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Abstract
Blind signatures are a decades-old privacy enhancing technology. It is not always clearly
understood that blind signatures actually possess two separate properties: the intuitive under-
standing that the message to be signed is hidden from the signer, and the fact that the resulting
signature is unlinkable (meaning that the signer cannot later tell in which session it created
a particular signature). The question is: how exactly should these properties be defined, and
can they be defined in a natural way such that they are mutually independent yet together
imply blindness? In this paper we study this question, present formal definitions formessage
indistinguishability and signature unlinkability (and a fewmore related ones), and study their
relationships. We show that these two properties are indeed mutually independent. Unfor-
tunately their union is not equivalent to blindness in what appear to be only pathological
cases.

Keywords Blind signatures · Message indistinguishability · Signature unlinkability ·
Privacy

Mathematics Subject Classification 94A60 Cryptography

1 Introduction

David Chaum introduced blind signatures almost four decades ago [6], as the fundamental
building block to implement a form of untraceable digital cash. His proposal was to represent
each digital coin as a unique serial number blindly signed by the issuing bank. The unique
serial number embedded in the coin would prevent double spending, while the blind signature
over the coin would guarantee both untraceability (by not knowing which coin was signed)
and unforgeability (by signing the coins in the first place).
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Chaum explained blind signatures intuitively by showing how a blind signature could be
implemented in a traditional, non digital, setting using carbon paper inside paper envelopes.
To obtain a blind signature on a secret message, a user could send the message inside a
sealed envelope to the signer, with the inside of the envelope covered with carbon paper. The
carbon paper ensures that if the signer signs the envelope from the outside, the carbon paper
transfers this signature to the secret message inside the envelope. When the signer returns
the still sealed envelope (proving it didn’t see the message) all the user needs to do is to open
the envelope to obtain the blindly signed message.

This intuitive explanation clearly shows that the message stays hidden from the signer.
But this by itself is not enough to prevent a bank from tracing a digital coin signed this
way, even if it prevents the bank from learning its serial number. In fact, if the bank signs
each envelope in a slightly different way, and remembers which way of signing it used to
sign each envelope, it can link actual signatures on messages to the particular envelope on
which it put the exact same signature. In other words, in order to guarantee all the desired
security and privacy properties, blind signatures need to guarantee the following two separate
properties.

“Hiding the message”
The message to be signed is hidden from the signer.

Signature unlinkability
Given a final blind signature on a message, the signer cannot determine when it generated
that particular signature.

Perhaps due to Chaum’smetaphor, blind signatures have always informally been explained as
signatureswhere themessage to be signed is hidden from the signer. But as the above example
shows, blind signatures need to guarantee two separate faces of blindness. The question is:
how exactly should these properties be defined, and can they be defined in a natural way such
that they are mutually independent yet together imply blindness?

Although in the particular case of signing digital coins signing messages without knowing
their contents is a desirable feature, in general this is irresponsible: who would sign a contract
without knowing its terms? Therefore, in many applications partially blind signatures, where
the signer may need to know (at least part of) the message before signing it, do serve an
important purpose. Such partially blind signatures have been introduced by Abe and Fujisaki
[1], and have applications in scenarios where a user wants to prove that a certain condition
has been met, without revealing when or where that condition was met. Blind signatures can
for example be used to issue a unique and unforgeable token or receipt whenever a user has
performed a certain action (like paying a bill, visiting a checkpoint, entering or leaving a
certain location, completing some task, or satisfying any other predetermined requirement).
This token can then later be used to prove that this particular action was performed or
requirement was satisfied. This approach has been used, for example, to construct a privacy
friendly form of ticketing for public transport [7]. Blind signatures have also been used to
implement attribute based credentials [4, 5, 8].

In this paper we explore the different faces of blindness in depth, in the more general
setting of partially blind signatures. We note that our results also apply to normal blind
signatures as such signatures are equivalent to partially blind signatures where the public
message equals the empty string. In a way this paper is a dual to the paper of Schröder and
Unruh [15] that reexamines the definition of security of blind signature schemes, discovering
that the messages and their resulting signatures have some independent influence on the
overall security of the scheme.
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Two faces of blindness 2707

Fig. 1 Summary of relations

We first define partially blind signatures and their completeness and unforgeability prop-
erties in Sect. 2. We then study the two faces of blindness (message indistinguishability and
signature unlinkability) and their relationships in Sect. 3. This section also discusses mes-
sage hiding, and why message indistinguishability is the more appropriate notion to study in
this context. We show that message indistinguishability and signature unlinkability are both
implied by a partially blind signature scheme, but that they are indeed two separate notions
(in the sense that there are signature schemes that satisfy one of the two requirements, but bot
both). Unfortunately, in pathological cases the union of these two properties does not imply
blindness. We summarise and discuss our results in Fig. 1and Sect. 4. Figure1 is also useful
as a ‘cheat-sheet’ to keep track of the different properties defined throughout the paper.
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2 Completeness and unforgeability

We start with the basics: the definition of completeness and unforgeability of (partially blind)
signatures.We follow the framework for defining blind signatures provided by Juels et al. [10]
and generalised and refined for partially blind signatures by Abe and Okamoto [2, 12, 13]). In
this setting a (partially blind) signature scheme is defined as follows (where λ is the security
parameter of the scheme).1

Definition 2.1 (Signature scheme) A signature scheme � consists of four probabilistic
polynomial-time algorithms 〈G,S,U,V〉.
• G takes security parameter 1λ as input, and returns a secret key sk (to be given to the

signer only) and a corresponding public key PK (known to all parties in the system).
• S and U are in fact interactive algorithms where signer S has private input sk and pub-

lic input the public message m (with length polynomial in the security parameter λ),
while user U has private input message m (also with length polynomial in the security
parameter λ) and public input PK and m. S and U interact with each other over a public
communication channel. After the interaction, S outputs either success or fail, and U
outputs either a signature σ or ⊥. U’s output is private. S’s output is public.

• V takes as input a public key PK, public message m, a message m and a signature σ , and
outputs either accept or reject. This verification can be performed by any party.

We write outS ← S(sk,m) ⇔ U(PK,m,m) → outU for an interaction between a signer
and a user with the specified inputs, with outS as the output of the signer and outU as the
output of the user.

Definition 2.2 (Completeness) A signature scheme 〈G,S,U,V〉 is complete when for every
interaction

success ← S(sk,m) ⇔ U(PK,m,m) → σ

such that V(PK,m,m, σ ) = accept

holds with overwhelming probability (i.e., with probability 1− 2−λ), where this probability
is computed over the private coin-flips of G,S,U and V .
We return to this somewhat peculiar definition of completeness (that subsumes correctness)
in the next section.

We now define the unforgeability property.

Definition 2.3 (Unforgeability) Let 〈G,S,U,V〉 be a signature scheme and consider the fol-
lowing game between an adversarial user U∗ and a honest signer S and honest verifier
V .
1. Run G(1λ) to generate sk and PK. Give sk,PK to S and PK to U∗.
2. Let U∗ engage in polynomially (in λ) many adaptive, parallel and arbitrarily interleaved

interactions with polynomially many copies of the signer S (knowing sk). Let j be the
number of such interactions that return success for the signer.

3. Let U∗ return a list of k signatures σ1, . . . , σk for k distinct combinations of public
messages and private messages (mi ,m1), . . . , (mk,mk) such that V(PK,mi ,mi , σi ) =
accept for all i ∈ {1, . . . , k}.

1 The following definitions actually apply to arbitrary signature schemes, except that the artificial distinction
between public and private messages is only relevant for partially blind signatures.
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Adversary U∗ wins this game whenever k > j .
The signature scheme is unforgeable when every possible adversary U∗ wins this game

with at most negligible probability (i.e., probability 2−λ), where this probability is computed
over the private coin-flips of G, U∗, V and all signers S.

3 The two faces of blindness

With the above definitions for a correct and unforgeable signature scheme given we are now
ready to study the two different faces of blindness of such signature schemes.

We start with the definition of blindness itself. After that we study message indistin-
guishability in Sect. 3.2. This notion is somewhat stronger than message hiding (discussed
in Sect. 3.3). We finish with the definition of signature unlinkability in Sect. 3.4. It turns
out that it is more appropriate to focus on message indistinguishability rather than message
hiding, because the latter notion is actually implied by signature unlinkability. Throughout
this section we establish relationships between the different notions we define.

3.1 Blindness

The following definition of partial blindness is due to Abe and Okamoto [2, 13] that extends
the original defintion of blind signatures from Juels et al. [10] by allowing part of themessage
to be signed to be public.

Definition 3.1 (Blindness) Consider a signature scheme 〈G,S,U,V〉 and the following game
between an adversarial signer S∗ and two honest users U0 and U1, mediated by a challenger.

1. Run G(1λ) to generate sk and PK. Give sk,PK to S∗.
2. Adversary S∗ outputs PK, two private messages2 m0,m1, and public message m, and

gives them to the challenger.
3. The challenger randomly selects b ∈ {0, 1} and sets b̄ = 1 − b. It sets up user U0 with

input (PK,m,mb) and user U1 with input (PK,m,mb̄).
4. S∗ is given oracle access to each of these users to engage in the blind signature protocol

with each of them, mediated by the challenger.3

5. Let σb be the result returned by U0 and σb̄ be the result returned by U1. If both signatures
are valid, the challenger gives (σ0, σ1) to S∗, in that fixed order. Give ⊥ to S∗ otherwise.

6. S∗ outputs b′ ∈ {0, 1}.
Adversary S∗ wins this game whenever b′ = b. The signature scheme is blind when every
possible adversary S∗ wins this game with at most negligible advantage (i.e. probability
1/2 ± 2−λ), where the probability is computed over the coin-flips of S∗ and the private
coin-flips of U0 and U1.

Note that in this definition, as well as the ones that follow, we assume that the adversarial
signer knows which of the users (U0 or U1) it is interacting with during the protocol.

The above definition is taken from [13], which differs in one significant aspect from [12]
(the published conference version that precedes the full paper [13]) as follows. Step 5 in the
game above originally read:

2 Observe that these two messages are not required to be distinct.
3 Observe that in this game (and the ones that follow) we do not need to allow the adversary to engage in
polynomial many runs, for the simple reason that the adversary is now the signer, who given the private key
can simulate all runs for himself.
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5’ Let σb be the result returned by U0 and σb̄ be the result returned by U1. If both signatures
are valid, the challenger gives (m,mb, σb) and (m,mb̄, σb̄) toS∗ in arbitrary order. If only
one of the signatures is valid, the challenger gives that signature and the corresponding
message to S∗. Give ⊥ to S∗ otherwise.

In other words: the original game allows that even if only one of the signatures is valid, the
challenger gives that signature and the corresponding message to S∗. This leaves a blind
signature scheme open to the following generic attack.

1. Adversary S∗ outputs PK and two private messages m0,m1, and public message m, and
gives them to the challenger.

2. The challenger randomly selects b ∈ {0, 1} and sets b̄ = 1 − b. It sets up user U0 with
input (PK,m,mb) and user U1 with input (PK,m,mb̄).

3. S∗ engages in the blind signature protocol, but only with U0. It aborts its interaction with
U1 which therefore returns ⊥. (Note: U1 can also return a random value, but definitely
not a valid signature as this requires the cooperation of S∗, so this is easily detected in
the next step.)

4. Let σb be the result returned by U0. As the other signature equals ⊥ the challenger
therefore gives (mb, σb) to S∗ as its challenge.

5. This is no game for S∗: using its knowledge of m0 and m1 it quickly sees which of the
two was given to U0 to sign. S∗ outputs b ∈ {0, 1} and wins.

Clearly this is not desirable, which probably explains why the definition is amended in the
full paper.

3.2 Message indistinguishability

We now turn our attention to the message indistinguishability property, stating that the adver-
sary cannot distinguish which of two known messages it is actually asked to sign by a user.

Definition 3.2 (Message indistinguishability) Let 〈G,S,U,V〉 be a signature scheme and
consider the following game between an adversarial signer S∗ and a honest user U , mediated
by a challenger.

1. Run G(1λ) to generate sk and PK. Give sk,PK to S∗.
2. Adversary S∗ outputs PK and two private messages m0,m1, and public message m, and

gives them to the challenger.
3. The challenger randomly selects b ∈ {0, 1}. It sets up user U with input PK,m,mb.
4. S∗ is given oracle access to the user to engage in the blind signature protocol with it,

mediated by the challenger.
5. Let σ be the result returned by U . This is hidden from S∗.4
6. S∗ outputs b′ ∈ {0, 1}.
Adversary S∗ wins this game whenever b′ = b.

The signature scheme is message indistinguishable when every possible adversary S∗
wins this game with at most negligible advantage (i.e., probability 1/2 ± 2−λ), where the
probability is computed over the coin-flips of S∗ and the private coin-flips of U .

4 Note that we cannot give σ to S∗, as this would allow S∗ to easily test which message was signed using
the public verification function. The adversarial signermust derive information about the message signed only
from the transcript of the protocol run.
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We first offer an example of a signature scheme that is message indistinguishable, as this
is useful in the proofs that follow. This signature scheme requires a semantically secure
encryption scheme {}k that satisfies the following property.

Property 3.1 Given c, m and k such that c = {m}k , the probability to find m′ �= m and a
potentially different key kx such that c = {m′}kx is negligible.
One might think that an authenticated encryption scheme perhaps fits the bill [3]. Unfortu-
nately this is in general not the case.5 Luckily, a special mode of authenticated encryption
called CCM (that combines CTR encryption with a CBC-MAC using the same key k) satisfies
this property. CCM is a stream cipher that roughly works as follows (see [9] for details).

• Let Ek () be a pseudo-random function (it could be a block cipher or a hash function
keyed by k).

• Let m be a message whose length is a multiple of the block length of this underlying
block cipher, and write m = m1 ‖ . . . ‖mz .

• Compute the tag t for message m by using Ek () in CBC mode: define t1 = Ek (m1), let
ti+1 = Ek (mi+1 ⊕ ti ) and let t = tz . We write t = Tk (m) Again (for simplicity) tags are
assumed to be exactly as long as a single block.

• Compute the key stream blocks Ai by encrypting a counter with k, i.e., Ai = Ek (i).
• The full CCM ciphertext is obtained by XOR-ing m ‖ t with A0 ‖ . . . ‖ Az .

CCM is known to be semantically secure [9]. We show it also satisfies property 3.1.

Lemma 3.1 Let {m}k be the CCM authenticated encryption scheme described above. Such a
scheme satisfies property 3.1.

Proof Suppose we have c = (m ‖ t) ⊕ (A0 ‖ . . . ‖ Az), where Ai = Ek (i) and t = Tk (m).
Let c = c0 ‖ . . . ‖ cz . If we focus on the tag part, then to break the property we need to find
m′ and kx such that c = (m′ ‖ t ′) ⊕ (A′

0 ‖ . . . ‖ A′
z), where A′

i = Ekx (i) and t ′ = Tkx (m
′).

This entails finding m′ and kx such that cz = t ′ ⊕ A′
z = Tkx (m

′) ⊕ Ekx (z). In this equation
cz and z are fixed. The adversary is free to choose kx but this fixes m′ as well as it needs to
match c when xor-ed with (A′

0 ‖ . . . ‖ A′
z−1). If we model the pseudo-random function Ek ()

as a random oracle [11], it is extremely unlikely that it is possible to meet these constraints:
for every possible choice of k there is exactly one possible mapping of the random oracle for
Ekx (z) that satisfies the equation, which only happens with negligible probability. ��
Construction 3.1 (Message indistinguishable signature scheme) Let � = 〈G,S,U,V〉 be
any ordinary unforgeable and complete signature scheme (where U submits the message m
to be signed in plaintext to S; we are abusing notation somewhat). Let {m}kU be the CCM
authenticated encryption scheme discussed above.

Define the message indistinguishable signature scheme �′ = 〈G′,S ′,U ′,V ′〉 as follows.
G′ equals G creating signing key kS and verification key KS .

User U ′, before submitting a message m to be signed, generates a key kU ′ . It encrypts the
message m as c = {m}kU ′ using the CCM encryption scheme and sends this to the signer
who creates the intermediate signature σ ′ = [c ‖m]kS (using its knowledge of kS and public

5 In fact, the general Encrypt-then-MAC approach using encryption key kE and tagging key kT (that returns
the pair (c, t) as ciphertext where c = EkE (m) and t = SkT (c)) does not work because kE and kT are unrelated.
Given (c, t) as an encryption of m against key kE , kT , we can pick an arbitrary key kE′ , use it to decrypt c
to obtain m′ such that c = EkE′ (m′) and leave the tag alone. Then (c, t) is a valid encryption for m′ as well
(based on keys kE′ and kT ).
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parameter m). It returns this to U who adds kU ′ to create the final signature σ = (σ ′, kU ′).
U ′ outputs σ and S ′ outputs success. This describes S ′ and U ′.

Signature verification V ′ then runs as follows. Given KS , σ , m, and m, the verifier first
uses kU embedded in σ to reconstruct c = {m}kU . It then verifies that indeed σ = [c ‖m]kS
using the public key KS and the original signature verification function V .
Lemma 3.2 The signature scheme in construction 3.1 is message indistinguishable according
to definition 3.2.

Proof The construction matches the (syntactic) constraints of Definition 2.1, and it is easily
seen to be complete as defined in 2.2.

We rely on Property 3.1 to prove unforgeability (Definition 2.3). If the blind signature
scheme would be forgeable, a user U∗ would be able to return k signatures σ1, . . . , σk for
k distinct messages (m1,m1), . . . , (mk,mk) such that V(PK,mi ,mi , σi ) = accept for all
i ∈ {1, . . . , k}, when given only j < k such message/signature pairs. By definition, the
underlying standard signature scheme is not forgeable. By the pigeonhole principle then there
should be two signatures σi = (σ ′

i , ki) and σ j = (σ ′
j , kj) such that σ ′

i and σ ′
j are signatures

over the equal strings ci ‖mi and c j ‖m j . Then mi = m j and ci = {mi }ki = {m j }kj = c j
while (mi ,mi ) �= (m j ,m j ) by assumption. This contradicts property 3.1.

Because the encryption scheme is semantically secure, this signature scheme is message
indistinguishable according to definition 3.2. ��
We first show that blindness implies message indistinguishability.

Theorem 3.1 Consider a signature scheme � = 〈G,S,U,V〉 that is blind according to
Definition 3.1. Then � is message indistinguishable according to Definition 3.2.

Proof Intuitively the argument runs as follows. Because the signer knows that b selects
which message user U0 will offer for signing, if the signature scheme were not message
indistinguishable, the signer could trivially guess b correctly (even when not given mb). The
formal proof requires a bit more work.

Suppose not. So there is an adversarial signer S∗ for the game defined in Definition 3.2.
We turn it into an adversarial signer S∗∗ for the game defined in Definition 3.1 as follows.

1. S∗∗ starts S∗, which returns PK and two private messages m0,m1, and public
message m.

2. S∗∗ forwards these to the challenger from Definition 3.1.
3. Let this challenger randomly select b ∈ {0, 1}, set b̄ = 1 − b, giving user U0 the input

(PK,m,mb) and user U1 the input (PK,m,mb̄).
4. Set up both users to be ready to engagewithS∗∗ in the blind signature protocol (according

to the game defined in 3.1).
5. S∗∗ is merely a mediator now, relaying messages between the users and S∗. It actually

runs the interactive blind signing protocol only between user U0 and S∗. (It aborts the
other instance.) Observe how this corresponds to the challenge that S∗ is supposed to get
according to Definition 3.2.

6. Let σb be the result returned by U0. (The other user returns ⊥.)
7. Because one of the signatures fails to be created, according to the blindness game defined

for Definition 3.1, the challenger gives ⊥ to S∗∗, who simply discards it.
8. S∗ outputs b′ ∈ {0, 1}, which S∗∗ forwards as its own output for this challenge.

The output b′ of S∗ corresponds to the challenge U0,PK,m,mb. If b = b′, then by construc-
tion b′ is also the correct response to the challenge given to S∗∗. This shows that advantage
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of S∗∗ the same of that of S∗, i.e., non-negligible, contradicting the premise of the theorem.
��

The converse does not hold however: there are message indistinguishable signature schemes
that are not blind as the following theorem demonstrates. This shows that message
indistinguishability is a strictly weaker notion.

Theorem 3.2 Consider a signature scheme � = 〈G,S,U,V〉 that is message indistin-
guishable according to Definition 3.2. This does not imply that � is blind according to
Definition 3.1.

Proof Let � be the signature scheme from Construction 3.1. This is message indistinguish-
able according to Lemma 3.2.

Clearly this signature scheme is not really blind: a malicious signer can record for each
run the signature σ ′ it generated. It can then always win the game in Definition 3.1: it
now knows the σ ′

b it created while interacting with U0, which it can match to (σ0, σ1) =
((σ ′

0, kUb), (σ
′
1, kUNb)) (where σ ′

b is the signature over mb). This reveals b.
We conclude that message indistinguishability does not imply blindness, and thus the

theorem follows. ��

3.3 Message hiding

Message indistinguishability is a very strong property (it is in fact very similar to semantic
security definitions for encryption schemes [11]), but perhaps this property is somewhat
counter intuitive and perhaps even stronger than needed for the typical scenario where blind
signatures are used: there we typically want to prevent the signer from learning a random
message (think a random sequence number) someone else submits for signing. This notion
is captured in the following definition of message hiding.

Definition 3.3 (Message hiding, strong version) Let 〈G,S,U,V〉 be a signature scheme and
consider the following game between an adversarial signerS∗ and an honest userU , mediated
by a challenger.

1. Run G(1λ) to generate sk and PK. Give sk,PK to S∗.
2. Adversary S∗ outputs PK and public message m, and gives them to the challenger.
3. The challenger randomly selects a private message m ∈ {0, 1}λ, and sets up an instance

of a user U with input PK,m,m.
4. S∗ is given oracle access to user U to engage in the blind signature protocol with it,

mediated by the challenger.
5. Let σ be the signature returned by U . The challenger gives σ to S∗.
6. S∗ outputs m′ ∈ {0, 1}λ.
Adversary S∗ wins this game whenever m′ = m.

The signature scheme ismessage hidingwhen every possible adversary S∗ wins this game
with at most negligible probability (i.e., probability at most 2−λ), where the probability is
computed over the coin-flips of S∗ and the private coin-flips of U .

Blind signature schemes that only offer message hiding are for instance used in the Idemix
attribute based credential system to hide the master secret m1 from the credential issuer [8].
A trivial implementation of such a blind signature scheme in the random oracle model would
be one where the messagem to be signed is first hashed using a cryptographic hash function h
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and subsequently sending the resulting hash h(m) to the signer to be signed with an arbitrary
traditional (non-blind) signature scheme.6

This shows that message hiding is a strictly weaker notion than (general) blindness. But
does message indistinguishability imply message hiding, or the other way around? In fact
not when we define message hiding as above.

Theorem 3.3 Consider a signature scheme � = 〈G,S,U,V〉 that is message hiding accord-
ing to Definition 3.3. This does not imply that � is message indistinguishable according to
Definition 3.2.

Proof Consider the basic message hiding signature scheme above. Let h be a hash function
modelled as a random oracle. This guarantees that no adversary is able to recover m given
h(m).

Let the signer use an ordinary signature scheme with signing key kS and verification key
KS to compute the signature σ on a string s as [s]kS . A message hiding signature scheme
is one where the user, wishing to compute a signature on a public message m and a private
messagem computesm ‖ h(m) and sends this to the signer to sign. The signature then equals
[m ‖ h(m)]kS . To verify such a signature, the verifier is givenm andm, computesm ‖ h(m) and
uses checks the signature σ using the underlying traditional signature verification function.

The construction matches the (syntactic) constraints of Definition 2.1, and it is easily seen
to be complete as defined in 2.2.

The construction is also (strongly)message hiding according toDefinition 3.3. Suppose the
challenger returns a signature σ after the query phase. If the adversary is able to successfully
guess m′ such that σ = [m ‖ h(m′)]kS then this essentially means the adversary was able to
compute m′ = m while observing the hashes h(m) sent during the signing process. This is
contrary to the assumption on h.

The thus constructed signature scheme is clearly not message indistinguishable according
to Definition 3.2. If the adversary selects m,m0,m1 and receives m ‖ h(mb) for signing, it
easily checks which of the two m0 and m1 matches h(mb) to correctly guess b. ��
Theorem 3.4 Consider a signature scheme � = 〈G,S,U,V〉 that is message indistinguish-
able according to Definition 3.2. This does not imply that � is message hiding according to
Definition 3.3.

Proof Let� be the message indistinguishable signature scheme from Construction 3.1. Sup-
pose we tweak it a bit such that the signature returned by the user equals σ = (σ ′, kU ,m,m).
This tweak does not affect message indistinguishability, for in that game σ is not given to
the adversary as part of the challenge. However, in the message hiding game as defined in
Definition 3.3, the adversary does get σ and thus trivially wins that game. The result follows.

��
So message indistinguishability and strong message hiding are incomparable notions.

However, a weaker notion of message hiding (that does not give the adversary access to
the generated signatures) does follow from message indistinguishability. For that we have
to weaken the definition a bit by not giving the adversarial signer the set of final signatures
obtained by the user(s). The formal definition is as follows.

Definition 3.4 (Message hiding) Let 〈G,S,U,V〉 be a signature scheme and consider the
following game between an adversarial signer S∗ and a honest user U , mediated by a
challenger.

6 Idemix uses a Pedersen style commitment [14] instead of a hash function to blind the secret master key.
This makes it possible to prove knowledge of this secret in a zero knowledge proof later.
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1. Run G(1λ) to generate sk and PK. Give sk,PK to S∗.
2. Adversary S∗ outputs PK and public message m, and gives them to the challenger.
3. The challenger randomly selects a private message m ∈ {0, 1}λ, and sets up an instance

of a user U with input PK,m,m.
4. S∗ is given oracle access to user U to engage in the blind signature protocol with it,

mediated by the challenger.
5. Let σ be the signature returned by U . σ is hidden from S∗
6. S∗ outputs m′ ∈ {0, 1}λ.
Adversary S∗ wins this game whenever m′ = m.

The signature scheme ismessage hidingwhen every possible adversary S∗ wins this game
with at most negligible probability (i.e., probability at most 2−λ), where the probability is
computed over the coin-flips of S∗ and the private coin-flips of U .
Theorem 3.5 Consider a signature scheme � = 〈G,S,U,V〉 that is message indistinguish-
able according to Definition 3.2. Then � is message hiding according to Defintion 3.4.

Proof Suppose not. So there is an adversarial signerS∗ for the game defined inDefinition 3.4.
We turn it into an adversarial signer S∗∗ for the game defined in Definition 3.2 as follows.

1. S∗∗ starts S∗, which returns PK and m.
2. S∗∗ essentially operates as the challenger for S∗ using whatever it learns in the process

to solve its own challenge.
3. S∗∗ does the following. It generates two fresh private messages m0,m1 and uses the

public message m it got from S∗ and forwards these together with PK received from
S∗ to its own challenger in Definition 3.2. This challenger sets up a user with input
PK,m1,mb (depending on its hidden coin flip b) to which S∗∗ is given oracle access to,
to engage in the blind signature protocol. S∗∗ forwards this oracle access to S∗.

4. After S∗ has finished interacting with its oracles, is outputs a guess m′ (to S∗∗). When
m′ = mb′ as in step 3 for b′ ∈ 0, 1, S∗∗ returns b′ otherwise it returns a random bit.

If S∗ guesses m′ correctly, then m′ = mb given to user U as part of S∗∗ challenge in step 3.
The probability that this happens is non-negligible. We conclude that the advantage of S∗∗
guessing b is also non-negligible.

��

3.4 Signature unlinkability

We now turn to the definition of signature unlinkability. The challenge is to define it in such
a way that it does not immediately imply the message indistinguishability property (and
thus would be almost equivalent to the general blindness property). We solve this by letting
the challenger generate the messages to be signed and giving the signer only the resulting
signatures in random order.

Definition 3.5 (Signature unlinkability) Consider a signature scheme 〈G,S,U,V〉 and the
following game between an adversarial signer S∗ and two honest users U0 and U1.

1. Run G(1λ) to generate sk and PK. Give sk,PK to S∗.
2. Adversary S∗ outputs PK, and a public message m, and gives them to the challenger.
3. The challenger generates two messages7 m0,m1 and sets up user U0 with input

(PK,m,m0) and user U1 with input (PK,m,m1).

7 Again not necessarily distinct.
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4. S∗ is given oracle access to both users to engage in the blind signature protocol with both
of them, mediated by the challenger.

5. Let σ0 be the result returned by U0 and σ1 be the result returned by U1.
6. If any of the signatures is invalid, the challenger gives⊥ to S∗.8 Otherwise the challenger

randomly selects b ∈ {0, 1} and sets b̄ = 1− b. The challenger gives σb and σb̄ to S∗ in
that order.

7. S∗ outputs b′ ∈ {0, 1}.
Adversary S∗ wins this gamewhenever b′ = b. The signature scheme is signature unlinkable
when every possible adversary S∗ wins this game with at most negligible advantage (i.e.,
probability 1/2 ± 2−λ), where the probability is computed over the coin-flips of S∗ and the
private coin-flips of U0 and U1.

We note that Chaum’s untraceable payment scheme [6] uses a blind signature scheme that is
strongly message hiding and is signature unlinkable as well.

The following signature unlinkable signature scheme (which is a slight modification of
Chaum’s blind signature scheme) is useful in the proofs of some of the following theorems.
We omit the public message m for simplicity.

Construction 3.2 (Signature unlinkable signature scheme) Define a signature unlinkable
signature scheme � = 〈G,S,U,V〉 as follows. Let h1, h2 be two cryptographic hash
functions.

G generates a RSA key pair, and publishes the public key (n, e) while giving the
corresponding private key (d, n) to the signer.

A user submitting m for signing first computes r = h1(m) and then sends m′ =
h2(m)re mod n to the signer. The signer computes σ ′ = m′d mod n and returns it to the
user. The user computes σ = σ ′/r as the final signature. This defines S and U .

V takes as input m and σ and returns whether σ e mod n = h2(m).

The careful observer will have noted that this is essentially Chaum’s blind signature protocol
with r derived from m (making it no longer blind as we shall see shortly) while m cannot be
recovered from the signature by hiding it using h2.

Lemma 3.3 The signature scheme from Construction 3.2 is signature unlinkable according
to Definition 3.5.

Proof The construction matches the (syntactic) constraints of Definition 2.1 (disregarding
the public message m), and it is easily seen to be complete as defined in 2.2 using the fact
that we have (re)d mod n = 1 in RSA, and the result σ = h2(m)d mod n is a traditional
RSA signature over h(m′).

This signature scheme is signature unlinkable. As in the game defined in Definition 3.5 the
challenger generates m0 and m1, the adversarial signer S∗ does not know them. By playing
the game S∗ learns:

• m′
0 = h2(m0)re0 mod n (and that it is computed by U0),

• m′
1 = h2(m1)re1 mod n (and that it is computed by U1),

• σ0 = h2(m0)
d mod n and σ1 = h2(m1)

d mod n given in the order defined by a random
bit b.

8 We cannot allow one of these outputs to be ⊥ instead of a real signature, as that would trivially allow an
adversary to distinguish the instance used to generate it. See the discussion in the footnote for Definition 3.1
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S∗ needs to guess b based on this information (and its knowledge of the public key (n, e)).
As h1 and h2 are random oracles, the value S∗ learns for m′

0 could actually correspond to
h2(m1)re1 mod n (and vice versa). So the information it relies on to decide on the value for
b could just as well be used to argue for the opposite value.

��
We first show that blindness implies signature unlinkability.

Theorem 3.6 Consider a signature scheme � = 〈G,S,U,V〉 that is blind according to
Definition 3.1. Then � is signature unlinkable according to Definition 3.5.

Proof Suppose not. So there is an adversarial signerS∗ for the game defined inDefinition 3.5.
We turn it into an adversarial signer S∗∗ for the game defined in Definition 3.1 as follows.

1. S∗∗ starts S∗, which returns PK and m.
2. S∗∗ generates two distinct messagesm0,m1 and sends them to the challenger along with

PK and m.
3. The challenger randomly selects b ∈ {0, 1} and sets b̄ = 1 − b. It sets up user U0 with

input (PK,m,mb) and user U1 with input (PK,m,mb̄).
4. S∗∗ engages in the blind signature protocol with both users, mediated by the challenger.

It does so by relaying all messages to and from S∗.9
5. Let σb be the result returned by U0 and σb̄ be the result returned by U1. If both signatures

are valid, then the challenger gives (σ0, σ1) to S∗∗ in that order by definition.10 Otherwise
it returns ⊥ to S∗∗.

6. S∗∗ forwards σ0 and σ1 in that order to S∗ as the challenge.
7. S∗ outputs b′ ∈ {0, 1}, which S∗∗ forwards as its own output for this challenge.

We observe that if S∗ outputs b′ it believes the first signature (σ0, corresponding tom0) given
as a challenge was generated while interacting with user Ub′ . Which is the case if b′ equals b
generated by the challenger for the game defined in Definition 3.1. This means that b′ is also
the correct response to the challenge given to S∗∗. This shows that the advantage of S∗∗ is
the same of that of S∗, i.e., non-negligible, contradicting the premise of the theorem. ��
The signature scheme from Construction 3.2 allows us to prove that the converse does
not hold: there are signature unlinkable signature schemes that are not blind as the fol-
lowing theorem demonstrates. This shows that also signature unlinkability (like message
indistinguishability) is a strictly weaker notion.

Theorem 3.7 Consider a signature scheme � = 〈G,S,U,V〉 that is signature unlinkable
according to Definition 3.5. This does not imply that � is blind according to Definition 3.1.

Proof Consider the signature scheme from Construction 3.2, which is signature unlinkable
according to Lemma 3.3.

This scheme is clearly not blind: using its knowledge of m0 (that the adversary chooses
according to Definition 3.1) the adversarial signer S∗ can compute r0 = h1(m0) and hence
m′

0 = h2(m0)re0 mod n that either user U0 or user U1 will submit for signing. This allows S∗
to tell which of two users was given m0 as input by the challenger, and therefore allows S∗
to correctly guess b. ��
9 Observe how we use the fact that in Definition 3.5 the challenger in the signature unlinkability game (here
simulated by S∗∗) randomly selects m0 and m1 before giving them to U0 and U1 without revealing them to
S∗: if S∗∗’s own challenger picks b = 1, it is as if S∗∗ (simulating S∗’s challenger) picked m1 (for U0) and
m0 (for U1) instead.
10 Note how S∗∗’s own challenger therefore swaps the signatures generated by the users based on its hidden
random bit b.
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A very similar proof can be used to prove the following theorem.

Theorem 3.8 Consider a signature scheme � = 〈G,S,U,V〉 that is signature unlinkable
according toDefinition3.5. This does not imply that� ismessage indistinguishable according
to Definition 3.2.

Proof Again consider the signature scheme from Construction 3.2, which is signature
unlinkable according to Lemma 3.3.

This signature scheme is not message indistinguishable according to Definition 3.2 how-
ever. In the message indistinguishability game the adversarial signer knows m0 and m1 and
therefore can compute rb = h1(mb) and m′

b = h2(mb)reb mod n for b ∈ {0, 1}. It can there-
fore tell which of the two messages the challenger submits for signing and hence can always
correctly guess b and win the game.

��
The reverse is also true.

Theorem 3.9 Consider a signature scheme � = 〈G,S,U,V〉 that is message indistinguish-
able according to Definition 3.2. This does not imply that� is signature unlinkable according
to Definition 3.5.

Proof Consider the message indistinguishable signature scheme in Construction 3.1, where
the message to be signed is first CCM encrypted as c = {m}kU under a random key kU . The
signer creates the intermediate signature σ ′ = [c ‖m]kS . It returns this to U who adds kU to
create the final signature σ = (σ ′, kU ).

This scheme is however not signature unlinkable according to Definition 3.5. Suppose the
adversarial signer keeps the intermediate signatures σ ′

0 and σ ′
1 it generated while interacting

with user U0 and user U1 respectively. As in the proof of theorem 3.2 it can match these with
σb = (σ ′

b, kUb) and σb̄ = (σ ′̄
b
, kUNb) and hence guess b correctly. ��

This shows that message indistinguishability and signature unlinkability are indeed separate
notions.

We will now explore the relationship between signature unlinkability and other notions
defined in this paper. For example,what is the relationship between signature unlinkability and
message hiding? The blind signature scheme underlying the Idemix attribute based credential
scheme [5, 8] is in fact only strongly message hiding but not signature unlinkable.11 This
proves the following theorem.

Theorem 3.10 Consider a signature scheme � = 〈G,S,U,V〉 that is strongly message hid-
ing according to Definition 3.3. This does not imply that� is signature unlinkable according
to Definition 3.5.

11 The CL signature over a message (m0, . . . ,mk ) equals (A, e, v) such that

A =
⎛
⎝Z

k∏
i=0

R
mi
i Sv

⎞
⎠
1/e

mod n .

where Z , Ri , S and n are part of the public key. A and e are generated by the signer, which makes this
scheme trivially signature linkable. When submitting a message for signing, the user submits a commitment∏k

i=0 R
mi
i Sv′

to that message to hide it. And to use such a credential in an unlinkable fashion, the main goal
of Idemix, the user does not reveal A and e but simply proves their existence to the verifier in zero knowledge.
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The other way around, signature unlinkability does imply (weak) message hiding (which
explains why we need the slightly stronger notion of message indistinguishability).

Theorem 3.11 Consider a signature scheme � = 〈G,S,U,V〉 that is signature unlinkable
according to Definition 3.5. Then � is message hiding according to Definition 3.4.

Proof The proof is very similar to the proof of theorem 3.5.
Suppose not. So there is an adversarial signer S∗ for the game defined in Definition 3.4.

We turn it into an adversarial signer S∗∗ for the game defined in Definition 3.5 as follows.

1. S∗∗ starts S∗, which returns PK and m.
2. S∗∗ essentially operates as the challenger for S∗ using whatever it learns in the process

to solve its own challenge.
3. S∗∗ forwards m to its own challenger. This challenger generates two messages m0 and

m1 and sets up a user U0 with input (PK,mi ,m0) and a user U1 with input (PK,m,m1).
S∗∗ is given oracle access to both users to engage in the blind signature protocol with
both of them, mediated by the challenger. For U0 it forwards oracle access to S∗. For U1,
S∗∗ interacts with this oracle itself. This way S∗ is set up exactly as in the definition of
the game in 3.4

4. After S∗ has finished interacting with its oracles, it outputs a guess m′ (to S∗∗).
For the signature unlinkability game S∗∗ is playing, S∗∗ asks for its challenge. If both
signatures (σ0 generated by U0 and σ1 generated by U1) in step 3 are valid it receives σb
and σb̄ (depending on the private coin flip b of its challenger) in that order.
It then checks whether σb or σb̄ is a valid signature over m′ (the guess returned by S∗).
In the first case it returns b′ = 0, in the second case it returns b′ = 1. If neither is the
case it returns a random bit b′.

By assumption with some non-negligible probability, m′ returned by S∗ corresponds to the
oracle set up by S∗∗ in step 3. Then m′ = m0 (as S∗ never interacted with U1). So if m′
matches σb (the first signature in its challenge), σb must be a signature over m0 and hence
b = 0. And if it matches σb̄, then b = 1 instead. We see that in this case b′ = b and hence
the adversary wins. As we already concluded that this case happens with non-negligible
probability, the conclusion follows. ��
The reverse of this theorem does not hold, by 3.9 and 3.5.

3.5 Message indistinguishability and signature unlinkability

We have so far shown that signature blindness can be separated into two separate properties,
message indistinguishability and signature unlinkability, that are indeed independent: one
does not imply the other, and neither on its own implies blindness. The natural question to
ask is whether message indistinguishability and signature unlinkability together do imply
blindness. That would be a nice conclusion, as it would show that the proposed separation
is ideal in the sense that both properties capture all what makes a signature scheme blind.
Unfortunately, this is not the case if we do not rule out pathological cases of misbehaving
users, as the following theorem shows.

Theorem 3.12 Consider a signature scheme� = 〈G,S,U,V〉 that is message indistinguish-
able according to Definition 3.2 and signature unlinkable according to Definition 3.5. This
does not (in general) imply that � is blind according to Definition 3.1.
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Proof Let � be a blind signature scheme according to 3.1. Modify � as follows to create a
new signature scheme �′. Pick a particular message m̃. If σ is the signature returned by user
U when interacting with S, define U ′ to return the tuple (σ, β) where β is a random identity
except when U ′ wants a signature on message m̃. In that case β equals the identity of U .

Clearly, �′ is no longer blind. The adversarial signer can always commit to messages
m0 = m̃ and m1 to the challenger. Depending on its private bit b, the challenger gives m̃
to either U0 or U1. Whichever it is, it will return a signature (σ0, b) over m̃ while the other
returns (σ1, β) over m1 where β is random.

When challenged, the adversary receives (σ0, b), (σ1, β) in that order. It returns the b it
finds in the first signature which by construction is always equal to the private bit chosen by
the challenger. In other words, the adversary wins.

In the message indistinguishability game of Definition 3.2, the adversary doesn’t receive
the final signatures. Therefore its view when interacting with S ′ is exactly the same as when
interacting with S. We conclude that �′ is also message indistinguishable.

In the signature unlinkability game of Definition 3.5, the adversary does not get to pick
the messages to be signed. Instead, the challenger does. With overwhelming probability, m̃
is not among the messages chosen by the adversary. As a result, the β component of both
challenge signatures is random and can be ignored, i.e. the advantage of the adversary against
�′ is no better than against �. We conclude that �′ is signature unlinkable. ��

4 Conclusions

A summary of our results is presented in Fig. 1, where we write A → B when A implies B.
And we write A |− B when B � A, i.e., if A does not logically follow from B (or, B does
not imply A).

Compiling this figure, we made use of the following transitivity rules governing the
relationships among the several notions we defined in this paper.

• A → B and B → C implies A → C .
• A |− B and B → C implies A |− C .
• A → B and B |− C implies A |− C .

As can be seen from the picture, this paper shows that signature blindness can be decom-
posed into two separate and indeed independent properties: message indistinguishability and
signature unlinkability. The more natural notion of message hiding cannot be used for this
purpose as it is implied by signature unlinkability.

Unfortunately combining signature unlinkability and message indistinguishability does
not give back blindness, although this appears to be the case only in pathological cases. We
have so far been unable to prove a restricted version of such a theorem ruling out certain
classes of users, and neither did we find a less pathological counterexample. This is left for
further research.

I am grateful to the anonymous reviewers for their comments and suggestions that really
helped improve the paper.
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