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Abstract
We investigate APN functions which can be represented as rational functions and we provide
non-existence results exploiting the connection between these functions and specific alge-
braic varieties over finite fields. This approach allows to classify families of functions when
previous approaches cannot be applied.
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1 Introduction

Let Fq be the finite fields with q = 2n elements. APN functions in even characteristic,
introduced by Nyberg in [27], were investigated not only for their theoretical interest but also
in connection with their applications to cryptography [3].

Definition 1.1 A function f : Fq → Fq is APN (Almost Perfect Nonlinear) if

∀α ∈ F
∗
q ,∀β ∈ Fq ⇒ #

{
x ∈ Fq : f (x + α) + f (x) = β

} ≤ 2, (1)

Moreover, f is APN exceptional if there exist infinite extensions Fqm of Fq where f is APN.

APN functions have been constructed in connection with several combinatorial and geo-
metrical objects, such as semi-biplanes [13] and dual-hyperovals [16]. In this context these
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mappings are also called semi-planar [15]. Another application of APN functions is related
with the construction of error correcting codes, since each APN function yields a double
error correcting BCH-like code.

Equivalence issues play an important role in the study of such functions. The above
connection with BCH codes also provides an equivalence definition between APN functions:
twoAPN functions are said to be inequivalent if the (extended)BCH-like codes obtained from
themare inequivalent codes (see [4] formore details). This relation is calledCCZ-equivalence
[12], and it is the most general equivalence relation preserving the APN property.

In the last years, several families of APN functions (see [8] or [11] for a recent list of
inequivalent APN families) were constructed. For some of these families the APN property
is connected with the existence of polynomials having specific features; see i.e. [6, 7, 9, 31].
It is therefore crucial to understand whether APN functions coming from these constructions
exist for infinitely many dimensions or do not.

It is well known that each function f : Fq → Fq can be represented as a polynomial
function over Fq of degree at most q − 1.

The two most known families of exceptional APN functions, for each positive integer k,

are the Gold functions f (x) = x2
k+1 and the K asami-W elch functions f (x) = x4

k−2k+1,

which are APN on F2n for all positive integer n that are coprime to k (see [28], for example).
The following conjecture was proposed by Aubry, McGuire and Rodier [1].

Conjecture 1.2 [1]. The only exceptional APN functions are, up to CCZ-equivalence (see [5],
for details), the Gold and Kasami–Welch functions.

Conjecture 1.2 has been settled by Hernando and McGuire [21] in the case that f is a
monomial and many other special cases have been proved in several papers. We refer to [14]
for a survey of the extensive recent literature on Conjecture 1.2.

APN functions, and the exceptional ones in particular, have been also investigated in
connection with algebraic varieties over finite fields, whose degree strictly depends on the
the degree of the corresponding polynomial; see e.g. [21]. In this direction, non-existence
results were obtained by means of estimates on the number of Fq -rational points of such
varieties, as Hasse–Weil or Lang–Weil bounds, which can be applied only if the degree of
the polynomial under investigation is small enough.

On the one hand, using such a machinery non-existence results were obtained only in
small-degree regime or of so-called exceptional APN functions.

On the other hand, not all the examples of APN functions are described in the literature
by polynomials. In fact, the inverse map x �→ x−1 is known to be APN on F2n with n odd,
and thus it is also exceptional. Such a map, seen as a polynomial function, has large degree
(the function coincides with xq−2) and thus the previous machinery does not apply.

Inspired by this example, we start the investigation of functions which can be represented
by rational maps. In a similar way (see Proposition 3.1 and Corollary 3.3), we attach to such
a rational function a surface in the three-dimensional projective space and we investigate
the number of its Fq -rational points. The advantage of our approach is that functions whose
corresponding polynomial has high degree and therefore is not treatable using the former
machinery often can be described by a rational function of much smaller degree. In this case
the investigation of its Fq -rational points becomes feasible by means of Lang–Weil bound.

Our main achievement is the following.

Main Theorem Let ψ = f
g ∈ Fq(X) with MC D( f , g) = 1 in Fq [X ], g(x) 	= 0 for all

x ∈ Fq , deg( f ) = m, deg(g) = d. Then ψ is not exceptional APN in the following cases.

1. m − d > 0 odd neither Gold nor Kasami-Welch;
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2. (m − d)/2 > 0 odd, and f ′/g /∈ F
∗
q or g′ 	= 0, f ′ and g′ denote the formal derivatives

of f and g;
3. d − m > 1 odd;
4. m = 1 < d.

In particular, if in addition m + 3d ≥ 9, m + 3d < 0.45q
1
4 + 0.5, then ψ is not an APN

function over Fq .

We want to point out that the above result allows to classify families of functions when
previous approaches cannot be applied; see [29, Theorem 4.1]. Let us consider the following.

Example 1.3 Let q = 219 and ψ : Fq → Fq , defined by x �→ x
x3+x+1

. It is well known that
there exists a unique polynomial h ∈ Fq [X ] of degree at most q − 1 such that ψ(x) = h(x)

for any x ∈ Fq . Such a polynomial h can be found by the Lagrange Interpolation Formula,
that is h(X) = ∑

a∈Fq
ψ(a)(1− (X −a)q−1); see [26, Remark 8.1.3]. By computations with

MAGMA, one gets that deg( f ) = q −1 > 4
√

q so Rodier’s results [29, Theorem 4.1] cannot
be applied to establish the APN-ness of ψ. However, 9 ≤ deg(X) + 3 deg(X3 + X + 1) ≤
0.45q

1
4 + 0.5, so Main Theorem implies that ψ is not APN over Fq .

2 General results

Let F(X , Y ) ∈ K[X , Y ], K a field, be a polynomial defining an affine plane curve C :
F(X , Y ) = 0. A plane curve is absolutely irreducible if there are no non-trivial factorizations
of its defining polynomial F(X , Y ) in K[X , Y ], where K is the algebraic closure of K.
If F(X , Y ) = ∏

i F (i)(X , Y ), with F (i)(X , Y ) ∈ K[X , Y ] of positive degree, then Ci :
F (i)(X , Y ) = 0 are called components of C. A component is Fq -rational if it is fixed by the
Frobenius morphism ϕ or equivalently λF (i)(X , Y ) ∈ K[X , Y ] for some λ ∈ K.

Let P = (u, v) ∈ A
2(K) be a point in the plane, and write

F(X + u, Y + v) = F0(X , Y ) + F1(X , Y ) + F2(X , Y ) + · · · ,

where Fi is either zero or homogeneous of degree i . The multiplicity of P ∈ C, written as
m P (C) or m P (F), is the smallest integer m such that Fm 	= 0 and Fi = 0 for i < m; Fm = 0
is the tangent cone of C at P . A linear component of the tangent cone is called a tangent of
C at P . The point P is on the curve C if and only if m P (C) ≥ 1. If P is on C, then P is a
simple point of C if m P (C) = 1, otherwise P is a singular point of C. It is possible to define
in a similar way the multiplicity of an ideal point of C, that is a point of the curve lying on
the line at infinity. We denote by Sing(C) the set of singular points of the curve C.

Given two plane curves A and B and a point P on the plane, the intersection number (or
intersection multiplicity) I (P,A ∩ B) of A and B at the point P can be defined by seven
axioms. We do not include its precise and long definition here. For more details, we refer to
[18] and [22] where the intersection number is defined equivalently in terms of local rings
and in terms of resultants, respectively.

For a given plane curve C and a point P ∈ C, we denote by IP,max (C) the maximum
possible intersection multiplicity of two components of C at P ∈ Sing(C). Information
on IP,max (C) will be crucial to prove the existence of suitable absolutely irreducible Fq -
rational components in Sψ via Criterion 2.3 (see below). We list here two useful results in
this direction.
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The first one follows directly from the fact that, given two curves C andDwith no common
tangents at a point P ,

I (P, C ∩ D) = m P (C)m P (D);
see e.g. [22, Theorem 3.7].

Lemma 2.1 Let q be a prime power and F(X , Y ) ∈ Fq [X , Y ]. Let P = (α, β) ∈ F
2
q and

write

F(X + α, Y + β) = Fm(X , Y ) + Fm+1(X , Y ) + . . . ,

where Fi ∈ Fq [X , Y ] is zero or homogeneous of degree i and Fm 	= 0. If Fm(X , Y ) 	= 0 is
separable, then IP,max (C) ≤ �m2/2�.

Lemma 2.2 [30, Lemma 4.3] [2, Lemma 2.5] Let q = 2n and F(X , Y ) ∈ Fq [X , Y ]. Let
P = (α, β) ∈ F

2
q and write

F(X + α, Y + β) = Fm(X , Y ) + Fm+1(X , Y ) + . . . ,

where Fi ∈ Fq [X , Y ] is zero or homogeneous of degree i and Fm 	= 0. Finally suppose
that Fm = Lm with L a linear form. If L � Fm+1 then IP,max (C) = 0. If L2

� Fm+1 then
IP,max (C) ≤ m.

Criterion 2.3 [24] Let C : h(X , Y ) = 0 be a curve of degree n defined over Fq . If

∑

P∈Sing(h)

IP,max (C) <
2

9
deg2(h)

then C possesses at least one absolutely irreducible component defined over Fq .

In our approach we associate to a rational function ψ an affine hypersurface, which
is an affine variety of codimension one, described by F(X1, . . . , Xr ) = 0, where F ∈
Fq [X1, . . . , Xr ]. As a notation, P

r (Fq) and A
r (Fq) (or F

r
q ) denote the projective and the

affine space of dimension r ∈ N over the finite fieldFq .Wewill consider the projective hyper-
plane X0 = 0 as hyperplane at infinite and so a projective point is affine if x0 	= 0 and the
projective closure of the affine hypersurface F(X1, . . . , Xr ) = 0 is the projective one defined
by F∗(X0, . . . , Xr ) = 0, where F∗ is the homogenization of F with respect to X0. A hyper-
surface is said to be absolutely irreducible if the corresponding polynomial F(X1, . . . , Xr )

is absolutely irreducible, i.e. it possesses no nontrivial factors over the algebraic closure of
Fq . The following result links varieties of different dimension.

Lemma 2.4 [1, Lemma 2.1] Let X ⊆ A
N (F2n ) be an affine hypersurface and let H ⊆

P
N (F2n ) be a projective hypersurface. If X ∩ H has a non-repeated absolutely irreducible

component defined over F2n , then X has an absolutely irreducible component defined over
F2n .

Lemma 2.4 yields the following.

Criterion 2.5 Let F ∈ Fq [X1, . . . , X N ] with

F = Fm + Fm+1 + · · · + Fd−1 + Fd ,

where Fi ∈ Fq [X1, . . . , X N ] is zero or a homogeneous polynomial of degree i and Fm Fd 	= 0.
If Fm or Fd have a non-repeated absolutely irreducible component defined over Fq then F
has an absolutely irreducible component defined over Fq .
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A crucial point in our investigation of rational APN functions is to prove the existence of
suitable Fq -rational points in algebraic hypersurfaces H attached to each rational function.
This is reached by proving the existence of absolutely irreducible Fq -rational components in
H and estimates on the number of Fq -rational points of an algebraic variety. We recall here
the celebrated results by Lang and Weil [25].

Theorem 2.6 (Lang–Weil Theorem) Let V ⊂ P
N (Fq) be an absolutely irreducible variety

of dimension n and degree d. Then there exists a constant C depending only on N, n, and d
such that

∣∣∣∣∣
#V(Fq) −

n∑

i=0

qi

∣∣∣∣∣
≤ (d − 1)(d − 2)qn−1/2 + Cqn−1. (2)

Although the constant C was not computed in [25], explicit estimates have been provided in
the general shape C = f (d) provided that q > g(n, d), where f and g are polynomials of
(usually) small degree. We refer to [10] for a survey on these bounds.

We will also frequently use the following corollary of Lucas’s theorem (see [17], for
example).

Lemma 2.7 The binomial coefficient
(n

m

)
is even if and only if al least one of the base-2 digits

of m is greater than the corresponding digit of n.

3 APN rational functions

In this paper we consider rational functions over Fq , i.e. elements of Fq(X), in order to face
the exceptionality problem from another point of view.

From now on we will make the following assumptions for ψ = f
g ∈ Fq(X):

(A.1) g(x) 	= 0 for all x ∈ Fq ;
(A.2) GC D( f , g) = 1;
(A.3) f (X) = am Xm + · · · + a0 and g(X) = bd Xd + · · · + b0, with ambd 	= 0 and

ai , b j ∈ Fq ;

(A.4) m 	= d , since otherwiseψ is CCZ-equivalent to f
g − am

bd
= f ′

g , with deg( f ′) < deg(g).

We will investigate the APN property of ψ via a connection with the algebraic surface Sψ

in A
3(Fq) defined by

ϕψ(X , Y , Z) := θψ(X , Y , Z)

(X + Y )(X + Z)(Y + Z)
= 0,

where θψ(X , Y , Z) has the following expression

f (X)g(Y )g(Z)g(X + Y + Z) + f (Y )g(X)g(Z)g(X + Y + Z) +
+ f (Z)g(X)g(Y )g(X + Y + Z) + f (X + Y + Z)g(X)g(Y )g(Z).

To this aim, it will also be useful to consider the projective closure of Sψ in P
3(Fq), which

will be denoted again by Sψ .
Note that if g(X) = 1 then Sψ reads

f (X) + f (Y ) + f (Z) + f (X + Y + Z)

(X + Y )(X + Z)(Y + Z)
= 0,

and it coincides with the surface introduced in [23, 29].
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As in the polynomial case, the connection between Sψ and the APN-ness of ψ is
straightforward.

Proposition 3.1 The rational function ψ(X) is APN if and only if the surface Sψ has no affine
Fq -rational points off X = Y , X = Z e Y = Z .

Proof Mimicking the proof in [29] we have that ψ is APN over Fq if and only if the rational
function

η := f

g
(X) + f

g
(Y ) + f

g
(Z) + f

g
(X + Y + Z)

has no Fq -rational zero off the planes X = Y , X = Z and Y = Z . Since g(x) 	= 0 for all
x ∈ Fq , this holds if and only if θψ(X , Y , Z) = ϕψ(X , Y , Z)(X + Y )(X + Z)(Y + Z) also
has no Fq -rational zero off the planes X = Y , X = Z and Y = Z , and so the same holds for
ϕψ .

��
The next theorem is the analogous for rational functions of [29, Theorem 4.1], the proof is
essentially the same and it relies on a refined version of the Lang–Weil Theorem proved by
Ghorpade e Lachaud in [19]. We point this out here for the reader’s convenience.

Theorem 3.2 Let ψ : Fq → Fq , ψ = f
g ∈ Fq(X). If Sψ has an absolutely irreducible

component defined over Fq not contained in the surface (X + Y )(X + Z)(Y + Z) = 0 and

m + 3d ≥ 9, m + 3d < 0.45q
1
4 + 0.5, then ψ is not an APN function over Fq .

Proof Let V be such an absolutely irreducible component of Sψ. From a result of Ghorpade
and Lachaud in [19], it follows that

#V(Fq) ≥ q2 + q + 1 − (m + 3d − 4)(m + 3d − 5)q3/2 − 18(m + 3d)4q.

Moreover, V intersects each of the planes X = Y , X = Z , Y = Z and the plane at infinite
in P

3(Fq) in at most q(m + 3d − 3) + 1 Fq -rational points (see [29, Corollary 3.1]). Hence,
by Proposition 3.1, if the inequality

q2 + q + 1 − (m + 3d − 4)(m + 3d − 5)q3/2 − 18(m + 3d)4q > 4((m + 3d − 3)q + 1)

(3)

holds, ψ is not APN on Fq . Inequality (3) is equivalent to

q − (m + 3d − 4)(m + 3d − 5)q1/2 + (−18(m + 3d)4 − 4(m + 3d) + 13) − 3/q > 0,

which is satisfied for m + 3d ≥ 9 and m + 3d < 0.45q
1
4 + 0.5 (see [29, Thm 4.1]).

��
Corollary 3.3 Let ψ : Fq → Fq , ψ = f

g ∈ Fq(X). If Sψ has an absolutely irreducible
component defined over Fq distinct from X = Y , X = Z e Y = Z, then ψ is not exceptional
APN.

Our strategy in investigating the exceptionality of an APN rational functions consists in
providing sufficient conditions on Sψ to possess suitable absolutely irreducible Fq -rational
components. First we focus on the intersection of Sψ with the hyperplane at infinity H∞ ⊂
P
3(Fq), which is provided by the curve whose homogeneous equation is defined by the

homogeneous part in ϕψ of highest degree.
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If m − d is not a power of 2, then it is easy to see that the maximum degree homogeneous
component of ϕψ is given by amb3d Hm,d , where Hm,d has the following expression

(XmY d Zd + Xd Y m Zd + XdY d Zm)(X + Y + Z)d + XdY d Zd(X + Y + Z)m

(X + Y )(X + Z)(Y + Z)
. (4)

Let us denote by Am,d the curve of homogeneous equation Hm,d = 0. In what follows, for
the sake of convenience, we will also consider the polynomial Gm,d := Hm,d(X + Y )(X +
Z)(Y + Z).

We will consider separately the cases m > d and m < d.

4 Investigation of rational functionsÃ = f/g, with deg(f ) > deg(g)

In this case Gm,d and Hm,d read as

Gm,d = Xd Y d Zd(X + Y + Z)d(Xm−d + Y m−d + Zm−d + (X + Y + Z)m−d),

Hm,d = Xd Y d Zd(X + Y + Z)d Xm−d + Y m−d + Zm−d + (X + Y + Z)m−d

(X + Y )(X + Z)(Y + Z)
.

Note that
Xm−d + Y m−d + Zm−d + (X + Y + Z)m−d

(X + Y )(X + Z)(Y + Z)
defines the curve associated to the

monomial function xm−d .

The case m − d odd can be easily investigated.

Theorem 4.1 Let ψ = f
g ∈ Fq(X). If m −d > 0 is odd and not Gold or Kasami-Welch, then

Sψ has an absolutely irreducible component defined over Fq (hence ψ is not an exceptional
APN function ).

Proof Let e := m − d. By [21] we have that ϕe = Xe + Y e + Ze + (X + Y + Z)e

(X + Y )(X + Z)(Y + Z)
has a

non-repeated absolutely irreducible component defined over F2. Since the polynomial X , Y
e X + Y + Z do not divide ϕe, this component is distinct from the lines X = 0, Y = 0 and
X + Y + Z = 0 and so Hm,d = Xd Y d Zd(X + Y + Z)dϕe has a non-repeated absolutely
irreducible component defined over F2. The statement follows by Lemma 2.4 and Corollary
3.3. ��
The case m − d even is more complicated as the following remark shows.

Remark 4.2 Let e = m − d = 2 j l, with j ≥ 1 and l > 1 odd. Then

Hm,d = Xd Y d Zd(X + Y + Z)dϕe

= Xd Y d Zd(X + Y + Z)d((X + Y )(X + Z)(Y + Z))2
j −1ϕ2 j

l .

If j > 1 then all components of Ad,m are repeated (in fact g(x) 	= 0 for all x ∈ Fq , implies
d = deg(g) ≥ 2), hence Lemma 2.4 cannot be applied.

If j = 1 each of the three linear components of (X + Y )(X + Z)(Y + Z) = 0 is a
non-repeated absolutely irreducible component of Am,d ; again by Lemma 2.4, Sψ has an
absolutely irreducible component defined over Fq . However such component may coincide
with one of the three planes X + Y = 0, X + Z = 0, Y + Z = 0. In this case the existence
of Fq -rational points of Sψ off the surface (X + Y )(X + Z)(Y + Z) = 0 cannot be proved.
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We continue our investigation of the case m −d = 2	, 	 odd, characterizing those rational
functions ψ for which ϕψ is divisible by (X + Y )(X + Z)(Y + Z). In the following, for a
polynomial f (X) ∈ Fq [X ], we denote by f ′ the formal derivative of f with respect to X .

Proposition 4.3 Let ψ = f
g ∈ Fq(X). Then (X + Y )(X + Z)(Y + Z) divides ϕψ if and only

if g′ = 0 and f ′ = γ g, with γ ∈ Fq . If this happens then f = h2 + Xγ g, with h ∈ Fq [X ].
Proof If g′ = 0 and f ′ = γ g then there exists h ∈ Fq [X ] such that f = h2 + Xγ g; namely
setting r := f + Xγ g we have r ′ = γ g + γ g = 0, hence all terms of r have even degree.

Therefore there exist h, g1 ∈ Fq [X ] such that r = h2 and g = g2
1, soψ =

(
h

g1

)2

+γ X , i.e.

the functionψ(x) is EA-equivalent to h
g1

(x).From the definition ofϕψ it follows immediately
that

ϕψ = ϕ
( h

g1
)2

= (ϕ h
g1

)2(X + Y )(X + Z)(Y + Z).

Vice versa, suppose (X + Y )(X + Z)(Y + Z) divides ϕψ.

We have that (X + Y ) | ϕψ if and only if (X + Y )2 | θψ . This implies (X + Y )2 | ∂θψ

∂ X
and in particular

∂θψ

∂ X
(X , X , Z) = 0 ⇐⇒ [ f ′(X)g(X) + f (X)g′(X)]g2(Z)

= [ f ′(Z)g(Z) + f (Z)g′(Z)]g2(X). (5)

Since GC D( f , g) = 1, it follows that

g(X) | [ f ′(X)g(X) + f (X)g′(X)] ⇒ g(X) | f (X)g′(X) ⇒ g′ = 0,

Equality (5) reads

f ′(X)g(X)g2(Z) = f ′(Z)g(Z)g2(X),

that is

f ′(X)

g(X)
= f ′(Z)

g(Z)
,

and so
f ′(X)

g(X)
= γ for some γ ∈ Fq , i.e. f ′ = γ g and the claim follows. ��

Theorem 4.4 Let ψ = f
g ∈ Fq(X). Let m − d = 2	 with 	 > 1 odd. If g′ 	= 0 or f ′ 	= γ g

for all γ ∈ Fq then ψ is not an exceptional APN function.

Proof ByRemark 4.2 it follows that X +Y = 0 is a non-repeated absolutely irreducible com-
ponent ofAm,d (maximum degree homogeneous component of ϕψ ) and therefore Lemma 2.4
guarantees the existence of an Fq -rational absolutely irreducible component of Sψ. Finally,
by Proposition 4.3 we have that this component is different from X = Y , X = Z e Y = Z ,

and so the statement follows from Corollary 3.3. ��
We now briefly discuss the pending case.

Remark 4.5 Let ψ = f
g be as in Proposition 4.3, with g′ = 0 and f ′ = γ g with γ ∈ Fq ,

m − d = 2	, 	 > 0 odd. As already noticed in the proof of Proposition 4.3, ψ = ( h
g1

)2 +γ X

with g = g2
1 and so it is CCZ-equivalent to h

g1
(x). Clearly, deg(h) − deg(g1) = 	 and this

case can be studied via Theorem 4.1.

Theorem 4.4 and Remark 4.5 yields points 1. and 2. in Main Theorem.
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5 Investigation of rational functionsÃ = f/g, with deg(f ) < deg(g)

We recall that the maximum degree homogeneous component of ϕψ is given by amb3d Hm,d ,

where Hm,d is as in (4). Direct computations show that, in this case, Hm,d reads

Hm,d = XmY m Zm(X + Y + Z)m Fm,d(X , Y , Z)

(X + Y )(X + Z)(Y + Z)
, (6)

where Fm,d is

(Y d−m Zd−m + Xd−m Zd−m + Xd−mY d−m)(X + Y + Z)d−m + Xd−mY d−m Zd−m . (7)

A first result can be easily obtained in the special case m = 1.

Proposition 5.1 Let ψ = f
g ∈ Fq(X). If m = 1 < d then ψ is not an exceptional APN

function.

Proof Ifm = 1 it is immediate to see that, X +Y +Z , X , Y and Z are non-repeated absolutely
irreducible factors of (6) and so they are non-repeated absolutely irreducible factors of Hm,d .

By Lemma 2.4 we have that ϕψ has a non-repeated absolutely irreducible defined over Fq ,

off the surface (X + Y )(X + Z)(Y + Z) = 0 and so the conclusion follows from Corollary
3.3. ��

For the case m > 1, we exploit a method introduced in [23] via the investigation of
singular points of the curves

Am,d : Fm,d(X , Y , Z)

(X + Y )(X + Z)(Y + Z)
= 0,

and

Cm,d : Fm,d(X , Y , Z) = 0;
see Criterion 2.3.

In particular, our aim is to prove the existence of an absolutely irreducible Fq -rational
component of the curve Ae. We proceed as follows.

1. We determine the set Sing(Ae) of singular points of Ae; see below.
2. For each point P ∈ Sing(Ae) we provide upperbounds on IP,max (Ae); see Propositions

5.3 and 5.8.
3. We compute an upper bound on

∑
P∈Sing(Ae)

IP,max (Ae) and obtain the desired result
via Criterion 2.3; see Theorem 5.9.

Consider the line Z = 0 as line at infinity in P
2(Fq). In what follows we will make use

of the following notation e := d − m, Fe := Fm,d , fe := (Fe)∗ = (Xe + Y e + XeY e)(X +
Y + 1)e + XeY e,

He := Fe

(X + Y )(X + Z)(Y + Z)
, he := (He)∗, Ae := Am,d and Ce := Cm,d .

Observe that Fe, He, fe, he are symmetric polynomials and that deg(Fe) = deg( fe) =
3e, deg(He) = deg(he) = 3(e − 1).

Remark 5.2 Let e = d − m = 2 j l, with l odd. The Fq -automorphism given by x �→ x2
j

induces an automorphism of Fq [X , Y , Z ], so it immediately follows that

He = ((X + Y )(X + Z)(Y + Z))2
j −1Hl(X , Y , Z)2

j
,
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where

Hl(X , Y , Z) = (Y l Zl + Xl Zl + XlY l)(X + Y + Z)l + XlY l Zl

(X + Y )(X + Z)(Y + Z)
.

If j > 1, then He has only repeated factors, therefore Lemma 2.4 cannot be applied.

Assume e odd. By a direct computation we obtain that the points at infinity of Fe = 0 are
[1 : 0 : 0], [0 : 1 : 0] and [1 : 1 : 0], and they all are singular points. The affine singular
points of Fe = 0 are the singular points of fe = 0. Also, a point P = (α, β) ∈ F

2
q is singular

for fe = 0 if and only if
⎧
⎨

⎩

fe(α, β) = 0
∂ fe
∂ X (α, β) = 0
∂ fe
∂Y (α, β) = 0,

or equivalently, if and only if all the following equations hold

(αe + βe)(α + β + 1)e = αeβe[(α + β + 1)e + 1]; (8)

βe[αe−1 + (α + β + 1)e−1] = αe−1(α + β + 1)e−1(β + 1)(βe + 1); (9)

αe[βe−1 + (α + β + 1)e−1] = βe−1(α + β + 1)e−1(α + 1)(αe + 1). (10)

Note that fe is symmetric, and thus fe|Y (α, β) = fe|X (β, α). We now distinguish three
cases:

(I) α = 0 or β = 0. If α = 0, equation (8) yields βe(β + 1)e = 0 and so β = 0 or β = 1.
By the symmetry of fe we have α = 0 or α = 1 for β = 0,.

(II) α + β + 1 = 0. Equation (9) yields αe−1βe = 0 and so α = 0 or β = 0.
(III) α 	= 0 	= β and α + β + 1 	= 0. Obviously if P = (α, β) satisfies (8)-(10), then

Fe|Z (α, β, 1) = 0, i.e.

αeβe[(α + β + 1)e−1 + 1] + (α + β + 1)e−1(α + β)(αe + βe) = 0. (11)

Multiplying (11) by α + β + 1 and replacing it in (8), we get

αeβe(α + β)[(α + β + 1)e + 1] = αeβe(α + β + 1)[(α + β + 1)e−1 + 1],
and therefore

(α + β + 1)e+1 = 1. (12)

Multiplying now Equations (9) and (10) by (α + β + 1)2 and using (12), we obtain
respectively

βe[αe−1(α + β + 1)2 + 1] = αe−1(β + 1)(βe + 1),

αe[βe−1(α + β + 1)2 + 1] = βe−1(α + 1)(αe + 1),

from which we get

(βe+1 + 1)(β + 1)αe−1 = (αe+1 + 1)βe, (13)

(αe+1 + 1)(α + 1)βe−1 = (βe+1 + 1)αe. (14)

Note that if αe+1 = 1 then necessarily βe+1 = 1 and viceversa. Suppose that (αe+1 +
1)(βe+1 + 1) 	= 0. Multiplying (13) by α and replacing (14) in (13), we have

(βe+1 + 1)(β + 1)(αe+1 + 1)(α + 1)βe−1 = α(αe+1 + 1)(βe+1 + 1)βe, (15)

and thus (α + 1)(β + 1) = αβ, a contradiction to α + β + 1 	= 0.
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Summing up, the affine singular points of fe = 0 are:

1. (0, 0);
2. (0, 1);
3. (1, 0);
4. (α, β), with αe+1 = βe+1 = (α + β + 1)e+1 = 1.

In the following we provide upper bounds for each singular point P ofAe on IP,max (Ae)

in order to apply Criterion 2.3. First, we deal with the ideal points ofAe and the affine points
(0, 0), (1, 0), (0, 1).

Proposition 5.3 Let Ae : He = 0, with e odd. Then

max
{

I(0,0),max (he = 0), I(0,1),max (he = 0), I(1,0),max (he = 0)
} ≤ (e − 1)2

4
,

max
{

I[1:0:0],max (He = 0), I[0:1:0],max (He = 0), I[1:1:0],max (He = 0)
} ≤ (e − 1)2

4
.

Proof We will discuss each case separately.

1. P = (0, 0). We have

fe = (Xe + Y e + XeY e)(X + Y + 1)e + XeY e = (X + Y )(X + 1)(Y + 1)he,

so the tangent cone of fe = 0 at P is Xe + Y e = 0. Moreover, e odd implies that all the
factors of Xe + Y e are distinct. Since fe = (X + Y )(X + 1)(Y + 1)he, the tangent cone
of he = 0 cannot have repeated factors and by Lemma 2.1

I(0,0),max (he = 0) ≤ (e − 1)2

4
.

2. P = (1, 0) or P = (0, 1). Consider now

fe(X + 1, Y ) = [(X + 1)e + Y e + (X + 1)eY e](X + Y )e + (X + 1)eY e

= (X + Y )e + Y e + f ′
e(X , Y ),

where f ′
e(X , Y ) contains terms of degree larger than e. Since (X +Y )e +Y e is separable,

we deduce by Lemma 2.1

I(1,0),max (he = 0) ≤ (e − 1)2

4
.

From the symmetry of fe and he we deduce that

I(0,1),max (he = 0) ≤ (e − 1)2

4
.

3. P = [1 : 0 : 0], P = [0 : 1 : 0] or P = [1 : 1 : 0]. If we denote by ji : F
2
q → P

2(Fq)\
H∞,i , i = 1, 2, 3, the embedding of the affine plane into the projective plane with respect
to xi (where H∞,i denotes the hyperplane xi = 0 ),we have that j−1

1 ([1 : 0 : 0]) = (0, 0),
j−1
2 ([0 : 1 : 0]) = (0, 0) e j−1

1 ([1 : 1 : 0]) = (1, 0). By the symmetry of Fe e He we
finally get

max
{

I[1:0:0],max (He = 0), I[0:1:0],max (He = 0), I[1:1:0],max (He = 0)
} ≤ (e − 1)2

4
.

��

123



3178 D. Bartoli et al.

We now investigate the singular points (α, β), with αe+1 = βe+1 = (α +β + 1)e+1 = 1,
of the curve fe = 0. Note that any upper bound on IP,max ( fe = 0) is also an upper bound
for IP,max (he = 0), since the curve he = 0 is a component of the curve fe = 0.

Recall that

fe(X + α, Y + β) = Cr + Cr+1 + · · · =
∑

μ,ν≥0

Bμν XμY ν,

where

Ck =
∑

n+m=k

[((
e

n

)
(Xnαe−n + Y nβe−n) +

∑

i+ j=n

(
e

i

)(
e

j

)
Xi Y jαe−iβe− j

)
·

·
(

e

m

)
(X + Y )m(α + β + 1)e−m

]
+

∑

i+ j=k

(
e

i

)(
e

j

)
Xi Y jαe−iβe− j . (16)

The next few propositions deal with singular points P = (α, β), with αe+1 = βe+1 =
(α +β + 1)e+1 = 1. In particular, in order to provide upper bounds on IP,max (Ae), we need
to determine the two first nonzero polynomials Ck .

Proposition 5.4 Let e be odd, e ≡ 2N − 1 (mod 2N+1), fe = (Xe + Y e + XeY e)(X + Y +
1)e + XeY e and consider P = (α, β) with αe+1 = βe+1 = (α + β + 1)e+1 = 1. Then
Ck = 0 for all k = 0, . . . , 2N − 1.

Proof First observe that, by Lemma 2.7,
(e

k

) = 1 for all k = 0, . . . , 2N − 1. We will proceed
by induction on k. If k = 0 then C0 = 0 since the curve passes through the origin. By direct
computations it follows that

Ck =
⎛

⎝αe−k Xk + βe−kY k +
∑

i+ j=k

αe−iβe− j X i Y j

⎞

⎠ (α + β + 1)e

+ X + Y

α + β + 1

⎛

⎝Ck−1 +
∑

i+ j=k−1

αe−iβe− j X i Y j

⎞

⎠ +
∑

i+ j=k

αe−iβe− j X i Y j .

By induction Ck−1 = 0, and therefore

Ck =
⎛

⎝αe−k Xk + βe−kY k +
∑

i+ j=k

αe−iβe− j X i Y j

⎞

⎠ (α + β + 1)e

+
⎛

⎝
∑

i+ j=k−1

αe−iβe− j X i+1Y j +
∑

i+ j=k−1

αe−iβe− j X i Y j+1

⎞

⎠ (α + β + 1)e

+
∑

i+ j=k

αe−iβe− j X i Y j .

Note that
∑

i+ j=k−1

αe−iβe− j X i+1Y j = αe−k+1βe Xk +
∑

i+ j=k
i, j≥1

αe−i+1βe− j X i Y j ,

∑

i+ j=k−1

αe−iβe− j X i Y j+1 = αeβe−k+1Y k +
∑

i+ j=k
i, j≥1

αe−iβe− j+1Xi Y j ,
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∑

i+ j=k

αe−iβe− j X i Y j = αe−kβe Xk + αeβe−kY k +
∑

i+ j=k
i, j≥1

αe−iβe− j X i Y j .

Thus
∑

i+ j=k
i, j≥1

αe−i+1βe− j X i Y j +
∑

i+ j=k
i, j≥1

αe−iβe− j+1Xi Y j = (α + β)
∑

i+ j=k
i, j≥1

αe−iβe− j X i Y j .

and finally we obtain

Ck = (α + β + 1)e
(

αe−k(1 + βe)Xk + βe−k(1 + αe)Y k + αe−k+1βe Xk

+αeβe−k+1Y k + (α + β + 1)(αe−kβe Xk + αeβe−kY k)

)

= 0.

��
In the following we use the notation B(i, j) to denote the coefficient of Xi Y j in fe(X +

α, Y + β).

Proposition 5.5 Let e be odd, e ≡ 2N − 1 (mod 2N+1). Suppose αe+1 = βe+1 = (α + β +
1)e+1 = 1. Then

• C2N = B(2N , 0)X2N + B(0, 2N )Y 2N
,

• C2N +1 = B(2N +1, 0)X2N +1+B(2N , 1)X2N
Y +B(1, 2N )XY 2N +B(0, 2N +1)Y 2N +1.

Proof By Lemma 2.7 we have
( e
2N

) = ( e
2N +1

) = 0 so, from (16), we obtain

C2N =
∑

n+m=2N

n,m≥1

[(
Xnαe−n + Y nβe−n +

∑

i+ j=n

Xi Y j αe−i βe− j
)

· (X + Y )m(α + β + 1)e−m
]

+
∑

i+ j=2N

i, j≥1

Xi Y j αe−i βe− j + (α + β + 1)e
∑

i+ j=2N

i, j≥1

Xi Y j αe−i βe− j

= X + Y

α + β + 1

[ ∑

i+ j=2N −1

Xi Y j αe−i βe− j + C2N −1 + αe + βe + αeβe

(α + β + 1)2N (X + Y )2
N −1

]

+ α + β

α + β + 1

∑

i+ j=2N

i, j≥1

Xi Y j αe−i βe− j

= (α + β + 1)e−2N
(αe + βe + αeβe)(X + Y )2

N + (α + β + 1)e
(

βe

α2N X2N + αe

β2N Y 2N
)

= B(2N , 0)X2N + B(0, 2N )Y 2N
,

where

B(2N , 0) = α2N −1 + (α + β + 1)2
N −1

α2N
β(α + β + 1)2N ; (17)

B(0, 2N ) = β2N −1 + (α + β + 1)2
N −1

αβ2N
(α + β + 1)2N . (18)
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Concerning C2N +1, we get

C2N +1 = (α + β + 1)e
∑

i+ j=2N +1
i, j≥2

Xi Y jαe−iβe− j

+(X + Y )(α + β + 1)e−1
∑

i+ j=2N

i, j≥1

Xi Y jαe−iβe− j

+
∑

n+m=2N +1
n,m≥2

[(
Xnαe−n + Y nβe−n +

∑

i+ j=n

Xi Y jαe−iβe− j
)

×(X + Y )m(α + β + 1)e−m
]

+
∑

i+ j=2N +1
i, j≥2

Xi Y jαe−iβe− j

From (16), it follows that

∑

n+m=2N +1
n,m≥2

[(
Xnαe−n + Y nβe−n +

∑

i+ j=n

Xi Y jαe−iβe− j
)

· (X + Y )m(α + β + 1)e−m
]

equals (X+Y )2

(α+β+1)2
G, where

G = C2N −1 + (αe + βe + αeβe)(α + β + 1)−2N
(X + Y )2

N −1

+(αe−1(1 + βe)X + βe−1(1 + αe)Y )(α + β + 1)1−2N
(X + Y )2

N −2

+
∑

i+ j=2N −1

Xi Y jαe−iβe− j .

Denote
∑

i+ j=2N +1
i, j≥2

Xi Y jαe−iβe− j by θ . So

C2N +1 = θ

α + β + 1
+ (α + β)θ + α−2N

βe−1X2N
Y + αe−1β−2N

XY 2N

α2 + β2 + 1
+ θ

+ (X + Y )2

(α + β + 1)2
G

= θ

α + β + 1
+ (α + β)θ + α−2N

βe−1X2N
Y + αe−1β−2N

XY 2N

α2 + β2 + 1
+ θ

+ αe + βe + αeβe

(α + β + 1)2N +2
(X + Y )2

N +1

+ (αe−1(1 + βe)X + βe−1(1 + αe)Y )

(α + β + 1)2N +1
(X + Y )2

N

+ (α+β)2θ+αeβ−2N
Y 2N +1+αe−1β1−2N

XY 2N +α−2N
βe X2N +1+α1−2N

βe−1X2N
Y

α2 + β2 + 1
.

Since

α + β + 1 + α + β + (α + β)2 + (α + β + 1)2

(α + β + 1)2
= 0,
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C2N +1 = α−2N
X2N +1 + β−2N

Y 2N +1

α2 + β2 + 1
+ (αe + βe + αeβe)

(α + β + 1)2N +2
(X + Y )2

N +1

+ (αe−1(1 + βe)X + βe−1(1 + αe)Y )

(α + β + 1)2N +1
(X + Y )2

N

++αβ−2N −2Y 2N +1 + β−2N −1XY 2N + βα−2N −2X2N +1 + α−2N −1X2N
Y

α2 + β2 + 1

= B(2N + 1, 0)X2N +1 + B(2N , 1)X2N
Y + B(1, 2N )XY 2N + B(0, 2N + 1)Y 2N +1,

where

B(2N + 1, 0) = α2N −2 + (α + β + 1)2
N −2

α2N
β(α + β + 1)2N ,

B(2N , 1) = α2N −1 + (α + 1)(α + β + 1)2
N −2

β2α2N
(α + β + 1)2N ,

B(1, 2N ) = β2N −1 + (β + 1)(α + β + 1)2
N −2

α2β2N
(α + β + 1)2N ,

B(0, 2N + 1) = β2N −2 + (α + β + 1)2
N −2

αβ2N
(α + β + 1)2N .

��

Remark 5.6 Suppose αe+1 = βe+1 = (α + β + 1)e+1 = 1. Then C2N = 0 if and only if
B(2N , 0) = B(0, 2N ) = 0, that is

{
α2N −1 + (α + β + 1)2

N −1 = 0

β2N −1 + (α + β + 1)2
N −1 = 0.

It follows that α2N −1 = β2N −1.Also, multiply by α+β +1 	= 0 one gets α2N −1 = β2N −1 =
(α + β + 1)2

N −1 = 1.
When this happens, B(2N + 1, 0) = β+1

α2(α+β+1)2
and B(2N + 1, 0) = α+1

β2(α+β+1)2
which

is never 0 unless (α, β) = (1, 1). In this case B(2N , 1) = B(1, 2N ) = 1 and therefore C2N +1
never vanishes.

We are interested in singular points for whichC2N +1 andC2N share a factor. The following
lemma will be crucial to this aim.

Lemma 5.7 Let αe+1 = βe+1 = (α+β+1)e+1 = 1. Let C2N +1 and C2N be as in Proposition
5.5 and suppose that (B(2N , 0), B(0, 2N )) 	= (0, 0). If they share a factor then such a factor
is not repeated.

Proof By Proposition 5.5,

C2N =
(

2N√
B(2N , 0)X + 2N√

B(0, 2N )Y
)2N

,

C2N +1 = B(2N + 1, 0)X2N +1 + B(1, 2N )XY 2N + B(2N , 1)X2N
Y + B(0, 2N + 1)Y 2N +1.
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If B(2N , 0) = 0, then the only possibility is B(2N + 1, 0) = B(2N , 1) = 0 and thus
α2N −1+(α+1)α2N −2 = α2N −2 = 0, a contradiction to α 	= 0. Analogously, a contradiction
arises if B(0, 2N ) = 0.

Now we assume B(2N , 0)B(0, 2N ) 	= 0. We have that 2N√
B(2N , 0)X + 2N√

B(0, 2N )Y
is a repeated factor of C2N +1 if and only there exists a non-trivial solution of

⎧
⎪⎨

⎪⎩

2N√
B(2N , 0)X + 2N√

B(0, 2N )Y = 0

B(2N + 1, 0)X2N +1 + B(1, 2N )XY 2N + B(2N , 1)X2N
Y + B(0, 2N + 1)Y 2N +1 = 0

B(2N + 1, 0)X2N + B(1, 2N )Y 2N = 0.

This is equivalent to

⎧
⎪⎨

⎪⎩

B(2N , 0)X2N + B(0, 2N )Y 2N = 0

B(2N , 1)X2N + B(0, 2N + 1)Y 2N = 0

B(2N + 1, 0)X2N + B(1, 2N )Y 2N = 0,

and thus
⎧
⎪⎨

⎪⎩

B(2N + 1, 0)B(0, 2N + 1) + B(2N , 1)B(1, 2N ) = 0

B(2N + 1, 0)B(0, 2N ) + B(2N , 0)B(1, 2N ) = 0

B(2N , 1)B(0, 2N ) + B(2N , 0)B(0, 2N + 1) = 0.

From the first equation we obtain
(
α2N −1 + (α + 1)(α + β + 1)2

N −2
)(

β2N −1 + (β + 1)(α + β + 1)2
N −2

)

+αβ
(
α2N −2 + (α + β + 1)2

N −2
)(

β2N −2 + (α + β + 1)2
N −2

)
= 0,

and thus

(α + β + 1)2
N −2

(
α2N −1 + β2N −1 + (α + β + 1)2

N −1
)

= 0. (19)

The second equation yields
(
α2N −1 + (α + β + 1)2

N −1
)(

β2N −1 + (β + 1)(α + β + 1)2
N −2]

+α
(
α2N −2 + (α + β + 1)2

N −2
)(

β2N −1 + (α + β + 1)2
N −1

)
= 0,

and therefore

(α + β + 1)2
N −2(α2N + β2N + β2N −1 + (α + β + 1)2

N
) = 0. (20)

Analogously, from the third equation we get

(α + β + 1)2
N −2(α2N + β2N + α2N −1 + (α + β + 1)2

N
) = 0. (21)

Since α + β + 1 	= 0, from Equations (20) and (21) α2N −1 = β2N −1. Finally, (19) yields
(α + β + 1)2

N −1 = 0, a contradiction. ��
We are in position now to provide the desired upper bounds on IP,max (Ae), where P =

(α, β), αe+1 = βe+1 = (α + β + 1)e+1 = 1.
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Proposition 5.8 Let e odd, e ≡ 2N −1 (mod 2N+1), and fe = (Xe +Y e + XeY e)(X +Y +
1)e + XeY e. Let P = (α, β), αe+1 = βe+1 = (α+β+1)e+1 = 1, be such that fe(α, β) = 0.
Then,

1. IP,max ( fe = 0) ≤ (2N +1)2

4 if α2N −1 = β2N −1 = (α + β + 1)2
N −1 = 1;

2. IP,max ( fe = 0) ≤ 2N otherwise.

Proof If α2N −1 = β2N −1 = (α + β + 1)2
N −1 = 1, then C2N = 0 and

C2N +1 = 1

αβ(α + β + 1)2

(
β + 1

α
X2N +1 + X2N

Y + XY 2N + α + 1

β
Y 2N +1

)
	≡ 0

is separable by direct checking and thus IP,max ( fe = 0) ≤ (2N +1)2

4 by Lemma 2.1. In the

other cases, C2N 	= 0 and GC D(C2N , C2N +1) = 1 or 2N√
B(2N , 0)X + 2N√

B(0, 2N )Y by
Proposition 5.7 and, by Lemma 2.2, IP,max ( fe = 0) ≤ 2N .

��
The following is the main result of this section.

Theorem 5.9 If e > 1 is odd, then he has an absolutely irreducible factor over F2.

Proof Let Ae : he = 0. We want to prove that
∑

P∈Sing(Ae)

IP,max (Ae) <
2

9
deg2(he) =

2(e − 1)2; the statement will then follow by Criterion 2.3.
Recall that any upper bound on IP,max ( fe = 0) is also an upper bound for IP,max (he = 0),

since the curve he = 0 is a component of the curve fe = 0.
Let e ≡ 2N − 1 (mod 2N+1), e + 1 = 2N m, m odd. Points P = (α, β) with αe+1 =

βe+1 = (α+β+1)e+1 = 1 are at mostm2 while the number of singular points P = (α, β) of
Ae withα2N −1 = β2N −1 = (α+β+1)2

N −1 = 1 is atmost d2, where d := GC D(2N −1, m).

Let


 := {(0, 0), (1, 0), (0, 1), [1 : 0 : 0], [0 : 1 : 0], [1 : 1 : 0]},
� := {(α, β) : αe+1 = βe+1 = (α + β + 1)e+1 = 1},
� := {(α, β) ∈ � : α2N −1 = β2N −1 = (α + β + 1)2

N −1 = 1}.
We have that #
 = 6, #� ≤ m2 = (e+1)2

22N , #� ≤ d2, and by Proposition 5.3, Proposition
5.8.

IP,max(Ae) ≤

⎧
⎪⎨

⎪⎩

(e−1)2

4 P ∈ 
;
2N P ∈ � \ �;
(2N +1)2

4 P ∈ �.

Thus
∑

P∈Sing(Ae)

IP,max (Ae) ≤ 6

4
(e − 1)2 + (e + 1)2

2N
+ d2

(
(2N + 1)2

4
− 2N

)
.

Noting that d2(
(2N +1)2

4 − 2N ) ≤ m2(
(2N +1)2

4 − 2N ) = 1
4 (e + 1 + e+1

2N )2 − (e+1)2

2N =
(2N +1)2

22N+2 (e + 1)2 − (e+1)2

2N , we get

∑

P∈Sing(Ae)

IP,max (Ae) ≤ 3

2
(e − 1)2 + (2N + 1)2

22N+2 (e + 1)2.
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Therefore

3

2
(e − 1)2 + (2N + 1)2

22N+2 (e + 1)2 < 2(e − 1)2

is equivalent to

(e + 1)2

(e − 1)2
<

22N+1

(2N + 1)2
, (22)

i.e

e + 1

e − 1
<

√
2 · 2N

2N + 1
. (23)

Inequality (23) is satisfied for any pair (N , e) with N ≥ 2 and e ≥ 17 or (N , e) = (4, 15)
(recall that e + 1 = 2N m, m odd).

Now consider the remaining cases, i.e. N = 1, or e = 3, 7, 11.

• N = 1 (i.e. e ≡4 1). Let P = (α, β) with αe+1 = βe+1 = (α +β + 1)e+1 = 1; we want
to prove that IP,max (Ae) = 0.

– If P = (1, 1), by Remark 5.6 we have that m P ( fe) = 3, P /∈ Ae, and thus
IP,max (Ae) = 0.

– If P 	= (1, 1) belongs to the curve defined by (X + Y )(X + 1)(Y + 1) = 0, by
Remark 5.6 and Proposition 5.8 it follows that m P (he) = 1, i.e. P is a regular point
of he and thus IP,max (Ae) = 0.

– If α 	= 1 	= β and α 	= β, from Proposition 5.5 we obtain

C2 = β + 1

α2β(α + β + 1)2
X2 + α + 1

αβ2(α + β + 1)2
Y 2,

C3 = XY (X + Y )

α2β2(α + β + 1)2
.

Since B(2, 0) 	= B(0, 2), GC D(C2, C3) = 1 and by Lemma 2.2 IP,max (Ae) = 0.

we conclude that

∑

P∈Sing(Ae)

IP,max (Ae) ≤ 6

4
(e − 1)2 < 2(e − 1)2 = 2

9
deg(he)

2,

and therefore the claim follows.
• e = 3, 7. In this case e + 1 is a power of 2, so there are no (e + 1)-roots of unity different

from 1. From Remark 5.6 and Proposition 5.8 we deduce m(1,1)(h3) = m(1,1)( f3) − 3
equals 2 (resp. m(1,1)(h7) = 6) and since the tangent cone is separable IP,max (h3) ≤ 1
(resp. IP,max (h7) ≤ 9). Summing up

∑

P∈Sing(A3)

IP,max (A3) ≤ 6

4
(e − 1)2 + 1 = 7 < 8 = 2(e − 1)2,

∑

P∈Sing(A7)

IP,max (A7) ≤ 6

4
(e − 1)2 + 9 = 63 < 72 = 2(e − 1)2,

and the claim follows.
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• e = 11. In this case N = 2 and m = 3. Thus

� = � = {(1, 1), (1, ω), (1, ω2), (ω, ω), (ω2, ω2), (ω, 1), (ω2, 1)}.
Also, I(1,1),max (h3) ≤ 1 and IP,max (h3) ≤ 6 for any P ∈ � \ {(1, 1)}. Thus

∑

P∈Sing(A11)

IP,max (A11) ≤ 6

4
(e − 1)2 + 1 + 36 = 187 < 200 = 2(e − 1)2,

and the claim follows.

��
We summarize the results of this section in the following theorem (see also point 3. in

Main Theorem.)

Theorem 5.10 Let ψ = f
g ∈ Fq(X). If d − m > 1 is odd then ψ is not an exceptional APN

function.
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