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Abstract
This paper addresses a number of problems concerningBuekenhout-Tits unitals in PG(2, q2),
where q = 22e+1 and e ≥ 1. We show that all Buekenhout-Tits unitals are equivalent under
PGL(3, q2) [addressing an open problem in Barwick and Ebert (Unitals in Projective Planes.
Springer Monographs in Mathematics. Springer, New York, 2008)], explicitly describe their
stabiliser in P�L(3, q2) [expanding Ebert’s work in Ebert (J Algebraic Comb 6(2):133–140,
1997)], and show that lines meet the feet of points not on �∞ in at most four points. Finally,
we show that feet of points not on �∞ are not always a {0, 1, 2, 4}-set, in contrast to what
happens for Buekenhout-Metz unitals Abarzúa et al (Adv Geom 18(2):229–236, 2018).
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1 Introduction

1.1 Background

Let PG(2, q2) denote the Desarguesian projective plane over the finite field with q2 elements,
Fq2 , where q is a prime power. A unital U in PG(2, q2) is a set of q3+1 points such that every
line of PG(2, q2) meets U in 1 or q + 1 points. Lines meeting U in 1 point are tangent lines
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to U , and lines meeting U in q + 1 points are secant lines of U. The classical or Hermitian
unital, usually denoted byH(2, q2), arises by taking the absolute points of a non-degenerate
Hermitian polarity. Each point P not lying on a unital U , lies on q + 1 tangent lines to U ;
the q + 1 points of U whose tangent lines contain P are called the feet of P , and are denoted
by τP (U ).

It is well-known that PG(2, q2) can bemodelled by aDesarguesian line spread of PG(3, q)

embedded in PG(4, q) via the André/Bruck-Bose (ABB) construction. A wide class of unitals
in PG(2, q2), called Buekenhout unitals, arise as follows from the ABB construction; starting
in PG(4, q) fixing a hyperplane�, and a Desarguesian spread of�, we take any ovoidal cone
C such that C ∩ � is a spread line of �. Then in PG(2, q2), C gives rise to a unital U . If the
base of C is an elliptic quadric, the unital is called a Buekenhout-Metz unital. The family of
Buekenhout-Metz unitals contains the Hermitian unitals, but there are many non-equivalent
Buekenhout-Metz unitals (see [3, 8]). If q = 22e+1, e ≥ 1, and the base of C is a Tits ovoid,
the unital is a called a Buekenhout-Tits unital. For more information on unitals and their
constructions, see [4].

Unitals may be characterised based on the combinatorial properties of the feet of certain
points. It is easy to see that for the classical unital H(2, q2), the feet of a point not on the
unital are always collinear. Thas [13] showed the converse, namely, that a unitalU is classical
if and only if for all points, not on U , the feet are collinear. This was improved by Aguglia
and Ebert [2] who showed that a unital U is classical if and only if there exist two tangent
lines �1, �2 such that for all points P ∈ (�1 ∪ �2)\U the feet of P are collinear. It is known
(see e.g. [4]) that if U is a non-classical Buekenhout-Metz unital, the feet of a point P /∈ U
are collinear if and only if they lie on a distinguished tangent line �∞ to U . Furthermore, it is
shown in [1] that if U is Buekenhout-Metz unital, a line meets the feet of a point P /∈ �∞ in
either 0, 1, 2, or 4 points. Ebert [9] showed for a Buekenhout-Tits unital, the feet of P /∈ U
are collinear if and only if P ∈ �∞. It is then natural to ask how a line may meet the feet of
a point P /∈ �∞ for Buekenhout-Tits unitals. We will answer this question in Theorem 3.

Many characterisations of unitals make use of their stabilisers in PGL, resp. P�L. In [7] it
is shown that a unital is classical if its stabiliser contains a cyclic group of order q2 − q + 1.
Several other characterisations of unitals by their stabiliser group are listed in [4]. In [9],
Ebert determined the stabiliser of a Buekenhout-Tits unital in PGL(3, q2) (see Result 1). We
will extend this work in this paper.

1.2 Summary of this paper

In this paper we present three main results:

1. We show that all Buekenhout-Tits unitals are equivalent under P�L(3, q2) (see Theorem
1). This addresses an open problem in [4], and is alluded to in [10] (see Remark 1).

2. A description of the full stabiliser group of a Buekenhout-Tits unital in P�L(3, q2) (see
Theorem 2). Ebert [9] only provides a description of stabiliser of the Buekenhout-Tits
unital in PGL (Result 1). The stabiliser of the classical unital in P�L(3, q2) is P�U(3, q2),
and the stabiliser of the Buekenhout-Metz unital in P�L(3, q2) is described in [8] for q
even and [3] for q odd.

3. If U is a Buekenhout-Tits unital, then a line � meets the feet of a point P /∈ (�∞ ∪ U )

in at most 4 points. Moreover, there exists a point P and line � such that the feet of P
meet � in exactly three points (see Theorem 3). This highlights a difference between
Buekenhout-Metz unitals and Buekenhout-Tits unitals. It also solves an open problem
posed by Aguglia and Ebert [2] and later listed in [4, Chapter 8].
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1.3 Coordinates for a Buekenhout-Tits unital

In [9], Ebert derives coordinates for a Buekenhout-Tits unital UBT in PG(2, q2), q = 22e+1.
Pick ε ∈ Fq2 such that εq = ε + 1, and ε2 = ε + δ for some 1 �= δ ∈ Fq with absolute trace
equal to one. Then the following set of points in PG(2, q2) is a Buekenhout-Tits unital,

UBT = {(0, 0, 1)} ∪ {Pr ,s,t = (1, s + tε, r + (sσ+2 + tσ + st)ε) | r , s, t ∈ Fq}, (1)

where σ = 2e+1 has the property that σ 2 induces the automorphism x �→ x2 of Fq . In
addition, it can be verified that σ + 1, σ + 2, σ − 1, and σ − 2 all induce permutations of Fq

with inverses induced by σ − 1, 1 − σ/2, σ + 1 and −(σ/2 + 1) respectively.
The following theorem describes the group of projectivities (that is, elements of

PGL(3, q2)) stabilising UBT .

Result 1 [9, Theorem 4 and Corollary] Let G = PGL(3, q2)UBT , q = 22e+1, be the group
of projectivities stabilising the Buekenhout-Tits unital UBT . Then G is an abelian group of
order q2, consisting of the projectivities induced by the matrices

Mu,v =
⎧
⎨

⎩

⎡

⎣
1 uε v + uσ ε

0 1 u + uε

0 0 1

⎤

⎦

∣
∣
∣
∣
∣
∣
u, v ∈ Fq

⎫
⎬

⎭
, (2)

where σ = 2e+1 andmatrices act on the homogeneous coordinates of points bymultiplication
from the right. The groupG has q2−q orbits of length q2 on points in PG(2, q2)\(UBT ∪�∞),
where �∞ : x = 0.

2 On the projective equivalence of Buekenhout-Tits unitals

In this section, we show that all Buekenhout-Tits unitals are equivalent under PGL(3, q2) to
the unital UBT given in Eq. (1).

Remark 1 The authors of [10] give this result without proof and state it can be derived
by the same techniques employed by Ebert in [9]. Ebert however, lists the equivalence of
Buekenhout-Tits unitals as an open problem in [4] which appeared about ten years after his
original paper [9].

It is easy to see that the Buekenhout-Tits unital UBT is tangent to the line �∞ : x = 0 at
the point P∞ = (0, 0, 1). From the ABB construction it follows that P∞ has the following
property with respect to UBT .

Property 1 Given any unital U , a point P ∈ U is said to have Property 1 if all secant lines
through P meet U in Baer sublines.

It is shown in [5] that if two different points of U have Property 1, then U is classical.
Hence, the point P∞ is the unique point of UBT admitting this property. We will count all
Buekenhout-Tits unitals tangent to �∞ at a point P∞ having Property 1.

Lemma 1 There are q4(q2 − 1)
2

unitals equivalent under PGL(3, q2) to UBT in PG(2, q2)

with tangent line �∞ : x = 0 and containing the point P∞ = (0, 0, 1) having Property 1.

Proof Let U be a unital tangent to �∞, and containing the point P∞ with Property 1, that is
equivalent under PGL(3, q2) UBT to PG(2, q2). Then, the point P∞ is the unique point in
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U with Property 1. Thus, any projectivity mapping UBT to U is contained in the group H
of projectivities fixing P∞, and fixing �∞ line-wise. The elements of H are induced by all
matrices of the following form,

⎡

⎣
1 x12 x13
0 x22 x23
0 0 x33

⎤

⎦ ,

where x22x33 �= 0 and matrices act on homogeneous coordinates by multiplication on

the right. It follows that |H | = (q2 − 1)
2
q6. Furthermore, from the description of G =

PGL(3, q2)UBT in Result 1, we know that the stabiliser HUBT in H of UBT coincides with G.
Hence, the stabiliser HUBT has order q2. By the orbit-stabiliser theorem, we find that there

are (q2 − 1)
2
q4 unitals in the orbit of UBT under H . 
�

Consider PG(2, q2) modelled by the ABB construction with fixed hyperplane �∞. Let
p∞ be the spread line corresponding to P∞. Then any Buekenhout-Tits unital U tangent to
�∞ at P∞ with Property 1 corresponds uniquely to an ovoidal cone C meeting �∞ at p∞.

Lemma 2 There are q4(q2 − 1)
2

ovoidal cones C in PG(4, q) with base a Tits ovoid, such
that C meets �∞ in the spread element p∞.

Proof Let V be a point on the line p∞, and � �= �∞ a hyperplane not containing V . Then,
� meets �∞ in a plane containing a point R ∈ p∞\{V }. Any ovoidal cone C with vertex V
and base a Tits ovoid, such that C meets�∞ precisely in p∞, meets� in a Tits ovoid tangent
to � ∩ �∞ at the point R. We will count all cones of this form, for all V ∈ p∞.

Consider the pairs of planes	 and Tits ovoidsO, (	,O), where	,O ⊂ � and	 is tan-
gent toO. On the one hand, there are |PGL(4, q)|/|OPGL(4,q)| = (q + 1)2q4(q − 1)2(q2+q
+1)Tits ovoids in PG(3, q), and each has q2+1 tangent planes. On the other hand, PGL(4, q)

is transitive on hyperplanes of PG(3, q), so each plane is tangent to the same number of Tits
ovoids. It thus follows, that there are

(q + 1)2q4(q − 1)2(q2 + q + 1)(q2 + 1)

q3 + q2 + q + 1
= (q − 1)2q4(q + 1)(q2 + q + 1)

Tits ovoids tangent to � ∩ �∞ contained in �.
Furthermore, since PGL(4, q)�∩�∞ is transitive on points of � ∩ �∞, each point of

� ∩ �∞ is contained in the same number of Tits ovoids O, so it follows that the number of
Tits ovoids tangent to� ∩�∞ at R = p∞ ∩� is (q − 1)2q4(q +1). Hence, there is an equal
number of ovoidal cones with base a Tits ovoid, vertex V , and meeting �∞ at p∞. As the

choice of V was arbitrary, and there are q + 1 points on p∞, there are (q2 − 1)
2
q4 ovoidal

cones with base a Tits ovoid, and meeting �∞ at p∞. 
�
Theorem 1 All Buekenhout-Tits unitals in PG(2, q2) are equivalent under PGL(3, q2).

Proof From Lemmas 1 and 2, we see that the number of ovoidal cones with base a Tits ovoid,
tangent to �∞ at p∞ is equal to the number of Buekenhout-Tits unitals that are equivalent
under PGL(3, q2) to UBT and tangent to l∞ at P∞ with Property 1. The result follows. 
�
Corollary 1 Let U be a Buekenhout-Tits unital, then the projectivity group stabilising U is
isomorphic to the group G in Result 1.

Since we have shown that all Buekenhout-Tits unitals are equivalent under PGL(3, q2), we
may use UBT to verify statements about general Buekenhout-Tits unitals.
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3 On the stabiliser of the Buekenhout-Tits unital

We now describe the stabiliser of the Buekenhout-Tits unital UBT in P�L(3, q2).

Lemma 3 Let Mu,v, Ms,t be matrices inducing collineations of G as defined in Result 1, then
Mu,v Ms,t = Mu+s,t+v+suδ .

Proof Using Eq. (2), we find

Mu,v Ms,t =
⎡

⎣
1 (s + u)ε (t + v + suδ) + (s + u)σ

0 1 (u + s) + (u + s)ε
0 0 1

⎤

⎦ .

Thus, we have Mu,v Ms,t = Mu+s,t+v+suδ . 
�
Corollary 2 The order of any collineation of G induced by a matrix Mu,v as defined in Result 1
is four if and only if u �= 0, and two if and only if u = 0 and v �= 0.

Proof Firstly note that M0,0 = I . Direct calculation shows that M2
u,v = M0,u2δ , M3

u,v =
Mu,v+u2δ and M4

u,v = M0,0. 
�
Corollary 3 The stabiliser group G as defined in Result 1 is isomorphic to (C4)

2e+1.

Proof Recall from Result 1 that |G| = q2 = 24e+2. From Corollary 2, we have that G ≡
(C4)

k(C2)
l for some integers k, l such that 22k+l = |G| = 24e+2, and hence,

l = 2(2e + 1 − k).

Furthermore, we see that the number of elements of order four in G is q2 − q as they
correspond to all matrices Mu,v with u, v ∈ Fq and u �= 0. The number of elements of order
four in a group isomorphic to (C4)

k(C2)
l is (4k − 2k)2l . Thus,

(4k − 2k)2l = 42e+1 − 22e+1. (3)

Using Eq. (3), we find that k = 2e + 1, and therefore G ≡ (C4)
2e+1. 
�

Theorem 2 Let q = 22e+1, then the stabiliser of UBT in P�L(3, q2) is the order q2(4e + 2)
group G K , where G = PGL(3, q2)UBT as described in Result 1, and K is a cyclic subgroup
of order 16e + 8 generated by

ψ : x �→ x2

⎡

⎣
1 1 ε

0 δσ/2(1 + ε) δσ/2(1 + ε)

0 0 δσ+1

⎤

⎦ .

(Here, x denotes the row vector containing the three homogeneous coordinates of a point,
and x2 denotes its elementwise power.)

Proof From Lemma 2, the number of Buekenhout-Tits unitals tangent to �∞ : x = 0 at

a point P∞ = (0, 0, 1) with Property 1 is q4(q2 − 1)
2
. By the arguments of Lemma 1,

all of these unitals are equivalent under PGL(3, q2) to UBT under the stabiliser groups
PGL(3, q2){�∞,P∞} and P�L(3, q2){�∞,P∞} fixing P∞ and stabilising �∞. Any collineation
stabilising UBT must stabilise P∞ and �∞, so P�L(3, q2)UBT < P�L(3, q2){�∞,P∞}. There-
fore, the orbit of UBT under P�L(3, q2){�∞,P∞} has size q4(q2 − 1)

2
, that is

|P�L(3, q2)UBT | = |P�L(3, q2){�∞,P∞}|
q4(q2 − 1)2

.
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We can now see that P�L(3, q2)UBT must have order q2(4e + 2).

Direct calculation shows thatψ stabilisesUBT . Because x2
4e+2 = xq2 = x, the collineation

ψ4e+2 is a linear map stabilising UBT , and so ψ4e+2 ∈ G. Therefore, we deduce that |ψ | =
(4e + 2)|ψ4e+2|. From Corollary 2, it follows that |ψ4e+2| ∈ {1, 2, 4}, with |ψ4e+2| = 4 if
and only if ψ4e+2 is induced by Mu,v for some u �= 0. Hence, |ψ4e+2| = 4 if and only if
ψ4e+2(0, 1, 0) �= (0, 1, 0) as (0, 1, 0)Mu,v = (0, 1, u + uε). Consider the point (0, 1, z) for
some arbitrary z ∈ Fq . Direct calculation shows that ψ(0, 1, z) = (0, 1, 1 + μz2), where

μ = δσ+1

δσ/2(1+ε)
= δσ/2ε. Thus,

ψk(0, 1, z) =
(

0, 1,
k∑

i=0

μ2i −1 + zg(z)

)

for some polynomial g(z) depending on k. If z = 0 and k = 4e + 2 we thus find

ψ4e+2(0, 1, 0) =
(

0, 1,
4e+2∑

i=0

μ2i −1

)

=
(

0, 1,
TrFq /F2(μ)

μ

)

.

Recall that εq = ε + 1, so TrFq2 /Fq (ε) = 1. Therefore, we have TrFq2 /F2(δ
σ/2ε) =

TrFq/F2(TrFq2 /Fq (δ
σ/2ε)) = TrFq/F2(δ

σ/2 TrFq2 /Fq (ε)) = TrFq/F2(δ
σ/2) = 1. Hence, we

see ψ((0, 1, 0)) �= (0, 1, 0), so |ψ4e+2| = 4 and |ψ | = 16e + 8. Let K = 〈ψ〉, because
|K ∩ G| = 4, it follows that |G K | = q2(4e + 2) and thus G K = P�L(3, q2)UBT

. 
�

4 On the feet of the Buekenhout-Tits unital

Recall that the feet τP (U ) of a point P not on a unital U is the set of all points on tangent
lines to U through P . The feet of the Buekenhout-Tits unital UBT (as coordinatised in 1)
for points P /∈ UBT are first described by Ebert in [9]. He shows that the feet of a point
P = (1, y1 + y2ε, z1 + z2ε) is the following set of points:

τP (UBT ) = {(1, s + tε, s2 + t2δ + st + y1s + y1t + y2δt + z1 + (sσ+2 + tσ + st)ε)

| s, t ∈ Fq , sσ+2 + tσ + st = y2s + y1t + z2}. (4)

If the line � has Equation αx + y = 0, where α ∈ Fq2 , Ebert shows that |� ∩ τP (UBT )| ≤ 1.
Otherwise, � has equation (a1 + a2ε)x + (b1 + b2ε)y + z = 0 and Ebert shows that � meets
τP (UBT ) in the points Pr ,s,t ∈ UBT , where r = s2 + t2δ + st + y1s + y1t + y2δt + z1 and
s, t satisfy

s2 + δt2 + st + (y1 + b1)s + (y1 + y2δ + b2δ)t + z1 + a1 = 0, (5)

sσ+2 + tσ + st = b2s + (b1 + b2)t + a2, (6)

y2s + y1t + z2 = b2s + (b1 + b2)t + a2. (7)

We will show that for all choices of points P /∈ �∞ and lines �, |τP (UBT ) ∩ �| ≤ 4.
Recall that the groupG as described in Result 1 has q2−q orbits of PG(2, q2)\(UBT ∪�∞)

of size q2. Here we give a set of q2 − q representatives for these orbits.
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Lemma 4 Let G be the group of projectivities stabilising UBT as described in Result 1. Then,
the set of q2 − q points {Pa,b = (1, a, bε) | a, b ∈ Fq , b �= aσ+2} are points from q2 − q
distinct point orbits of size q2 under G.

Proof Suppose there exists a collineation ofG inducedby amatrix Mu,v such that Pa,b Mu,v =
Pc,d . Then,

(1, a, bε)

⎡

⎣
1 uε v + uσ ε

0 1 u + uε

0 0 1

⎤

⎦ = (1, c, dε) .

However, it is clear that Pa,b Mu,v = (1, a + uε, v + uσ ε + a (u + uε) + bε), so a+uε = c.
Therefore, a = c and u = 0. If u = 0, then v + bε = dε, and we have b = d . Hence,
Pa,b = Pc,d and the lemma follows. 
�
There are q4 − q3 = q2(q2 − q) points of PG(2, q2) not on �∞ or UBT . By Lemma 4, each
of these points lies in the orbit of a point of the form (1, a, bε). Therefore, in order to study
the feet of a point P , we may assume that the point P = (1, y1, z2ε).

The following lemma shows that the feet of a point P = (1, y1, z2ε), with yσ+2
1 �= z2

meets almost all lines in at most 2 points.

Lemma 5 Let � : αx +β y + z = 0 be a line in PG(2, q2), where α = a1+a2ε, β = b1+b2ε
and a1, a2, b1, b2 ∈ Fq . Let P = (1, y1, z2ε), with y1, z2 ∈ Fq such that z2 �= yσ+2

1 . Unless
b2 = 0, y1 = b1 and a2 = z2, we have |τP (UBT ) ∩ �| ≤ 2.

Proof From the description given in Eq. (4), we see that the points Pr ,s,t ∈ τP (UBT ) satisfy

sσ+2 + tσ + st = y1t + z2, (8)

and this equation has q + 1 solutions. Substituting Eqs. (8) into (5) and combining Eqs. (6)
and (7), it follows that the points Pr ,s,t ∈ τP (UBT ) ∩ � have s, t satisfying

sσ+2 + tσ + st + y1t + z2 = 0.

s2 + δt2 + st + (y1 + b1) s + (y1 + b2δ) t + a1 = 0 (9)

b2s + (y1 + b1 + b2) t + a2 + z2 = 0 (10)

Wewill nowcount the solutions to this system, by considering the geometry of these equations
in the solution space AG(2, q) with coordinates (s, t). Recall that the points (1, s, t, sσ+2 +
tσ + st), where s, t ∈ Fq are the q2 affine points of a Tits ovoid in PG(3, q) [14]. Because
τP (UBT ) has q + 1 points, the Eq. 8 must have q + 1 solutions (s, t) in the solution space.
Hence the q + 1 points (s, t) in AG(2, q) satisfying 8 are a translation oval.

Unless b2 = 0 and y1 = b1, Eq. (10) represents a line in the solution space AG(2, q). A
line meets the oval defined by Eq. 8 in at most two points, so we have at most two solutions
to the system. If b2 = 0, y1 = b1, and a2 �= z2, then Eq. (10) has no solutions. 
�
Remark 2 Lemma 5 is a refinement of [4, Theorem 4.33], where Barwick and Ebert rework
Ebert’s earlier proof in [9] that the feet of a point P /∈ (�∞ ∪ UBT ) are not collinear. This
reworked proof asserts that the feet cannot be collinear because the line given by Eq. (10)
and the conic from Eq. (9) cannot have q + 1 common solutions. However, we can see that
this logic is not complete, and leaves an interesting case to examine when Eq. (10) vanishes.
Ebert’s original proof in [9] does not contain this error, instead arguing that Eqs. (9) and 8
cannot have q + 1 common solutions.
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It follows from Lemma 5 that the feet of a point P /∈ (�∞ ∪UBT ) is a set of q +1 points such
that every line meets τP (UBT ) in at most two points except for a set of q concurrent lines.

To investigate the latter case, assume that b2 = 0, y1 = b1 and a2 = z2. In this case, Eq.
(10) vanishes. The system describing � ∩ τP (UBT ) is thus

s2 + δt2 + st = y1t + a1 (11)

sσ+2 + tσ + st = y1t + z2. (12)

The lines that produce these cases are the lines with dual coordinates [a1 + z2ε, y1, 1]. These
lines are concurrent at the point (0, 1, y1)which lies on �∞. We will show in Corollary 4 that
these latter lines meet τP (UBT ) in at most four points.

Recall that an affine section of a Tits ovoid in PG(3, q) contains q + 1 points equivalent
under PGL(3, q2) to the translation oval [14]

Dσ = {
(1, t, tσ ) | t ∈ Fq

} ∪ {(0, 0, 1)} .

For a reference on translation ovals, see [11, pp. 182–186]. We require the following lemma,
which adapts arguments found in [6, Lemma 2.1].

Lemma 6 Let O be a translation oval in PG(2, q) projectively equivalent to Dσ , and let C
be a non-degenerate conic. If the nucleus of O is also the nucleus of C, then |O ∩ C| ≤ 4.

Proof Without loss of generality we may take O = Dσ , so that the nucleus of O is N =
(0, 1, 0). If N is also the nucleus of C, then C is a conic of the following form,

a1x2 + a2y2 + a3z2 + xz = 0,

for some a1, a2, a3 ∈ Fq with a2 �= 0. Suppose that (0, 0, 1) /∈ C. Then a3 �= 0, and the
point (1, t, tσ ) ∈ C if and only if t satisfies

a1 + a2t2 + a3t2σ + tσ = 0, (13)

hence,

0 = (
a1 + a2t2 + a3t2σ + tσ

)σ/2 = aσ/2
1 + aσ/2

2 tσ + aσ/2
3 t2 + t .

Therefore,

tσ =
(

a3
a2

)2e

t2 + 1

a2e

2

t +
(

a1
a2

)2e

. (14)

and substituting Eqs. (14) into (13), we find that Eq. (13) has at most four solutions. If
instead (0, 0, 1) ∈ C, then a3 = 0 and arguing as above we find that Eq. (13) has at most two
solutions, so |O ∩ C| ≤ 3. 
�
Corollary 4 The feet of a point P /∈ (�∞ ∪ UBT ) meet a line � in at most four points.

Proof From Lemma 5, we know we can restrict ourselves to the case b2 = 0, y1 = b1, a2 =
z2 which means we are looking at the points Pr ,s,t ∈ τP (UBT ) ∩ � have s, t satisfying

s2 + δt2 + st = y1t + a1 (15)

sσ+2 + tσ + st = y1t + z2, (16)
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where Eq. (15) represents a conic C, and Eq. (16) represents an oval O in AG(2, q). If the
conic is degenerate, the oval and conic have at most four points in common. So we may
assume that the conic is non-degenerate. The nucleus of C is N = (y1, 0, 1). We now show
that N is the nucleus of the oval O. The line t = 0 goes through N and meets the oval O
when sσ+2 = z2, which has one solution as σ +2 is a permutation of Fq . The line s + y1 = 0
through N meets the oval O when tσ = yσ+2 + z2 which has one solution for t . Therefore,
N is the nucleus, as it is the intersection of two tangent lines to the oval. It now follows from
Lemma 6 that Eqs. (15) and (16) have at most four common solutions. 
�

We now show the existence of a point P /∈ (UBT ∪ �∞) and a line � such that |� ∩
τP (UBT )| = 3, and demonstrate our bound is sharp.

Lemma 7 Consider the Equation sσ+2 + tσ + st = y1t + z2, whose solutions (s, t) are a
translation oval of AG(2, q). If y1 = 0, then the points of the oval given by Eq. (16) are

{

Pu =
(

z1−σ/2
2 uσ

1 + u + uσ
,

zσ/2
2 (1 + uσ )

1 + u + uσ

) ∣
∣
∣
∣
∣
u ∈ Fq

}

∪
{(

z1−σ/2
2 , zσ/2

2

)}
.

Proof If y1 = 0, then Eq. (16) reduces to

sσ+2 + tσ + st + z2 = 0. (17)

Using the properties ofσ described in Sect. 1.3, one can show the point (z1−σ/2
2 , zσ/2

2 ) satisfies

Eq. (17). Furthermore, the points Pu = (z1−σ/2
2 uσ , zσ/2

2 (1+uσ ), 1+u +uσ ), where u ∈ Fq ,
are projective points satisfying the following homogeneous equation

xσ+2 + yσ z2 + xyzσ + z2zσ+2 = 0.

Because TrFq /F2(u+uσ ) = 0, and TrFq /F2(1) = 1when q = 22e+1, we have uσ +u+1 �= 0

for all u ∈ Fq . Thus, normalising so z = 1, the points Pu have the form (s, t, 1) where s and
t satisfy Eq. (17). 
�
Corollary 5 Let y1 = 0 and consider the points Pu as described in Lemma 7. A point Pu lies
on the conic given by Eq. (15), if and only if u is a root of the following polynomial

aσ/2
1 uσ + (zσ−1

2 + δσ/2z2 + zσ/2
2 + aσ/2

1 )u2 + zσ/2
2 u + δσ/2z2 + aσ/2

1 . (18)

Proof By directly substituting Pu into Eq. (15) we have

(z2−σ
2 + δzσ

2 + z2 + a1)u
2σ + z2uσ + a1u2 + (δzσ

2 + a1) = 0. (19)

Raising both sides of Eq. (19) to the power of σ/2 yields our result. 
�
Theorem 3 Let U be a Buekenhout-Tits unital in PG(2, q2). The feet of a point P /∈ (�∞∪U )

meet a line � in at most four points. Moreover, there exists a line � and point P such that
|� ∩ τP (U )| = k for each k ∈ {0, 1, 2, 3, 4}.
Proof By Theorem 1 we may assume that U = UBT . The first part of the proof comes from
Corollary 4. Let P = (1, y1, z2ε). All lines through P meet τP (U ) in at most one point by
definition, so it is clear that there exists lines � such that |� ∩ τP (U )| is zero or one. Because
the points of τP (U ) are not collinear, there exists a pair of points Q, R ∈ τP (U ) such that
the line Q R does not contain (0, 1, y1). Because Q R does not contain (0, 1, y1) it cannot
have dual coordinates of the form [a1 + z2ε, y1, 1] for any a1 ∈ Fq , and so Lemma 5 applies
to Q R. Hence, the line Q R meets τP (U ) in precisely two points.
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Now consider a line �with Equation (δ +ε)x + z = 0 and let P be the point (1, 0, ε) (that
is, a1 = δ, a2 = 1, b1 = b2 = y1 = 0, z2 = 1). The number of points of � ∩ τP (U ) is the
same as the number of solutions to Eqs. (11) and (12). By Lemma 7 the points Pu satisfying
Eq. (12) lie on the conic determined by Eq. (11) when

δσ/2uσ + u = u(δσ/2uσ−1 + 1) = 0. (20)

Equation (20) has exactly two solutions as σ − 1 is a permutation of Fq : u = 0 and the

unique solution to uσ−1 = 1
δσ/2 . It can also be shown that

(
z1−σ/2
2 , zσ/2

2

) = (1, 1) satisfies
both equations. Hence, the intersection of the feet of the point (1, 0, ε) and � has exactly
three points.

Finally, consider the point P(1, 0, 1
δσ ε) and the line �with dual coordinates

[ 1
δ
+ 1

δ2
ε, 0, 1

]
.

By Corollary 5, the number of feet of P on the line � is the number of roots of the polyno-
mial (18), where a1 = 1

δ
and z2 = 1

δσ . Substituting a1 = 1
δ
and z2 = 1

δσ yields

1

δσ/2 uσ +
(

1

δ2−σ
+ 1

δ

)

u2 + 1

δ
u = 0. (21)

Since Eq. (21) describes the roots of a F2-linearised polynomial, and there are at most 4
roots, we have that the polynomial (18) has 1, 2, or 4 roots. We will show that, under the
condition TrFq /F2(δ) = 1, it has four roots. Multiplying Eq. (21) by δ yields δ1−σ/2uσ +
(δσ−1 + 1)u2 + u = 0 and now substituting a = δσ−1 + 1 gives

(aσ/2 + 1)uσ + au2 + u = 0. (22)

We find that u = 0 and u = 1
a1+σ/2 are solutions to Eq. (22). Now consider

uσ + au2 + 1 = 0. (23)

Any solution to Eq. (23) also satisfies (uσ +au2+1)σ/2+uσ +au2+1 = 0which is precisely
Eq. (22). Multiply Eq. (23) with aσ+1, then we find (aσ/2+1u)σ + (aσ/2+1u)2 + aσ+1 = 0,
and letting z = (aσ/2+1u)2,

zσ/2 + z + aσ+1 = 0, (24)

which is known (see [12]) to have solutions if and only if TrFq /F2(a
σ+1) = 0. As z = 0

and z = 1 are not solutions of Eq. (24), no solutions of Eq. (24) correspond to the solutions
u = 0 or u = 1

a1+σ/2 of Eq. (21). Furthermore, recall that Eq. (21) has 1, 2 or 4 solutions

and that we have assumed that TrFq /F2(δ) = 1. Since δσ−1 = a + 1, it follows that δ =
(a+1)σ+1 andTrFq /F2(δ) = TrFq /F2(a

σ+1+aσ +a+1) = TrFq /F2(a
σ+1)+TrFq /F2(1) =

TrFq /F2(a
σ+1) + 1. Hence, the conditions TrFq /F2(δ) = 1 and TrFq /F2(a

σ+1) = 0 are
equivalent, and we find exactly four solutions to Eq. (21). 
�
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