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Abstract
An affine vector space partition of AG(n, q) is a set of proper affine subspaces that partitions
the set of points. Here we determine minimum sizes and enumerate equivalence classes of
affine vector space partitions for small parameters. We also give parametric constructions for
arbitrary field sizes.
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1 Introduction

A vector space partition P of the projective space PG(n − 1, q) is a set of subspaces in
PG(n − 1, q) which partitions the set of points. For a survey on known results we refer to
[12]. We say that a vector space partition P has type (n − 1)mn−1 . . . 2m21m1 if precisely
mi of its elements have dimension i , where 1 ≤ i ≤ n. The classification of the possible
types of a vector space partition, given the parameters n and q , is an important and difficult
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problem. Based on [10], the classification for the binary case q = 2 was completed for n ≤ 7
in [7]. Under the assumption m1 = 0 the case (q, n) = (2, 8) has been treated in [6]. It
seems quite natural to define a vector space partition A of the affine space AG(n, q) as a
set of subspaces in AG(n, q) that partitions the set of points. However, it turns out that those
partitions exist for all types which satisfy a very natural numerical condition. If we impose the
additional condition of tightness, that is that the projective closures of the elements ofA have
an empty intersection, then the classification problem becomes interesting and challenging.
This condition is natural in the context of hitting formulas as introduced in [17], that is for
logical formulas in full disjunctive normal form (DNF) such that each truth assignment to the
underlying variables satisfies precisely one term. For amore recent treatment and applications
we refer to [26]. Here we consider the geometrical and the combinatorial point of view.

Variants of vector space partitions of PG(n−1, q) have been studied in the literature. In [8]
the authors study (multi-)sets of subspaces covering each point exactly λ times. The problem
of covering each k-space exactly once is considered in [14]. Amore general partition problem
for groups is studied in [10]. Irreducible homogeneous affine vector space partitions have
been studied by Agievich [1] and Tarannikov [28] motivated by the study of bent functions.
However, we are not aware of any publication treating the introduced affine vector space
partitions in the same generality as in the present work.

The paper is organized as follows. In Sect. 2 we formally introduce affine vector space
partitions, state the preliminaries, and develop the first necessary existence conditions. Here
we are guided by the published necessary conditions for vector space partitions. We also
argue why tightness (see above) and irreducibility, that is there exists no proper subset
A′ � A such that the union of all elements ofA′ is a subspace of AG(n, q), are necessary to
obtain an interesting existence question. In Sect. 3 we classify affine vector space partitions
for arbitrary field sizes but small dimensions. Sect. 4 is concerned with the binary case.
We completely determine the possible dimension distributions of tight irreducible affine
vector space partitions of PG(n − 1, 2) for all n ≤ 7. In a few cases we give theoretical or
computational classifications of the corresponding equivalence classes of tight irreducible
vector space partitions. A very nice example consists of eight solids in PG(6, 2) whose parts
at infinity live on the Klein quadric Q+(5, 2). A generalization to arbitrary finite fields of
characteristic 2 is given in Sect. 5.2. Parametric constructions of tight irreducible affine vector
space partitions using spreads or hitting formulas complete Sect. 5. In Sect. 6 we determine
the smallest possible size of an irreducible tight affine vector space partition of PG(7, 2) and
give a parametric upper bound for PG(n − 1, 2) of size roughly 3n

2 , which is significantly
smaller than the conjectured smallest size of an irreducible hitting formula mentioning all
variables. We close with a conclusion and a list of open problems in Sect. 7. To keep the
paper self-contained we present some additional material in an appendix. Section A contains
details on integer linear programming formulations that we have utilized to obtain some
computational results. Section B contains a few technical results that might be left to the
reader or collected from the literature. Lists of hitting formulas that can be used to construct
tight irreducible affine vector space partitions of the minimum possible size are given in
Sect. C.

2 Preliminaries and necessary conditions

Definition 1 An affine vector space partition A of AG(n, q) is a set {A1, . . . , Ar } of sub-
spaces of AG(n, q) such that 0 ≤ dim(Ai ) ≤ n−1 for all 1 ≤ i ≤ r and every point (element
of Fn

q )
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is contained in exactly one element Ai . The integer r is called the size of the affine vector
space partition.

We write #A for the size of A. For each affine subspace A ∈ AG(n, q) we write A for its
projective closure. With thisA := {

A : A ∈ A
}
is the natural embedding of an affine vector

space partition of AG(n, q) in PG(n, q). Denoting the hyperplane at infinity by H∞, we can
directly define an affine vector space partition in PG(n, q):

Definition 2 An affine vector space partition U of PG(n − 1, q) is a set {U1, . . . ,Ur } of
subspaces of PG(n − 1, q) such that 1 ≤ dim(Ui ) ≤ n − 1 for all 1 ≤ i ≤ r and there exists
a hyperplane H∞ such that every point (1-dimensional subspace) outside of H∞ is contained
in exactly one element Ui and Ui �≤ H∞ for all 1 ≤ i ≤ r . The integer r is called the size of
the affine vector space partition and also denoted by #U .

Here we use the algebraic dimension for subspaces in PG(n − 1, q), i.e., if dim(U ) = u,
then #U = [u

1

]
q := qu−1

q−1 and we also speak of u-spaces. Using the geometric language, we
call 1-, 2-, 3-, 4-, and n−1-spaces points, lines, planes, solids, and hyperplanes, respectively.
For each 1 ≤ i ≤ r the set Ui\H∞ is an affine space containing qdim(Ui )−1 points.

In the following we will mostly speak of an affine vector space partition, abbreviated as
avsp, and will consider its embedding in PG(n−1, q). The type of an avsp U = {U1, . . . ,Ur }
is given by (n−1)mn−1 . . . 2m21m1 ,wheremi = #

{
Uj : 1 ≤ j ≤ r , dim(Uj ) = i

}
. Counting

points outside of H∞ gives

n−1∑

i=1

mi · qi−1 = qn−1. (1)

The analog of Eq. (1) for vector space partitions of PG(n − 1, q) is called the packing
condition. While the packing condition for vector space partitions of PG(n − 1, q) is just
a necessary but not a sufficient condition for the existence with a given type, for avsps
Equation (1) is both necessary and sufficient.

Lemma 1 For each type (n− 1)mn−1 . . . 2m21m1 that satisfies the packing condition (1) there
exists an avsp U of PG(n − 1, q) attaining that type.

Proof Consider a subspace K of H∞ with dim(K ) = n − 2. By H1, . . . , Hq we denote the
q hyperplanes containing K that are not equal to H∞. Clearly, we have 0 ≤ mn−1 ≤ q
and we can choose H1, . . . , Hmn−1 as the first elements of U . The remaining elements are
constructed recursively. For each index mn−1 + 1 ≤ j ≤ q we consider an avsp of type

(n − 2)m
( j)
n−2 . . . 2m

( j)
2 1m

( j)
1 where the m( j)

i ∈ N0 are chosen such that the packing condition
is satisfied for Hj and

q∑

j=mn−1+1

m( j)
i = mi (2)

for all 1 ≤ i ≤ n − 2. Such a decomposition can be easily constructed, see the algorithm in
Sect. B. ��
Definition 3 We call an avsp U = {U1, . . . ,Ur } reducible if there exists a subspace U and
a subset S � {1, . . . , r} such that dim(U ) < n, #S > 1 and {Ui : i ∈ S} is an avsp of U .
Otherwise U is called irreducible.
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Lemma 2 The smallest size of an irreducible avsp U of PG(n − 1, q) is given by #U = q.

Proof Let U be an avsp of PG(n − 1, q). Since there are qn−1 points to cover and each
subspace covers at most qn−2 points, we have #U ≥ q . Now consider a hyperplane K of
H∞. By H1, . . . , Hq we denote the q hyperplanes containing K and not being equal to H∞.
With this,

{
H1, . . . , Hq

}
is an irreducible avsp of PG(n − 1, q). ��

For a vector space partition P of PG(n − 1, q) we have dim(A) + dim(B) ≤ n for each
pair {A, B} of different elements of P , which is also called dimension condition. Using this
it can be easily shown that #P ≥ qn−1

qn/2−1
= qn/2+1 if n is even and #P ≥ q(n+1)/2+1 if n is

odd. Both bounds can be attained by spreads, i.e., vector space partitions of type (n/2)q
n/2+1,

and lifted MRD codes of maximum possible rank distance, i.e., vector space partitions of
type ((n+1)/2)1((n−1)/2)q

(n+1)/2
, respectively. In [25] the authors determine the minimum

size σq(n, t) of a vector space partition of PG(n, q) whose largest subspace has dimension t .

Lemma 3 Let U be an irreducible avsp of PG(n − 1, q) and U1, . . . ,Uq ∈ U be q different
elements with dim(U1) = · · · = dim(Uq) and dim

(〈
U1, . . . ,Uq

〉) = dim(U1) + 1. Then we
have dim(U1) = · · · = dim(Uq) = n − 1.

Proof Let U := 〈
U1, . . . ,Uq

〉
and u := dim(U1). Since U\H∞ contains qu points and

Ui\H∞ contains qu−1 points for each 1 ≤ i ≤ q , the set

U\ {
U1, . . . ,Uq

} ∪ {U }
is an avsp unless dim(U ) = u + 1 = n. ��
Corollary 1 Let U be an irreducible avsp of PG(n − 1, 2) and U1,U2 ∈ U be two different
elements with dim(U1) = dim(U2) = dim(U1 ∩ U2) + 1. Then, we have dim(U1) =
dim(U2) = n − 1.

As an analog of the dimension condition for vector space partitions in PG(n−1, q)we have:

Lemma 4 Let U be an avsp in U . For each U ,U ′ ∈ U we have

dim(U ∩U ′) = dim(U ∩U ′ ∩ H∞) ≥ dim(U ) + dim(U ′) − n. (3)

Proof SinceU\H∞,U ′\H∞ are disjoint andU ,U ′ �≤ H∞ we have dim(U∩U ′) = dim(U∩
U ′ ∩ H∞). The inequality follows from

dim(U1∩U2) + dim(〈U1,U2〉) = dim(U1) + dim(U2)

and dim(〈U1,U2〉) ≤ n. ��
Due to the following general construction for (irreducible) avsps we introduce a further
condition.

Lemma 5 Let U = {U1, . . . ,Ur } be an avsp of PG(n − 1, q) =: V and P be a point
outside of V (embedded in PG(n, q)). Then, U ′ := {〈U1, P〉 , . . . , 〈Ur , P〉} is an avsp of
〈V , P〉 ∼= PG((n + 1) − 1, q), where the “new” hyperplane at infinity arises via 〈H∞, P〉
from the “old” hyperplane at infinity H∞. Reducability inherits, i.e. U ′ is irreducible iff U is
irreducible.

Definition 4 Let U = {U1, . . . ,Ur } be an avsp of PG(n − 1, q). We call U tight iff the
intersection of all Ui does not contain a point, i.e. the intersection is trivial.
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The same definition was proposed by Agievich [1], under the name primitivity, and was
dubbed A-primitivity by Tarannikov [28]. We remark that an avsp A of AG(n, q) is tight iff
for any x ∈ Fn

q , there exists an A ∈ A such that A is not invariant under addition of x , that
is A + x �= A.

Lemma 6 For each integer n ≥ 2 there exists a tight avsp of PG(n − 1, q) with size (q − 1) ·
(n − 1) + 1.

Proof Apply the following recursive construction. Startwith an (n−2)-dimensional subspace
K of H∞ and consider the q hyperplanes H1, . . . , Hq containing K but not being equal to
H∞. Choose q − 1 out of these and continue the iteration with the remaining hyperplane
until it becomes 2-dimensional, i.e. a line. In the final step replace the affine line by q points,
so that the resulting avsp is trivially tight. ��
A classical result in computer science, attributed to Tarsi, states that a minimally unsatisfiable
Boolean formula in conjunctive normal form (CNF) with m clauses mentions at most m − 1
variables, see e.g. [5, Theorem 8]. The proof can be slightly modified to show that for n ≥ 2
each tight avsp of PG(n − 1, 2) has size at least n. One might conjecture that Lemma 6 is
tight. Some preliminary results in that direction are proven in [9, Sec. 3.2]. The determination
of the minimum size of an irreducible tight avsp is quite a challenge and we will present our
preliminary results in Sects. 3 and 4.

Note that tightness and irreducibility can be checked efficiently. In particular, for irre-
ducibility it suffices to calculate the affine closure for all pairs of subspaces in the avsp.
We will show efficiency formally and provide detailed algorithms in future work on hitting
formulas.

Lemma 7 Let U, K , and H∞ be subspaces in PG(n−1, q) with K ≤ H∞, dim(K ) = n−2,
dim(H∞) = n − 1, and dim(U ∩ H∞) = dim(U ) − 1, i.e. U �≤ H∞. By H1, . . . , Hq

we denote the q hyperplanes containing K but not being equal to H∞. Then the following
statements are equivalent:

(1) U ∩ H∞ ≤ K;
(2) there exists an index 1 ≤ i ≤ q with U ≤ Hi ;
(3) there exists an index 1 ≤ i ≤ q with U ≤ Hi and U ∩ Hj = U ∩ H∞ = U ∩ K for all

1 ≤ j ≤ q with j �= i ;
(4) dim(U ∩ K ) = dim(U ) − 1.

Lemma 8 Let U, K , and H∞ be subspaces in PG(n−1, q) with K ≤ H∞, dim(K ) = n−2,
dim(H∞) = n − 1, and dim(U ∩ H∞) = dim(U ) − 1, i.e. U �≤ H∞. By H1, . . . , Hq

we denote the q hyperplanes containing K but not being equal to H∞. Then the following
statements are equivalent:

(1) U ∩ H∞ �≤ K;
(2) dim(U ∩ Hi ) = dim(U )−1 for all 1 ≤ i ≤ q;
(3) there are q (dim(U )−1)-spaces in U containing U ∩K and not being contained in H∞;
(4) dim(U ∩ K ) = dim(U ) − 2.

Assume that P is a vector space partition of PG(n − 1, q) with type km1
1 . . . kml

l , where
k1 > · · · > kl and mi > 0 for all 1 ≤ i ≤ l. The so-called tail T of P is the set of all
kl -spaces in P , i.e., the set of all elements with the smallest occurring dimension. In [11]
several conditions on #T have been obtained. In our situation we can also consider the tail
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T := {U ∈ U : dim(U ) = kl} of an avsp of PG(n − 1, q) with type km1
1 . . . kml

l , where
k1 > · · · > kl and mi > 0 for all 1 ≤ i ≤ l. The packing condition (1) directly implies
that qkl−1−kl divides #T = ml if l ≥ 2 and that qn−kl divides #T = ml if l = 1. In [21] the
results on the tail of a vector space partition of PG(n − 1, q) were refined using the notion
of Δ-divisible sets of k-spaces.

Definition 5 A (multi-)set S of k-spaces in PG(n − 1, q) is called Δ-divisible iff #S ≡
#(H ∩S) (mod Δ) for every hyperplane H , where H ∩S denotes the (multi-)set of elements
of S that are contained in H .

We use the notation {{�}} for a multiset S and #S for its cardinality.

Lemma 9 Let U be an avsp of PG(n − 1, q) of type km1
1 . . . kml

l , where k1 > · · · > kl > 1
and mi > 0 for all 1 ≤ i ≤ l. Let T := {U ∈ U : dim(U ) = kl} be the tail of U and
T ′ := {T ∩ H∞ : T ∈ T }. If l ≥ 2, then T ′ is qkl−1−kl -divisible and #T = #T ′ ≡ 0
(mod qkl−1−kl ). If l = 1, then T ′ is q-divisible and #T = #T ′ ≡ 0 (mod qn−kl ).

Proof Clearly we have #T = #T ′. From the packing condition (1) we directly conclude
#T ≡ 0 (mod qkl−1−kl ) if l ≥ 2 and #T = qn−kl ≡ 0 (mod qn−kl ) if l = 1. Let K be an
arbitrary hyperplane of H∞ and H1, . . . , Hq be the q hyperplanes of PG(n− 1, q) not being
equal to H∞. Call the points outside of H∞ that are contained in some element of U with
dimension strictly larger than kl covered and all others outside of H∞ uncovered. Since each
k-space covers either qk−1, qk−2, or 0 points of Hi\H∞, the number of uncovered points in
Hi\H∞ is divisible by qkl−1−2 if l ≥ 2 and by qkl−1 if l = 1, where 1 ≤ i ≤ q is arbitrary.
Let a be the number of kl -spaces in U that are completely contained in Hi , so that the number
of uncovered points in Hi equals

x := a · qkl−1 + (#T − a) · qkl−2.

If l ≥ 2 we have x ≡ 0 (mod qkl−1−2) and #T ≡ 0 (mod qkl−1−kl ), so that (q − 1)a ≡ 0
(mod qkl−1−kl ) and a ≡ 0 (mod qkl−1−kl ). If l = 1we have x ≡ 0 (mod qkl−1) and #T ≡ 0
(mod q), so that (q − 1)a ≡ 0 (mod q) and a ≡ 0 (mod q). ��

Δ-divisible (multi-)sets S of k-spaces in PG(n − 1, q) have been studied in [21]. If we

replace each k-space by its qk−1
q−1 points we obtain a Δqk−1-divisible multiset of #S · qk−1

q−1
points in PG(n−1, q). The possible cardinalities, given the divisibility constant and the field
size, have been completely characterized in [18, Theorem 1]. Here we will use only a few
results on the possible structure of the tail (or more precisely of T ′) which allow more direct
proofs.

Lemma 10 Let U be an avsp of PG(n−1, 2)with tail T . If #T = 2, then either U is reducible
or we have U = T and dim(U ) = n − 1 for all U ∈ U .

Proof Denote the dimension of the elements of T by k. Lemma 9 yields that T ′ :=
{T∩H∞ : T ∈ T } is a 2-divisible multiset of (k − 1)-spaces. So, each hyperplane of H∞
contains either all 2 or zero elements from T ′, so that T ′ is a q-fold (k − 1)-space. With this,
the stated results follows from Lemma 3 applied to T . ��
Corollary 2 Let U be an irreducible avsp of PG(n − 1, q) of type km1

1 . . . kml
l , where k1 >

· · · > kl and ki > 0 for all 1 ≤ i ≤ l. If ml = q, then we have l = 1 and k1 = n − 1.
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2.1 The structure of the tail for small parameters

If #T is small and q = 2, then we can also characterize the tail using Lemma 9. To this end,
let S denote a set of k-spaces in PG(n− 1, q). The corresponding spectrum (ai )i∈N0

is given
by the numbers ai of hyperplanes that contain exactly i elements from S, so that

#S∑

i=0

ai = qn − 1

q − 1
. (4)

The condition that S is spanning, i.e. 〈S : S ∈ S〉 = PG(n − 1, q), is equivalent to a#S = 0.
Double-counting the k-spaces gives

#S∑

i=0

iai = #S · q
n−k − 1

q − 1
. (5)

Lemma 11 Let S be a 2-divisible set of four k-spaces in PG(n − 1, 2). Then there exists
a (k − 1)-space B, a plane E, and a line L ≤ E with dim(〈E, B〉) = k + 2, such that
S = {〈P, B〉 : P ∈ E\L}.
Proof Assume that P is a point that is contained in at least one but not all elements from
S. Let x denote the number of elements of S that contain P . Since all hyperplanes contain
an even number of elements from S we have x �= 3. Assume x = 2 for a moment and let
S, S′ ∈ S be the two elements not containing P . There are 2n−k−1 hyperplanes that contain
S but do not contain P , so that all of those hyperplanes contain S and S′. The intersection of
these hyperplanes has dimension at most k and contains S as well as S′, so that S = S′, which
is a contradiction. Thus, each point P in PG(n−1, 2) is contained in 0, 1 or 4 elements of S.

By (ai )i∈N0
we denote the spectrum of S. W.l.o.g. we assume that S is spanning, i.e., we

have a4 = 0. From the equations (4) and (5) we conclude

a0 = 2n − 2n−k+1 + 1 and a2 = 2n−k+1 − 2.

If there is no point P that is contained in all four elements of S, then the elements of S are
pairwise disjoint and double-counting pairs yields

(
2

2

)
a2 =

(
4

2

)
·
(
2n−2k − 1

)
, (6)

so that

2n−k+1 − 2 = 6 ·
(
2n−2k − 1

)
⇔ 2n−k − 3 · 2n−2k + 2 = 0,

which has the unique solution n = 3, k = 1.
So, by recursively quotienting out points P that are contained in all elements of S we

conclude the existence of a (k − 1)-space B that is contained in all four elements of S.
Quotienting out B yields a spanning 2-divisible set of points in PG(2, 2) with a0 = 1 and
a2 = 6. Choosing E as the ambient space and L as the empty hyperplane yields the stated
characterization since in PG(2, 2) there are exactly four points outside a hyperplane. ��
If k = 1, i.e., the k-spaces are points, the Eqs. (4)–(5) and the generalization

∑#S
i=0

(i
2

)
ai =

(#S
2

) · qn−2−1
q−1 of (6) are also known as “standard equations” or the first three MacWilliams

equations for the corresponding (projective) linear code.
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We remark that Lemma 11 is based on the fact that each 2-divisible set of 4 points is an
affine plane. For q > 2 there there further possibilities for q-divisible sets of q2 points over
Fq , see [4, 19] on the so-called cylinder conjecture. We apply Lemma 11 e.g. in Proposition 6
and Lemma 18.

3 Classification of avsps in PG(n− 1,q) for small parameters

By definition, there is no avsp in PG(1− 1, q). In PG(2− 1, q) there is a unique avsp. It has
type 1q and is irreducible and tight.

Lemma 12 Let U be an avsp of PG(n − 1, q), where n ≥ 3. If there exist pairwise different
hyperplanes U1, . . . ,Ul ∈ U , then there exists an (n − 2)-space K ≤ H∞ such that K ≤ Ui

for all 1 ≤ i ≤ l.

Proof The statement is trivial for l ≤ 1, so that we assume l ≥ 2. Due to the dimensions we
have dim(Ui ∩ Uj ) = n − 2 for all 1 ≤ i < j ≤ l. Since the sets of points Ui\H∞ and
Uj\H∞ are disjoint we have Ui ∩Uj ≤ H∞ and Ui ∩Uj = Ui ∩ H∞ = Uj ∩ H∞. So, we
set K = U1 ∩ H∞. ��
Proposition 1 Let U be an irreducible avsp of PG(n − 1, q), where n ≥ 3. If U is of type
(n − 1)mn−1 . . . 2m21m1 , then we have mn−1 ≤ q − 2 or mn−1 = q. In the latter case U is
not tight.

Proof We assume mn−1 = q − 1 ≥ 1 and let K ≤ H∞ as in Lemma 12. With this, let
H �= H∞ be the unique hyperplane with K ≤ H that is not contained as an element in U
and U ′ arise from U by removing the q − 1 (n − 1)-dimensional elements. Thus, U ′ is an
avsp of H , i.e., U is reducible.

If mn−1 = q , then the (n − 2)-space K ≤ H∞ (as in Lemma 12) is contained in all
elements of U , i.e., U is not tight. ��
Corollary 3 Let U be an irreducible tight avsp of PG(n − 1, 2) of type (n − 1)mn−1 . . . 1m1 ,
where n ≥ 3. Then we have mn−1 = 0.

Let U = {U1, . . . ,Ur } be an avsp of PG(n − 1, q), I ⊆ {1, . . . , r}, and V be a proper
subspace with V �≤ H∞. If #I ≥ 2 and {Ui : i ∈ I } is an avsp of V , then we say that the
spaces Ui with i ∈ I can be joined to V . Note that this is exactly the situation when U is
reducible. In PG(n − 1, 2) any two points outside of H∞ can be joined to a line, so that:

Lemma 13 Let U be an irreducible tight avsp of PG(n − 1, 2) of type (n − 1)mn−1 . . . 1m1 ,
where n ≥ 3. Then,we have m1 = 0.

Theorem 1 Let U be an avsp of PG(3− 1, q) with type 2m21m1 . Then, we have 0 ≤ m2 ≤ q,
m1 = q · (q − m2), all lines in U contain a common point P ≤ H∞, and the 1-dimensional
elements can be grouped into pairwise disjoint sets of size q that can be joint to a line each.

Proof The parameterization ofm2,m1 follows from the packing condition (1). Ifm2 > 0, the
existence of P follows from Lemma 12. If m2 = 0 then choose an arbitrary point P ≤ H∞.
By L1, . . . , Lq we denote the q lines containing P that are not equal to H∞. For each line
Li that is not an element of U there exist q points in U that can be joined to Li . (Note that
Li ∩ L j = P for all 1 ≤ i < j ≤ q .) ��
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We remark that all possibilities for 0 ≤ m2 ≤ q can indeed by attained. In general there exist
several non-isomorphic examples.

Corollary 4 (1) Let U be an irreducible avsp of PG(3 − 1, q). Then U is of type 2q and
non-tight.

(2) Let U be an avsp of PG(3 − 1, q) with type 2m21m1 . Then, U is tight iff m1 ≥ 1. In that
case U is reducible.

(3) No irreducible tight avsp of PG(3 − 1, q) exists.

LetU be an avsp of PG(n−1, q), where n ≥ 3, and K ≤ H∞ be an arbitrary (n−2)-space.
We say that U (1), . . . ,U (q) is a K-decomposition of U if the q hyperplanes containing K and
not being equal to H∞ can be labeled as H1, . . . , Hq such that U = ∪q

i=1U (i) and

U (i) = {U ∩ Hi : U ∈ U,U ∩ Hi �≤ H∞} (7)

for all 1 ≤ i ≤ q . Note that U (i) is an avsp of Hi for each 1 ≤ i ≤ q (including the case
U (i) = {Hi }). Moreover, any labeling of the q hyperplanes Hi induces a K -decomposition.
Observe that for a fixed (n − 2)-space K ≤ H∞ each pair of K -decompositions arises just
by relabeling, so that we also speak of the K -decomposition of U since the actual labeling
will not matter in our context.

Proposition 2 Let U be an avsp of PG(n − 1, q), where n ≥ 3, with type (n −
1)mn−1 . . . 2m21m1 . If 1 ≤ mn−1 ≤ q, then there exists an (n − 2)-space K ≤ H∞ such
that the K -decomposition U (1), . . . ,U (q) partitions U , i.e.,

⋃

1≤i≤q

U (i) = U .

Moreover, if mn−1 ≤ q − 1, then U is reducible. (More precisely, for each index 1 ≤ i ≤ q
with #U (i) > 1 the elements in U (i) can be joined to Hi .)

Proof Choose some arbitrary U ∈ U with dim(U ) = n − 1, set K := U ∩ H∞, and let
U (1), . . . ,U (q) be the K -decomposition of U and H1, . . . , Hq be the corresponding hyper-
planes. Due to Lemma 12 eachU ∈ U with dim(U ) = n−1 results in the same (n−2)-space
K and the same K -decomposition U (1), . . . ,U (q) (up to relabeling). Especially we have that
for each U ′ ∈ U with dim(U ′) = n − 1 there exists an index 1 ≤ i ≤ q with U (i) = {

U ′}.
W.l.o.g. we assume #U (1) = 1.

Now consider an element U ∈ U with dim(U ) < n − 1. From Lemma 8 we conclude
U ∩H∞ ≤ K since otherwise #U (1) > 1 (more precisely,U would split into q (dim(U )−1)-
spaces where one of these would be contained in U (1) that also contains an entire hyperplane,
which contradicts the packing condition (1)), which would contradict our assumption. Thus,
for each U ∈ U there exists exactly one index 1 ≤ i ≤ q with U ∈ U (i) and for each index
1 ≤ j ≤ q either U ∈ Hj or U ∩ Hj ≤ K ≤ H∞. ��
Corollary 5 Let U be an avsp of PG(n−1, q)with type (n−1)mn−1 . . . 2m21m1 , where n ≥ 3.
If U is irreducible, then we have mn−1∈ {0, q}.

Affine vector space partitions of PG(4 − 1, q) that contain at least one hyperplane as an
element can be characterized easily.

Proposition 3 Let U be an avsp of PG(4 − 1, q) of type 3m32m21m1 with m3 ≥ 1. Then, we
have 1 ≤ m3 ≤ q, 0 ≤ m2≤q · (q − m3), and m1 = q3 − q2m3 − qm2. Moreover, there
exists an (n − 2)-space K ≤ H∞ such that the K -decomposition U (1), . . . ,U (q) partitions
U , so that U especially is reducible if mn−1 ≤ q − 1.
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Proof The equationm1 = q3 −q2m3 −qm2 directly follows from the packing condition (1)
and the ranges 0 ≤ m2 ≤ q · (q − m3), 0 ≤ m3 ≤ q follow from the non-negativity of
m1,m2,m3. Note that we have m3 ≥ 1 by assumption. The remaining part follows from
Proposition 2. ��

4 Classification of tight irreducible avsps in PG(n− 1, 2) for small
dimensions n

The cases n ≤ 3 have already been treated in Sect. 3, so thatwe assume n ≥ 4 in the following.
Our aim is to classify all possible types (n − 1)mn−1 . . . 1m1 such that a tight irreducible avsp
U exists in PG(n − 1, 2). We have mn−1 = 0 and m1 = 0 due to Corollary 3 and Lemma 13.
FromCorollary 2 we concludeml �= 2 for the smallest index 1 ≤ l ≤ n−1 withml > 0. The
possible vectors (mn−2, . . . ,m2) ∈ Nn−3

0 are quite restricted by the packing condition (1).
For n = 4 the only remaining possibility is type 24. From Lemma 3 we conclude that the
four lines are pairwise disjoint, i.e., they form a partial line spread of cardinality 4. It is well
known that each partial line spread of cardinality q2 in PG(3, q) can be extended to a line
spread, which has size q2+1.1 For q = 2 there is only the Desarguesian line spread and since
it has a transitive automorphism group, there is only one equivalence class. The numbers of
line spreads in PG(3, q) are 1, 2, 3, 21, 1347 for q = 2, 3, 4, 5, 7.

In the three subsequent subsectionswewill consider tight irreducible avsps in PG(n−1, 2)
for n ∈ {5, 6, 7}. The possible types are completely determined in all cases,where realizations
are computed using an integer linear programming (ILP) formulation, see Sect. A in the
appendix for the details. If the sizes of the avsps are not too largewewere able to also compute
all equivalence classes of avsps using a slight modification of an algorithm from [23], see also
[20, Algorithm 4.5]. A GAP implementation , based on the GAP package “FinInG” [2] for
computations in finite incidence geometry, can be obtained from the authors upon request.
In the theoretical parts we will also use classification for 2-divisible sets points that can e.g.
be found in [13] or [22]. For the convenience of the reader we will also give a few selected
proofs in Sect. B in the appendix.

4.1 Tight irreducible avsps in PG(4, 2)

We may use Lemmas 9 and 11 to conclude that each avsp of PG(n − 1, 2) of type (n − 2)4

is non-tight if n ≥ 5. However, we can further tighten the statement to:

Proposition 4 Let U = {U1, . . . ,Ur } be an avsp of PG(n − 1, 2), where n ≥ 4, r ≥ 4, and
dim(Ui ) = n − 2 for all 1 ≤ i ≤ 3. Then, the elements {U4, . . . ,Ur } can be joined to an
(n − 2)-space B (including the case r = 4 and U4 = B) and there exists an (n − 4)-space
C that is contained in all elements of {U1,U2,U3, B}.
Proof First we assume that two elements of {U1,U2,U3} can be joined to an (n−1)-space H .
Without loss of generality, we assume thatU1 andU2 can be joined to H . Let K := H ∩H∞,
so that dim(K ) = n − 2. By H ′ we denote the unique hyperplane containing K that is not
equal to H or H∞. Observe that {U3, . . . ,Ur } is an avsp of H ′ and K is “the hyperplane
at infinity” of H ′. Next we set K ′ := K ∩ U3, so that dim(K ′) = n − 3. Let B denote

1 One argumentation is based on the fact that each qk -divisible (multi-) set of qk+1−1
q−1 points forms a (k+1)-

space for each positive integer k, see e.g. [15].
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the unique (n − 2)-space in H ′ that contains K ′ and is not equal to U3 or K . With this,
{U4, . . . ,Ur } is an avsp of B (including the case r = 4, U4 = B). Note that the (n − 3)-
space K ′ is contained in all elements of {H ,U3, B}. Since {U1,U2} forms an avsp of H and
dim(U1) = dim(U2) = n − 2, there exists an (n − 4)-space C= K ′ ∩ L that is contained in
all elements of {U1,U2,U3, B}, where L = U1 ∩U2 ⊂ K is an (n − 3)-space.

Otherwise, we assume that no two elements of {U1,U2,U3} can be joined to an (n − 1)-
space, so that dim(Ui ∩ Uj ) = n − 4 for all 1 ≤ i < j ≤ 3. We set Ei := Ui ∩ H∞, so
that dim(Ei ) = n − 3, for all 1 ≤ i ≤ 3 and dim(Ei ∩ E j ) = n − 4 for all 1 ≤ i < j ≤ 3.
Let K := 〈E1, E2, E3〉 ≤ H∞, so that n − 2 ≤ dim(K ) ≤ n − 1. If dim(K ) = n − 2,
then consider the K -decomposition U (1),U (2) of U and let H1, H2 be the corresponding
hyperplanes. Since E1, E2, E3 ≤ K , we have that eitherUi ≤ H1 orUi ≤ H2 for all indices
1 ≤ i ≤ 3. By the pigeonhole principle two of the three (n − 2)-spaces in U have to be
contained in the same hyperplane, which contradicts dim(Ui ∩Uj ) = n − 4.

Thus, we have dim(K ) = n−1, i.e., K = H∞. Since dim (〈E1, E2〉) = n−2, dim(E3) =
n − 3, and dim(K ) = n − 1, we have

dim(〈E1, E2〉 ∩ E3) = n − 4.

Since dim(E1∩E3) = dim(E2∩E3) = n−4,wehave dim(C) = n−4 forC := E1∩E2∩E3.
Pick three linearly independent vectors v1, v2, v3 such that E1 = 〈C, v1〉, E2 = 〈C, v2〉,
E3 = 〈C, v3〉, and H∞ = 〈C, v1, v2, v3〉. Let P1, P2 be two different arbitrary points outside
of H∞ that or not covered byU1,U2, orU3. For pairwise different i, j, h ∈ {1, 2, 3} consider
the (n − 2)-space Ki, j, j := 〈

C, vi , v j + vh
〉
and let Hi, j, j be the hyperplane that contains

Ki, j,h and Ui . Since all points in Hi, j,h\H∞ are covered by U1,U2,U3 the points P1, P2
have to be contained in the other hyperplane containing Ki, j,h not equal to Hi, j,h and H∞,
so that P1 − P2 ∈ 〈

C, vi , v j + vh
〉
. Since

〈C, v1, v2 + v3〉 ∩ 〈C, v2, v1 + v3〉 ∩ 〈C, v3, v1 + v2〉 = 〈C, v1 + v2 + v3〉 ,

the 2n−3 points outside of H∞ that are not covered by U1, U2, or U3 have to form an affine
subspace B ≥ C . If #U = r = 4, then B = U4. If #U≥5, then the elements in {U4, . . . ,Ur }
form an avsp of B. ��
Corollary 6 Let U be an irreducible tight avsp of PG(n − 1, 2) of type (n − 2)mn−2 . . . 2m2 ,
where n ≥ 5. Then, we have mn−2 ≤ 2.

Together with the conditions mn−1 = m1 = 0 and the packing condition (1) we obtain:

Corollary 7 Let U be an irreducible tight avsp of PG(5 − 1, 2). Then the type of U is given
by 3224, 3126, or 28.

All types can indeed be realized and corresponding numbers of equivalence classes are given
by 3, 4, and 2, respectively. I.e., for n = 4 we have 9 non-isomorphic examples in total.
Below are representatives:

E1, 28: 〈10000, 01000〉, 〈10100, 00010〉, 〈11100, 00001〉, 〈10010, 01100〉, 〈11010, 00101〉, 〈10001, 01010〉, 〈10011, 00110〉,
〈10111, 01110〉.
E2, 28: 〈10000, 01000〉, 〈10100, 00010〉, 〈11100, 00001〉, 〈10010, 01101〉, 〈10001, 01011〉, 〈11001, 00111〉, 〈10101, 01110〉,
〈10011, 00100〉.
E3, 3126: 〈10000, 01000〉, 〈10100, 00010〉, 〈11100, 00001〉, 〈10010, 01100〉, 〈10001, 01010〉, 〈10111, 01101〉, 〈10011, 01010,
00110〉.
E4, 3126: 〈10000, 01000〉, 〈10100, 00010〉, 〈11100, 00001〉, 〈10010, 01100〉, 〈11001, 00011〉, 〈10011, 00100〉, 〈10001, 01010,
00100〉.
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E5, 3126: 〈10000, 01000〉, 〈10100, 00010〉, 〈11100, 00001〉, 〈10010, 01001〉, 〈10001, 01111〉, 〈10111, 01101〉, 〈10011, 01010,
00110〉.
E6, 3126: 〈10000, 01000〉, 〈10100, 00010〉, 〈11100, 00001〉, 〈10010, 01100〉, 〈10001, 00100〉, 〈11001, 00011〉, 〈10011, 01000,
00100〉.
E7, 3224: 〈10000, 01000〉, 〈10100, 00010〉, 〈11100, 00001〉, 〈10010, 01011〉, 〈11010, 00100, 00001〉, 〈10001, 00100, 00010〉.
E8, 3224: 〈10000, 01000〉, 〈10100, 00010〉, 〈11100, 00001〉, 〈10010, 01011〉, 〈10001, 01010, 00100〉, 〈10011, 01001, 00100〉.
E9, 3224: 〈10000, 01000〉, 〈10100, 00010〉, 〈11100, 00001〉, 〈10101, 01011〉, 〈10010, 01000, 00001〉, 〈10001, 01000, 00110〉.

We remark that the hypothetical type 3322 is also excluded by Corollary 2.
Similarly as we have constructed T ′ from the tail T in Lemma 9, we can consider the set

U ′ := {U ∩ H∞ : U ∈ U} for an avsp U of PG(n − 1, q). If U is an irreducible tight avsp
of PG(n − 1, q) of type 2m23m3 , where m2 = qn−2 − qm3, then U ′ is a configuration of m2

points andm3 lines in H∞ ∼= PG(n−2, q). The points are pairwise disjoint, so that Lemma 9
yields that they form a q-divisible set. Any two lines can meet in at most a point. If n = 5,
then any two lines indeed intersect in a point. So, the maximum point multiplicity is at most
m3 + 1. We remark that the possibilities for U ′ can be classified completely theoretically,
i.e., without the use of computer programs. Due to space limitations we refer the interested
reader to the corresponding arXiv preprint and only state two necessary criteria for U ′.

Lemma 14 Let U be an irreducible avsp of PG(n − 1, q) not of type (n − 1)q and U ′ :=
{U ∩ H∞ : U ∈ U}. Then U ′ is spanning, i.e., U ′ spans H∞.

Proof Assume that K is a hyperplane of H∞ that contains all elements of U ′. From Lemma 7
we can conclude that the K -decomposition U (1), . . . ,U (q), with corresponding hyperplanes
H1, . . . , Hq , is a partition of U , i.e., the elements of U (i) can be joined to Hi for all 1 ≤ i ≤ q .
Since we have assumed that U is not of type (n − 1)q we obtain a contradiction. ��
Lemma 15 Let U be an avsp of PG(n − 1, q) of type (n − 1)mn−1 . . . 2m2 and U ′ :=
{U ∩ H∞ : U ∈ U}. For each hyperplane K of H∞ let aKi denote the number of i-
dimensional elements of U ′ that are contained in K and bKi = mi+1 − aKi the number
of i-dimensional elements of U ′ that are not contained in K , where 1 ≤ i ≤ n − 2. Then
there exist cKi, j ∈ N0 for all 1 ≤ j ≤ q, 1 ≤ i ≤ n − 2 such that

q∑

j=1

cKi, j = aKi ∀1 ≤ i ≤ n − 2, (8)

n−2∑

i=1

(
cKi, j · qi + bKi · qi−1 = qn−2

)
∀1 ≤ j ≤ q. (9)

Proof For an arbitrary but fixed hyperplane K of H∞ let U (1), . . . ,U (q) be the K -
decomposition of U with corresponding hyperplanes H1, . . . , Hq . From Lemma 7 we
conclude that for each element U ∈ U with U ∩ H∞ ≤ K there exists an index 1 ≤ j ≤ q
such that U ≤ Hj . The integers cKi, j just count how many (i + 1)-dimensional elements
of U are contained in Hj (which depends on K ). Since the hyperplanes H1, . . . , Hq are
pairwise disjoint, we obtain Equation (8). From Lemma 8 we conclude that for each element
U ∈ U such thatU ∩H∞ �≤ K we have #

(
(U ∩ Hj )\H∞

) = qdim(U )−2, so that the packing
condition for Hj yields Equation (9). ��

We call the process of moving from U ′ to U the extension problem. An integer linear
programming formulation is given in Sect. A in the appendix. Note that the extension problem
comprises additional symmetry given by the pointwise stabilizer of H∞ of order qn−1.
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Given a set U ′ satisfying all of the necessary conditions mentioned so far it is neither
clear that an extension to a corresponding avsp U always exists nor that it is, in the case of
existence, unique up to symmetry. Indeed, we will give counter examples later on. However,
for the nine classified configurations U ′ in PG(3, 2) it turns out that there always is an up to
symmetry unique extension.

4.2 Tight irreducible avsps in PG(5, 2)

Lemma 16 For n ≥ 6 no tight irreducible avsp of type (n − 2)2(n − 3)4 in PG(n − 1, 2)
exists.

Proof Assume that such an avsp U exists and consider the intersections of the elements with
the hyperplane H∞ at infinity, i.e., U ′ := {U ∩ H∞ : U ∈ U}. By E1, E2 we denote the two
(n − 3)-spaces and by L1, . . . , L4 the four (n − 4)-spaces. The intersection of E1 and E2

is an (n − 4)-space L ′ and dim(Ei∩L j ) ≥ n − 5 for all i = 1, 2 and j = 1, . . . , 4. From
Lemma 9 we conclude that T ′ = {L1, . . . , L4} is a 2-divisible set of four (n − 4)-spaces, so
that Lemma 11 implies the existence of a plane E ≤ H∞, a line L ≤ E , and an (n−5)-space
B ≤ H∞ with B ∩ E = ∅ and

{L1, . . . , L4} = {〈Q, B〉 : Q ∈ E\L} .

Since U is tight we have B∩ L ′ = ∅. However, dim(Ei∩L j ) ≥ n−5 implies dim(L ′, L j ) ≥
n − 6 for all 1 ≤ j ≤ 4. So, we clearly have n ≤ 7.

For n = 7 we have dim(Ei ∩ B) ≥ dim(Ei ∩ L j )− 1 ≥ n − 6 = 1, where 1 ≤ i ≤ 2 and
1 ≤ j ≤ 4, so that dim(L ′ ∩ B) = 0 implies Ei ≤ K := 〈B, L ′〉 and dim(Ei ∩ B) = 1. With
this, dim(Ei ∩L j ) ≥ n−5 = 2 yields the existence of a point Qi, j /∈ B with Qi, j ≤ Ei ∩L j ,
so that L j = 〈B, Qi, j 〉, i.e., L j ≤ K . However, this implies that U ′ is not spanning, which
is a contradiction with Lemma 14.

For n = 6 we have dim(B) = 1, i.e., B is a point. Since U is tight we have B �≤ L ′.
W.l.o.g. we assume B �≤ E1. Let S := 〈E1, B〉, so that dim(S) = 4. Since E1 intersects each
of the lines L j in at least a point not equal to B, we have L j ≤ S for all 1 ≤ j ≤ 4. Let
1 ≤ h ≤ 4 be a suitable index with Lh �= L ′ and let Q ≤ E2 ∩ Lh be a point, so that Q �≤ L ′.
Thus E2 = 〈L ′, Q〉 ≤ S, so that 〈U ′〉 ≤ S, i.e., U ′ is not spanning, which is a contradiction
with Lemma 14. ��
Proposition 5 Let U be a tight irreducible avsp of PG(5, 2), then U has one of the following
types:

– 423i28−2i for i ∈ {0, 1, 2};
– 413i212−2i for i ∈ {0, . . . , 6}\{5}; and
– 3i216−2i for i ∈ {0, . . . , 8}\{7}.

All types are realizable.

Proof Let the type ofU be 5m5 . . . 1m1 . FromCorollary 3 and Lemma 13we concludem5 = 0
andm1 = 0, so that the packing condition (1) gives 4m4+2m3+m2 = 16. Corollary 6 gives
m4 ≤ 2 and Lemma 16 excludes (m4,m3,m2) = (2, 4, 0). Moreover, Corollary 2 implies
m2 �= 2. All remaining possibilities (m4,m3,m2) ∈ N3

0 are listed in the statement and for
each type we found a realization using ILP computations. ��
Corollary 8 IfU is a tight irreducible avsp of PG(5, 2) of minimum possible size, then #U = 7
and U has type 4136.
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Table 1 Number of isomorphism
types of tight irreducible avsps in
PG(5, 2)

type 4136 423224 38 423126 413424 4228 413326

# 6 38 32 55 827 83 8096

in H∞ 6 38 32 55 811 50 6686

For small sizes we have enumerated the isomorphy types of tight irreducible avsps in
PG(5, 2), see Table 1. The last row concerns the parts U ′ at the hyperplane H∞ at infinity
w.r.t. the avsps U counted up to isomorphy in the second row. So, for e.g. types 413424 and
4228 there exist configurations U ′ that allow more than one extension up to symmetry.

For the minimum possible size of a tight irreducible avsp in PG(5, 2) we can write down
all implications of the stated necessary conditions for the part U ′ at infinity. So, for type
4136 configuration U ′ consists of one plane E and six lines L = {L1, . . . , L6} satisfying the
following conditions:

(1) the configuration is spanning, i.e., 〈E, L1, . . . , L6〉 = PG(4, 2);
(2) the configuration is tight, i.e., there does not exist a point P that is contained in E and

all lines in L;
(3) the lines inL form a 2-divisible set of lines, i.e., each hyperplane contains an even number

of lines;
(4) each line Li intersects E in at least a point;
(5) hyperplanes that contain E also contain at least two lines.

Up to symmetry ten such configurations exist:

E1: 〈10000, 01000, 00100〉, 〈10000, 01000〉, 〈10000, 00100〉, 〈01000, 00010〉, 〈01000, 00110〉, 〈10100, 00001〉, 〈10100, 01101〉
E2: 〈10000, 01000, 00100〉, 〈10000, 01000〉, 〈10000, 00010〉, 〈10000, 00110〉, 〈01100, 00010〉, 〈01100, 00001〉, 〈10011, 01100〉
E3: 〈10000, 01000, 00100〉, 〈10000, 01000〉, 〈10000, 00010〉, 〈10000, 00001〉, 〈01000, 00011〉, 〈10100, 01011〉, 〈01011, 00111〉
E4: 〈10000, 01000, 00100〉, 〈10000, 01000〉, 〈10000, 00010〉, 〈01000, 00110〉, 〈00100, 00010〉, 〈11100, 00001〉, 〈10111, 01011〉
E5: 〈10000, 01000, 00100〉, 〈10000, 00010〉, 〈10000, 01010〉, 〈00100, 00001〉, 〈01100, 00011〉, 〈11001, 00100〉, 〈10111, 01100〉
E6: 〈10000, 01000, 00100〉, 〈10000, 00010〉, 〈10000, 00001〉, 〈10000, 01011〉, 〈01000, 00010〉, 〈01000, 00001〉, 〈10011, 01000〉
E7: 〈10000, 01000, 00100〉, 〈10000, 00010〉, 〈10000, 00001〉, 〈10000, 01011〉, 〈01000, 00010〉, 〈01000, 00101〉, 〈10111, 01000〉
E8: 〈10000, 01000, 00100〉, 〈10000, 00010〉, 〈10000, 00001〉, 〈01000, 00010〉, 〈01000, 00001〉, 〈10100, 01111〉, 〈10111, 01100〉
E9: 〈10000, 01000, 00100〉, 〈10000, 00010〉, 〈10000, 00001〉, 〈01000, 00110〉, 〈01000, 00101〉, 〈10100, 01111〉, 〈10111, 01100〉
E10: 〈10000, 01000, 00100〉, 〈10000, 00010〉, 〈01000, 00010〉, 〈00100, 00001〉, 〈10100, 01011〉, 〈11001, 00101〉, 〈10011, 01100〉

It turns out that E2, E4, E7, and E9 are not extendable to an avsp while the other six cases
are. Moreover, the extension is unique up to symmetry in these cases.

4.3 Tight irreducible avsps in PG(6, 2)

Lemma 17 In PG(6, 2) no tight irreducible avsp of type 524234 or 5146 exists.

Proof All two possibilities are excluded using ILP computations, see Sect. A. They are also
excluded using GAP computations. ��
Proposition 6 Let U be a tight irreducible avsp of PG(6, 2), then U has one of the following
types:

– 524i3 j216−2 j−4i for i ∈ {0, 1, 2} and 0 ≤ j ≤ 8 − 2i , where j + 2i �= 7 and (i, j) �=
(2, 4);
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– 514i3 j224−2 j−4i for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 12 − 2i , where j + 2i �= 11;
– 4i3 j232−2 j−4i for 0 ≤ i ≤ 8 and 0 ≤ j ≤ 16 − 2i , where j + 2i �= 15 and i �= 7.

All types are realizable.

Proof Let the type of U be 6m6 . . . 1m1 . From Corollary 3 and Lemma 13 we conclude
m6 = 0 and m1 = 0, so that the packing condition (1) gives 8m5 + 4m4 + 2m3 + m2 =
32. Corollary 6 yields m5 ≤ 2 and Lemma 16 excludes (m5,m4,m3,m2) = (2, 4, 0, 0).
Moreover, Corollary 2 implies ml �= 2 for the smallest index with ml > 0, which excludes
the types 524 j3i22 with j + 2i = 7, 524322, 514 j3i22 with j + 2i = 11, 514532, 4 j3i22

with j + 2i = 15, and 4732. The two hypothetical types 524234 and 5146 are excluded in
Lemma 17. For the three hypothetical types 524324, 514524, and 4724 we apply Lemma 9
to conclude that the set of 2-spaces is 4-divisible. However, Lemma 11 characterizes the 2-
divisible sets of cardinality 4 and we can easily check that it is not 4-divisible. All remaining
possibilities (m5,m4,m3,m2) ∈ N4

0 are listed in the statement and for each type we found a
realization using an ILP formulation, see Sect. A. ��
Corollary 9 IfU is a tight irreducible avsp of PG(6, 2) of minimum possible size, then #U = 8
and U has type 48.

Here we describe all four isomorphism types of homogeneous irreducible tight avsps U of
PG(6, 2) of type 48, where we call an avspU homogeneous if all of its elements have the same
dimension. Geometrically each U is given by eight solids S1, . . . , S8 in PG(6, 2) intersecting
a hyperplane H∞ in a plane (plus some extra conditions). Here we directly consider the part
U ′ at infinity, i.e. the eight planes π1, . . . , π8 ∈ H∞ ∼= PG(5, 2) given by πi = Si ∩ H∞.
The conditions for the pairwise intersections are

1 ≤ dim(πi ∩ π j ) ≤ 2 ∀1 ≤ i < j ≤ 8. (10)

Since the planes form a spanning 2-divisible set we have

# {1 ≤ i ≤ 8 : πi �≤ H} ∈ {2, 4, 6, 8} (11)

for every hyperplane H of H∞ ∼= PG(5, 2).
Let ei denote the i th unit vector, i.e., the vector with a 1 at the i-th position and zeros

everywhere else. If the pairwise intersection of the planes πi is a line in all cases then they
span a solid, which contradicts the condition that not all eight planes can be contained in a
hyperplane. W.l.o.g. we assume π1 = 〈e1, e2, e3〉 and π2 = 〈e3, e4, e5〉, i.e., the intersection
point between π1 and π2 is 〈e3〉. Since the intersection of all eight planes is empty we assume
w.l.o.g. that π3 does not contain π1 ∩ π2 = e3. Up to symmetry we have the following three
cases for π3:

(a) dim(π1 ∩ π3) = 2, dim(π2 ∩ π3) = 1: π3 = 〈e1, e2, e4〉;
(b) dim(π1 ∩ π3) = dim(π2 ∩ π3) = 1, dim(〈π1, π2, π3〉) = 5: π3 = 〈e1, e4, e2 + e5〉; and
(c) dim(π1 ∩ π3) = dim(π2 ∩ π3) = 1, dim(〈π1, π2, π3〉) = 6: π3 = 〈e1, e4, e6〉.
Starting from the three possibilities for π1, π2, π3 we build up a graph whose vertices consist
of the planes that have intersection dimension 1 or 2 withπi for 1 ≤ i ≤ 3, cf. Condition (10).
Two vertices π and π ′ are connected by an edge if 1 ≤ dim(π ∩π ′) ≤ 2, cf. Condition (10).
For these graphs we determine all cliques of size five and check Condition (11) afterwards:
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Table 2 Irreducible tight avsps of PG(6, 2) of type 48

γ0 2 3 4 5

point incidences: 228 1212737 11621244 12026324252

line incidences: 156 156 14824 1462232

solid incidences: 156 156 14824 14028

hyperplane incidences: 228 228 22442 2234161

triples of planes πi : c168 c168 a48c96 a72c48

(a) 3,014,435,152 cliques → 432 cases;
(b) 2,198,293,872 cliques → 0 cases;
(c) 1,218,975,648 cliques → 320 cases.

The overall computation took just a few minutes. Note that the constructed 752 cases are
just candidates for the extension problem to eight solids. Up to symmetry they decompose
into just four non-isomorphic examples. It turns out that they can be distinguished by the
maximum number γ0 of incidences of a point and the eight planes, where 2 ≤ γ0 ≤ 5.
In Table 2 we summarize incidence counts, i.e., for X ∈ {point, line, solid,hyperplane} the
stated vector a1b1 . . . ar br says that bi of the Xs have exactly ai incidences with the eight
planes, given the isomorphy type characterized by γ0. The last row states how often the “third
plane” is of type (a), (b), or (c) after fixing a pair of planes π1, π2.

For γ0 = 2 we consider an arbitrary plane π contained in the hyperbolic quadric
Q = Q+(5, 2), which form a single orbit under its collineation group PGO+(6, 2) =
C2 × PGL(3, 2) = S8 of order 40,320. From the 35 points on Q the points in π have
no incidences with the eight planes while all other 28 points on Q have exactly two inci-
dences. This example is obtained in 16 cases. The symmetry group of the eight planes has
order 1344 and type C3

2 : PGL(3, 2).
For γ0 = 3 choose a projective base of PG(5, 2), i.e., put fi = ei for 1 ≤ i ≤ 6 and

f7 = ∑6
i=1 ei . Consider a Fano plane on the set {1, 2, 3, 4, 5, 6, 7}:

�1 = {1, 2, 3}, �2 = {1, 4, 5}, �3 = {1, 6, 7}, �4 = {2, 4, 6},
�5 = {3, 4, 7}, �6 = {2, 5, 7}, �7 = {3, 5, 6}.

Choose seven planes πi := 〈 f j : j ∈ �i 〉 for 1 ≤ i ≤ 7 and an eight plane. π8 = K :=
〈∑ j∈�i

f j : 1 ≤ i ≤ 7〉. Note that K itself is also a Fano plane (of course with a different
embedding). The points with three incidences with the eight planes are the fi for 1 ≤ i ≤ 7
and the points with two incidences with the eight planes are the points of K . This example
is obtained in 112 cases. The symmetry group of the eight planes has order 168 and type
PGL(3, 2).

For γ0 = 4 let {Q1, Q2, Q3, Q4, R1, R2} be a basis of H∞. With this, we construct the
eight planes as

〈Qi+ j , Qi+ j+1, Ri 〉 for i ∈ {1, 2}, j ∈ {0, 2},
〈Qi+ j , Qi+ j+1, Ri + A〉 for i ∈ {1, 2}. j ∈ {0, 2},

where A = Q1+Q2+Q3+Q4 and Q5 = Q1. The points with four incidences with the eight
planes are Q1, . . . , Q4. The lines with two incidences with the eight planes are 〈Qi , Qi+1〉
for 1 ≤ i ≤ 4 (again setting Q5 = Q1; so this is some kind of a cyclic construction). This
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example is obtained in 192 cases. The symmetry group of the eight planes has order 128 and
type D2

8 : C2.
For γ0 = 5 let {Q1, Q2, R1, R2, S1, T1} be a basis of H∞. With this, we set S2 :=

S1 + Q1 + Q2, T2 := T1 + Q1 + Q2 + R1 + R2 and construct the eight planes as

〈Q1, Q2, Ri 〉 for i ∈ {1, 2},
〈R1, R2, Si 〉 for i ∈ {1, 2}, and
〈Qi , Ri , Tj 〉 for i, j ∈ {1, 2},

which also reflects the three orbits of the eight planes w.r.t. the action of their automorphism
group. The points with five incidences with the eight planes are R1 and R2. The points with
four incidences with the eight planes are Q1 and Q2. The points with three incidences with
the eight planes are R1 + Q1 and R2 + Q2. The lines with three incidences with the eight
planes are 〈R1, Q1〉 and 〈R2, Q2〉. The lines with two incidences with the eight planes are
〈R1, R2〉 and 〈Q1, Q2〉. This example is obtained in 432 cases. The symmetry group of the
eight planes has order 1024.

5 Constructions of tight irreducible avsps

In this sectionwe collect a few general constructions for tight irreducible avsps using different
combinatorial objects. We use spreads, the Klein quadric, and hitting formulas in Sects. 5.1,
5.2, and 5.3, respectively.

5.1 Constructions from projective spreads

A k-spread in PG(n−1, q) is a disjoint set of k-spaces that partitions PG(n−1, q). It is well
known that k-spreads exist iff k divides n.

Proposition 7 For each positive even integer n there exists a tight irreducible avsp U of
PG(n − 1, q) of type (n/2)m, where m = qn/2.

Proof Let k = n/2 and P be a k-spread of PG(n−1, q), which has size qk +1. Now choose
an arbitrary element K ∈ P and an arbitrary hyperplane H containing K . With this we set
U = P\{K }where we choose H as the hyperplane at infinity. By construction U is an avsp of
PG(n − 1, q). Since all elements are pairwise disjoint U is tight and since any two elements
span PG(n − 1, q) U is irreducible. ��

We have seen that in PG(5, 2) there exist tight irreducible avsps of types 38 and 216.
Starting from a 2-spread of PG(5, q) we can clearly obtain a tight avsp U by removing all
lines that are completely contained in an arbitrarily chosen hyperplane H . However, it may
happen that U is reducible. This is indeed the case if we start with the Desarguesian line
spread. In PG(5, 2) there exist 131,044 non-isomorphic line spreads [24].

Conjecture 1 For each integer 1 < k < n that divides n there exists a tight irreducible avsp
U of PG(n − 1, q) of type km , where m = qn−k .

If n is odd no �(n − 1)/2�-spread exists, but we can construct tight irreducible avsps from
some special large partial spreads.

Proposition 8 For each odd integer n ≥ 5 there exists a tight irreducible avsp U of PG(n −
1, q) of type ((n − 1)/2)m, where m = q(n+1)/2.
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Proof Let k = (n−1)/2 andP be a vector space partition of PG(n−1, q) of type (k + 1)1km ,
where m = qk+1. Now choose an arbitrary hyperplane H containing the unique (k + 1)-
dimensional element K of P . With this we set U = P\{K } where we choose H as the
hyperplane at infinity. By construction U is an avsp of PG(n − 1, q). Since all elements are
pairwise disjoint U is tight. Any two elements of U span a hyperplane of PG(n−1, q). Since
the elements of U ′ := {U ∩ H∞ : U ∈ U} span H∞, not all elements of U ′ can be contained
in a hyperplane of H∞ and U is irreducible. ��

Vector space partitions of the used type can be obtained from lifted MRD codes, see e.g.
[27] for a survey on MRD codes. They also occur as extendible partial k-spreads, where
k = (n − 1)/2, of the second largest size qk+1 and are the main building block in the
construction of partial k-spreads of size qk+1 + 1 as described by Beutelspacher [3]. For
more details on the relations between these different geometrical objects we refer e.g. to
[16].

For each n ≥ 5 there also exist a vector space partition P of PG(n − 1, q) of type
(n−2)12m , wherem = qn−2. Choosing a hyperplane that contains the unique (n−2)-space
as the hyperplane at infinity we can obtain a tight avsp U of PG(n − 1, q) of type 2q

n−2
. The

remaining question is whether we can choose P in such a way that U becomes irreducible.

5.2 Constructions from the Klein quadric

It seems very likely that the avsp of PG(6, 2) of type 48 with maximum point multiplicity 2,
see Sect. 4.2, can be generalized to arbitrary field sizes.

Theorem 2 There exists a tight irreducible avsp of type 4q
3
in PG(6, q) for q even.

Proof We will use the following finite field model of AG(6, q). Let V = Fq3 × Fq3 × Fq

and let H∞ be the hyperplane X3 = 0. So we identify AG(6, q) with the elements of V of
the form (a, b, c), where c �= 0. Consider the following quadratic form on H∞:

Q(x, y, 0) := Trq3/q(xy).

Then Q defines the points of a hyperbolic quadric Q. Next, let π be the plane {(0, y, 0) :
y ∈ F∗

q3
}. Then π is totally singular with respect to Q. Let S0 := {(x, 0, 1) : x ∈ Fq3} and

S1 := {(y, yq2 + yq +1, 1) : y ∈ Fq3}. Let α be a primitive element of Fq3 , let σ be the map

σ : (x, y, z) �→ (α−1x, αy, z),

and let G := 〈σ 〉. We will show that S := {S0} ∪ SG1 is a tight irreducible avsp of size q3 in
AG(6, q).

First note that σ has order q3 − 1. Let (a, b, 1) be a point P of AG(6, q). We show that
P lies in a unique element of S. If b = 0, then P lies in S0. The condition that P lies in Sσm

1
(where 1 ≤ m ≤ q3 − 1) can be restated as

a = α−m y, b = αm(yq
2 + yq + 1).

for some y ∈ Fq3 . We have

ab = yq
2+1 + yq+1 + y
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and the polynomial yq
2+1 + yq+1 + y is a permutation on Fq3 , by [29, Theorem 4] (using

our assumption q even). Hence, y and, thus, m are determined by a and b. Therefore, S is
an avsp.

Note that π1 := S1 ∩ H∞ = {(y, yq2 + yq , 0) : y ∈ Fq3} and π0 := S0 ∩ H∞ =
{(x, 0, 0) : x ∈ Fq3}. To compute the image of π1 under σm , notice that

(α−m y, αm(yq
2 + yq), 0) = (α−m y, α(q2+1)m(α−m y)q

2 + α(q+1)m(α−m y)q , 0)

= (w, ζwq2 + ζ qwq , 0)

where w = α−m y and ζ = α(q2+1)m . Therefore, upon application of G,

S∞ := {S ∩ H∞ : S ∈ S} = {π0} ∪ πG
1 = {πζ : ζ ∈ Fq3}

where πζ := {(y, ζ yq2 + ζ q yq , 0) : y ∈ F∗
q3

}. Note that |S∞| = q3 and that S consists
of totally singular planes of Q disjoint from π . As these are all totally singular planes of
Q disjoint from π , these cover the points of Q uniformly and their common intersection is
empty and, thus, S is tight. As these pairwise meet in a point, any two elements of S span
PG(6, q). This shows irreducibility. ��

LetP be the set of planes in the Klein quadricQ = Q+(5, q) that is disjoint to an arbitrary
but fixed plane π in Q. One can verify that P is a spanning q-divisible set of q3 planes in
PG(5, q) such that the intersection of a pair of planes is a point, i.e., all known conditions
for the part U ′ at infinity of a tight irreducible avsp of PG(6, q) of type 4q

3
are satisfied. The

remaining question is whether a solution of the extension problem for P exists.

Conjecture 2 The extension problem for P admits a solution for all prime powers q .

Theorem 2 shows the conjecture for q even. By computer we showed Conjecture 2 for
q = 3, 5.

5.3 Constructions using hitting formulas

A hitting formula is a DNF such that each truth assignment to the underlying variables
satisfies precisely one term [17]. For example:

(x ∧ y ∧ z) ∨ (x̄ ∧ ȳ ∧ z̄) ∨ (x̄ ∧ y) ∨ (ȳ ∧ z) ∨ (z̄ ∧ x).

We say that a variable appears in the DNF if one of the two corresponding literals appears
in one of the terms. The variables mentioned in the above DNF are x, y, z. We can represent
hitting formulas over x1, . . . , xn as collections of strings in {0, 1, ∗}n , where 0 in the i’th
position represents x̄i , 1 in the i’th position represents xi , and ∗ in the i’th position represents
the absence of xi in the term. For example, the above hitting formula corresponds to the
strings 111, 000, 01∗, ∗01, 1∗0.

This notion describes subcubes of affine points. Taking the projective closure we end up
with the list

〈1111〉, 〈1000〉, 〈1010, 0001〉, 〈1001, 0100〉, 〈1100, 0010〉
of subspaces of PG(3, 2) that form an avsp, which obviously is not irreducible. However,
we can join the first two elements to 〈1000, 0111〉 and obtain a tight irreducible avsp. While
every string corresponds to an affine subspace, not every affine subspace corresponds to a
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string. It turns out that any two strings having its stars at the same positions can be joined
to an affine subspace. For brevity, we speak of compression. Interestingly enough, several
tight irreducible avsps of PG(n − 1, 2) of the minimum possible size can be obtained by
compression, see Sect. C in the appendix. More theoretical insights on the relations between
hitting formulas and avsps can be found in [9]—focusing on irreducible hitting formulas.

6 Theminimum possible size of tight irreducible avsps

We have discussed the minimum possible size of a (tight) avsp of PG(n − 1, q) in Sect. 2.
Before we consider the minimum possible size σq(n) of a tight irreducible avsp U of PG(n−
1, q) we remark that Lemma 13 implies the upper bound #U ≤ 2n−2 for q = 2. The
constructions mentioned in Sect. 5 suggest that this upper bound can be attained. In Sects. 3
and 4 we have determined the exact values σq(2) = q , σq(3) = ∞, σ2(4) = 4, σ2(5) = 6,
σ2(6) = 7, and σ2(7) = 8.

Lemma 18 In PG(7, 2) no tight irreducible avsp of type 615444 exists.

Proof Assume that U is a tight irreducible avsp of type 615444 in PG(7, 2). Consider U ′ :=
{U ∩ H∞ | U ∈ U}. From Lemmas 9 and 11 we conclude that the four planes in U ′ share
a common line L and that there is a unique configuration up to symmetry. Since the 5-
space in U ′ intersects each of the four planes in dimension at least 2, it also intersects
L in dimension at least 1. We enumerate the possible configurations of the 5-space and
the four planes in U ′ up to symmetry. For each such configuration we build up a list of
candidates for the four solids using the facts that the intersect the planes in dimension 1
or 2 and the 5-space in dimension at least 3 or 4. Next we consider a 4-subsets of those
candidates whose dimensions of the pairwise intersections are contained in {2, 3}. We end
up with a list of candidates for U ′. Here we can eliminate those which a common point
or are not spanning, cf. Lemma 14. For each hyperplane H of H∞ let s := (s3, s4, s5) be
given by si := #

{
U ∈ U ′ | dim(U ) = i,U ≤ H

}
. From Lemma 15 we can conclude that

the following cases cannot occur:

– s = (0, 1, 0);
– s = (0, 3, 0);
– s = (0, 0, 1);
– s = (2, 3, 1);
– s = (0, 1, 1).

For the remaining cases we have checked computationally that the extension problem does
not admit a solution. ��
Lemma 19 In PG(6, 2) every configuration U ′ of type 524234, 524136, 5146, or 48 that
satisfies the conditions of Lemmas 14, 15, and the dimension condition, cf. Lemma 4, admits
a point P that is contained in all elements of U ′.

Proof All cases have been excluded by ILP computations, cf. Sect. A for general model
formulations. ��
Corollary 10 In PG(7, 2) no tight irreducible avsp of the following types exist: 625244,
625146, 6156, 615444, 58.

Corollary 11 The minimum size σ2(8) of an irreducible tight avsp of PG(7, 2) is given by 10.
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For attaining examples we refer to Sect. C in the appendix.
Our next aim is a recursive construction which implies an asymptotic upper bound of roughly
3n
2 for σ2(n).

Theorem 3 Let U = {U1, . . . ,Ur } be an irreducible tight avsp of PG(n − 1, 2) with
dim(U1) = n−2 and n ≥ 3. Then, there exists an irreducible tight avspU ′ of PG(n+2−1, 2)
of size #U + 3 = r + 3 that contains an element of dimension n.

Proof Let V = PG(n + 2 − 1, 2), H∞ be the hyperplane at infinity, and K ≤ H∞ be an
arbitrary subspace with dim(K ) = n. With this, denote the two hyperplanes containing K
and not being equal to H∞ by H1 and H2. Choose an arbitrary point P ≤ K and a subspace
K ′ ≤ K such that dim(K ′) = n − 1 and

〈
P, K ′〉 = K . Now choose an irreducible tight

avsp U = {U1, . . . ,Ur } of H1/P such that dim(U1) = n − 2. We set Ai := 〈Ui , P〉 for all
1 ≤ i ≤ r . Choose an n-space B with B∩H1 = A1 and B �≤ H∞, so thatC1 := B∩H2 is an
(n − 1)-space in H2 with C1 �≤ H∞ and P ≤ C1. In H2 choose three further (n − 1)-spaces
C2,C3,C4 such that dim(Ci ∩C j ) = dim(C1∩C2∩C3∩C4) = n−3 for all 1 ≤ i < j ≤ 4,
C1 ∩ C2 ∩ C3 ∩ C4 ≤ K ′, and that {C1,C2,C3,C4} forms an avsp of H2. (This boils down
to an avsp of PG(4 − 1, 2) of type 24, which is a union of four disjoint lines.) Then,

U ′ := {A2, . . . , Ar , B,C2,C3,C4}
is an irreducible tight avsp of V of size #U + 3 = r + 3. The size follows directly from the
construction and dim(B) = n. Since B∩H1∩H∞ = B∩H2∩H∞ wehave B∩C2∩C3∩C4 =
C1∩C2∩C3∩C4 ≤ K ′ and B∩A2∩· · ·∩Ar = A1∩· · ·∩Ar = P , so thatU ′ is tight. Noting
that U ′′ := {A1, . . . , Ar } is an avsp of H1, {C1, . . . ,C4} is an avsp of H2, and {A1,C1} is an
avsp of B, we conclude that U ′ is indeed an avsp of V .

It remains to show that U ′ is irreducible. So, assume that there exists a proper subset
Ũ � U ′ that can be joined to an x-space X . If Ũ∩{B,C2,C3,C4} = ∅, then we have Ũ ⊆ U ′′
contradicting the fact thatU ′′ is irreducible. So, especially we have x ∈ {n, n+1}. Noting that
any two elements in {C1,C2,C3,C4} span H2, we conclude #

(
Ũ ∩ {B,C2,C3,C4}

) = 1.

(i) If x = n, then let 2 ≤ i ≤ 4 be the unique index such Ci ∈ Ũ . Clearly, B /∈ Ũ . Let
C̃ be the the other (n − 1) space in X not contained in H∞ and not equal to Ci with
C̃ ∩ H∞ = Ci ∩ C̃ , so that the elements of Ũ\{Ci } form a vector space partition of
C̃ . However, since P �≤ Ci and all elements in U\ {B,C1,C2,C3} contain P , this is
impossible.

(ii) If x = n + 1 and #
(
Ũ ∩ {B,C2,C3,C4}

) = 1, then we have dim(X ′) = n for X ′ :=
X ∩H1. If B ∈ Ũ , then Ũ\{B}∪{A1} can be joined to X ′ in H1, which is a contradiction.
If Ci ∈ Ũ , then Ũ\{Ci } can be joined to X ′ in H1, which is also a contradiction.

Thus, U ′ is irreducible. ��

Corollary 12 For each n ≥ 4 an irreducible tight avsp U of PG(n − 1, 2) of size
⌊ 3n−3

2

⌋

exists.

Proof For n = 4 there exists such an example with type 24 and for n = 5 there exists such
an example with type 3224. Then, iteratively apply the construction from Theorem 3. ��

We remark that the constructive upper bound for q2(n) is tight for n ∈ {4, 5, 6, 8}.

123



J. Bamberg et al.

7 Conclusion

We have introduced the geometrical object of affine vector space partitions. To make their
study interesting we need the additional conditions of tightness and irreducibility, which are
natural in the context of hitting formulas. A very challenging problem is the determination
of the minimum possible size of an irreducible tight avsp of PG(n − 1, q). To this end we
have obtained some preliminary results for arbitrary field sizes but small dimensions and
for the binary case with medium sized dimensions. We also gave a parametric construction
that matches the known exact values in many cases. That irreducible tight avsps are nice
geometric objects can be e.g. seen at their sometimes large automorphism groups as well as
the mentioned connection to the hyperbolic quadric Q+(5, q). While we have obtained a few
insights, many questions remain open. So, we would like to close with a list of a few open
problems:

1. Consider tight irreducible avsps of PG(4, q) of type 3m32m2 . What is the largest possible
value for m3?

2. Determine a solution of the extension problem for the set P of q3 planes in PG(5, q)

obtained from the hyperbolic quadric Q+(5, q) for q odd, cf. Conjecture 2.
3. Determine further constructions for tight irreducible avsps of PG(n − 1, q) with large

automorphism groups.
4. Construct a tight irreducible avsp of PG(n − 1, q) of type 2q

n−2
for all n ≥ 5.

5. Is it possible that a tight irreducible avsp of PG(n−1, q) contains 1-dimensional elements
if n ≥ 4 and q ≥ 3?

6. Determine further exact values of the minimum size σq(n) of a tight irreducible avsp of
PG(n − 1, q).

7. Determine limn→∞ σq(n)/n.
8. Is σq(n) strictly increasing in n?
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A Integer linear programming formulations

Let U ′ be an arbitrary set of subspaces of H∞ in PG(n − 1, q). For the question whether U ′
can be extended to an avsp U of PG(n−1, q)we utilize binary variables xC for all subspaces
C of PG(n−1, q) such thatC �≤ H∞ andC ∩H∞ ∈ U ′ with the meaning xC = 1 iff C ∈ U .
We denote the set of all of these subspaces by C. For each point P in PG(n − 1, q)\H∞ the
equation

∑

C∈C : P≤C

xC = 1 (12)

and for each U ∈ U ′ the inequality
∑

C∈C :U≤C

xC≥1 (13)

has to be satisfied. (If we are only interested in irreducible avsps, then we can require “=” in
Inequality (13).) The 0/1 solutions of this equation system are in one-to-one correspondence
to extensions of U ′ to avsps U in PG(n − 1, q).

Searching a tight irreducible avsp U in PG(n− 1, q) directly can be achieved by a similar
model. Now let C be the set of subspaces of PG(n−1, q) that are not incident with H∞. Again
we use binary variables xC for all C ∈ C with the meaning xC = 1 iff C ∈ U . Partitioning
the affine points is modeled by

∑

C∈C : P≤C

xC = 1 (14)

for all points P not contained in H∞. The condition that U is tight can be written as

∑

C∈C : Q≤C

xC + 1 ≤
∑

C∈C
xC (15)

for all points Q ≤ H∞. In order to model the condition that U is irreducible we say that a
subspace A escapes a subspace B if A has both points that are contained and points that are
not contained in B. So, for each B ∈ C we require

xB +
∑

C∈C such that C escapes B

xC ≥ 1, (16)

i.e., either B ∈ U or there exists an element C ∈ U certifying that no subset of U can be
joined to B.

Of course we can fix the type of U by additional equations. Using a target function we
can minimize or maximize #U as well as the number of i-dimensional elements. We have
to mention that this ILP formulation comprises a lot of symmetry, so that it can be solved
in reasonable time for small parameters n and q only. However, we can use the inherent
symmetry to fix some of the xC variables. I.e. the symmetry group acts transitively on the
set of a-spaces that are not contained in H∞. For pairs of an a-space A and a b-space B that
both are not contained in H∞, the different orbits under the action of the symmetry group
are characterized by the invariant dim(A ∩ B).
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B Technical details

In order to keep the paper more readable, we have moved some technical details, that may
also be left to the reader, to this section. The proof of Lemma 1 uses the numbers m( j)

i
satisfying certain constraints. For completeness we state how those number can be computed
in:
Input: mn−1, . . . ,m1 ∈ N0 with

∑n−1
i=1 mi · qi−1 = qn−1

Output: m( j)
i ∈ N0 with

∑n−2
i=1 m( j)

i · qi−1 = qn−2 for all mn−1 + 1 ≤ j ≤ q

and
∑q

j=mn−1+1 m
( j)
i = mi for all 1 ≤ i ≤ n − 2

h ← n − 2
for mn−1 + 1 ≤ j ≤ q do

r ← qn−2

while r > 0 do
t ← min

{
r/qh−1,mh

}

mh ← mh − t
r ← r − t · qh−1

if t = 0 then
h ← h − 1

end if
end while

end for
return m( j)

i
In the three subsequent lemmas we characterize 2-divisible sets in PG(3, 2) of cardinality
s ∈ {3, 6, 8}.
Lemma 20 Let P be a 2-divisible set of three points in PG(3, 2) then P forms a line.

Proof Let P = {P1, P2, P3} and L := 〈P1, P2〉. Since all hyperplanes containing L have to
contain P , we have P3 ∈ L . ��
Lemma 21 Let P be a 2-divisible set of six points in PG(3, 2) then P is the disjoint union of
two lines.

Proof If H is a hyperplane containing all points of P , then there is a unique point P ≤ H
with P /∈ P . Since every hyperplane H ′ that does not contain P intersects P in cardinality 3,
so that this case cannot occur, i.e., P is spanning. From the standard equations we compute
a0 = 0, a2 = 9, and a4 = 6 for the spectrum. From the MacWilliams transform for the
corresponding linear code we conclude the existence of a triple of points P ′ forming a line.
Since P\P ′ is also 2-divisible the statement follows from Lemma 20. ��
We remark that there exists a second 2-divisible set of six points—a projective base of
dimension 5, which clearly cannot be embedded in PG(3, 2).

Lemma 22 Let P be a 2-divisible set of eight points in PG(3, 2) then P is either an affine
solid or given by the points of a plane and an intersecting line without the intersection point.

Proof Assume that π is a hyperplane, which is a plane in our situation, containing six of
the eight points and denote the unique uncovered point of π by P . Each hyperplane that is
incident with P contains either two or six of the points in π . Thus, the remaining two points
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form a line L containing P . Clearly, there is a unique example up to symmetry. Otherwise
each hyperplane contains either 0, 2, or 4 points, so that the standard equations yield that
there is a unique empty hyperplane and all other hyperplanes contain exactly four points, i.e.,
the point set is given by an affine solid. ��

We remark that both point sets can also be described as unions of two 2-divisible point sets,
i.e., the union of two affine planes in the first case and the union of a line and a projective
basis of size five in the second case.

C Tight irreducible affine vector space partitions of minimum size that
can be obtained by compression

In Sect. 5.3 we have shown how avsps of PG(n−1, 2) can be obtained from hitting formulas
by compression. In [26] irreducible hitting formulas of minimum possible mentioning all
variables where enumerated up to seven variables. Going over their list we obtain the follow-
ing examples of tight irreducible avsps that can be obtained by compression and that have
the minimum possible size σ2(n), see Sect. 6. The pairs of strings that can be compressed to
an affine subspace are separated by horizontal lines.

Examples for n = 5:

00 ∗ ∗ 00 ∗ ∗
1 ∗ 0∗ 1 ∗ 0∗
010∗ 01 ∗ 0

1 ∗ 10 1 ∗ 10

∗111 ∗111
0110 0101

1011 1011

Examples for n = 6:

00 ∗ ∗∗ 00 ∗ ∗∗ 00 ∗ ∗∗
100 ∗ ∗ 1 ∗ 00∗ 100 ∗ ∗
∗ 100∗ 1 ∗ 1 ∗ 0 01 ∗ 0∗
1 ∗ 1 ∗ 0 ∗ 101∗ 1 ∗ 1 ∗ 0

∗1 ∗ 11 ∗11 ∗ 1 ∗1 ∗ 11

101 ∗ 1 0100∗ 01 ∗ 10

011 ∗ 0 1001∗ 11 ∗ 01

∗ 1101 011 ∗ 0 101 ∗ 1

∗ 1010 101 ∗ 1 110 ∗ 0
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For n = 7 there is a unique example:

000 ∗ ∗∗
10 ∗ 0 ∗ ∗
∗ 1 ∗ ∗00
∗ ∗111∗
∗10 ∗ ∗1
∗ 0110∗
∗1101∗
∗ 11 ∗ 01

∗10 ∗ 10

0010 ∗ ∗
1001 ∗ ∗

For n = 8, there are 26 irreducible hitting formulas of size 13 mentioning all n − 1 = 7
variables. Curiously enough, compression was always successful. Moreover, we can also
obtain tight irreducible avsps of PG(7, 2) of minimum size σ2(8) = 10 by compression
starting from an irreducible hitting formulas with strictly more than 13 terms:

∗ ∗ ∗ 1 ∗ ∗0 ∗ 10 ∗ ∗ ∗ ∗ 1 ∗ 10 ∗ 1∗
∗ ∗ ∗ 10 ∗ 1 ∗ 000 ∗ 0∗ 0 ∗ 11 ∗ ∗0
00 ∗ 0 ∗ 1∗ 100 ∗ ∗1∗ 111 ∗ ∗0∗
0 ∗ 00 ∗ 0∗ 00 ∗ 11 ∗ ∗ 001 ∗ ∗ ∗ 1

1 ∗ ∗ ∗ 1 ∗ 1 1 ∗ 100 ∗ ∗ 0010 ∗ ∗0
∗110 ∗ ∗0 1001 ∗ 0∗ 0111 ∗ ∗1
∗ 010 ∗ 00 0000 ∗ 1∗ 110 ∗ 1 ∗ ∗
∗100 ∗ 10 0 ∗ 10 ∗ ∗1 000 ∗ 0 ∗ ∗
0 ∗ ∗11 ∗ 1 1 ∗ 11 ∗ ∗0 01 ∗ 0 ∗ ∗∗
1 ∗ ∗00 ∗ 1 0 ∗ 1 ∗ 0 ∗ 0 10 ∗ 1 ∗ ∗∗
1 ∗ 00 ∗ 00 1 ∗ 1 ∗ 1 ∗ 1 0 ∗ 011 ∗ ∗
0 ∗ 10 ∗ 01 01111 ∗ ∗ 1 ∗ 000 ∗ ∗
10 ∗ 0 ∗ 10 00010 ∗ ∗ 1010 ∗ 0∗
01 ∗ 0 ∗ 11 ∗ ∗101 ∗ 0 1111 ∗ 1∗

∗ ∗110 ∗ 1 ∗ 0001 ∗ ∗
∗ 1010 ∗ ∗
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25. Năstase E.L., Sissokho P.A.: The minimum size of a finite subspace partition. Linear Algebra Appl.

435(6), 1213–1221 (2011).
26. Peitl T., Szeider S.: Are hitting formulas hard for resolution? (2022). arXiv:2206.15225.
27. Sheekey J., Schmidt K.-U., Winterhof A.: MRD codes: constructions and connections. In: Combinatorics

and finite fields: difference sets, polynomials, pseudorandomness and applications, vol. 23, pp. 255–286.
de Gruyter (2019).

28. Tarannikov Y.V.: On the existence of Agievich-primitive partitions. Diskretn. Anal. Issled. Oper. Ser. 1
29(4), 104–123 (2022).

29. Ziran T., Zeng X., Lei H.: Several classes of complete permutation polynomials. Finite Fields Appl. 25,
182–193 (2014).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/2212.14685
https://eref.uni-bayreuth.de/40887/
http://arxiv.org/abs/2112.11763
http://arxiv.org/abs/2206.15225

	Affine vector space partitions
	Abstract
	1 Introduction
	2 Preliminaries and necessary conditions
	2.1 The structure of the tail for small parameters

	3 Classification of avsps in `3́9`42`"̇613A``45`47`"603APG(n-1,q) for small parameters
	4 Classification of tight irreducible avsps in `3́9`42`"̇613A``45`47`"603APG(n-1,2) for small dimensions n
	4.1 Tight irreducible avsps in `3́9`42`"̇613A``45`47`"603APG(4,2)
	4.2 Tight irreducible avsps in `3́9`42`"̇613A``45`47`"603APG(5,2)
	4.3 Tight irreducible avsps in `3́9`42`"̇613A``45`47`"603APG(6,2)

	5 Constructions of tight irreducible avsps
	5.1 Constructions from projective spreads
	5.2 Constructions from the Klein quadric
	5.3 Constructions using hitting formulas

	6 The minimum possible size of tight irreducible avsps
	7 Conclusion
	Acknowledgements
	A Integer linear programming formulations
	B Technical details
	C Tight irreducible affine vector space partitions of minimum size that can be obtained by compression

	References


