, Construction 4] allows masking
of q or more partially stuck-at 1 cells, and correct t errors.

Construction 2 Suppose that there is an [n, k, d]q code C with a k × n generator matrix of
the following form:

G =
[
G1

H0

]

where H0 ∈ F
l×n
q is a parity-check matrix of an [n, n − l, d0] code C0. From the code

C, a PSMC can be obtained, whose encoder and decoder are shown in Algorithm 3 and
Algorithm 4.

Theorem 2 The coding scheme in Construction 2 is a (d0 +q−3, 1, � d−1
2 �) PSMC of length

n and cardinality qk−l .

Algorithm 3: Encoding
Input:
– Message: m ∈ F

k−l
q

– Positions of partially stuck-at-1 cells: φ

1 Compute w = (w1, w2, . . . , wn−1) = m · G1

2 Find

{
z = (z0, . . . , zl−1) ∈ F

l
q

∣∣∣ (w + zH0)i 	= 0, for all i ∈ φ

}
.

3 Compute c = w + z · H0
Output: Codeword c ∈ F

n
q
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Algorithm 4: Decoding
Input: y = c+ e ∈ F

n
q

1 ĉ ← decode y in the code C
2 Determine m̂ ∈ F

k−l
q and ẑ ∈ F

l
q such that ĉ = m̂G1 + ẑH0.

Output: Message vector m̂ ∈ F
k−l
q

Proof For the masking part, the proof is a simple modification of [29, Theorem 7]. In Sect. 5,
we give a full proof of Proposition 2, which generalizes Construction 2. The error correction
part of the proof follows the proof of Theorem 1. 
�

The gain of Theorem 2 in the number of partially stuck cells that can be masked comes at
the cost of larger redundancy. However, the redundancy is still smaller than the redundancy
of the construction for masking stuck-at cells and error correction in [12]. In particular, let C
be an [n, k, d ≥ 2t + 1] code containing an [n, l]q subcode C0 for which C⊥

0 has minimum
distance d0. With Theorem 2, we obtain a (d0 + q − 3, 1, � d−1

2 �) PSMC of length n and
cardinality qk−l . The construction in [12] yields a coding scheme with equal cardinality,
allowing for masking up to d0 − 1 fully stuck cells and correcting � d−1

2 � errors since the
minimum distance d1 defined in [12] for the error correction capability of the code is d in our
notation. Hence, exactly q − 2 more cells that are partially-stuck-at levels 1 than classical
stuck cells can be masked.

Example 1 We apply Construction 2 to mask up to u = 4 partially stuck cells over F4 and
m ∈ F

9
4. Let α be a primitive element in F16 and let C be the [15, 12, 3]4 code with zeros

α0 and α1. Let C0 be the [15, 3] subcode of C be the BCH code with zeros {αi | 0 ≤ i ≤
14}\{α5, α6, α9}. As C⊥

0 is equivalent to the [15, 12, 3]4 code with zeros α5, α6, α9, it has
minimum distance d0 = 3. Hence, we obtain a (4, 1, 1) PSMC code of cardinality 49. 
�

4.2 Code construction over F2� for masking up to 2�−1(d0 + 1) − 1 partially stuck
cells

We generalize [29, Section VI] to be able to cope with errors. Unlike [29, Section VI] that
could be over any prime power q , the following code construction works over the finite
field Fq where q = 2μ in order to describe a 2μ-ary partially stuck cells code construction.
This is because binary sub-field subcodes that are required in this construction are not linear
subspace for codes over any prime power q . We denote by β0 = 1, β1, . . . , βμ−1 a basis of

F2μ over F2. That is, any element a ∈ F2μ can be uniquely represented as a = ∑μ−1
i=0 aiβi

where ai ∈ F2 for all i . In particular, a ∈ F2 if and only if a1 = · · · = aμ−1 = 0. This is a
crucial property of F2μ that we will use in Construction 3.

Construction 3 Let μ > 1. Suppose G is a k × n generator matrix of an [n, k, d]2μ code C
of the form

G =
⎡
⎣ H0

G1

x

⎤
⎦ (2)

where
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1. H0 ∈ F
l×n
2 is a parity check matrix of an [n, n − l, d0]2 code C0,

2. G1 ∈ F
(k−l−1)×n
2μ ,

3. x ∈ F
1×n
2μ has Hamming weight n.

From the code C, a PSMC can be obtained, whose encoder and decoder are shown in Algo-
rithm 5 and Algorithm 6.

Algorithm 5: Encoding (m;m′;φ)
Input:
– Message:

(m′,m) ∈ F l × F
k−l−1
2μ , where

F = {∑μ−1
i=1 xiβi | (x1, . . . , xμ−1) ∈ F

μ−1
2 }.

– Positions of partially stuck-at-1 cells: φ
– Notations introduced in Construction 3.

1 w ← m′ · H0 + m · G1 + z · x where z ∈ F2μ is chosen such that |{i ∈ φ | wi ∈ F2}| ≤ d0 − 1.

2 Choose γ ∈ F
l
2 such that (γ H0)i = 1 − wi for all i ∈ φ for which wi ∈ F2.

Output: c = w + γ · H0 ∈ C

Algorithm 6: Decoding
Input:
– y = c+ e ∈ F

n
2μ , where c is a valid output of Algorithm 5 and e is an error of Hamming weight at most

t .
– Notations introduced in Construction 3.

1 ĉ ← decode y in the code C
2 Obtain a ∈ F

l
2μ, m̂ ∈ F

k−l−1
2μ , ẑ ∈ F2μ such that ĉ = aH0 + m̂G1 + ẑx.

3 Obtain m̂′ ∈ Fk−l−1 and γ̂ ∈ F
k−l−1
2 such that a = m̂′ + γ̂ .

Output: (m̂, m̂′)

Theorem 3 The coding scheme in Construction 3 is a 2μ-ary (2μ−1d0 − 1, 1, � d−1
2 �) PSMC

of length n and cardinality 2μ(k−l−1)2l(μ−1).

Proof Let φ ⊂ [n] have size u ≤ 2μ−1d0 − 1.
We first show the existence of z from Step 1. For each i ∈ φ, we have that xi 	= 0, so there
are exactly two elements z ∈ F2μ such that (m′ · H0 + m · G1)i + zxi ∈ F2. As a result,

2u = 2|φ| =| {(i, z) ∈ φ × F2μ | (m′ · H0 + m · G1)i + zxi ∈ F2} | .

As u < 2μ−1d0, there is a z ∈ F2μ such that the condition in Step 1 is satisfied.
As H0 is the parity check matrix of a code with minimum distance d0, any d0−1 columns

of H0 are independent, so an appropriate γ exists. Now we show that ci 	= 0 for all i ∈ φ.
Indeed, if wi /∈ F2, then ci = wi + (γ H0)i ∈ {wi ,wi + 1}, so ci /∈ F2. By Step 2 in
Algorithm 5, for wi ∈ F2, we have that ci = 1. Hence, for all i ∈ φ, ci is either 1 or is in
F2μ \ F2, i.e., ci 	= 0.
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Decoding: As c ∈ C, ĉ = c. As G has full rank, and

c = (m′ + γ )H0 + mG1 + zx,

it holds that a = m̂′ + γ̂ , m̂ = m and ẑ = z. As m̂′ ∈ F l and γ̂ ∈ F
l
2, we can retrieve

m̂′ = m′ from a = m̂′ + γ̂ . 
�
We show next two minor extensions of Theorem 3 for the special case that x is the all-one

vector.

Proposition 1 If x is the all-one vector in Theorem 3, then the coding scheme in Construc-
tion 3 can be modified to produce a 2μ-ary (2μ−1d0 − 1, 1, � d−1

2 �) PSMC of length n and
cardinality 2 × 2μ(k−l−1)2l(μ−1).

Proof For x = 1, if m′H0 + mG1 + z1 has at most d0 − 1 binary entries, then so has
m′H0 + mG1 + (z + 1)1. Hence, there is a z0 ∈ F such that w + z01 has at most d0 − 1
binary entries, and we can encode

w = m′H0 + mG1 + (z0 + ζ )1,

where ζ ∈ {0, 1} is an additional message bit so that the cardinality from Theorem 3 is
doubled. As z0 ∈ F and ζ ∈ {0, 1}, the pair (z0, ζ ) can be retrieved from z0 + ζ . 
�
Construction 3.A (Extension of Construction 3) Let G be a k × n generator matrix of an
[n, k, d]2μ code C of the form

G =
⎡
⎣ H0

G1

1

⎤
⎦ , where

1) 1 is the all-one vector of length n
2) G1 ∈ F

k−l−1×n
q

3)

[
H0

1

]
is the parity-check matrix of an [n, n − l − 1, de]2 code.

Theorem 4.A If the conditions of Construction 3.A hold, then Construction 3 can be modified
to produce a 2μ-ary (2μ−1de, 1, � d−1

2 �) PSMC of length n and cardinality 2μ(k−l−1)2l(μ−1).

Proof In Step 1 of Algorithm 5, the encoder determines z such that | {i ∈ φ | wi ∈ F2} | ≤
de − 1; the existence of such a z is proved as in the proof of Theorem 3. Next, the encoder
determines γ ∈ {0, 1}l and γ0 ∈ {0, 1} such that

v = (γ , γ0) ·
[
H0

1

]

is such that vi = 1 − wi for all i ∈ φ for which wi ∈ {0, 1}. The encoding output c =
v + w = (m′ + γ )H0 + mG1 + (z0 + γ0)1 thus is in C and has no zeros in the positions of
φ.

In decoding, from c both (m′ + γ ) and m can be retrieved, and so, as m′ ∈ F l and
γ ∈ {0, 1}l , m′ can be retrieved as well. 
�
Proposition 1 doubles the size of the PSMC as compared to Theorem 3 (by using ζ as
additional message bit), while masking the same number of partially stuck-at-errors and
correcting the same number of substitution errors. Theorem 4.A, as compared to Theorem 3,
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results in a PSMC of the same size and error correction capabilities, but increases the number
of cells that can be masked from 2μ−1d0 − 1 to 2μ−1de − 1. If d0 is odd, then this increment
is at least 2μ−1.

Now, we show an example using nested BCH codes, allowing to store more symbols
compared to Theorem 3 for the same code parameters.

Example 2 Let α be a primitive 15th root of unity in F16, and let C be the [15, 12, 3]4 BCH
code with zeros α5, α6 and α9. Let the [15, 4]2 subcode C⊥

0 of C be defined as

C⊥
0 =

{
(x0, . . . , x14) ∈ F

15
2

∣∣∣
14∑
i=0

xiα
i j = 0 for j ∈ {0, . . . , 14} \ {7, 11, 13, 14}

}
.

As 1 ∈ C\C⊥
0 , the code C has a generator matrix of the form given in Construction 3, namely

G′ =
⎡
⎣H0

G1

x

⎤
⎦ ,

where H0 is a generator matrix for C⊥
0 and G1 has 12−4−1 = 7 rows. The code C0 = (C⊥

0 )⊥
is equivalent to the [15, 11]2

We stipulate that α4 = α + 1 to obtain explicit G′ as below,

G′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
ω ω 0 1 0 0 0 0 0 0 0 0 0 0 0
0 ω ω 0 1 0 0 0 0 0 0 0 0 0 0
0 0 ω ω 0 1 0 0 0 0 0 0 0 0 0
0 0 0 ω ω 0 1 0 0 0 0 0 0 0 0
0 0 0 0 ω ω 0 1 0 0 0 0 0 0 0
0 0 0 0 0 ω ω 0 1 0 0 0 0 0 0
0 0 0 0 0 0 ω ω 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where F4 has elements {0, 1, ω, ω2} with ω = α5. Note that the top row of H0 corresponds
to the generator polynomial for C⊥

0 , and the top row of G1 corresponds to the coefficients of
(x+α5)(x+α6)(x+α9)which is the generator polynomial of C. Application of Proposition 1
yields a (5, 1, 1) PSMC over F22 of length 15 and size 2× 4724 = 219, whereas application
of Construction 3.A gives a (7, 1, 1) PSMC over F22 with cardinality 2

2(7+4)−4 = 218. Note
that application of Construction 3 yields a (5, 1, 1) PSMC over F22 of length 15 and size
4724 = 218.

Finally, we note that application of Theorem 2 to C yields a (4, 1, 1) PSMC of size 48,
which has worse parameters than the three PSMC mentioned before. 
�
Example 2 clearly shows that for the same code parameters, Construction 3, Proposition 1
and Construction 3.A significantly improve upon Construction 2.

Remark 4 For masking only, choose n − k = 0 in Construction 3 and therefore,

G1 = [
0(n−l−1)×(l+1) I (n−l−1) 0(n−l−1)×1

]
,

123



Coding and Bounds for Partially Defective... 4031

and we can store n − l − 1 information symbols. Thus, Proposition 1 for masking only
improves upon [29, Construction 5]. For example if l = 4, then n − l − 1 = 10 in [29,
Example 7] and the size of the code is 22(n−l−1) · 2l = 224, while n − l − 1 = 10 in
Proposition 1 for x = 1 and the cardinality is 2 · 22n−l−1 = 225.

We summarize in Table 3 our constructions and compare them with some of the previous
works, namelywith the construction formasking classical stuck cells in [12] and constructions
for partially stuck cells without errors in [29]. Table 3 clearly shows that more information
can be stored with partially stuck-at errors than with classical stuck cells.

5 Generalization of the constructions to arbitrary partially defective
levels

So far, we have considered the important case for si = 1 for all i ∈ φ. In this section, we
present error correction and masking codes constructions that can mask partially stuck cells
at any level s ∈ F

n
q of weight wt(s) ≤ | φ | and correct errors additionally.

We fix throughout the paper a total ordering “≥” of the elements ofFq such that a ≥ 1 ≥ 0
for all a ∈ Fq\{0}. So 0 is the smallest element inFq , and 1 is the next smallest element inFq .
We extend the ordering on Fq to Fn

q : for x = (x0, . . . , xn−1) ∈ F
n
q and y = (y0, . . . , yn−1) ∈

F
n
q , we say that x ≥ y if and only if xi ≥ yi for all i ∈ [n].

5.1 Generalization of Theorem 1

Here, we give only the main theorem without adding the exact encoding and decoding pro-
cesses because it follows directly as a consequence of Construction 1.

Theorem 4 (Generalization of Theorem 1) Let Σ = {s ∈ F
n
q | ∑n−1

i=0 si ≤ q − 1}. Assume
there is an [n, k, d]q code C of a generator matrix as specified in Theorem 1. Then there
exists a (Σ, � d−1

2 �) PSMC over Fq of length n and cardinality qk−1.

Proof We follow the generalization for the masking partially-stuck-at any arbitrary levels in
[29, Theorem 10]. Hence, for s ∈ Σ , we modify Step 2 in Algorithm 1 such that wi − v ≥ si
for all i ∈ [n]. Such a v exists as each cell partially-stuck-at level si excludes si values for v,
and

∑n−1
i=0 si < q . The rest of the encoding steps and the decoding process are analogous to

Algorithms 1 and 2. As the output from the encoding process is a codeword, we can correct

� d−1
2 � errors. 
�

5.2 Generalization of construction 2

In the following, we generalize Construction 2 to arbitrary s stuck levels.

Proposition 2 Let

Σ =
{
s ∈ F

n
q

∣∣∣ min

{∑
i∈Ψ

si
∣∣ Ψ ⊆ [n], |Ψ |= n − d0 + 2

}
≤ q − 1

}

then the coding scheme in Construction 2 can be modified to produce a (Σ, � d−1
2 �) PSMC

of length n and size qk−l .
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Proof To avoid cumbersome notation, we assume without loss of generality that s0 ≥ s1 ≥
· · · ≥ sn−1. As the d0 − 2 leftmost columns of H0 are independent, there is an invertible
T ∈ F

l×l
q such that the matrix Y = TH0 has the form

Y =
[
Id0−2 A
0 B

]
,

where Id0−2 is the identity matrix of size d0 − 2, 0 denotes the (l − d0 + 2) × (d0 − 2)
all-zero matrix, A ∈ F

(d0−2)×(n−d0+2)
q and B ∈ F

(l−d0+2)×(n−d0+2)
q . As T is invertible, and

any d0 − 1 columns of H0 are independent, any d0 − 1 columns of Y are independent as
well.

For 0 ≤ i ≤ l − 1, we define

Li = { j ∈ [n] | Yi, j 	= 0 and Ym, j = 0 for m > i}. (3)

Clearly, L0, . . . , Ll−1 are pairwise disjoint.Moreover, for each j ∈ {d0−2, d0−1, . . . , n−1},
column j of Y is independent from the (d0 − 2) leftmost columns of Y , and so there is an
i ≥ d0 − 2 such that Yi, j 	= 0. Consequently,

l−1⋃
i=d0−2

Li = {d0 − 2, . . . , n − 1}. (4)

By combining (4) and the form of Y , we infer that

Lk = {k} for all k ∈ [d0 − 2]. (5)

Letw ∈ F
n
q be the vector to bemasked, i.e. the vector after Step 1 inAlgorithm 3. The encoder

successively determines the coefficients z0, . . . , zl−1 of z ∈ F
l
q such that w + zY ≥ s, as

follows.
For j ∈ [d0 − 2], the encoder sets z j = s j − w j .
Now let d0 − 2 ≤ i ≤ l − 1 and assume that z0, . . . , zi−1 have been obtained such that

w j +
i−1∑
k=0

zkYk, j ≥ s j for all j ∈
i−1⋃
k=0

Lk . (6)

It follows from combination of (5) and the choice of z0, . . . , zd0−3 that (6) is satisfied for
i = d0 − 2.

For each j ∈ Li , we define Fj as

Fj =
{
x ∈ Fq

∣∣∣ w j +
i−1∑
k=0

zkYk, j + xYi, j < s j

}
.

Clearly, |Fj | = s j as Yi, j 	= 0, and so

∣∣∣ ⋃
j∈Li

Fj

∣∣∣ ≤
∑
j∈Li

∣∣Fj
∣∣ =

∑
j∈Li

s j ≤
n−1∑

j=d0−2

s j ≤ q − 1,

where the last inequality follows from the assumption of Σ in the proposition statement
and the ordering of the components of s. Hence,

⋃
j∈Li

Fj 	= Fq . The encoder chooses
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zi ∈ Fq \ ⋃
j∈Li

Fj . We claim that

w j +
i∑

k=0

zkYk, j ≥ s j for all j ∈
i⋃

k=0

Lk . (7)

For j ∈ Li , (7) follows from the definition of Fj . For j ∈ ⋃i−1
k=0 Lk , (7) follows from (6)

and the fact that Yi, j = 0.
By using induction on i , we infer that

w j +
l−1∑
k=0

zkYk, j ≥ s j for all j ∈ ∪l−1
k=0Lk = [n]. (8)

That is, with z = (z0, . . . , zl−1), we have that w + zY ≥ s. As Y = TH0, it follows that
z := zT is such that

w + zH0 ≥ s.

The decoding process remains as in Algorithm 4. 
�
We give an alternative non-constructive proof for Proposition 2 in Appendix A.

Remark 5 The proof of Proposition 2 shows that (d0−2) cells can be set to any desired value,
while the remaining (n − d0 + 2) cells can be made to satisfy the partial stuck-at conditions,
provided that the sum of the stuck-at levels in these (n − d0 + 2) cells is less than q .

Example 3 Let C be the [13, 10, 3]3 generated by

G =
[
G1

H0

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 1 2 0
0 1 0 0 0 0 0 0 0 0 0 1 2
0 0 1 0 0 0 0 0 0 0 1 0 2
0 0 0 1 0 0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 1 1 2
0 0 0 0 0 1 0 0 0 0 2 0 2
0 0 0 0 0 0 1 0 0 0 1 2 1
1 0 1 1 0 1 0 1 1 1 0 1 1
0 1 1 2 0 0 1 1 2 0 1 1 2
0 0 0 0 1 1 1 1 1 2 2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ F
10×13
3

Let C0 be the code with parity check matrix H0. Let

s = (
2 0 0 0 0 1 1 0 0 0 0 0 0

) ∈ F
13
3 .

Notations are as introduced in Construction 2 and Proposition 2.
Observe that C0 has minimum distance d0 = 3. Note that H0 has the form

H0 =
[
Id0−2 A
0 B

]
=

⎛
⎝ 1 0 1 1 0 1 0 1 1 1 0 1 1
0 1 1 2 0 0 1 1 2 0 1 1 2
0 0 0 0 1 1 1 1 1 2 2 2 2

⎞
⎠ ,

in Proposition 2 we can take T the identity matrix, and Y = H0.
For a random message vector m = (

1 1 1 2 1 1 0
) ∈ F

7
3,

w = mG1 = (
1 1 1 2 1 1 0 0 0 0 1 0 2

) ∈ F
13
3 .
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To mask the d0 − 2 largest positions of the vector s (corresponding to the (d0 − 2) leftmost
columns of Y ), namely s0 (the leftmost value highlighted in blue in s), the encoder sets
z j = s j − w j for j ∈ [d0 − 2]. Thus, z0 = 2 − 1 = 1. Note that

w + (
z0 0 0

)
H0 = (

2 1 2 0 1 2 0 1 1 1 1 1 0
)
.

Next, the encoder determines z1 and z2 so as tomask in positions 5 and 6. As H0 has non-zero
entries in the bottom row of columns 5 and 6, we have that L1 = ∅ and L2 = {5, 6}. The
encoder can thus take any value for z1, so let us say it takes 0. The coefficient z2 is chosen
in such a way that

w + (
z0 0 0

)
H0 + (

0 0 z2
)
H0 ≥ s.

This inequality is satisfied if and only if 2+ z2 	= 0 (position 5) and 0+ z2 	= 0 (position 6),
so if and only if z2 = 2.

Note that, in this example, there are wt(s) = 3 partially stuck cells. As C has minimum
distance 3, it can correct a single error. 
�
Corollary 2 (Generalization of Theorem 2) Let s ∈ Fq and let

Σ =
{
s ∈ F

n
q | wt(s) ≤ d0 +

⌈q
s

⌉
− 3 and max{si | i ∈ [n] ≤ s}

}
.

The coding scheme in Construction 2 is a (Σ, � d−1
2 �) PSMC scheme of length n and size

qk−l .

Proof Let s ∈ Σ have weight u ≤ d0 + � q
s � − 3. Let Ψ ⊆ [n] of size n − d0 + 2 be such

that the number of non-zero components of s in [n] \ Ψ equals min(d0 − 2, u). Then s has
u − min(d0 − 2, u) non-zero components in Ψ . As a consequence, if u ≤ d0 − 2, then∑

i∈Ψ si = 0, and if u > d0 − 2, then

∑
i∈Ψ

si ≤ s(u − d0 + 2) ≤ s(�q
s
� − 1) < s(

q

s
+ 1 − 1) = q.

Hence in both cases,
∑

i∈Ψ si ≤ q − 1. The corollary thus follows from Proposition 2. In
particular, if s = 1, the corollary agrees with Theorem 2. 
�
Wedonot generalizeConstruction 3 as it is tailored to the special casewhere si = 1 for all i ∈
φ.

6 Trading partially stuck cells with errors

In the constructions shown so far, the encoder output c is a word from an error correcting
code C. If c does not satisfy the partially-stuck-at conditions in j positions, the encoder could
modify it in these j positions to obtain a word c′ = c + e′ satisfying the partially-stuck-at
constrains, while wt(e′) = j . If C can correct t errors, then it still is possible to correct t − j
errors in c′. This observation was also made in [12, Theorem 1]. The above reasoning shows
that the following proposition holds.

Proposition 3 If there is an (n, M)q(u, 1, t) PSMC, then for any j with 0 ≤ j ≤ t , there is
an (n, M)q(u + j, 1, t − j) PSMC.
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In the remainder of this section, we generalize the above proposition to general Σ (Theo-
rem 5). We also provide variations on the idea of the encoder introducing errors to the result
of a first encoding step in order that the final encoder output satisfies the partially-stuck-at
conditions.

Theorem 5 (Partial Masking PSMC) Let Σ ⊂ F
n
q , and assume that there exists an

(n, M)q(Σ, t) PSMC C. For any j ∈ [t], there exists an (n, M)q(Σ
( j), t − j) PSMC C j ,

where

Σ( j) =
{
s′ ∈ F

n
q | ∃s ∈ Σ

[
d(s, s′) ≤ j and s′ ≥ s

] }
.

Algorithm 7: Encoding

Input: (m, s′) ∈ M × Σ( j).
1 Determine s ∈ Σ such that d(s, s′) ≤ j and s′ ≥ s.
2 Let c = E(m, s).
3 Define c′ = E ′

j (m, s′) as c′i = max(ci , s
′
i ) for i ∈ [n].

Output: Codeword c′.

Algorithm 8: Decoding
Input: Received y = c′ + e where wt(e) ≤ t − j and y ≥ s′

1 Message m = D( y)
Output: Message vector m

Proof Let the encoder E j and the decoder D j for C j be Algorithm 7 and Algorithm 8,
respectively. By definition, c′ ≥ s′. Moreover, if si = s′

i , then ci ≥ si = s′
i , so ci = c′

i . As a
result, d(c, c′) ≤ j .

In Algorithm 8, the decoder D of C is directly used for decoding C j . As y ≥ s′, surely
y ≥ s. Moreover, we can write y = c+ (c′ − c+ e). As shown above, wt(c′ − c) ≤ j , and
so wt(c− c′ + e) ≤ t . As a consequence, D( y) = m. 
�
We can improve on Theorem 5 for Construction 3 giving Lemma 1.

Lemma 1 Given an [n, k, d]q code as defined in Construction 3, then for any j such that
0 ≤ j ≤ � d−1

2 �, there is a 2μ-ary (2μ−1(d0 + j) − 1, 1, � d−1
2 � − j) PSMC of length n and

size qk−l−1.

Proof Let φ ⊂ [n] has size u ≤ 2μ−1(d0 + j) − 1. We use the notation from Algorithm 5.
After Step 1, w has at most u0 = � 2u

2μ � ≤ d0 + j − 1 binary entries in the positions from φ.
After Step 2, at least d0 − 1 of these entries in c differ from 0. By setting the at most j other
binary entries in the positions from φ equal to 1, the encoder introduces at most j errors, and
guarantees that the partially-stuck-at conditions are satisfied. 
�
In Lemma 2, we use another approach for introducing errors in order to satisfy the stuck-at
conditions.

Lemma 2 Given an [n, k, d]q code containing a word of weight n, for any j with 0 ≤ j ≤
� d−1

2 �, there is a q-ary (q − 1 + q j, 1, � d−1
2 � − j) PSMC of length n and size qk−1.
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Proof We use the notation from Construction 1.
Let φ ⊂ [n] have size u ≤ q − 1+ q j . Let x be a codeword of weight n. For each i ∈ φ,

there is exactly one v ∈ Fq such that wi + vxi = 0, and so∑
v∈Fq

| {i ∈ φ | wi + vxi = 0} | = u.

As a consequence, there is v ∈ Fq such that c = w + vx has at most � u
q � ≤ j entries in φ

equal to zero. By setting these entries of c to a non-zero value, the encoder introduces at most
j errors. As C can correct up to � d−1

2 � errors, it can correct these j errors and additionally
up to � d−1

2 � − j substitution errors. 
�
Example 4 Consider a [15, 9, 5]4 code C containing the all-one word, e.g. the BCH code with
zeroes α, α2, α3, where α is a primitive element in F16. Let u ≤ 7 and t = 1. We use the
all-one word for partial masking, ensuring that 0 occurs in at most � u

4 � ≤ 1 position indexed
by φ. We set the codeword value in this position to 1, introducing one error. We can correct
this introduced error and one additional random error as C has minimum distance 5. Hence,
we have obtained a 4-ary (7, 1, 1) PSMC of length 15 and cardinality 48. 
�

We show in Example 5 how applying Lemma 2 for Construction 3 outperforms Lemma 1.

Example 5 Given d0 = 3, u = 15 and q = 22 and let α be a primitive element in F4 and take
x = 1. Assume we have

w(φ) = (m′ · H0 + m · G1) + z · 1
= (0, 1, α, 1 + α, 0, 1, α, 1 + α, 0, 1, α, 1 + α, 0, 1, α)

+ z · 1,
then choosing z = 1 + α minimizes the number of binary values in w(φ), we get:

w(φ) = (1 + α, α, 1, 0, 1 + α, α, 1, 0, 1 + α, α, 1, 0, 1 + α, α, 1).

Following Step 2 in Algorithm 5 and since d0 = 3, we can mask at most d0 −1 binary values
highlighted in the vectorw(φ) that leaves us, in this example, with at most � 2u

22
�−d0 +1 = 5

zeros that remain unmasked.
However, applying Lemma 2 instead for Construction 3 gives a better result. Choosing

γ = 0 in Step 2 of Algorithm 5, we obtain c(φ) = w(φ) with (� u
q � = 3) zeros highlighted in

blue above that we can directly trade. 
�
Remark 6 As the code from Construction 3 has a word of weight n, Lemma 2 implies the
existence of an (u, 1, t) PSMC of cardinality qk−1 under the condition that 2(t + � u

q �) < d .

Lemma 1 shows the existence of an (u, 1, t) PSMC of smaller cardinality, viz. qk−l , under
the condition that 2(t + max(0, � 2u

2μ � − d0 + 1) < d . As a consequence, Lemma 1 can only
improve on Lemma 2 if d0 − 1 > � 2u

2μ � − � u
2μ �.

We can generalize Lemma 2 as follows.

Lemma 3 Given an [n, k, d]q code containing a word of weight n. Let 0 ≤ j ≤ � d−1
2 �, and

let

Σ =
{
s ∈ F

n
q

∣∣∣ ∑
i

si ≤ q − 1 + q j

}
.

There is a q-ary (Σ, � d−1
2 � − j) PSMC of length n and size qk−1.
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Proof We use the notation from Theorem 4. For simplicity, we assume that the code contains
the all-one word. We wish to choose the multiplier v ∈ Fq such that c = w − v · 1 satisfies
ci ≥ si for as many indices i as possible. For each index i , there are q − si values for v

such that this inequality is met. Hence, there is a v ∈ Fq such that ci ≥ si for at least
� 1
q

∑
i (q − si )� = n − � 1

q

∑
i si� indices i . The encoder thus needs to introduce errors only

in the at most � 1
q

∑
i si� positions for which the inequality is not satisfied. 
�

Lemma 4 Assume there exists a matrix as in Proposition 2. Let 0 ≤ j ≤ � d−1
2 �, and let

Σ =
{
s ∈ F

n
q

∣∣∣ ∃Ψ ⊂ [n] : ∣∣ Ψ
∣∣ = n − d0 + 2

[∑
i∈Ψ

si ≤ q − 1 + q j
]}

.

Then exists a q-ary (Σ, � d−1
2 � − j) PSMC of length n and size qk−l .

Proof Let s ∈ Σ . In order to simplify notation, we assume without loss of generality that∑n−1
i=d0−2 si ≤ q−1+q j .Weuse the same argument as in the alternative proof of Proposition 2

(see Appendix A). Clearly,

n − d0 + 2 −
⌊
1

q

n−1∑
i=d0−2

si

⌋
≥ n − d0 + 2 − j .

So we infer that for at least n − j indices i ∈ [n],
wi +

(
(z, η)TH0

)
i
≥ si .


�
Remark 7 The proof of Lemma 4 shows that the encoder output in fact can be made equal to
s in the d0 −2 largest entries of s. In fact, it shows that the scheme allows for masking d0 −2
stuck-at errors, masking partial stuck errors in the remaining cells, and correcting � d−1

2 �− j
substitution errors, provided that the sum of the partially stuck-at levels in the n − d0 + 2
remaining cells is less than ( j + 1)q .

7 Upper bounds on PSMC codes

The output of an encoder has restrictions on the values in the partially-stuck-at cells; in the
other cells, it can attain all values. So the set of all encoder outputs is a poly-alphabetic code
[23]. To be more precise, the following proposition holds.

Proposition 4 Let C be an (n, M)q(Σ, t) partially-stuck-at-masking code with encoder E .
For any s ∈ Σ , let

Cs = {E(m, s) | m ∈ M}.
Then Cs is a code with minimum distance at least 2t + 1 and |M| words, and

Cs ⊂ Q0 × Q1 × · · · × Qn−1, where

Qi = {x ∈ Fq | x ≥ si }.
Proof By our error model, errors in stuck-at cells result in values still satisfying the stuck-at
constraints. Therefore, t errors can be corrected if and only if Cs has minimum Hamming
distance at least 2t + 1. The rest of the proposition is obvious. 
�
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As a result of Proposition 4, upper bounds on the size of poly-alphabetic codes [23] are
also upper bounds on the size of partially-stuck-at codes. Hence, we give the following
corollaries to state Singleton-type and sphere-packing-type bounds for error-correcting and
partially-stuck-at-masking codes.

Corollary 3 (Singleton-type bound) Let C be a q-ary (Σ, t) PSMC of length n and size M.
Then for any s = (s0, . . . , sn−1) ∈ Σ ,

M ≤ min

{∏
j∈J

(q − s j )
∣∣∣ J ⊂ [n], |J | = n − 2t

}
.

Proof Combination of Proposition 4 and [23, Theorem 2]. 
�

Corollary 4 (Sphere-packing-type bound) Let C be a q-ary (Σ, t) PSMC of length n and size
M. Then for any s = (s0, . . . , sn−1) ∈ Σ

M ≤
∏n−1

i=0 (q − si )

V (b)
t

,

where V (b)
t , the volume of a ball of radius t , satisfies

V (b)
t =

t∑
r=0

V (s)
r ,

where the volume V (s)
r of the sphere with radius r is given by

V (s)
0 = 1,

V (s)
r =

∑
1≤i1<...<ir≤n

(q − 1 − si1) · · · (q − 1 − sir ).

Proof Combination of Proposition 4 and [23, Theorem 3]. 
�

Remark 8 The difference between poly-alphabetic codes and partially-stuck-at-masking
codes is that in the former, the positions of stuck-at cells and the corresponding levels are
known to both encoder and decoder, whereas in the latter, this information is known to the
encoder only.

Figure 2 compares our derived sphere-packing-like bound to the amount of storable infor-
mation symbols for a completely reliable memory (i.e., no stuck cells, no errors that can
be seen at u = 0 in the solid line) and the upper bound on the cardinality of an only-
masking PSMC (only stuck cells, no errors) derived in [29] as depicted in the solid curve.
At u = 0, the derived sphere-packing-type bound (dotted and dashed-dotted plots) matches
the usual sphere-packing bound (“only errors”) case. The more u partially-stuck-at cells, the
less amount of storable information, i.e. only q − 1 levels can be utilized. Hence, the dotted
and dashed-dotted lines are declining while u is growing. On the other hand, the more errors
(e.g., t = 25 in the dashed-dotted plot), the higher overall required redundancy and the lower
storable information for the aforementioned curve.
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Fig. 2 Sphere-packing bounds: Comparison for k information symbols for (“only partially stuck cells [29,
Theorem 2]”) and our sphere-packing-like (“errors and partially stuck cells”) bounds. The classical sphere-
packing bound (“only errors”) can read at u = 0 in our sphere-packing-like bounds curves. The chosen
parameters are μ = 5 and q = 3, and n = ((qμ − 1)/(q − 1))

8 Gilbert–Varshamov (GV) bound

8.1 Gilbert–Varshamov (GV) bound: finite length

We have provided various constructions of (u, 1, t) PSMCs based on q-ary t-error correcting
codes with additional properties. In this section, we first employ GV-like techniques to show
the existence of (u, 1, t) PSMCs. Next, we study the asymptotic of the resulting GV bounds.

We start with a somewhat refined version of the Gilbert bound, that should be well-known,
but for which we did not find an explicit reference.

Lemma 5 Let q be a prime power, and assume there is an [n, s]q code Cs with minimum
distance at least d. If k ≥ s is such that

d−1∑
i=0

(
n

i

)
(q − 1)i < qn−k+1,

then there is an [n, k]q code Ck with minimum distance at least d that has Cs as a subcode.

Proof By induction on k. For k = s, the statement is obvious. Now let κ ≥ s and let Cκ be an
[n, κ]q code with minimum distance at least d that has Cs as a subcode. If qκ

∑d−1
i=0

(n
i

)
(q −

1)i < qn , then the balls with radius d − 1 centered at the words of Cκ do not cover Fn
q , so

there is a word x at distance at least d from all words in Cκ . As shown in the proof of [28,
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Theorem. 5.1.8], the [n, κ + 1]q code Cκ+1 spanned by Cκ and x has minimum distance at
least d . 
�

8.1.1 Finite GV bound based on Lemma 2

Theorem 6 Let q be a prime power. Let n, k, t, u be non-negative integers such that

2(t+� u
q �)∑

i=0

(
n

i

)
(q − 1)i < qn−k+1.

There exists a q-ary (u, 1, t) PSMC of length n and size qk−1.

Proof Let C1 be the [n, 1, n]q code generated by the all-one word. Lemma 5 implies that
there is an [n, k]q code with minimum distance at least 2(t + � u

q �) + 1 that contains the
all-one word. Lemma 2 shows that Ck can be used to construct a PSMC with the claimed
parameters. 
�
Remark 9 GV bound from Theorem 1 is a special case of Theorem 6 for u ≤ q − 1.

8.1.2 Finite GV bound based on Construction 2

Lemma 6 Let q be a prime power, and let 1 ≤ k < n. Let E ⊂ F
n
q\{0}. The fraction of

[n, k]q codes with non-empty intersection with E is less than |E |/qn−k .

Proof Let C be the set of all [n, k]q codes. Obviously,∣∣∣{C ∈ C | C ∩ E 	= ∅}∣∣∣ ≤
∑

C∈C:C∩E 	=∅

∣∣ C ∩ E
∣∣ =

∑
C∈C

∣∣ C ∩ E
∣∣.

It follows from [18, Lemma 3] that

1

| C |
∑
C∈C

∣∣ C ∩ E
∣∣ = qk − 1

qn − 1
|E | <

|E |
qn−k

.


�
Remark 10 If E has the additional property that λe ∈ E for all e ∈ E and λ ∈ Fq\{0}, then
the upper bound in Lemma 6 can be reduced to |E |/(q − 1)qn−k .

Lemma 7 Let k, n, d and d⊥ be integers such that

d−1∑
i=0

(
n

i

)
(q − 1)i <

1

2
qn−k and

d⊥−1∑
i=0

(
n

i

)
(q − 1)i <

1

2
qk .

There exists a q-ary [n, k] code C withminimum distance at least d such that C⊥ hasminimum
distance at least d⊥.
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Proof Let C denote the set of all [n, k]q codes. By applying Lemma 6 with E = {e ∈ F
n
q |

1 ≤ wt(e) ≤ d − 1} and using the first condition of the lemma, we see that more than half
of the codes in C have empty intersection with E , that is, have minimum distance at least d .
Similarly, more than half of all q-ary [n, n − k] codes have minimum distance at least d⊥,
and so more than half of the codes in C have a dual with minimum distance at least d⊥. We
conclude that C contains a code with both desired properties. 
�
Theorem 7 (Gilbert-Varshamov-like bound by Construction 2) Let q be a prime power.
Suppose the positive integers u, t, n, k, l with u, t ≤ n and l < k satisfy

2t∑
i=0

(
n

i

)
(q − 1)i <

1

2
qn−l , (9)

u−q+2∑
i=0

(
n

i

)
(q − 1)i <

1

2
ql , (10)

2t∑
i=0

(
n

i

)
(q − 1)i < qn−k+1. (11)

Then there is a q-ary (u, 1, t) PSMC of length n and cardinality qk−l .

Proof According to Lemma 7, (9) and (10) imply the existence of an [n, l]q code C0 with
minimum distance at least 2t + 1 for which the dual code has minimum distance at least
u − q + 3. Lemma 5 shows that C0 can be extended to an [n, k]q code C with minimum
distance at least d . As C has a generator matrix of the form required by Construction 2, the
theorem follows. 
�

8.1.3 Finite GV bound based on Proposition 1

In this section, we give sufficient conditions for the existence of matrices satisfying the
conditions of Proposition 1. We start with Lemma 8 and 9, then we prove the main theorem
(Theorem 8).

Lemma 8 Let G be a k × n matrix over Fq . For s ≥ 1, let

ds = min{wt(mG) | m ∈ F
k
qs \ {0}}.

Then ds = d1.

Proof Let s ≥ 1. As Fq ⊆ Fqs , it is clear that d1 ≥ ds .

To show the converse, we use the trace function T defined as T (x) = ∑s−1
i=0 x

qi . As is
well-known, T is a non-trivial mapping from Fqs to Fq , and

T (ax + by) = aT (x) + bT (y), (12)

for all x, y ∈ Fqs and a, b ∈ Fq . We extend the trace function to vectors by applying it
coordinate-wise.

Let m ∈ F
k
qs \ {0}. We choose λ ∈ Fqs such that T (λ · m) 	= 0. As T (0) = 0, we infer

that wt(mG) = wt(λ · mG) ≥ wt(T (λ · mG)). As all entries from G are in Fq , it follows
from (12) that T (λ · mG) = T (λ · m)G. As a consequence,

wt(mG) ≥ wt(T (λ · mG)) = wt(T (λ · m)G) ≥ d1,

where the last inequality holds as T (λ · m) ∈ F
k
q\{0}. 
�
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Now we introduce Lemma 9 which is the binary version of Lemma 7 but with an extra
restriction on the weight of the words.

Lemma 9 Let k, n, d and d⊥ be integers such that

d−1∑
i=0

(
n

i

)
<

1

4
· 2n−k and

d⊥−1∑
i=0

(
n

i

)
<

1

2
· 2k .

There exists a binary [n, k] code C with minimum distance at least d without a word of weight
more than n − d + 1 such that C⊥ has minimum distance at least d⊥.

Proof Similar to the proof of Lemma 7. Let C denote the set of all binary [n, k] codes. By
applying Lemma 6 with E = {e ∈ F

n
2 | 1 ≤ wt(e) ≤ d − 1 or wt(e) ≥ n − d + 1}, we

infer that the first inequality implies that more than half of the codes in C contain no element
from E . Similarly, the second inequality implies that more than half of the binary [n, n − k]
codes have minimum weight at least d⊥, and so more than half of the codes in C have a dual
with minimum distance at least d⊥. We conclude that there is a code in C having both desired
properties. 
�
Theorem 8 (Gilbert-Varshamov-like bound by Construction 3) Let n, k, l, u, t, μ be positive
integers with u ≤ n, 2t < n and l < k be such that

2t∑
i=0

(
n

i

)
<

1

4
· 2n−l , (13)

� u
2μ−1 �∑
i=0

(
n

i

)
<

1

2
· 2l , (14)

2t∑
i=0

(
n

i

)
(2μ − 1)i < 2μ(n−k+1), (15)

Then there exists a (u, 1, t) PSMC of length n over F2μ with cardinality
2 · 2μ(k−l−1)2l(μ−1).

Proof By Lemma 9, there exists a binary [n, l] code C0 with minimum distance at least
2t + 1 for which C⊥

0 has minimum distance at least � u
2μ−1 � + 1 with the following additional

property: if H0 ∈ F
l×n
2 is a generator matrix for C0, then the binary code Cμ with generator

matrix

[
H0

1

]
has minimum distance at least 2t + 1. According to Lemma 8, the code Cμ

over F2μ with this generator matrix has minimum distance at least 2t + 1 as well. Lemma 5
implies that Cμ can be extended to an [n, k]2μ code with minimum distance at least 2t + 1.

The [n, k] code has a generator matrix of the form G =
⎡
⎣H0

G1

1

⎤
⎦. Application of Proposition 1

yields the claim. 
�

8.1.4 Finite GV bound from trivial construction

Clearly, a (q − 1)-ary code of length n with minimum distance at least 2t + 1 is a q-ary
(u, 1, t) PSMC of length n with u = n. Combining this observation with the Gilbert bound
for a (q − 1)-ary alphabet, we obtain the following corollary.
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Corollary 5 Let q ≥ 3, and let

M =
⌈

(q − 1)n∑2t
i=0

(n
i

)
(q − 2)i

⌉
.

There is a q-ary (n, 1, t) PSMC of length n and cardinality M.

So far we have covered the GV-like bounds for our code constructions for finite length n.

8.2 Asymptotic GV bound on PSMCs

In this section, we present the asymptotic version of theGVbounds from the previous section.
That is, we provide lower bounds on the achievable rates of a q-ary (u, 1, t) PSMCs in the
regime that the code length n tends to infinity, and the number u of partially-stuck-at cells
and the number t of random errors both grow linearly in n.

We recall the well-known following lemma that estimates the volume of a Hamming ball
using the q-ary entropy function.

Lemma 10 For positive integers n, q ≥ 2 and real δ, 0 ≤ δ ≤ 1 − 1
q ,

Volq(n, δn) ≤ qhq (δ)n,

where Volq(n, r) = ∑r
j=0

(n
j

)
(q − 1) j denotes the volume of a Hamming ball with radius r .

Proof The proof of Lemma 10 has been stated in many references including [22, p.105] and
[10, Proposition 3.3.1]. 
�

8.2.1 Asymptotic bound for Theorem 6

Theorem 9 Let q be a prime power. Let 0 ≤ τ, υ < 1 be such that

2

(
τ + υ

q

)
< 1 − 1

q
.

For sufficiently large n, there exists an (�υn�, 1, �τn�) PSMC of length n and rate at least

1 − hq

(
2

(
τ + υ

q

))
− 2

n
.

Proof Let n be a positive integer such that �nhq(2(τ + υ
q )� < n. Let t = �τn� and u = �υn�.

Take k = n − �nhq(2τ + 2 υ
q )�. Lemma 10 implies that Volq(n, 2t + 2� u

q �) ≤ qn−k , and

so, according to Theorem 6, there is a q-ary (u, 1, t) PSMC of length n with rate k−1
n ≥

1 − hq(2(τ + υ
q )) − 2

n . 
�

8.2.2 Asymptotic GV bound from Construction 2

Theorem 10 (Asymptotic Gilbert-Varshamov-like bound from Theorem 7) Let q be a prime
power. Let υ, τ be such that

0 < υ, 2τ < 1 − 1

q
and hq(υ) + hq(2τ) < 1.
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For sufficiently large n, there exists a q-ary (�υn�, 1, �τn�) PSMC of length n and rate at
least

1 − hq(2τ) − hq(υ) − 4 logq(2) + 2

n
.

Proof Let n be a positive integer. Write u = �υn� and t = �τn�. Then Volq(n, u − q + 2) ≤
Volq(n, u). Hence, by setting

l = �nhq(υ) + 2 logq(2)�,
Lemma 10 implies that (10) is satisfied.

Similarly, by setting

k = n − �nhq(2τ) + 2 logq(2)�,
it is ensured that (11) is satisfied.
According to Theorem 7, there is a q-ary (u, 1, t) PSMC of length n and size qk−l , so with
rate k − l. The choices for k and l show that the theorem is true. 
�
Remark 11 Theorem 10 in fact holds for classical stuck-at cells instead of stuck-at-1 errors,
as follows from considering the generalization of Theorem 7 in Proposition 2, i.e., Heegard’s
construction [12].

8.2.3 Asymptotic GV bound from Construction 3

Theorem 11 (Asymptotic Gilbert-Varshamov-like bound from Theorem 8) Let μ be a posi-
tive integer, and let υ and τ be such that

0 ≤ υ

2μ−1 <
1

2
, 0 < 2τ <

1

2
, and h2

( υ

2μ−1

)
+ h2(2τ) < 1.

For sufficiently large n there is a 2μ-ary (�υn�, 1, �τn�) PSMC of length n and rate at least

1 − h2μ(2τ) − 1

μ
h2

( υ

2μ−1

)
− 2

n
− 3

μn
.

Proof For notational convenience, we set υ0 = υ
2μ−1 and η = 1 − h2(2τ) − h2(υ0). Note

that η > 0.
Let n be a positive integer satisfying n ≥ 7

η
, and let u = �υn�, u0 = � u

2μ−1 � and t = �τn�.
We set

l = �nh2(υ0)� + 3.

Lemma 10 implies that (14) is satisfied. Moreover, as

n − l − 3 ≥ n − nh2(υ0) − 7 = nh2(2τ) + nη − 7 ≥ nh2(2τ),

Lemma 10 implies that (13) is satisfied.
We set

k = n − �nh2μ(2τ)�.
Lemma 10 implies that (15) is satisfied.

According to [10, Corollary 3.3.4], we have that h2μ(2τ) ≤ h2(2τ), and so

k − l ≥ n − nh2(2τ) − 1 − nh2(υ0) − 4 = nη − 5 ≥ 2.
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Theorem8 implies the existenceof a 2μ-ary (u, 1, t)PSMCof lengthnwith size 2·2μ(k−1)2−l ,
i.e., its rate is

k − 1

n
− l − 1

μn
≥ 1 − h2μ(2τ) − 1

μ
h2(υ0) − 2

n
− 3

μn
.


�
Theorem 12 (Asymptotic Gilbert-Varshamov bound from Corollary 5) Let q ≥ 3. For each
positive integer n and each τ with 0 ≤ 2τ < 1− 1

q−1 , there exists a q-ary (n, 1, �τn�) PSMC
of length n and rate at least

(1 − hq−1(2τ)) · logq(q − 1).

Proof Let t = �τn�. Corollary 5 implies the existence of a q-ary (n, 1, t) PSMC of length n
and cardinality M satisfying

M ≥ (q − 1)n

Vq−1(n, 2t)
≥ (q − 1)n(1−hq−1(2τ)),

where the last inequality holds by Lemma 10. 
�

9 Comparisons

We provide different comparisons between our code constructions and the existence of the
code based on Theorems 6, 7 and 8. Next, we also compare to the known limits and investigate
the trade-off between masking and error-correction as described in Sect. 6.

9.1 Comparison of Theorem 6 for u ≤ q − 1 to other Bounds

Figure 3 illustrates the rates of a (q − 1, 1, t) PSMC obtained from Theorem 1 (applying
Theorem 6 for the special case u ≤ q−1) for n = 114, q = 7 and 0 ≤ t ≤ 56.We show how
close explicit BCH codes that contain the all-one word of certain rates R and that can correct
designed distances d ≥ 2t + 1 to the achieved rates from Theorem 1. We note that the solid
red graph matches the dashed-dotted green plot for a few code parameters and overpasses it
for t = 39. We also compare to the classical q-ary GV bound (in dashed black) as well as to
reduced alphabet (q − 1)-ary GV bound (in dashed-dotted blue). To this end, we show upper
bounds on the rates that can be obtained from Theorem 1 using the Griesmer bound [9], and
the Ball–Blokhuis bound [1] on the size of codes containing the all-one word.

9.2 Comparison among Theorems 7, 8 and (q − 1)-ary Gilbert-Varshamov bound

We plot the achievable rates (R = logq(M)/n) as a function of t for different fixed values
of u. Figure4 is the resulting plot for n = 200, μ = 3 and q = 2μ. It can be seen that the
GV-like bound in different ranges of u and t based on Construction 2 improves upon the
(q − 1)-ary GV bound for u ≤ 5 as depicted in the solid red curve, and improves further (up
to u ≤ 20) based on Construction 3 as shown in the dashed gray line (3rd one from above).
The dashed dotted blue curve is used to see what if we map our 23 levels such that we avoid
the subscript 0 to compare with 7 levels. It is obvious that for μ = 3, the rate loss1 resulting

1 For t = 0, the loss is 1 − log8(7) = 0.0642.
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Fig. 3 Comparison of other upper and lower limits to our derived GV-like bound in Theorem 6 taking n = 114,
q = 7, 0 ≤ t ≤ 56 and u ≤ q−1. The dashed-dotted green curve shows the rates for Theorem 1 by Theorem 6
for u ≤ q−1 in which codes that have the all-one words are considered. This curve for several code parameters
matches the red line that shows the rates of BCH codes that contain all-one word with regard to the designed
distances d ≥ 2t + 1

Fig. 4 The achievable rates R = 1
n log23 M of GV bounds for different u, t for n = 200 and q = 23 in

Theorems 7 and 8, where M is the code cardinality. They are also compared to the rates from an ordinary
7-ary GV bound for different t as illustrated in the dashed-dotted blue plot. The solid and the dashed lines
represent the derived GV like bounds from Theorems 7 and 8, respectively
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Fig. 5 The achievable rates R = 1
n log22 M of GV bounds for different u, t for n = 200 and q = 22 in

Theorems 7 and 8. They are also compared to the rates from an ordinary 3-ary GV bound for different t as
illustrated in the dashed-dotted blue plot. The solid and the dashed lines correspond to the derived GV like
bounds by Theorem 7 and by Theorem 8, respectively

Fig. 6 The achievable rates R = 1
n log23 M of GV bounds for different u, t for n = 200 and q = 23 in

Theorem 6 that are compared to the reduced alphabet conventional (q − 1)-ary GV bound for different t . The
dashed-dotted green curve represents the rates from Theorem 6 when u ≤ q − 1
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Fig. 7 The achievable rates R = 1
n logq M of GV bounds for different u = {10, 30, 40}, and t =

{0, 1, 2, 4, 5, 10, 20} for n = 200 and q = 23 in Theorems 8 and 6. They are also compared to the rates
for (q − 1)-ary GV bound as shown in dashed black graph

from using q − 1 instead of q symbols is already quite small. Note that for u = 0 the solid
red curve mostly achieves the exact rates obtained from the standard 23-ary GV bound for
0 ≤ t ≤ 80, and so as for the dashed red curve but for 0 ≤ t ≤ 47.

For μ = 2, the improvements from Construction 2 (u ≤ 10) and Construction 3 (u ≤ 30)
upon a usual (q − 1)-ary GV bound are more significant as shown in Fig. 5.

9.3 Comparisons between Theorem 6 and (q − 1)-ary Gilbert-Varshamov bound

In Fig. 6, we compare the GV like bound from Theorem 6 for q = 23 with the conventional
GV bound for q − 1 = 7 shown in dashed blue curve. For q = 8, we observe that the
conventional q − 1-ary GV bound is superior to the derived GV-like bound from Theorem 6
for u ≥ 40. However, applying Theorem 6 where u ≤ 20, the traditional q−1-ary GV bound
is a bad choice. We observe that the dashed-dotted green curve by Theorem 6 for (u ≤ 7 as
stated in Remark 9) shows the highest rates.

9.4 Comparisons between Theorems 8 and 6

In Fig. 7, we compare Theorems 8 and 6. Theorem 8 is showing higher rates for larger u
values, for example taking u = 40 and t = 1, the rate is R = 0.87 from Theorem 8 while
R = 0.83 from Theorem 6. It is interesting to note that for u = 30 and t > 10 Theorem 6 is
better, and for u = 10 and t > 18 Theorem 6 is as good as Theorem 8.
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Table 4 Table of selected points from Fig. 8 with slightly lower and higher rates due to trading. All points are
from Theorem 7

u
t 13 14 15 . . . 40 41 42

16 0.560 0.545 0.525 . . . 0.170 0.160 0.150
17 0.545 0.530 0.510 . . . 0.155 0.145 0.135
...

...
...

...
...

...
...

...
21 0.505 0.490 0.470 . . . 0.115 0.105 0.095
22 0.490 0.475 0.455 . . . 0.100 0.090 0.080
23 0.480 0.465 0.445 . . . 0.090 0.080 0.070

9.5 Comparisons of application of Theorem 5 vs direct application of Theorem 7

For given (u, t), we illustrate the trading (u + 1, t − 1) in Fig. 8. For some of t and a few of
u values, it is advantageous if the encoder introduces an error in a partially-stuck-at position
in order to mask this position. The orange solid curve, for instance, represents the rates that
have been determined by Theorem 7 for u = 17 and 0 ≤ t ≤ 50, while the orange dotted
sketch highlights the rates for u = 16 while 1 ≤ t ≤ 51. Due to the exchange such that
u + 1 = 17 and 0 ≤ t − 1 ≤ 50, the orange dotted line slightly fluctuates up and down the
rates shown in the orange solid curve for most t values.

Let us describe some points of Fig. 8 in Table 4. Let Cu,t be a code by Theorem 7 whose
rate is R given in Table 4 at u row and t column. Take C21,15 so that its rate R = 0.470. By
applying Theorem 5 on C21,15, we obtain a code C22,14 of R = 0.470. Direct application of
Theorem 7 yields a C22,14 of rate R = 0.475 as highlighted in Table 4. We conclude that
in this case, the trade by Theorem 5 gives lower rates than taking the same code directly by
Theorem 7 for given (u = 22, t = 14).

On contrary, for larger t values, Table 4 shows that the exchange is beneficial giving higher
rates. For example, we start with C21,41 whose R = 0.105, then applying Theorem 5 gives
C22,40 of R = 0.105 which is greater than R = 0.100 that has been obtained directly by
Theorem 7 as stated in Table 4.

9.6 Comparisons of applications of Theorem 5, Lemma 1, Lemma 2 vs direct
application of Theorem 8

For the derived GV bound based on Construction 3 obtained by Theorem 8, we demonstrate
the exchange of a one error correction ability with a single masking capability of a partially
stuck cell following Theorem 5 in Fig. 9. The solid and dotted lines represent the rates before
and after trading, respectively. We also show the exchange by Lemmas 1 and 2 in which the
reduction of the correctable errors by one increases u by 2μ−1 and 2μ, respectively. As it is
seen in Fig. 9, every single solid curve by Theorem 8 corresponds to multiple values of u due
to the floor operation where C⊥

0 has a minimum distance at least � u
2μ−1 � + 1. For instance,

for all u = 8, 9, 10, 11 and μ = 3, we obtain: � u
23−1 � + 1 = 3, and the transition starts for

u = 12 as � u
23−1 � + 1 = 4. Similarly by the floor operation there is no change for the larger

values of u = 13, 14, 15, and so on. Let us discuss the following curves. For u = 19, the
orange solid curve shows the rates by Theorem 8. Exchanging u + 1 and t − 1 throughout
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Fig. 8 The achievable rates R = 1
n logq M of GV bounds for different u, and t for n = 200 and q = 23 in

Theorem 7. The solid plots are the rates from the derived GV-like bound and the dotted graphs are the rates
after trading u + 1, t − 1 by Theorem 5

Theorem 5 obtains the orange dotted line for u+1 = 20 which lies slightly bellow the orange
solid plot. Hence, the exchange gives lower rates. However, it provides rate R = 0.380 for
t = 30 while direct application of Theorem 8 (compared to its corresponding graph which
is the solid green curve at u = 20, 21, 22, 23) does not.

Now, we apply Lemma 1 rather than Theorem 5. For the same achieved rates, we observe
that the dashed red graph for u + 23−1 = 23 shows the exact rates from the orange dotted
curve for u + 1 = 20. Therefore, it is clear that Lemma 1 provides a gain of masking exactly
3 more cells with regard to Theorem 5. On the other hand, for the same masked u, applying
Lemma 1 for u = 19 gives (u + 4, t − 1) PSMC represented by the dashed red graph which
presents slightly higher rates if compared to the dotted green for u = 23 by Theorem 5.
Further, Lemma 1 provides rate at t = 30 while Theorem 5 stops giving rates at t ≥ 29. For
this graph, we conclude that Lemma 1 surpasses Theorem 5.

However, if we take u = 23 directly by Theorem 8, we achieve slightly higher rates. We
conclude that Theorem 8 can directly estimate the maximum possible masked u cells that
can also be achieved applying Lemma 1, and can achieve slightly higher rates. On contrary,
Theorem 8 does not give rates for larger t values while Lemma 1 and Theorem 5 do that.

On the other hand, as Theorem 8 is based on Construction 3 that contains a word of weight
n, Lemma 2 is applicable under the condition that 2(t +� u

q �) < d (cf. Remark 6). Hence, we
can achieve higher rates as shown in the dashed-dotted curve while masking up to the same
number of u cells, rather employing Lemma 1 or Theorem 5.

For that we describe some points of Fig. 9 by Table 5. Let Cu,t be a code by Theorem 8
whose rate is R given in Table 5 at u row and t column. Taking C19,27 gives C20,26 and C23,26
with R = 0.435 applying Theorem 5 and Lemma 1, respectively. In contrary, taking C19,31 is
advantageous as there are codes (C20,30 byTheorem5andC23,30 byLemma1)with R = 0.380
while direct application of Theorem 8 cannot provide these codes as highlighted in green
with “None”. Now, we apply Lemma 2 on a code obtained by Theorem 6 for (u = 7, t = 27)
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Table 5 Table of selected points from Fig. 9. All points are from Theorem 8

u
t 26 27 28 29 30 31 32

11 0.471 0.456 0.441 0.431 0.416 0.401 0.391
12 0.460 0.445 0.430 0.420 0.405 0.390 0.380
...

...
...

...
...

...
...

...
14 0.460 0.445 0.430 0.420 0.405 0.390 0.380
15 0.460 0.445 0.430 0.420 0.405 0.390 0.380
...

...
...

...
...

...
...

...
19 0.450 0.435 0.420 0.410 0.395 0.380 None
20 0.441 0.426 0.411 0.401 None None None
...

...
...

...
...

...
...

...
23 0.441 0.426 0.411 0.401 None None None

Fig. 9 The achievable rates R = 1
n logq M of GV bounds for different u, and t for n = 200 and q = 23 in

Theorem 8. The solid plots are the rates from the derived GV like bound and the dotted graphs are the rates
after trading u + 1, t − 1 by Theorem 5. We also show the exchange by Lemma 1 and Lemma 2 in which the
reduction of the correctable errors by one increases u by 2μ−1 and 2μ, respectively

to obtain the code C15,26 of rate R = 0.465 that satisfies 2(26 + � 15
8 �) < 55. The achieved

rate is higher compared to C15,26 of R = 0.460 that is directly obtained by Theorem 8, or
applying Theorem 5 on C14,27 to obtain C15,26 of R = 0.445, or using Lemma 1 on C11,27 to
obtain C15,26 of R = 0.456. This result does not mean that application Lemma 2 on a code
obtained by Theorem 6 always provides higher code rates for the same parameters u, t (see
Fig. 7).
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9.7 Analytical comparison of asymptotic GV-like bounds

In this section, we state the results of the analytical comparisons of the asymptotic GV bounds
from Theorems 9, 10 and 11, ignoring the terms that tend to zero for increasing n. We will
use the following lemma.

Lemma 11 Let q ≥ 2 be an integer. If 0 ≤ x, y are such that x + y ≤ 1, then

hq(x + y) ≤ hq(x) + hq(y).

Proof Let 0 ≤ y < 1, and consider the function fy(x) = hq(x + y) − hq(x) − hq(y) on the
interval [0, 1 − y]. Clearly, f ′

y(x) = h′
q(x + y) − h′

q(x) ≤ 0, where the inequality follows
from the fact that the second derivative of hq is non-negative. Hence, fy(x) ≤ fy(0) = 0 for
each x ∈ [0, 1 − y]. 
�
Proposition 5 If υ, τ and q are such that the conditions of Theorems 9 and 10 are met, then
the rate guaranteed by Theorem 9 is at least equal to the code rate guaranteed by Theorem 10.

Proof Assume τ and υ are such that the conditions of Theorems 9 and 10 are satisfied, that
is, such that 2τ + 2 υ

q < 1 − 1
q and hq(υ) + hq(2τ) < 1. By invoking Lemma 11, we see

that

hq(2τ + 2
v

q
) ≤ hq(2τ) + hq(2 · υ

q
) ≤ hq(2τ) + hq(υ),

where the final inequality holds as q ≥ 2 and hq is monotonically increasing on [0, 1 − 1
q ].

As a consequence, the code rate guaranteed by Theorem 9 is at least equal to the code rate
guaranteed by Theorem 10. 
�
Proposition 6 If υ, τ and q = 2μ are such that the conditions of Theorems 10 and 11 are met,
then the code rate guaranteed by Theorem 11 is at least equal to the code rate guaranteed
by Theorem 10.

Proof Assume that the conditions ofTheorems10 and11 are satisfied.Thedifference between
the rate of Theorem 11 and of Theorem 10 equals

h2μ(υ) − 1

μ
h2(

υ

2μ−1 ). (16)

According to the conditions of Theorem 10, υ ≤ 1 − 1
2μ , and so h2μ(υ) ≥ h2(

υ
2μ−1 ).

As h2μ(x) = 1
μ
h2(x) + x log2μ(2μ − 1), the difference in (16) is non-negative. That is,

Theorem 11 is better than Theorem 10. 
�
We note that the requirement 2τ < 1

2 from Theorem 11 is stricter than the requirement
2τ < 1 − 1

2μ from Theorem 10. That is, there are pairs (τ, υ) for which Theorem 10 is
applicable, but Theorem 11 is not.

Comparison of Theorems 9 and 11 is more complicated. We have the following partial
result.

Proposition 7 Let υ, τ > 0 and q = 2μ be such that the conditions of Theorems 9 and 11
are met. If υ is sufficiently small, then the rate guaranteed by Theorem 9 is larger than the
rate guaranteed by Theorem 11.
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Proof Assume that τ and υ are such that the conditions of Theorem 9 and of Theorem 11
are satisfied, that is, 2τ + 2 υ

2μ < 1 − 1
2μ ,

0 ≤ υ ≤ 2μ−2, 0 ≤ 2τ ≤ 1

2
and h2(

υ

2μ−1 ) + h2(2τ) < 1.

Let fμ(τ, υ0), where υ0 = υ
2μ−1 , be the bound from Theorem 9 minus the bound from

Theorem 11, that is

fμ(τ, υ0) = h2μ(2τ) + 1

μ
h2(υ0) − h2μ(2τ + υ0).

The definition of the entropy function implies that for any x ∈ [0, 1]

h2μ(x) = 1

μ

(
h2(x) + x log2(2

μ − 1) ). (17)

Applying (17), we infer that

μ fμ(τ, υ0) = h2(2τ) + h2(υ0) − h2(2τ + υ0) − υ0 log2(2
μ − 1). (18)

In particular, μ fμ(0, υ0) = −υ0 log2(2
μ − 1) ≤ 0.

So for τ = 0, Theorem 11 is better than Theorem 9. It follows from Lemma 11 that the
three leftmost terms in (18) form a non-negative number. The subtraction of the fourth term,
however, can result in a negative function value, especially for large μ.

Example 6 (Numerical example)μ fμ(0.055, 0.11) = 2·h2(0.11)−h2(0.22)−0.11 log2(2
μ−

1) ≈ 0.23397 − 0.11 log2(2
μ − 1) is positive for μ ≤ 2 and negative otherwise. 
�

We now prove Proposition 7. That is, we show that for τ > 0 and υ0 sufficiently small,
fμ(τ, υ0) > 0. This follows from the Taylor expansion ofμ fμ(τ, υ0) around υ0 = 0. Indeed,
fμ(τ, 0) = 0, and h′

2(x) → ∞ if x ↓ 0. 
�

10 Conclusion

In this paper, code constructions and bounds for non-volatile memories with partial defects
have been proposed. Our constructions can handle both: partial defects (also called partially
stuck cells) and random substitution errors, and require less redundancy symbols for u > 1
and q > 2 than the known constructions for stuck cells. Compared to error-free masking
of partially stuck cells, our achieved code sizes coincide with those in [29], or are even
larger as shown in Proposition 1. We summarize our constructions and the previous works
on partially/fully stuck cells in Table 3.

Further, we have shown that it can be advantageous to introduce errors in some partially
stuck cells in order to satisfy the stuck-at constraints. For the general case that is applicable
for all of our constructions, we have shown in Theorem 5 how to replace any 0 ≤ j ≤ t
errors by j masked partially stuck cells. This theorem has been improved for Construction 3
by Lemma 1, and further enhanced by another method for introducing errors in the partially
stuck locations through Lemma 2 (cf. Example 5). We gain (e.g., for j = 1) exactly 2μ−1

and 2μ (under the condition that 2(t + � u
q �) < d) additional masked partially stuck cells

applying Lemmas 1 and 2, respectively. So far, determining if introducing errors in partially
stuck cells is advantageous or not can only be done numerically.

123



Coding and Bounds for Partially Defective... 4055

We also derived upper and lower limits on the size of our constructions. Our sphere-
packing-like bound for the size of (Σ, t) PSMCs has been compared to the usual sphere-
packing upper bound, and for the case of no errors (t = 0) to [29, Theorem 2].

We have numerically compared our Gilbert–Varshamov-type bounds, for given (u, t),
to each other and to (q − 1)-ary codes. For u ≤ q − 1, Theorem 6 states the existence of
(u, 1, t) PSMCswith rates that almost match the ones from the usual q-ary GV bound (shown
in Fig. 3). Moreover, up to u = 20 for q = 8, Fig. 6 shows that application of Theorem 6 is
better than using (q − 1)-ary code as mentioned in [29, Section III]. On the other hand, for
q = 4 and u = 10, Theorems 7 and 8 obviously require less redundancy than (q − 1)-ary
code as shown in Fig. 5.

Figures 8 and 9 demonstrate the application of Theorem 5, Lemmas 1 and 2 on (u, 1, t)
PSMCs of rates that have been obtained based on Theorems 7 and 8. For some parameters
(i.e. u = 16, t = 41 as shown in Table 4 and u = 19, t = 31 as shown in Table 5), application
of Theorem 5 and Lemma 1 achieve higher code rates and more masked cells. Application
Lemma 2 on a code obtained by Theorem 6 (i.e. u = 7, t = 27) provides higher code rate
compared to the direct employment of Theorems 8, 5 and Lemma 1.

In the asymptotic regime of our GV-like bounds, Theorems 9 and 11 are remarkable
competitors to Theorem 10. However, the analytical comparison between Theorem 9 and
Theorem 11 is more complicated to decide which one is the better choice. This was also
confirmed numerically via Fig. 7.
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A An alternative Proof of Proposition 2

We start with Lemma 12.

Lemma 12 Let M ∈ F
m×n
q be such that each column of M has at least one non-zero entry.

Let s ∈ F
n
q . For each w ∈ F

n
q , there is a v ∈ F

m
q such that

∣∣∣{i ∈ [n] | wi + (vM)i ≥ si
}∣∣∣ ≥ n −

⌊
1

q

n−1∑
i=0

si

⌋
.
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Proof We define the set S as

S = {
(i, v) ∈ [n] × F

m
q | wi + (vM)i ≥ si

}
.

Clearly, there is v ∈ F
m
q such that

∣∣∣{i ∈ [n] ∣∣ wi + (vM)i ≥ si
}∣∣∣ ≥

⌈ |S|
qm

⌉
. (19)

Let i ∈ [n]. As the i-th column of M has a non-zero entry, for each y ∈ Fq there are exactly
qm−1 vectors x ∈ F

m
q such that (xM)i = y. As a consequence,
∣∣∣{v ∈ F

m
q | wi + (vM)i ≥ si

}∣∣∣ = (q − si )q
m−1,

and so

|S| =
n−1∑
i=0

(q − si )q
m−1 = nqm − qm−1

n−1∑
i=0

si . (20)

The lemma follows from combining (19) and (20). 
�
We are now in a position to introduce an alternative non-constructive proof for Proposition 2.

Let s ∈ Σ . In order to simplify notation, we assume without loss of generality that∑n−1
i=d0−2 si ≤ q − 1. Let w ∈ F

n
q . We wish to find z ∈ F

l
q such that wi + (zH0)i ≥ si for

many indices i .
As the d0 − 2 leftmost columns of H0 are independent, there exists an invertible matrix
T ∈ F

l×l
q such that

TH0 =
[
Id0−2 A
0 B

]
,

where Id0−2 denotes the identity matrix of size d0 − 2.
For i ∈ [d0 − 2], we choose zi = si − wi and write

v = w + z · (Id0−2 | A).

By definition, vi = si for all i ∈ [d0 − 2].
As any d0 − 1 columns of TH0 are independent, no column of B consists of only zeroes.
Lemma 12 implies that there is an η ∈ F

l−d0+2
q such that∣∣∣ {i ∈ [d0 − 2, n − 1] ∣∣ wi + (ηB)i+d0−2 ≥ si

}∣∣∣
≥ n − d0 + 2 −

⌊
1

q

n−1∑
i=d0−2

si

⌋
.

Combining this with the fact that vi = si for all i ∈ [d0 − 2], we infer that for all indices
i ∈ [n], wi + ((z, η)TH0)i ≥ si . 
�
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