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Abstract
A finite non-regular primitive permutation group G is extremely primitive if a point stabiliser
acts primitively on each of its nontrivial orbits. Such groups have been studied for almost a
century, finding various applications. The classification of extremely primitive groups was
recently completed by Burness and Lee, who relied on an earlier classification of soluble
extremely primitive groups by Mann, Praeger and Seress. Unfortunately, there is an inaccu-
racy in the latter classification. We correct this mistake, and also investigate regular linear
spaces which admit groups of automorphisms that are extremely primitive on points.

Keywords Extremely primitive group · Linear space · Point transitivity · Line transitivity

1 Introduction

All groups and linear spaces in this paper are assumed to be finite. Let G be a non-regular
primitive group. We say that G is extremely primitive if a point stabiliser Gα acts primitively
on each of its nontrivial orbits. Some examples of extremely primitive groups include Symn
in its natural action and PGL2(q) on the projective line over Fq . Extremely primitive groups
have been studied for almost a century [12], and have arisen several other contexts, including
in the constructions of the simple sporadic groups J2 and HS, as well as in the study of
transitive permutation groups with a given upper bound on their subdegrees (see [13] for
example).

The problemof classifying extremely primitive groups has garnered significant attention in
recent years and a final classification has recently been completed following a series of papers
[2–6, 11]. Unfortunately, an oversight was made in the classification of soluble extremely
primitive groups in [11]. In this paper, the authors prove a set of necessary conditions for

Communicated by T. Feng.

B Melissa Lee
melissa.lee@monash.edu

Gabriel Verret
g.verret@auckland.ac.nz

1 School of Mathematics, Monash University, Clayton 3800, Australia

2 Department of Mathematics, University of Auckland, Auckland, New Zealand

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-023-01244-2&domain=pdf
http://orcid.org/0000-0003-0778-5608


3228 M. Lee, G. Verret

a soluble group to be extremely primitive [11, Lemma 3.3]. They then claim that these
conditions are sufficient [11, Theorem 1.2] but this is never proved and turns out to be
incorrect. This error is then reproduced in later work that relies on this result, for example
[2, Theorem 1] and [4, Theorem 4].

The first purpose of this paper is to correct the classification of soluble extremely primitive
groups. Recall that for a prime p and positive integer d , a primitive prime divisor of pd − 1
is a prime that divides pd − 1 but not pi − 1 for each 1 ≤ i ≤ d − 1.

Theorem 1.1 Asoluble groupG is extremely primitive if and only if G = V�H ≤ A�L1(pd)
for a prime p and d ≥ 1, where V is the natural vector space and Ct �Ce ∼= H ≤ �L1(pd),
where t = |H ∩ GL1(pd)| is a primitive prime divisor of pd − 1 and either e = 1, or e is a
prime dividing d and t = (pd − 1)/(pd/e − 1).

This corrected version of the classification of soluble extremely primitive groups also
impacts results which relied on it. For example, see Theorem 4.4 for an updated version of
[2, Theorem 1].

Our next goal is to study linear spaces that admit a group of automorphisms that is
extremely primitive on points. We first introduce some terminology. A linear space S =
(P,L) is a point-line incidence structure with a set P of points and a set L of lines, where
each line is a subset ofP such that each pair of points is contained in exactly one line. A linear
space is nontrivial if it has at least two lines and every line has at least three points. A linear
space is regular if all its lines have the same size. This is equivalent to being a 2 − (n, k, 1)
design for some n and k. An automorphism of S is a permutation of P which preserves
L. The automorphisms of S form its automorphism group Aut(S). (One could consider
automorphisms as acting simultaneously on points and lines but, in a nontrivial linear space,
the action on points is already faithful and this viewpoint will usually be simpler for us.)

If S = (P,L) and S′ = (P,L′) are two linear spaces with the same set of points, we say
that S′ is a refinement of S if every line of S′ is contained in a line of S. (In other words, for
every �′ ∈ L′, there exists � ∈ L such that �′ ⊆ �.)

Theorem 1.2 Let S be a nontrivial regular linear space. If G ≤ Aut(S) is extremely primitive,
then one of the following holds:

(1) G = PSL2(22
n
) with point stabiliser D2(22n+1), where 2

2n + 1 is a Fermat prime, and S
is a refinement of LS(G);

(2) G is as in Theorem 1.1 with e ≥ 2, and S is a refinement of LS(G);
(3) G is as in Theorem 1.1 with e = 1.

In cases (1) and (2) of Theorem 1.2, there is a unique “coarsest” linear space LS(G)

admitting G as a group of automorphisms. These linear spaces are defined in Sect. 3 and
some of their properties described in Sect. 6. It is also possible to describe the admissible
refinements ofLS(G) in a systematic manner, see Proposition 5.3 and Examples 6.6 and 6.7.
Classifying the linear spaces which arise in case (3) seems much more difficult. We give
some examples and discuss this further in Sect. 6.

2 Proof of Theorem 1.1

Let G be a soluble extremely primitive group. As noted in the proof of [11, Lemma 3.3], G
is a soluble 3/2-transitive group. (Recall that a transitive permutation group G on a set � is
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called 3/2-transitive if all orbits of Gω on � \ {ω} have the same size, with this size being
greater than 1.) Such groups were classified by Passman. Before stating this classification,
we require the following definition. For an odd prime p and integer d ≥ 1, let G (pd) be the
subgroup of AGL2(pd) containing all translations and whose point stabiliser consists of all
diagonal and antidiagonal matrices in GL2(pd) with determinant ±1.

Theorem 2.1 ([14, 15]) If G is a soluble 3/2-transitive group, then one of the following
holds:

(1) G is a Frobenius group;
(2) G ≤ A�L1(pd) for a prime p and d ≥ 1;
(3) G = G (pd) for an odd prime p and d ≥ 1;
(4) G is one of a collection of groups of degree 32, 52, 72, 112, 172 or 34.

We now examine each of the cases of Theorem 2.1 and show thatG is extremely primitive
if and only if it is as in Theorem 1.1. First, if G is as in Theorem 2.1 (1), then the proof of
[11, Lemma 3.3] implies that G is extremely primitive if and only if it is as in Theorem 1.1
with e = 1. We also use GAP [16] to confirm that no group in Theorem 2.1 (4) is extremely
primitive.

2.1 G = G (pd)

Let G = G (pd) as in the preamble of Theorem 2.1. Let u = [0, 0] and v = [1, 0]. By
definition,Gu consists of all diagonal and antidiagonalmatrices inGL2(pd)with determinant
±1. This is a group of order 4(pd−1). Next,Guv = 〈( 1 0

0 −1

)〉, so |Guv| = 2. IfG is extremely
primitive, then Guv is maximal in Gu . However, |Gu : Guv| = |vGu | = 2(pd −1) and, since
p is odd, we have 4 | |Gu : Guv|.Therefore, by Sylow’s theorem, Guv cannot be maximal in
Gu , a contradiction.

2.2 G ≤ A0L1(pd)

We need the following preliminary result.

Proposition 2.2 Let p be a prime and d ≥ 1, let H ≤ �L1(pd) and let T = H ∩ GL1(pd).
We have H = T � E with T ∼= Ct , E ∼= Ce and e divides d. Let V ∼= Cd

p be the natural

vector space for �L1(pd). The following are equivalent:

(1) T and H have the same orbits on V ;
(2) the orbits of H on V \ {0} all have the same size;
(3) e = 1 or pd − 1 divides t(pd/e − 1).

Proof Since GL1(pd) acts regularly on V \ {0}, we can identify this set with GL1(pd). Let α

be a generator of GL1(pd) ∼= Cpd−1. Let m = pd−1
t and note that T = 〈αm〉 and the orbits

of T on V \ {0} are its cosets, so of the form αi 〈αm〉 for some i . In particular, the orbits of
T on V \ {0} all have the same size, so (1) �⇒ (2).

Write E = 〈 f 〉. Now E acts as field automorphisms on V and thus α f = α pd/e
. So

(αi+ jm) f = α(i+ jm)(pd/e) = αi pd/e+ jmpd/e
.

This calculation shows that f preserves αi 〈αm〉 if and only if

i pd/e ≡ i (mod m).
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This always holds for i = 0, so f always preserves T . In particular, H always has an orbit
of size |T | on V \ {0}. On the other hand, i pd/e ≡ i (mod m) holds for every i if and only
if pd/e ≡ 1 (mod m) if and only if m divides pd/e − 1.

Now, if all the orbits of H on V \ {0} all have the same size, then they must have size |T |
and m must divide pd/e − 1, so (2) �⇒ (3).

Finally, if e = 1, then H = T , and ifm divides pd/e −1, then by the above T and H have
the same orbits on V \ {0} and thus also on V , so (3) �⇒ (1). ��

Remark 2.3 A version of Proposition 2.2 with the extra assumption that H is p-exceptional
appears as [8, Lemma 2.7].

We are now ready to classify the extremely primitive groups in this family.

Theorem 2.4 Let p be a prime and d ≥ 1, let H ≤ �L1(pd) and let T = H ∩GL1(pd). We
have H = T � E with T ∼= Ct , E ∼= Ce and e divides d. Let V ∼= Cd

p be the natural vector

space for �L1(pd) and let G = V � H ≤ A�L(1, pd). Then G is extremely primitive if and
only if the following conditions hold:

(1) t is a primitive prime divisor of pd − 1, and
(2) e = 1 or pd − 1 = t(pd/e − 1).

Moreover, all of the nontrivial orbits of H have size t .

Proof Note that GL1(pd) is regular on V \ {0} so T is semiregular on V \ {0}. In particular,
it acts regularly on all of its nontrivial orbits and they each have size t . A regular group is
primitive if and only if it is trivial or has prime order, so we can assume t is 1 or prime. If
t is not a primitive prime divisor of pd − 1, then T ≤ GL1(pb) for some proper subfield
Fpb ⊂ Fpd and Cb

p < V is H -invariant hence G is not primitive. We thus assume that t is a

primitive prime divisor of pd − 1 and show that G is extremely primitive if and only if (2)
holds. Since t is a primitive prime divisor of pd − 1, T acts irreducibly on V so V � T is
primitive, and so is G.

We claim that G is extremely primitive if and only if H has the same orbits as T . Indeed,
apart from the trivial orbit of size 1, an orbit of H must have order at for some a. A stabiliser
of a point in such an orbit is a subgroup of order e/a of Ce. This is maximal in H if and only
if a = 1. This proves our claim.

By Proposition 2.2, H and T have the same orbits if and only if e = 1 or pd − 1 divides
t(pd/e − 1). Now, t is a primitive prime divisor of pd − 1, so if e ≥ 2, then t does not divide

pd/e − 1 which itself divides pd − 1. Since t is prime, it follows that t divides pd−1
pd/e−1

and

thus pd/e − 1 divides pd−1
t hence pd − 1 = t(pd/e − 1). ��

Remark 2.5 (1) Note that the condition pd−1 = t(pd/e−1) is quite restrictive. For example,
if d = 2, then it is only satisfied when p = 2, e = 2 and t = 3.

(2) Moreover, this condition, together with the fact that t is prime, implies that e cannot be
composite. Indeed, if f is a divisor of e, then pd/ f − 1 is a multiple of pd/e − 1 and a

divisor of pd − 1, but pd−1
pd/e−1

is a prime.
(3) The converse of the previous remark does not hold. In other words, e being prime is

not sufficient to guarantee that pd − 1 = t(pd/e − 1). The smallest counterexample is
(p, d, t, e) = (5, 2, 3, 2).
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3 Groups with property (�) and the linear spaceLS(G)

In this section, we define and prove some basic facts about LS(G), the linear space that
appears in Theorem 1.2 (2).

Definition 3.1 Wesay that a permutation groupG on� hasProperty (�) if, for all u, v, w ∈ �

with u �= w,

Guv ≤ Gw �⇒ Guw ≤ Gv.

Let G be a group with Property (�). For u, v ∈ �, let �uv = {w ∈ � | Guv ≤ Gw}
and let LS(G) be the point-line incidence structure having � as set of points and having
{�uv | u, v ∈ �, u �= v} as set of lines.
Proposition 3.2 If G ≤ Sym(�) has Property (�), then LS(G) is a linear space with G ≤
Aut(LS(G)).

Proof Let u and v be distinct points. Clearly, we have u, v ∈ �uv . We show that if w ∈ �uv

and u �= w, then �uv = �uw. Since w ∈ �uv , we have Guv ≤ Gw and then Guw ≤ Gv by
Property (�). Let x ∈ �uv , thenGuw = Gu∩Guw ≤ Gu∩Gv = Guv ≤ Gx so that x ∈ �uw.
This shows that�uv ⊆ �uw. Similarly, for y ∈ �uw , we haveGuv = Gu∩Guv ≤ Guw ≤ Gy

so y ∈ �uv , and �uv = �uw as claimed.
Now, suppose that u, v ∈ �ab for some a �= b and u �= v. We show that �ab = �uv .

This is clear if {u, v} = {a, b} so we assume this is not the case. Without loss of generality,
we may assume that u �= a �= v. By the previous paragraph, we have �au = �ab = �av .
So v ∈ �au and hence, by the previous paragraph, �au = �uv and hence �ab = �uv . This
shows that LS(G) is a linear space. The fact that G ≤ Aut(LS(G)) is obvious from the
definition. ��

Recall that a flag in a linear space is a pair (u, �) such that u is a point, � is a line and
u ∈ �.

Definition 3.3 Let S be a linear space and G ≤ Aut(S). We say that (S,G) is transverse if,
for every flag (u, �) of S and every orbit 	 of Gu , we have |� ∩ 	| ≤ 1.

Proposition 3.4 Let S be a linear space and G ≤ Aut(S). If G has Property (�) and (S,G)

is transverse, then S is a refinement of LS(G).

Proof Write S = (P,L), let � ∈ L and let u, v ∈ �, with u �= v. Recall that �uv = {w ∈ � |
Guv ≤ Gw} is the unique line of LS(G) containing u and v. We must show that � ⊆ �uv .
Suppose, by contradiction, that w ∈ � but w /∈ �uv . Since w /∈ �uv , w is not fixed by Guv ,
so |wGuv | ≥ 2. On the other hand, Guv fixes u and v and thus the unique line of S containing
them, namely �. This implies that wGuv ⊆ � and thus |wGu ∩ �| ≥ 2, contradicting the
hypothesis that (S,G) is transverse. ��

We end this section by showing exhibiting a nice family of groups with Property (�). This
will be useful in later sections.

Lemma 3.5 Let p be a prime and d ≥ 1, let H ≤ �L1(pd) and let V ∼= Cd
p be the natural

vector space for �L1(pd). Let G be transitive on V with point stabiliser H. If the equivalent
conditions from Proposition 2.2 are satisfied, then G has Property (�).

Proof Letu, v, w bepoints such thatu �= w andGuv ≤ Gw.Weneed to show thatGuw ≤ Gv .
This is clear if u = v, so we may assume that u �= v. We can also assume without loss of
generality that u = 0 and thus H = Gu . We then have Hv ≤ Hw and v,w ∈ V \ {0}. It
follows by Proposition 2.2 (2) that |Hv| = |Hw| hence Hw = Hv ≤ Gv , as required. ��
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4 Proof of Theorem 1.2

We start with a few preliminary results. Recall that the rank of a transitive permutation group
is the number of orbits of a point stabiliser.

Theorem 4.1 ([9, Theorem 1.1]) Let S be a regular linear space. If G ≤ Aut(S) is extremely
primitive on P , then rank(G) ≥ 3 with equality only if S is the affine space AGm(3) and
G ≤ A�L1(3m).

Proposition 4.2 ([9, Lemma 2.6]) Let S be a linear space, let G ≤ Aut(S) be extremely
primitive and let (u, �) be a flag of S. If 	 is an orbit of Gu, then |� ∩ 	| ∈ {0, 1, |	|}.

Our starting point is the following theorem.

Theorem 4.3 ([9, Corollary 1.4]) Let S be a nontrivial regular linear space. If G ≤ Aut(S)

is extremely primitive, then one of the following holds:

(1) G is primitive of affine type;
(2) G is an almost simple exceptional group of Lie type;
(3) G = PSL2(22

n
) with point stabiliser D2(22n+1), where 2

2n + 1 is a Fermat prime.

For the rest of this section, we will assume the hypothesis of Theorem 4.3. We will then
deal with each case in the conclusion in turn and classify the linear spaces S = (P,L) that
arise. First, we introduce some basic terminology and results which will often be useful.
Write v = |P| and b = |L|. Since S is regular, all its lines have the same size, which we will
denote by k. It can be shown (see [7, Lemma 2.1], for example) that there is also a constant
number of lines r meeting each point and the following holds:

r = v − 1

k − 1
b = v(v − 1)

k(k − 1)
v ≥ k(k − 1) + 1.

Moreover, it follows by Fisher’s inequality that b ≥ v and therefore r ≥ k.
First, let G be as in Theorem 4.3 (2), that is, an extremely primitive almost simple excep-

tional group of Lie type, and let H be its point stabiliser. By [4, Theorem 1], (G, H) is one of
(G2(4), J2) or (G2(4).2, J2.2). In each case, the corresponding permutation group has rank
3 and it then follows by Theorem 4.1 that no regular linear space arises in this case.

Next, let G be as in Theorem 4.3 (3). Write q = 22
n + 1. By [5, Proposition 5.3], the

nontrivial subdegrees of G are all q . Since the point stabilisers are isomorphic to D2q , it
follows that, given two distinct points u and v, |Guv| = 2. In particular, if u �= w and
Guv ≤ Gw , then Guw = Guv , since both groups have order 2. This shows that G satisfies
Property (�). Now, let (u, �) be a flag of S and 	 be an orbit of Gu that meets �. By
Proposition 4.2, |� ∩ 	| ∈ {1, q}. If |� ∩ 	| = q , then k ≥ q + 1 but we also have
v = |PSL2(q − 1) : D2q | = (q − 1)(q − 2)/2, contradicting the fact that v ≥ k(k − 1) + 1.
It follows that (S,G) is transverse and we can apply Proposition 3.4 to conclude that S is a
refinement of LS(G), as in Theorem 1.2 (1).

It remains to deal with the case when G is as in Theorem 4.3 (1), that is, an extremely
primitive group of affine type. These groups were previously classified in [2, Theorem 1]
but this classification relied on the incorrect [11, Theorem 1.2]. Here is then an updated
classification of these groups in light of Theorem 1.1.

Theorem 4.4 Let p be a prime and d ≥ 1, let H ≤ GLd(p), let V be the natural vector
space for GLd(p) and let G = V � H. If G is extremely primitive, then one of the following
holds:
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(1) G is as in Theorem 1.1;
(2) p = 2 and H = PSLd(2) with d ≥ 3, or H = Spd(2) with d ≥ 4;
(3) p = 2 and (d, H) = (4,Alt6), (4,Alt7), (6,PSU3(3)) or (6,PSU3(3).2);
(4) p = 2 and (d, H) is one of the following:

(10,M12) (10,M22) (10,M22.2) (11,M23)

(11,M24) (22,Co3) (24,Co1) (2m,Alt2m+1)

(2m,Sym2m+1) (2l,Alt2l+2) (2l,Sym2l+2) (2l,�±
2l(2))

(2l,O±
2l(2)) (8,PSL2(17)) (8,Sp6(2))

where m ≥ 2 and l ≥ 3.

In the rest of this section, we go through the cases in Theorem 4.4 and, for each case,
classify regular linear spaces admitting such groups of automorphisms.

4.1 Groups arising in Theorem 4.4 (2) or (3).

The groups in Theorem 4.4 (2) are 2-transitive by [10, Lemma 2.10.5], while those in The-
orem 4.4 (3) are found to be 2-transitive by direct computation. It follows by Theorem 4.1
that no regular linear space arises in this case.

4.2 Groups arising in Theorem 4.4 (4).

Adopt the notation of Theorem 4.4 (4). Let u be a point such that H = Gu .
We first deal with the infinite families of groups. If H = �±

2l(2) or O
±
2l(2), then G has

rank 3 by [10, Lemma 2.10.5] and by Theorem 4.1 no regular linear space arises in this
case. Now suppose that (d, H) is one of (2m,Alt2m+1), (2m,Sym2m+1), (2l,Alt2l+2) or
(2l,Sym2l+2), and for conciseness, let n = 2m + 1 or 2l + 2 as appropriate. In these cases,
H = Gu is an alternating or symmetric group acting on the fully deleted permutation module
U . That is, the subspace V0 of Vn(2) spanned by vectors whose entries sum to 0 if n is odd,
or the quotient of V0 by the subspace spanned by the all-ones vector if n is even; H acts by
permuting the coordinates of elements of V0, with the corresponding induced action on U .
The orbits of H on V0 are indexed by the weight of the vectors in it, which must be even,
so H has �n/2� + 1 orbits on V0. When n is even, the orbits of weight x and n − x in V0
get identified in U , so H has �n/4� + 1 orbits on U when n is even. Note that the smallest
nontrivial orbit has size

(n
2

)
so, since n ≥ 5, it follows that the size of nontrivial orbits is

larger than the number of orbits. Let x be the number of orbits of H on U and let 	 be a
nontrivial orbit of H on U . We have just shown that |	| ≥ x . It follows that

k(k − 1) ≤ v − 1 ≤ x |	| ≤ |	|2. (1)

Let � be a linemeetingu and	. ByProposition 4.2, |�∩	| is equal to 1 or |	|. If |�∩	| = |	|,
then k ≥ |	| + 1, contradicting (1). We may thus assume that |� ∩ 	| = 1. This implies that
the orbit of � under H has length |	|. Since S is nontrivial, there must be another nontrivial
orbit 	1 of H meeting �. Repeating the argument above, we find that the orbit of � under
H has length |	1|, so |	| = |	1|. One can apply this to 	, the smallest nontrivial orbit. As
mentioned earlier, it has size

(n
2

)
and one can check that it is the only orbit of that size, which

contradicts |	| = |	1|.
It remains to consider the sporadic cases. We give the argument for (d, H) = (10,M12)

here; the others are similar. In this case, v = 210. Recall that k must be an integer such that
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3 ≤ k < v, k − 1 divides v − 1 and k(k − 1) divides v(v − 1). We find that k is one of 4, 12
or 32, and the corresponding values for r are 341, 93 and 33. Let � be a line through u. If 	

is a nontrivial orbit of H meeting �, then by Proposition 4.2, |� ∩ 	| is equal to 1 or |	|. By
direct computation, we find that H has orbit lengths 1, 66, 66, 396, 495. If |� ∩ 	| = |	|,
then k ≥ 1 + |	| ≥ 67, a contradiction. It follows that |� ∩ 	| = 1 and the orbit of � under
H has length |	|. Repeating this argument for other lines through u, we conclude that r is a
linear combination of the nontrivial orbit lengths of H , which is a contradiction.

4.3 Groups arising in Theorem 4.4 (1).

It remains to deal with the groups arising in Theorem4.4 (1). LetG, p, d , t , e be as in Theorem
1.1. By Lemma 3.5, G has Property (�) and it follows by Proposition 3.2 that LS(G) is a
linear space.

If e = 1, then Theorem 1.2 (3) holds. We thus assume that e ≥ 2. Our next goal is to
show that (S,G) is transverse. Let (u, �) be a flag of S and 	 be a nontrivial orbit of Gu . By
Theorem 2.4, |	| = t . By Proposition 4.2, |� ∩ 	| is equal to one of 0, 1 or t . In view of a
contradiction, we can assume that |� ∩ 	| = t . This implies that k ≥ t + 1 and, by Fisher’s
inequality, r ≥ t + 1. Since e ≥ 2, we have

pd − 1 = v − 1 = r(k − 1) > t2 =
(

pd − 1

pd/e − 1

)2

≥
(

pd − 1

pd/2 − 1

)2

=
(
pd/2 + 1

)2
,

which is a contradiction. This concludes the proof that (S,G) is transverse. We can now
apply Proposition 3.4 to conclude that S is a refinement of LS(G), as in Theorem 1.2 (2).

5 Refinements of line-transitive spaces

In this section, we give a construction for refinements of line-transitive linear spaces such
that the line-transitive group also acts on the refined space. We also show that all such refined
spaces arise in this way.

Given a line � of a linear space S = (P,L), we write P(�) for the set of points of S
incident with �. (In most of this paper, we simply identify � with P(�), but we avoid this in
this section to reduce possible confusion.) Given G ≤ Sym(�), we write G� and G[�] for
the subgroup of G preserving P(�) setwise and pointwise, respectively. We also write G�

� for
the permutation group induced by G� on P(�).

Construction 5.1 The input of the construction is the following:

(1) A linear space S = (P,L) with G ≤ Aut(S) such that G is transitive on L, and a line
� ∈ L.

(2) A linear space T = (P(�), T L) such that G�
� ≤ Aut(T ).

The output of the construction is an incidence structure R = R(P,L,G, �, T L). The set of
points of R is P while the set of lines of R is {t g | t ∈ T L, g ∈ G}.
Proposition 5.2 Using the notation of Construction 5.1, the output R of the construction is
a linear space which is a refinement of S and with G ≤ Aut(R).

Proof It is clear from the construction that G ≤ Aut(R). We first show that R is a linear
space. Let u, v ∈ P , u �= v. There exists �uv ∈ L such that u, v ∈ �uv . Since G is transitive

123



Extremely primitive groups and linear spaces 3235

on L, there exists g ∈ G such that �
g
uv = �, so ug, vg ∈ P(�). Since T is a linear space,

there is t ∈ T L such that ug, vg ∈ t so t g
−1

is a line of R containing u and v. Now, let �′
be a line of R containing ug and vg . By definition, there exists h ∈ G such that (�′)h ∈ T L,
so ugh, vgh ∈ P(�). Since � is the unique line of L containing ug and vg , we have �h = �,
hence h ∈ G� and h� ∈ G�

� ≤ Aut(T ). It follows that h� preserves T L and thus �′ ∈ T L.
Since T is a linear space, it follows that there is a unique line of R containing ug and vg

(namely �′), and the same holds for u and v. We have shown that u, v are on a unique line in
R so R is a linear space.

We now show that R is a refinement of S. Let �′ be a line of R. By definition, there exist
t ∈ T L and g ∈ G such that �′ = t g . By definition, t ⊆ � hence �′ = t g ⊆ �g ∈ L, as
required. ��
Proposition 5.3 Let S = (P,L), G and � be as in Construction 5.1 (1). If R is a refinement
of S with G ≤ Aut(R), then there exists a linear space T = (P(�), T L) with G�

� ≤ Aut(T )

such that R = R(P,L,G, �, T L).

Proof Write R = (P,RL) and let T L = {�′ ∈ RL | �′ ⊆ �}. We first show that T =
(P(�), T L) is a linear space. Let u and v be distinct elements of P(�). These points must be
contained in a unique line of S, which must necessarily be �. Moreover, they must also be
contained in a unique line of R, say �′ ∈ RL. Since R is a refinement of S, �′ ⊆ � so �′ ∈ T L.
If �′′ is a line in T L containing u and v, then by definition �′′ ∈ RL and �′ = �′′ since R is
a linear space. This shows that T is a linear space. By definition, G�

� ≤ Sym(P(�)). Since
G ≤ Aut(R), it follows that G�

� ≤ Aut(T ).
It remains to show that R = (P,RL) = R(P,L,G, �, T L). These have the same set of

points so it remains to show that RL = {t g | t ∈ T L, g ∈ G}. Let t ∈ T L and g ∈ G. By
definition, t ∈ RL but G ≤ Aut(R), so t g ∈ RL. This shows that {t g | t ∈ T L, g ∈ G} ⊆
RL. For the other direction, let t ∈ RL. Since R is a refinement of S, there exists �′ ∈ L
such that t ⊆ �′ and, since G is transitive on L, there exists g such that (�′)g = �. Now,
t g ⊆ (�′)g = � and t g ∈ RL so by definition t g ∈ T L, as required. ��

In light of Propositions 3.4 and 5.3, it will be important to be able to determine G�
�,

especially in the case of LS(G). This is the content of our next two results, which will be
useful in Sect. 6. (For H ≤ G, we denote the normaliser of H in G by NG(H).)

Lemma 5.4 Let G ≤ Sym(�) and u, v ∈ �. If � = {w ∈ � | Guv ≤ Gw}, then the following
statements hold:

(1) G[�] = Guv;
(2) G� = NG(Guv);
(3) G�

�
∼= NG(Guv)/Guv .

Proof It follows from the definition of � that u, v ∈ � and G[�] = Guv , establishing (1). If
g ∈ NG(Guv) and w ∈ �, then Guv ≤ Gw which implies Guv = (Guv)

g ≤ Gg
w = Gwg ,

so wg ∈ �. This shows NG(Guv) ≤ G�. In the other direction, if g ∈ G�, then (G[�])g =
G[�]g = G[�] so g ∈ NG(G[�]) = NG(Guv). This completes the proof of (2). Finally, by the
first isomorphism theorem, G�

�
∼= G�/G[�] and (3) follows. ��

Recall that a permutation group is semiregular if all its point stabilisers are trivial and
regular if it is also transitive.

Lemma 5.5 Let S be a linear space with G ≤ Aut(S) and let (u, �) be a flag of S. If (S,G)

is transverse, then Gu ∩ G� = G[�] and in particular G�
� is semiregular.
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Proof Clearly G[�] ≤ Gu ∩ G� so we must show that Gu ∩ G� fixes every point of �. It
clearly fixes u, so let v be another point of �. Let 	 = vGu . Since (S,G) is transverse, we
have � ∩ 	 = {v}, but � ∩ 	 is preserved by Gu ∩ G� so v is fixed. The second statement
follows from the first simply by unpacking the definitions involved. ��

6 Questions and examples

Our proof of cases (1) and (2) of Theorem 1.2 both involved showing thatG has Property (�),
that (S,G) is transverse and then applying Proposition 3.4. The first part of this approach
still works in case (3), as we showed in Sect. 4.3 that G has Property (�) even in this case,
but there are at least two other issues. First, in case (3), the stabiliser of two distinct points is
trivial, so LS(G) is the trivial linear space with a single line. Knowing that S is a refinement
of LS(G) when (S,G) is transverse therefore gives no information. The second problem is
that, unlike in cases (1) and (2), (S,G) need not be transverse, as the following examples
show.

Example 6.1 Let � = {0, 1, 3, 9} ⊆ Z13. This is a perfect difference set so its translates form
the lines of a linear space S with point-set Z13. By definition, Z13 ≤ Aut(S). Let α be the
permutation of Z13 corresponding to “multiplication by 3”. Note that �α = � which implies
that α ∈ Aut(S) hence G = Z13 � 〈α〉 ≤ Aut(S). It is easy to see that G is extremely
primitive on Z13. Let u = 0 and 	 = {1, 3, 9}. Note that Gu = 〈α〉 and that 	 is an orbit of
Gu with |� ∩ 	| = 3 so (S,G) is not transverse. (Note that here v = 13 and k = 4 so S is in
fact the unique projective plane of order 3 and its automorphism group is much bigger than
G.)

Note that, in Example 6.1, G is line-transitive (by construction). We were not able to find
any other such example and wonder if any exist. More precisely:

Question 6.2 Let S be a nontrivial linear spacewithG ≤ Aut(S) such that G that is extremely
primitive on points, transitive on lines and such that (S,G) is not transverse. Does it follow
that S is the projective plane of order 3?

As mentioned at the start of this section, in cases (1) and (2) of Theorem 1.2 (S,G) is
transverse so an example for Question 6.2 must arise from case (3), that is Cd

p �Ct ∼= G ≤
AGL(1, pd) for t a primitive prime divisor of pd − 1. We have checked using GAP that there
is no other example with fewer than 1000 points. On the other hand, there seems to be plenty
of examples which are not line-transitive:

Example 6.3 Let G be PrimitiveGroup(25,1) in GAP. This group is generated by the
following two permutations:

(2, 19, 6)(3, 25, 11)(4, 7, 16)(5, 13, 21)(8, 24, 9)(10, 15, 14)(12, 17, 20)(18, 23, 22) and

(1, 2, 3, 5, 4)(6, 7, 8, 10, 9)(11, 12, 13, 15, 14)(16, 17, 18, 20, 19)(21, 22, 23, 25, 24).

One can check that G is extremely primitive and C2
5 �C3 ∼= G ≤ AGL1(52). Now, let

�1 = {1, 2, 6, 19}, �2 = {1, 3, 11, 25}, L = �G1 ∪ �G2 and S = ({1, . . . , 25},L). One can
check that S is a linear space with (v, k, r , b) = (25, 4, 8, 50). By construction, G ≤ Aut(S)

and it turns out that G has two orbits on lines, with representatives �1 and �2. Note that
	i = �i \ {1} is an orbit of G1 with |	i ∩ �i | = 3 and again (S,G) is not transverse. As
a final remark, we note that Aut(S) actually is isomorphic to PrimitiveGroup(25,3)
and this group is not extremely primitive, nor transitive on lines.
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Examples 6.1 and 6.3 show that the classification of linear spaces arising fromTheorem1.2
(3) is more complicated than in cases (1) and (2). This is not that surprising, since in case
(3) G is very “small” (its point stabiliser has prime order) so the restriction G ≤ Aut(S) is
much weaker.

We now describe LS(G) from Theorem 1.2 (1) and (2) in more detail.

Example 6.4 Let q = 22
n + 1 be a Fermat prime and G = PSL2(q − 1) with point stabiliser

D2q , as in Theorem 1.2 (1). As observed in Sect. 4, the two-point stabilisers in G have order
2; hence we may identify each line � of LS(G) with the involution g� that fixes any two
points on it. By identifying points of LS(G) with their point stabilisers, we see that LS(G)

is the Witt-Bose-Shrikhande space W (q − 1) [1, §2.6] with parameters

(v, b, k, r) =
(

(q − 1)(q − 2)

2
, q(q − 2),

q − 1

2
, q

)
.

By Lemma 5.4, G� = NG(〈g�〉), which is elementary abelian of order q − 1, while
G�

�
∼= NG(〈g�〉)/〈g�〉, an elementary abelian group of order q−1

2 , which is semiregular

by Lemma 5.5. Since q−1
2 = k, it follows that G�

� is in fact regular. By the orbit-stabiliser
theorem, the orbit of � under G has size |G|/|G�| = q(q − 2) = b, so G is transitive on
lines.

Example 6.5 Let p be a prime, d ≥ 2, t be a primitive prime divisor of pd − 1 and e be a
prime dividing d such that t = (pd −1)/(pd/e−1). LetG ≤ A�L1(pd)with point stabiliser
H = Ct �Ce ≤ �L1(pd), as in Theorem 1.2 (2). A two-point stabiliser in G is conjugate to
the group Ce which acts as field automorphisms on Fpd and hence fixes the subfield of order
pd/e, so LS(G) has parameters

(v, b, k, r) = (pd , pd−d/et, pd/e, t).

By Lemma 5.4, G� = NG(Ce) = Cd/e
p ×Ce, while G�

�
∼= NG(Ce)/Ce ∼= Cd/e

p . Since
k = pd/e, we again obtain that G�

� is regular. Finally, the orbit of � under G has size
|G|/|G�| = pd te/(pd/ee) = b, so G is transitive on lines.

Note that in both previous examples, G is transitive on lines of LS(G) so by Proposi-
tion 5.3, all the refinements of LS(G) admitting G as a group of automorphisms arise via
Construction 5.1.We now present two final examples, which give nontrivial such refinements
and thus are also examples for Theorem 1.2.

Example 6.6 Let (p, d, e, t) = (7, 5, 5, 2801), letG be as inExample 6.5 and let S = LS(G).
If � is a line of S, then |�| = 7 andG�

�
∼= C7 is regular. Ifwe set T = (P(�), T L) to be the Fano

plane, then we have C7 ≤ Aut(T ). By Proposition 5.2, the output R of Construction 5.1 is a
linear space on 75 points with lines of size 3 which is a refinement of S andwithG ≤ Aut(R).
Since C7 is transitive on T L, it follows that G is transitive on the lines of R.

Example 6.7 Let q be the Fermat prime 65537 = 216 + 1, let G be as in Example 6.4 and let
S = LS(G). If � is a line of S, then |�| = 215 and G�

�
∼= C15

2 is regular. Let H ≤ �L1(215)
such that |H ∩ GL1(215)| = 1057 and H = C1057 �C3. Let V ∼= C15

2 be the natural vector
space for �L1(215) and let A = V � H ≤ A�L1(215). Note that Proposition 2.2 (3) is
satisfied (with (p, d, e, t) = (2, 15, 3, 1057)), hence Lemma 3.5 implies that A has Property
(�) and by Proposition 3.2, T := LS(A) is a linear space such that C15

2
∼= V ≤ A ≤ Aut(T ).

By Proposition 5.2, the output R of Construction 5.1 is a linear space which is a refinement
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of S and with G ≤ Aut(R). By similar calculations as in Example 6.5 we deduce that each
line contains k := pd/e = 32 points and thus R has parameters

(v, k, r) = (215(216 − 1), 32, qt).

Since (S,G) is transverse, so is (R,G). In particular, if (u,m) is a flag of R and u �= v ∈ �,
then |mGu | = |vGu | = |Gu |/|Guv| = 2q/2 = q . It follows that Gu has r/q = t = 1057
orbits on lines meeting u. Note that |G| is smaller than the number of lines of R, so G is not
transitive on lines of R.

Example 6.7 answers a question posed implicitly in [9] about the existence of regular
linear spaces that admit an extremely primitive automorphism group with classical socle,
other than theWitt-Bose-Shrikhande spaces. In [9, Lemma 3.2], Guan and Zhou show that in
that caseG is as in Example 6.4, that q is at least 65537 (the largest known Fermat prime) and
that Gu has at least 73 orbits on lines meeting u, but are unable to determine if any examples
actually arise. Example 6.7 gives one such example and our approach using refinements can
be used to construct more.
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