On the equivalence, stabilisers, and feet of Buekenhout-Tits unitals

Jake Faulkner ${ }^{1}$ (D) Geertrui Van de Voorde ${ }^{1}$ (D)

Received: 22 September 2022 / Revised: 15 February 2023 / Accepted: 14 April 2023
© The Author(s) 2023

Abstract

This paper addresses a number of problems concerning Buekenhout-Tits unitals in PG $\left(2, q^{2}\right)$, where $q=2^{2 e+1}$ and $e \geq 1$. We show that all Buekenhout-Tits unitals are equivalent under PGL $\left(3, q^{2}\right)$ [addressing an open problem in Barwick and Ebert (Unitals in Projective Planes. Springer Monographs in Mathematics. Springer, New York, 2008)], explicitly describe their stabiliser in $\operatorname{P\Gamma L}\left(3, q^{2}\right)$ [expanding Ebert's work in Ebert (J Algebraic Comb 6(2):133-140, 1997)], and show that lines meet the feet of points not on ℓ_{∞} in at most four points. Finally, we show that feet of points not on ℓ_{∞} are not always a $\{0,1,2,4\}$-set, in contrast to what happens for Buekenhout-Metz unitals Abarzúa et al (Adv Geom 18(2):229-236, 2018).

Keywords Unital • Tits ovoid • Buekenhout-Tits unital • feet
Mathematics Subject Classification 51E20

1 Introduction

1.1 Background

Let $\operatorname{PG}\left(2, q^{2}\right)$ denote the Desarguesian projective plane over the finite field with q^{2} elements, $\mathbb{F}_{q^{2}}$, where q is a prime power. A unital U in $\operatorname{PG}\left(2, q^{2}\right)$ is a set of $q^{3}+1$ points such that every line of $\mathrm{PG}\left(2, q^{2}\right)$ meets U in 1 or $q+1$ points. Lines meeting U in 1 point are tangent lines

[^0]to U, and lines meeting U in $q+1$ points are secant lines of U . The classical or Hermitian unital, usually denoted by $\mathcal{H}\left(2, q^{2}\right)$, arises by taking the absolute points of a non-degenerate Hermitian polarity. Each point P not lying on a unital U, lies on $q+1$ tangent lines to U; the $q+1$ points of U whose tangent lines contain P are called the feet of P, and are denoted by $\tau_{P}(U)$.

It is well-known that $\mathrm{PG}\left(2, q^{2}\right)$ can be modelled by a Desarguesian line spread of $\operatorname{PG}(3, q)$ embedded in $\operatorname{PG}(4, q)$ via the André/Bruck-Bose $(A B B)$ construction. A wide class of unitals in PG $\left(2, q^{2}\right)$, called Buekenhout unitals, arise as follows from the ABB construction; starting in $\operatorname{PG}(4, q)$ fixing a hyperplane Σ, and a Desarguesian spread of Σ, we take any ovoidal cone \mathcal{C} such that $\mathcal{C} \cap \Sigma$ is a spread line of Σ. Then in $\operatorname{PG}\left(2, q^{2}\right), \mathcal{C}$ gives rise to a unital U. If the base of \mathcal{C} is an elliptic quadric, the unital is called a Buekenhout-Metz unital. The family of Buekenhout-Metz unitals contains the Hermitian unitals, but there are many non-equivalent Buekenhout-Metz unitals (see $[3,8]$). If $q=2^{2 e+1}, e \geq 1$, and the base of \mathcal{C} is a Tits ovoid, the unital is a called a Buekenhout-Tits unital. For more information on unitals and their constructions, see [4].

Unitals may be characterised based on the combinatorial properties of the feet of certain points. It is easy to see that for the classical unital $\mathcal{H}\left(2, q^{2}\right)$, the feet of a point not on the unital are always collinear. Thas [13] showed the converse, namely, that a unital U is classical if and only if for all points, not on U, the feet are collinear. This was improved by Aguglia and Ebert [2] who showed that a unital U is classical if and only if there exist two tangent lines ℓ_{1}, ℓ_{2} such that for all points $P \in\left(\ell_{1} \cup \ell_{2}\right) \backslash U$ the feet of P are collinear. It is known (see e.g. [4]) that if U is a non-classical Buekenhout-Metz unital, the feet of a point $P \notin U$ are collinear if and only if they lie on a distinguished tangent line ℓ_{∞} to U. Furthermore, it is shown in [1] that if U is Buekenhout-Metz unital, a line meets the feet of a point $P \notin \ell_{\infty}$ in either $0,1,2$, or 4 points. Ebert [9] showed for a Buekenhout-Tits unital, the feet of $P \notin U$ are collinear if and only if $P \in \ell_{\infty}$. It is then natural to ask how a line may meet the feet of a point $P \notin \ell_{\infty}$ for Buekenhout-Tits unitals. We will answer this question in Theorem 3.

Many characterisations of unitals make use of their stabilisers in PGL, resp. PГL. In [7] it is shown that a unital is classical if its stabiliser contains a cyclic group of order $q^{2}-q+1$. Several other characterisations of unitals by their stabiliser group are listed in [4]. In [9], Ebert determined the stabiliser of a Buekenhout-Tits unital in $\operatorname{PGL}\left(3, q^{2}\right)$ (see Result 1). We will extend this work in this paper.

1.2 Summary of this paper

In this paper we present three main results:

1. We show that all Buekenhout-Tits unitals are equivalent under $\operatorname{P\Gamma L}\left(3, q^{2}\right)$ (see Theorem 1). This addresses an open problem in [4], and is alluded to in [10] (see Remark 1).
2. A description of the full stabiliser group of a Buekenhout-Tits unital in $\mathrm{P} \Gamma \mathrm{L}\left(3, q^{2}\right)$ (see Theorem 2). Ebert [9] only provides a description of stabiliser of the Buekenhout-Tits unital in PGL (Result 1). The stabiliser of the classical unital in $\mathrm{P} \Gamma \mathrm{L}\left(3, q^{2}\right)$ is $\mathrm{P} \Gamma \mathrm{U}\left(3, q^{2}\right)$, and the stabiliser of the Buekenhout-Metz unital in $\operatorname{P\Gamma L}\left(3, q^{2}\right)$ is described in [8] for q even and [3] for q odd.
3. If U is a Buekenhout-Tits unital, then a line ℓ meets the feet of a point $P \notin\left(\ell_{\infty} \cup U\right)$ in at most 4 points. Moreover, there exists a point P and line ℓ such that the feet of P meet ℓ in exactly three points (see Theorem 3). This highlights a difference between Buekenhout-Metz unitals and Buekenhout-Tits unitals. It also solves an open problem posed by Aguglia and Ebert [2] and later listed in [4, Chapter 8].

1.3 Coordinates for a Buekenhout-Tits unital

In [9], Ebert derives coordinates for a Buekenhout-Tits unital $\mathcal{U}_{B T}$ in $\operatorname{PG}\left(2, q^{2}\right), q=2^{2 e+1}$. Pick $\epsilon \in \mathbb{F}_{q^{2}}$ such that $\epsilon^{q}=\epsilon+1$, and $\epsilon^{2}=\epsilon+\delta$ for some $1 \neq \delta \in \mathbb{F}_{q}$ with absolute trace equal to one. Then the following set of points in $\operatorname{PG}\left(2, q^{2}\right)$ is a Buekenhout-Tits unital,

$$
\begin{equation*}
\mathcal{U}_{B T}=\{(0,0,1)\} \cup\left\{P_{r, s, t}=\left(1, s+t \epsilon, r+\left(s^{\sigma+2}+t^{\sigma}+s t\right) \epsilon\right) \mid r, s, t \in \mathbb{F}_{q}\right\}, \tag{1}
\end{equation*}
$$

where $\sigma=2^{e+1}$ has the property that σ^{2} induces the automorphism $x \mapsto x^{2}$ of \mathbb{F}_{q}. In addition, it can be verified that $\sigma+1, \sigma+2, \sigma-1$, and $\sigma-2$ all induce permutations of \mathbb{F}_{q} with inverses induced by $\sigma-1,1-\sigma / 2, \sigma+1$ and $-(\sigma / 2+1)$ respectively.

The following theorem describes the group of projectivities (that is, elements of $\left.\operatorname{PGL}\left(3, q^{2}\right)\right)$ stabilising $\mathcal{U}_{B T}$.

Result 1 [9, Theorem 4 and Corollary] Let $G=\operatorname{PGL}\left(3, q^{2}\right) \mathcal{U}_{B T}, q=2^{2 e+1}$, be the group of projectivities stabilising the Buekenhout-Tits unital $\mathcal{U}_{B T}$. Then G is an abelian group of order q^{2}, consisting of the projectivities induced by the matrices

$$
M_{u, v}=\left\{\left.\left[\begin{array}{ccc}
1 & u \epsilon & v+u^{\sigma} \epsilon \tag{2}\\
0 & 1 & u+u \epsilon \\
0 & 0 & 1
\end{array}\right] \right\rvert\, u, v \in \mathbb{F}_{q}\right\},
$$

where $\sigma=2^{e+1}$ and matrices act on the homogeneous coordinates of points by multiplication from the right. The group G has $q^{2}-q$ orbits of length q^{2} on points in $\mathrm{PG}\left(2, q^{2}\right) \backslash\left(\mathcal{U}_{B T} \cup \ell_{\infty}\right)$, where $\ell_{\infty}: x=0$.

2 On the projective equivalence of Buekenhout-Tits unitals

In this section, we show that all Buekenhout-Tits unitals are equivalent under $\operatorname{PGL}\left(3, q^{2}\right)$ to the unital $\mathcal{U}_{B T}$ given in Eq. (1).

Remark 1 The authors of [10] give this result without proof and state it can be derived by the same techniques employed by Ebert in [9]. Ebert however, lists the equivalence of Buekenhout-Tits unitals as an open problem in [4] which appeared about ten years after his original paper [9].

It is easy to see that the Buekenhout-Tits unital $\mathcal{U}_{B T}$ is tangent to the line $\ell_{\infty}: x=0$ at the point $P_{\infty}=(0,0,1)$. From the ABB construction it follows that P_{∞} has the following property with respect to $\mathcal{U}_{B T}$.

Property 1 Given any unital U, a point $P \in U$ is said to have Property 1 if all secant lines through P meet U in Baer sublines.

It is shown in [5] that if two different points of U have Property 1 , then U is classical. Hence, the point P_{∞} is the unique point of $\mathcal{U}_{B T}$ admitting this property. We will count all Buekenhout-Tits unitals tangent to ℓ_{∞} at a point P_{∞} having Property 1 .

Lemma 1 There are $q^{4}\left(q^{2}-1\right)^{2}$ unitals equivalent under $\operatorname{PGL}\left(3, q^{2}\right)$ to $\mathcal{U}_{B T}$ in $\operatorname{PG}\left(2, q^{2}\right)$ with tangent line $\ell_{\infty}: x=0$ and containing the point $P_{\infty}=(0,0,1)$ having Property 1.

Proof Let U be a unital tangent to ℓ_{∞}, and containing the point P_{∞} with Property 1 , that is equivalent under $\operatorname{PGL}\left(3, q^{2}\right) \mathcal{U}_{B T}$ to $\operatorname{PG}\left(2, q^{2}\right)$. Then, the point P_{∞} is the unique point in
U with Property 1 . Thus, any projectivity mapping $\mathcal{U}_{B T}$ to U is contained in the group H of projectivities fixing P_{∞}, and fixing ℓ_{∞} line-wise. The elements of H are induced by all matrices of the following form,

$$
\left[\begin{array}{ccc}
1 & x_{12} & x_{13} \\
0 & x_{22} & x_{23} \\
0 & 0 & x_{33}
\end{array}\right],
$$

where $x_{22} x_{33} \neq 0$ and matrices act on homogeneous coordinates by multiplication on the right. It follows that $|H|=\left(q^{2}-1\right)^{2} q^{6}$. Furthermore, from the description of $G=$ $\operatorname{PGL}\left(3, q^{2}\right) \mathcal{U}_{B T}$ in Result 1, we know that the stabiliser $H_{\mathcal{U}_{B T}}$ in H of $\mathcal{U}_{B T}$ coincides with G. Hence, the stabiliser $H_{\mathcal{U}_{B T}}$ has order q^{2}. By the orbit-stabiliser theorem, we find that there are $\left(q^{2}-1\right)^{2} q^{4}$ unitals in the orbit of $\mathcal{U}_{B T}$ under H.

Consider $\operatorname{PG}\left(2, q^{2}\right)$ modelled by the ABB construction with fixed hyperplane Σ_{∞}. Let p_{∞} be the spread line corresponding to P_{∞}. Then any Buekenhout-Tits unital U tangent to ℓ_{∞} at P_{∞} with Property 1 corresponds uniquely to an ovoidal cone \mathcal{C} meeting Σ_{∞} at p_{∞}.

Lemma 2 There are $q^{4}\left(q^{2}-1\right)^{2}$ ovoidal cones \mathcal{C} in $\operatorname{PG}(4, q)$ with base a Tits ovoid, such that \mathcal{C} meets Σ_{∞} in the spread element p_{∞}.

Proof Let V be a point on the line p_{∞}, and $\Sigma \neq \Sigma_{\infty}$ a hyperplane not containing V. Then, Σ meets Σ_{∞} in a plane containing a point $R \in p_{\infty} \backslash\{V\}$. Any ovoidal cone \mathcal{C} with vertex V and base a Tits ovoid, such that \mathcal{C} meets Σ_{∞} precisely in p_{∞}, meets Σ in a Tits ovoid tangent to $\Sigma \cap \Sigma_{\infty}$ at the point R. We will count all cones of this form, for all $V \in p_{\infty}$.

Consider the pairs of planes Π and Tits ovoids $\mathcal{O},(\Pi, \mathcal{O})$, where $\Pi, \mathcal{O} \subset \Sigma$ and Π is tangent to \mathcal{O}. On the one hand, there are $|\operatorname{PGL}(4, q)| /\left|\mathcal{O}_{\operatorname{PGL}(4, q)}\right|=(q+1)^{2} q^{4}(q-1)^{2}\left(q^{2}+q\right.$ $+1)$ Tits ovoids in $\operatorname{PG}(3, q)$, and each has $q^{2}+1$ tangent planes. On the other hand, $\operatorname{PGL}(4, q)$ is transitive on hyperplanes of $\operatorname{PG}(3, q)$, so each plane is tangent to the same number of Tits ovoids. It thus follows, that there are

$$
\frac{(q+1)^{2} q^{4}(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{2}+1\right)}{q^{3}+q^{2}+q+1}=(q-1)^{2} q^{4}(q+1)\left(q^{2}+q+1\right)
$$

Tits ovoids tangent to $\Sigma \cap \Sigma_{\infty}$ contained in Σ.
Furthermore, since $\operatorname{PGL}(4, q)_{\Sigma \cap \Sigma_{\infty}}$ is transitive on points of $\Sigma \cap \Sigma_{\infty}$, each point of $\Sigma \cap \Sigma_{\infty}$ is contained in the same number of Tits ovoids \mathcal{O}, so it follows that the number of Tits ovoids tangent to $\Sigma \cap \Sigma_{\infty}$ at $R=p_{\infty} \cap \Sigma$ is $(q-1)^{2} q^{4}(q+1)$. Hence, there is an equal number of ovoidal cones with base a Tits ovoid, vertex V, and meeting Σ_{∞} at p_{∞}. As the choice of V was arbitrary, and there are $q+1$ points on p_{∞}, there are $\left(q^{2}-1\right)^{2} q^{4}$ ovoidal cones with base a Tits ovoid, and meeting Σ_{∞} at p_{∞}.
Theorem 1 All Buekenhout-Tits unitals in $\operatorname{PG}\left(2, q^{2}\right)$ are equivalent under $\operatorname{PGL}\left(3, q^{2}\right)$.
Proof From Lemmas 1 and 2, we see that the number of ovoidal cones with base a Tits ovoid, tangent to Σ_{∞} at p_{∞} is equal to the number of Buekenhout-Tits unitals that are equivalent under PGL $\left(3, q^{2}\right)$ to $\mathcal{U}_{B T}$ and tangent to l_{∞} at P_{∞} with Property 1. The result follows.

Corollary 1 Let U be a Buekenhout-Tits unital, then the projectivity group stabilising U is isomorphic to the group G in Result 1.

Since we have shown that all Buekenhout-Tits unitals are equivalent under $\operatorname{PGL}\left(3, q^{2}\right)$, we may use $\mathcal{U}_{B T}$ to verify statements about general Buekenhout-Tits unitals.

3 On the stabiliser of the Buekenhout-Tits unital

We now describe the stabiliser of the Buekenhout-Tits unital $\mathcal{U}_{B T}$ in $\operatorname{P\Gamma L}\left(3, q^{2}\right)$.
Lemma 3 Let $M_{u, v}, M_{s, t}$ be matrices inducing collineations of G as defined in Result 1 , then $M_{u, v} M_{s, t}=M_{u+s, t+v+s u \delta}$.

Proof Using Eq. (2), we find

$$
M_{u, v} M_{s, t}=\left[\begin{array}{ccc}
1 & (s+u) \epsilon & (t+v+s u \delta)+(s+u)^{\sigma} \\
0 & 1 & (u+s)+(u+s) \epsilon \\
0 & 0 & 1
\end{array}\right]
$$

Thus, we have $M_{u, v} M_{s, t}=M_{u+s, t+v+s u \delta}$.
Corollary 2 The order of any collineation of G induced by a matrix $M_{u, v}$ as defined in Result 1 is four if and only if $u \neq 0$, and two if and only if $u=0$ and $v \neq 0$.

Proof Firstly note that $M_{0,0}=I$. Direct calculation shows that $M_{u, v}^{2}=M_{0, u^{2} \delta}, M_{u, v}^{3}=$ $M_{u, v+u^{2} \delta}$ and $M_{u, v}^{4}=M_{0,0}$.

Corollary 3 The stabiliser group G as defined in Result 1 is isomorphic to $\left(C_{4}\right)^{2 e+1}$.
Proof Recall from Result 1 that $|G|=q^{2}=2^{4 e+2}$. From Corollary 2, we have that $G \equiv$ $\left(C_{4}\right)^{k}\left(C_{2}\right)^{l}$ for some integers k, l such that $2^{2 k+l}=|G|=2^{4 e+2}$, and hence,

$$
l=2(2 e+1-k)
$$

Furthermore, we see that the number of elements of order four in G is $q^{2}-q$ as they correspond to all matrices $M_{u, v}$ with $u, v \in \mathbb{F}_{q}$ and $u \neq 0$. The number of elements of order four in a group isomorphic to $\left(C_{4}\right)^{k}\left(C_{2}\right)^{l}$ is $\left(4^{k}-2^{k}\right) 2^{l}$. Thus,

$$
\begin{equation*}
\left(4^{k}-2^{k}\right) 2^{l}=4^{2 e+1}-2^{2 e+1} \tag{3}
\end{equation*}
$$

Using Eq. (3), we find that $k=2 e+1$, and therefore $G \equiv\left(C_{4}\right)^{2 e+1}$.
Theorem 2 Let $q=2^{2 e+1}$, then the stabiliser of $\mathcal{U}_{B T}$ in $\operatorname{P\Gamma L}\left(3, q^{2}\right)$ is the order $q^{2}(4 e+2)$ group $G K$, where $G=\operatorname{PGL}\left(3, q^{2}\right)_{\mathcal{U}_{B T}}$ as described in Result 1 , and K is a cyclic subgroup of order $16 e+8$ generated by

$$
\psi: \mathbf{x} \mapsto \mathbf{x}^{2}\left[\begin{array}{ccc}
1 & 1 & \epsilon \\
0 & \delta^{\sigma / 2}(1+\epsilon) & \delta^{\sigma / 2}(1+\epsilon) \\
0 & 0 & \delta^{\sigma+1}
\end{array}\right]
$$

(Here, \mathbf{x} denotes the row vector containing the three homogeneous coordinates of a point, and \mathbf{x}^{2} denotes its elementwise power.)

Proof From Lemma 2, the number of Buekenhout-Tits unitals tangent to $\ell_{\infty}: x=0$ at a point $P_{\infty}=(0,0,1)$ with Property 1 is $q^{4}\left(q^{2}-1\right)^{2}$. By the arguments of Lemma 1 , all of these unitals are equivalent under $\operatorname{PGL}\left(3, q^{2}\right)$ to $\mathcal{U}_{B T}$ under the stabiliser groups $\operatorname{PGL}\left(3, q^{2}\right)_{\left\{\ell_{\infty}, P_{\infty}\right\}}$ and $\operatorname{P\Gamma L}\left(3, q^{2}\right)_{\left\{\ell_{\infty}, P_{\infty}\right\}}$ fixing P_{∞} and stabilising ℓ_{∞}. Any collineation stabilising $\mathcal{U}_{B T}$ must stabilise P_{∞} and ℓ_{∞}, so $\operatorname{P\Gamma L}\left(3, q^{2}\right)_{\mathcal{U}_{B T}}<\operatorname{P\Gamma L}\left(3, q^{2}\right)_{\left\{\ell_{\infty}, P_{\infty}\right\}}$. Therefore, the orbit of $\mathcal{U}_{B T}$ under $\operatorname{P\Gamma L}\left(3, q^{2}\right)_{\left\{\ell_{\infty}, P_{\infty}\right\}}$ has size $q^{4}\left(q^{2}-1\right)^{2}$, that is

$$
\left|\operatorname{P\Gamma L}\left(3, q^{2}\right)_{\mathcal{U}_{B T}}\right|=\frac{\left|\operatorname{P\Gamma L}\left(3, q^{2}\right)_{\left\{\ell_{\infty}, P_{\infty}\right\}}\right|}{q^{4}\left(q^{2}-1\right)^{2}}
$$

We can now see that $\operatorname{P\Gamma L}\left(3, q^{2}\right) \mathcal{U}_{B T}$ must have order $q^{2}(4 e+2)$.
Direct calculation shows that ψ stabilises $\mathcal{U}_{B T}$. Because $\mathbf{x}^{2^{+e+2}}=\mathbf{x}^{q^{2}}=\mathbf{x}$, the collineation $\psi^{4 e+2}$ is a linear map stabilising $\mathcal{U}_{B T}$, and so $\psi^{4 e+2} \in G$. Therefore, we deduce that $|\psi|=$ $(4 e+2)\left|\psi^{4 e+2}\right|$. From Corollary 2, it follows that $\left|\psi^{4 e+2}\right| \in\{1,2,4\}$, with $\left|\psi^{4 e+2}\right|=4$ if and only if $\psi^{4 e+2}$ is induced by $M_{u, v}$ for some $u \neq 0$. Hence, $\left|\psi^{4 e+2}\right|=4$ if and only if $\psi^{4 e+2}(0,1,0) \neq(0,1,0)$ as $(0,1,0) M_{u, v}=(0,1, u+u \epsilon)$. Consider the point $(0,1, z)$ for some arbitrary $z \in \mathbb{F}_{q}$. Direct calculation shows that $\psi(0,1, z)=\left(0,1,1+\mu z^{2}\right)$, where $\mu=\frac{\delta^{\sigma+1}}{\delta^{\sigma / 2}(1+\epsilon)}=\delta^{\sigma / 2} \epsilon$. Thus,

$$
\psi^{k}(0,1, z)=\left(0,1, \sum_{i=0}^{k} \mu^{2^{i}-1}+z g(z)\right)
$$

for some polynomial $g(z)$ depending on k. If $z=0$ and $k=4 e+2$ we thus find

$$
\begin{aligned}
\psi^{4 e+2}(0,1,0) & =\left(0,1, \sum_{i=0}^{4 e+2} \mu^{2^{i}-1}\right) \\
& =\left(0,1, \frac{\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}(\mu)}{\mu}\right) .
\end{aligned}
$$

Recall that $\epsilon^{q}=\epsilon+1$, so $\operatorname{Tr}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}(\epsilon)=1$. Therefore, we have $\operatorname{Tr}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{2}}\left(\delta^{\sigma / 2} \epsilon\right)=$ $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\operatorname{Tr}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}\left(\delta^{\sigma / 2} \epsilon\right)\right)=\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\delta^{\sigma / 2} \operatorname{Tr}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}(\epsilon)\right)=\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\delta^{\sigma / 2}\right)=1$. Hence, we see $\psi((0,1,0)) \neq(0,1,0)$, so $\left|\psi^{4 e+2}\right|=4$ and $|\psi|=16 e+8$. Let $K=\langle\psi\rangle$, because $|K \cap G|=4$, it follows that $|G K|=q^{2}(4 e+2)$ and thus $G K=\operatorname{P\Gamma L}\left(3, q^{2}\right)_{\mathcal{U}_{B T}}$.

4 On the feet of the Buekenhout-Tits unital

Recall that the feet $\tau_{P}(U)$ of a point P not on a unital U is the set of all points on tangent lines to U through P. The feet of the Buekenhout-Tits unital $\mathcal{U}_{B T}$ (as coordinatised in 1) for points $P \notin \mathcal{U}_{B T}$ are first described by Ebert in [9]. He shows that the feet of a point $P=\left(1, y_{1}+y_{2} \epsilon, z_{1}+z_{2} \epsilon\right)$ is the following set of points:

$$
\begin{align*}
& \tau_{P}\left(\mathcal{U}_{B T}\right)=\left\{\left(1, s+t \epsilon, s^{2}+t^{2} \delta+s t+y_{1} s+y_{1} t+y_{2} \delta t+z_{1}+\left(s^{\sigma+2}+t^{\sigma}+s t\right) \epsilon\right)\right. \\
& \left.\mid s, t \in \mathbb{F}_{q}, s^{\sigma+2}+t^{\sigma}+s t=y_{2} s+y_{1} t+z_{2}\right\} . \tag{4}
\end{align*}
$$

If the line ℓ has Equation $\alpha x+y=0$, where $\alpha \in \mathbb{F}_{q^{2}}$, Ebert shows that $\left|\ell \cap \tau_{P}\left(\mathcal{U}_{B T}\right)\right| \leq 1$. Otherwise, ℓ has equation $\left(a_{1}+a_{2} \epsilon\right) x+\left(b_{1}+b_{2} \epsilon\right) y+z=0$ and Ebert shows that ℓ meets $\tau_{P}\left(\mathcal{U}_{B T}\right)$ in the points $P_{r, s, t} \in \mathcal{U}_{B T}$, where $r=s^{2}+t^{2} \delta+s t+y_{1} s+y_{1} t+y_{2} \delta t+z_{1}$ and s, t satisfy

$$
\begin{align*}
& s^{2}+\delta t^{2}+s t+\left(y_{1}+b_{1}\right) s+\left(y_{1}+y_{2} \delta+b_{2} \delta\right) t+z_{1}+a_{1}=0, \tag{5}\\
& s^{\sigma+2}+t^{\sigma}+s t=b_{2} s+\left(b_{1}+b_{2}\right) t+a_{2}, \tag{6}\\
& y_{2} s+y_{1} t+z_{2}=b_{2} s+\left(b_{1}+b_{2}\right) t+a_{2} . \tag{7}
\end{align*}
$$

We will show that for all choices of points $P \notin \ell_{\infty}$ and lines $\ell,\left|\tau_{P}\left(\mathcal{U}_{B T}\right) \cap \ell\right| \leq 4$.
Recall that the group G as described in Result 1 has $q^{2}-q$ orbits of $\operatorname{PG}\left(2, q^{2}\right) \backslash\left(\mathcal{U}_{B T} \cup \ell_{\infty}\right)$ of size q^{2}. Here we give a set of $q^{2}-q$ representatives for these orbits.

Lemma 4 Let G be the group of projectivities stabilising $\mathcal{U}_{B T}$ as described in Result 1. Then, the set of $q^{2}-q$ points $\left\{P_{a, b}=(1, a, b \epsilon) \mid a, b \in \mathbb{F}_{q}, b \neq a^{\sigma+2}\right\}$ are points from $q^{2}-q$ distinct point orbits of size q^{2} under G.

Proof Suppose there exists a collineation of G induced by a matrix $M_{u, v}$ such that $P_{a, b} M_{u, v}=$ $P_{c, d}$. Then,

$$
(1, a, b \epsilon)\left[\begin{array}{ccc}
1 & u \epsilon & v+u^{\sigma} \epsilon \\
0 & 1 & u+u \epsilon \\
0 & 0 & 1
\end{array}\right]=(1, c, d \epsilon) .
$$

However, it is clear that $P_{a, b} M_{u, v}=\left(1, a+u \epsilon, v+u^{\sigma} \epsilon+a(u+u \epsilon)+b \epsilon\right)$, so $a+u \epsilon=c$. Therefore, $a=c$ and $u=0$. If $u=0$, then $v+b \epsilon=d \epsilon$, and we have $b=d$. Hence, $P_{a, b}=P_{c, d}$ and the lemma follows.

There are $q^{4}-q^{3}=q^{2}\left(q^{2}-q\right)$ points of $\operatorname{PG}\left(2, q^{2}\right)$ not on ℓ_{∞} or $\mathcal{U}_{B T}$. By Lemma 4 , each of these points lies in the orbit of a point of the form $(1, a, b \epsilon)$. Therefore, in order to study the feet of a point P, we may assume that the point $P=\left(1, y_{1}, z_{2} \epsilon\right)$.

The following lemma shows that the feet of a point $P=\left(1, y_{1}, z_{2} \epsilon\right)$, with $y_{1}^{\sigma+2} \neq z_{2}$ meets almost all lines in at most 2 points.

Lemma 5 Let $\ell: \alpha x+\beta y+z=0$ be a line in $\operatorname{PG}\left(2, q^{2}\right)$, where $\alpha=a_{1}+a_{2} \epsilon, \beta=b_{1}+b_{2} \epsilon$ and $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{F}_{q}$. Let $P=\left(1, y_{1}, z_{2} \epsilon\right)$, with $y_{1}, z_{2} \in \mathbb{F}_{q}$ such that $z_{2} \neq y_{1}^{\sigma+2}$. Unless $b_{2}=0, y_{1}=b_{1}$ and $a_{2}=z_{2}$, we have $\left|\tau_{P}\left(\mathcal{U}_{B T}\right) \cap \ell\right| \leq 2$.

Proof From the description given in Eq. (4), we see that the points $P_{r, s, t} \in \tau_{P}\left(\mathcal{U}_{B T}\right)$ satisfy

$$
\begin{equation*}
s^{\sigma+2}+t^{\sigma}+s t=y_{1} t+z_{2}, \tag{8}
\end{equation*}
$$

and this equation has $q+1$ solutions. Substituting Eqs. (8) into (5) and combining Eqs. (6) and (7), it follows that the points $P_{r, s, t} \in \tau_{P}\left(\mathcal{U}_{B T}\right) \cap \ell$ have s, t satisfying

$$
\begin{gather*}
s^{\sigma+2}+t^{\sigma}+s t+y_{1} t+z_{2}=0 \\
s^{2}+\delta t^{2}+s t+\left(y_{1}+b_{1}\right) s+\left(y_{1}+b_{2} \delta\right) t+a_{1}=0 \tag{9}\\
b_{2} s+\left(y_{1}+b_{1}+b_{2}\right) t+a_{2}+z_{2}=0 \tag{10}
\end{gather*}
$$

We will now count the solutions to this system, by considering the geometry of these equations in the solution space $\mathrm{AG}(2, q)$ with coordinates (s, t). Recall that the points $\left(1, s, t, s^{\sigma+2}+\right.$ $\left.t^{\sigma}+s t\right)$, where $s, t \in \mathbb{F}_{q}$ are the q^{2} affine points of a Tits ovoid in $\operatorname{PG}(3, q)$ [14]. Because $\tau_{P}\left(\mathcal{U}_{B T}\right)$ has $q+1$ points, the Eq. 8 must have $q+1$ solutions (s, t) in the solution space. Hence the $q+1$ points (s, t) in $\operatorname{AG}(2, q)$ satisfying 8 are a translation oval.

Unless $b_{2}=0$ and $y_{1}=b_{1}$, Eq. (10) represents a line in the solution space $\operatorname{AG}(2, q)$. A line meets the oval defined by Eq. 8 in at most two points, so we have at most two solutions to the system. If $b_{2}=0, y_{1}=b_{1}$, and $a_{2} \neq z_{2}$, then Eq. (10) has no solutions.

Remark 2 Lemma 5 is a refinement of [4, Theorem 4.33], where Barwick and Ebert rework Ebert's earlier proof in [9] that the feet of a point $P \notin\left(\ell_{\infty} \cup \mathcal{U}_{B T}\right)$ are not collinear. This reworked proof asserts that the feet cannot be collinear because the line given by Eq. (10) and the conic from Eq. (9) cannot have $q+1$ common solutions. However, we can see that this logic is not complete, and leaves an interesting case to examine when Eq. (10) vanishes. Ebert's original proof in [9] does not contain this error, instead arguing that Eqs. (9) and 8 cannot have $q+1$ common solutions.

It follows from Lemma 5 that the feet of a point $P \notin\left(\ell_{\infty} \cup \mathcal{U}_{B T}\right)$ is a set of $q+1$ points such that every line meets $\tau_{P}\left(\mathcal{U}_{B T}\right)$ in at most two points except for a set of q concurrent lines.

To investigate the latter case, assume that $b_{2}=0, y_{1}=b_{1}$ and $a_{2}=z_{2}$. In this case, Eq. (10) vanishes. The system describing $\ell \cap \tau_{P}\left(\mathcal{U}_{B T}\right)$ is thus

$$
\begin{align*}
s^{2}+\delta t^{2}+s t & =y_{1} t+a_{1} \tag{11}\\
s^{\sigma+2}+t^{\sigma}+s t & =y_{1} t+z_{2} \tag{12}
\end{align*}
$$

The lines that produce these cases are the lines with dual coordinates $\left[a_{1}+z_{2} \epsilon, y_{1}, 1\right]$. These lines are concurrent at the point $\left(0,1, y_{1}\right)$ which lies on ℓ_{∞}. We will show in Corollary 4 that these latter lines meet $\tau_{P}\left(\mathcal{U}_{B T}\right)$ in at most four points.

Recall that an affine section of a Tits ovoid in $\operatorname{PG}(3, q)$ contains $q+1$ points equivalent under $\operatorname{PGL}\left(3, q^{2}\right)$ to the translation oval [14]

$$
\mathcal{D}_{\sigma}=\left\{\left(1, t, t^{\sigma}\right) \mid t \in \mathbb{F}_{q}\right\} \cup\{(0,0,1)\} .
$$

For a reference on translation ovals, see [11, pp. 182-186]. We require the following lemma, which adapts arguments found in [6, Lemma 2.1].

Lemma 6 Let \mathcal{O} be a translation oval in $\operatorname{PG}(2, q)$ projectively equivalent to \mathcal{D}_{σ}, and let \mathcal{C} be a non-degenerate conic. If the nucleus of \mathcal{O} is also the nucleus of \mathcal{C}, then $|\mathcal{O} \cap \mathcal{C}| \leq 4$.

Proof Without loss of generality we may take $\mathcal{O}=\mathcal{D}_{\sigma}$, so that the nucleus of \mathcal{O} is $N=$ $(0,1,0)$. If N is also the nucleus of \mathcal{C}, then \mathcal{C} is a conic of the following form,

$$
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+x z=0
$$

for some $a_{1}, a_{2}, a_{3} \in \mathbb{F}_{q}$ with $a_{2} \neq 0$. Suppose that $(0,0,1) \notin \mathcal{C}$. Then $a_{3} \neq 0$, and the point $\left(1, t, t^{\sigma}\right) \in \mathcal{C}$ if and only if t satisfies

$$
\begin{equation*}
a_{1}+a_{2} t^{2}+a_{3} t^{2 \sigma}+t^{\sigma}=0 \tag{13}
\end{equation*}
$$

hence,

$$
0=\left(a_{1}+a_{2} t^{2}+a_{3} t^{2 \sigma}+t^{\sigma}\right)^{\sigma / 2}=a_{1}^{\sigma / 2}+a_{2}^{\sigma / 2} t^{\sigma}+a_{3}^{\sigma / 2} t^{2}+t
$$

Therefore,

$$
\begin{equation*}
t^{\sigma}=\left(\frac{a_{3}}{a_{2}}\right)^{2^{e}} t^{2}+\frac{1}{a_{2}^{2^{e}}} t+\left(\frac{a_{1}}{a_{2}}\right)^{2^{e}} \tag{14}
\end{equation*}
$$

and substituting Eqs. (14) into (13), we find that Eq. (13) has at most four solutions. If instead $(0,0,1) \in \mathcal{C}$, then $a_{3}=0$ and arguing as above we find that Eq. (13) has at most two solutions, so $|\mathcal{O} \cap \mathcal{C}| \leq 3$.

Corollary 4 The feet of a point $P \notin\left(\ell_{\infty} \cup \mathcal{U}_{B T}\right)$ meet a line ℓ in at most four points.
Proof From Lemma 5, we know we can restrict ourselves to the case $b_{2}=0, y_{1}=b_{1}, a_{2}=$ z_{2} which means we are looking at the points $P_{r, s, t} \in \tau_{P}\left(\mathcal{U}_{B T}\right) \cap \ell$ have s, t satisfying

$$
\begin{align*}
s^{2}+\delta t^{2}+s t & =y_{1} t+a_{1} \tag{15}\\
s^{\sigma+2}+t^{\sigma}+s t & =y_{1} t+z_{2} \tag{16}
\end{align*}
$$

where Eq. (15) represents a conic \mathcal{C}, and Eq. (16) represents an oval \mathcal{O} in $\operatorname{AG}(2, q)$. If the conic is degenerate, the oval and conic have at most four points in common. So we may assume that the conic is non-degenerate. The nucleus of \mathcal{C} is $N=\left(y_{1}, 0,1\right)$. We now show that N is the nucleus of the oval \mathcal{O}. The line $t=0$ goes through N and meets the oval \mathcal{O} when $s^{\sigma+2}=z_{2}$, which has one solution as $\sigma+2$ is a permutation of \mathbb{F}_{q}. The line $s+y_{1}=0$ through N meets the oval \mathcal{O} when $t^{\sigma}=y^{\sigma+2}+z_{2}$ which has one solution for t. Therefore, N is the nucleus, as it is the intersection of two tangent lines to the oval. It now follows from Lemma 6 that Eqs. (15) and (16) have at most four common solutions.

We now show the existence of a point $P \notin\left(\mathcal{U}_{B T} \cup \ell_{\infty}\right)$ and a line ℓ such that $\mid \ell \cap$ $\tau_{P}\left(\mathcal{U}_{B T}\right) \mid=3$, and demonstrate our bound is sharp.
Lemma 7 Consider the Equation $s^{\sigma+2}+t^{\sigma}+s t=y_{1} t+z_{2}$, whose solutions (s, t) are a translation oval of $\mathrm{AG}(2, q)$. If $y_{1}=0$, then the points of the oval given by Eq. (16) are

$$
\left\{\left.P_{u}=\left(\frac{z_{2}^{1-\sigma / 2} u^{\sigma}}{1+u+u^{\sigma}}, \frac{z_{2}^{\sigma / 2}\left(1+u^{\sigma}\right)}{1+u+u^{\sigma}}\right) \right\rvert\, u \in \mathbb{F}_{q}\right\} \cup\left\{\left(z_{2}^{1-\sigma / 2}, z_{2}^{\sigma / 2}\right)\right\} .
$$

Proof If $y_{1}=0$, then Eq. (16) reduces to

$$
\begin{equation*}
s^{\sigma+2}+t^{\sigma}+s t+z_{2}=0 \tag{17}
\end{equation*}
$$

Using the properties of σ described in Sect. 1.3, one can show the point $\left(z_{2}^{1-\sigma / 2}, z_{2}^{\sigma / 2}\right)$ satisfies Eq. (17). Furthermore, the points $\overline{P_{u}}=\left(z_{2}^{1-\sigma / 2} u^{\sigma}, z_{2}^{\sigma / 2}\left(1+u^{\sigma}\right), 1+u+u^{\sigma}\right)$, where $u \in \mathbb{F}_{q}$, are projective points satisfying the following homogeneous equation

$$
x^{\sigma+2}+y^{\sigma} z^{2}+x y z^{\sigma}+z_{2} z^{\sigma+2}=0 .
$$

Because $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(u+u^{\sigma}\right)=0$, and $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}(1)=1$ when $q=2^{2 e+1}$, we have $u^{\sigma}+u+1 \neq 0$ for all $u \in \mathbb{F}_{q}$. Thus, normalising so $z=1$, the points $\overline{P_{u}}$ have the form $(s, t, 1)$ where s and t satisfy Eq. (17).

Corollary 5 Let $y_{1}=0$ and consider the points P_{u} as described in Lemma 7. A point P_{u} lies on the conic given by Eq. (15), if and only if u is a root of the following polynomial

$$
\begin{equation*}
a_{1}^{\sigma / 2} u^{\sigma}+\left(z_{2}^{\sigma-1}+\delta^{\sigma / 2} z_{2}+z_{2}^{\sigma / 2}+a_{1}^{\sigma / 2}\right) u^{2}+z_{2}^{\sigma / 2} u+\delta^{\sigma / 2} z_{2}+a_{1}^{\sigma / 2} . \tag{18}
\end{equation*}
$$

Proof By directly substituting P_{u} into Eq. (15) we have

$$
\begin{equation*}
\left(z_{2}^{2-\sigma}+\delta z_{2}^{\sigma}+z_{2}+a_{1}\right) u^{2 \sigma}+z_{2} u^{\sigma}+a_{1} u^{2}+\left(\delta z_{2}^{\sigma}+a_{1}\right)=0 . \tag{19}
\end{equation*}
$$

Raising both sides of Eq. (19) to the power of $\sigma / 2$ yields our result.
Theorem 3 Let U be a Buekenhout-Tits unital in $\operatorname{PG}\left(2, q^{2}\right)$. The feet of a point $P \notin\left(\ell_{\infty} \cup U\right)$ meet a line ℓ in at most four points. Moreover, there exists a line ℓ and point P such that $\left|\ell \cap \tau_{P}(U)\right|=k$ for each $k \in\{0,1,2,3,4\}$.

Proof By Theorem 1 we may assume that $U=\mathcal{U}_{B T}$. The first part of the proof comes from Corollary 4. Let $P=\left(1, y_{1}, z_{2} \epsilon\right)$. All lines through P meet $\tau_{P}(U)$ in at most one point by definition, so it is clear that there exists lines ℓ such that $\left|\ell \cap \tau_{P}(U)\right|$ is zero or one. Because the points of $\tau_{P}(U)$ are not collinear, there exists a pair of points $Q, R \in \tau_{P}(U)$ such that the line $Q R$ does not contain $\left(0,1, y_{1}\right)$. Because $Q R$ does not contain $\left(0,1, y_{1}\right)$ it cannot have dual coordinates of the form $\left[a_{1}+z_{2} \epsilon, y_{1}, 1\right]$ for any $a_{1} \in \mathbb{F}_{q}$, and so Lemma 5 applies to $Q R$. Hence, the line $Q R$ meets $\tau_{P}(U)$ in precisely two points.

Now consider a line ℓ with Equation $(\delta+\epsilon) x+z=0$ and let P be the point $(1,0, \epsilon)$ (that is, $\left.a_{1}=\delta, a_{2}=1, b_{1}=b_{2}=y_{1}=0, z_{2}=1\right)$. The number of points of $\ell \cap \tau_{P}(U)$ is the same as the number of solutions to Eqs. (11) and (12). By Lemma 7 the points P_{u} satisfying Eq. (12) lie on the conic determined by Eq. (11) when

$$
\begin{equation*}
\delta^{\sigma / 2} u^{\sigma}+u=u\left(\delta^{\sigma / 2} u^{\sigma-1}+1\right)=0 . \tag{20}
\end{equation*}
$$

Equation (20) has exactly two solutions as $\sigma-1$ is a permutation of $\mathbb{F}_{q}: u=0$ and the unique solution to $u^{\sigma-1}=\frac{1}{\delta^{\sigma / 2}}$. It can also be shown that $\left(z_{2}^{1-\sigma / 2}, z_{2}^{\sigma / 2}\right)=(1,1)$ satisfies both equations. Hence, the intersection of the feet of the point $(1,0, \epsilon)$ and ℓ has exactly three points.

Finally, consider the point $P\left(1,0, \frac{1}{\delta^{\sigma}} \epsilon\right)$ and the line ℓ with dual coordinates $\left[\frac{1}{\delta}+\frac{1}{\delta^{2}} \epsilon, 0,1\right]$. By Corollary 5, the number of feet of P on the line ℓ is the number of roots of the polynomial (18), where $a_{1}=\frac{1}{\delta}$ and $z_{2}=\frac{1}{\delta^{\sigma}}$. Substituting $a_{1}=\frac{1}{\delta}$ and $z_{2}=\frac{1}{\delta^{\sigma}}$ yields

$$
\begin{equation*}
\frac{1}{\delta^{\sigma / 2}} u^{\sigma}+\left(\frac{1}{\delta^{2-\sigma}}+\frac{1}{\delta}\right) u^{2}+\frac{1}{\delta} u=0 . \tag{21}
\end{equation*}
$$

Since Eq. (21) describes the roots of a \mathbb{F}_{2}-linearised polynomial, and there are at most 4 roots, we have that the polynomial (18) has 1,2 , or 4 roots. We will show that, under the condition $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}(\delta)=1$, it has four roots. Multiplying Eq. (21) by δ yields $\delta^{1-\sigma / 2} u^{\sigma}+$ $\left(\delta^{\sigma-1}+1\right) u^{2}+u=0$ and now substituting $a=\delta^{\sigma-1}+1$ gives

$$
\begin{equation*}
\left(a^{\sigma / 2}+1\right) u^{\sigma}+a u^{2}+u=0 . \tag{22}
\end{equation*}
$$

We find that $u=0$ and $u=\frac{1}{a^{1+\sigma / 2}}$ are solutions to Eq. (22). Now consider

$$
\begin{equation*}
u^{\sigma}+a u^{2}+1=0 . \tag{23}
\end{equation*}
$$

Any solution to Eq. (23) also satisfies $\left(u^{\sigma}+a u^{2}+1\right)^{\sigma / 2}+u^{\sigma}+a u^{2}+1=0$ which is precisely Eq. (22). Multiply Eq. (23) with $a^{\sigma+1}$, then we find $\left(a^{\sigma / 2+1} u\right)^{\sigma}+\left(a^{\sigma / 2+1} u\right)^{2}+a^{\sigma+1}=0$, and letting $z=\left(a^{\sigma / 2+1} u\right)^{2}$,

$$
\begin{equation*}
z^{\sigma / 2}+z+a^{\sigma+1}=0, \tag{24}
\end{equation*}
$$

which is known (see [12]) to have solutions if and only if $\operatorname{Tr}_{\mathbb{F}_{q}} / \mathbb{F}_{2}\left(a^{\sigma+1}\right)=0$. As $z=0$ and $z=1$ are not solutions of Eq. (24), no solutions of Eq. (24) correspond to the solutions $u=0$ or $u=\frac{1}{a^{1+\sigma / 2}}$ of Eq. (21). Furthermore, recall that Eq. (21) has 1,2 or 4 solutions and that we have assumed that $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}(\delta)=1$. Since $\delta^{\sigma-1}=a+1$, it follows that $\delta=$ $(a+1)^{\sigma+1}$ and $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}(\delta)=\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(a^{\sigma+1}+a^{\sigma}+a+1\right)=\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(a^{\sigma+1}\right)+\operatorname{Tr}_{\mathbb{F}_{q}} / \mathbb{F}_{2}(1)=$ $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(a^{\sigma+1}\right)+1$. Hence, the conditions $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}(\delta)=1$ and $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(a^{\sigma+1}\right)=0$ are equivalent, and we find exactly four solutions to Eq. (21).

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abarzúa N., Pomareda R., Vega O.: Feet in orthogonal-Buekenhout-Metz unitals. Adv. Geom. 18(2), 229-236 (2018).
2. Aguglia A., Ebert G.L.: A combinatorial characterization of classical unitals. Arch. Math. 78(2), 166-172 (2002).
3. Baker R.D., Ebert G.L.: On Buekenhout-Metz unitals of odd order. J. Comb. Theory Ser. A $\mathbf{6 0}(1), 67-84$ (1992).
4. Barwick S., Ebert G.L.: Unitals in Projective Planes. Springer Monographs in Mathematics. Springer, New York (2008).
5. Barwick S.G., Quinn Catherine T.: Generalising a characterisation of Hermitian curves. J. Geom. 70(1-2), 1-7 (2001).
6. Ceria M., Cossidente A., Marino G., Pavese F.: On near-mds codes and caps (2021).
7. Cossidente A., Ebert G.L., Korchmáros G.: A group-theoretic characterization of classical unitals. Arch. Math. 74(1), 1-5 (2000).
8. Ebert G.L.: On Buekenhout-Metz unitals of even order. Eur. J. Comb. 13(2), 109-117 (1992).
9. Ebert G.L.: Buekenhout-Tits unitals. J. Algebraic Comb. 6(2), 133-140 (1997).
10. Feng T., Li W.: On the existence of O'Nan configurations in ovoidal Buekenhout-Metz unitals in PG $\left(2, q^{2}\right)$. Discret. Math. 342(8), 2324-2332 (2019).
11. Hirschfeld J.: Projective Geometries Over Finite Fields, 2nd edn Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998).
12. Menichetti G.: Roots of affine polynomials. In: Combinatorics '84 (Bari, 1984), North-Holland Math. Stud., vol. 123, pp. 303-310. North-Holland, Amsterdam (1986).
13. Thas J.A.: A combinatorial characterization of Hermitian curves. J. Algebraic Comb. 1(1), 97-102 (1992).
14. Tits J.: Ovoïdes et groupes de Suzuki. Arch. Math. 13, 187-198 (1962).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: This is one of several papers published in Designs, Codes and Cryptography comprising the "Special Issue: Finite Geometries 2022".

 This author is supported by the Marsden Fund Council administered by the Royal Society of New Zealand.

 Geertrui Van de Voorde
 geertrui.vandevoorde@canterbury.ac.nz
 Jake Faulkner
 jake.faulkner@pg.canterbury.ac.nz
 1 School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand

