
Designs, Codes and Cryptography (2023) 91:2917–3034
https://doi.org/10.1007/s10623-023-01219-3

(Compact) Adaptively secure FE for attribute-weighted sums
from k-Lin

Pratish Datta1 · Tapas Pal2

Received: 7 July 2022 / Revised: 13 December 2022 / Accepted: 13 March 2023 /
Published online: 25 May 2023
© The Author(s) 2023

Abstract
This paper presents the first adaptively simulation secure functional encryption (FE) schemes
for attribute-weighted sums. In the proposed FE schemes, attributes are viewed as vectors and
weight functions are arithmetic branching programs (ABP). We present two schemes with
varying parameters and levels of adaptive simulation security.

(a) We first present a one-slot scheme supporting a bounded number of ciphertext queries
and an arbitrary polynomial number of secret key queries both before and after the
ciphertext queries. This is the best possible level of security one can achieve in the
adaptive simulation-based framework. The scheme also achieves indistinguishability-
based adaptive security against an unboundednumber of ciphertext and secret key queries.

(b) Next, bootstrapping from the one-slot scheme, we present an unbounded-slot scheme
that can support a bounded number of ciphertext and pre-ciphertext secret key queries
while supporting an a-priori unbounded number of post-ciphertext secret key queries.

Both schemes enjoy ciphertexts that do not grow with the number of appearances of the
attributes within the weight functions. The schemes are built upon prime-order asymmetric
bilinear groups and the security is derived under the standard (bilateral) k-Linear (k-Lin)
assumption. Our work resolves an open problem posed by Abdalla et al (In: CRYPTO,
Springer, NewYork, 2020), where they presented an unbounded-slot FE scheme for attribute-
weighted sum achieving only semi-adaptive simulation security. Technically, we extend the
recent adaptive security framework of Lin and Luo (In: EUROCRYPT, Springer, New York,
2020), devised to achieve compact ciphertexts in the context of indistinguishability-based
payload-hiding security, to the setting of simulation-based adaptive attribute-hiding security.

Communicated by L. Chen.

This is the full version of an extended abstract that has appeared in ASIACRYPT 2021.

B Tapas Pal
tapas.pal.wh@hco.ntt.co.jp; tapas.pal@iitkgp.ac.in

Pratish Datta
pratish.datta@ntt-research.com

1 NTT Research, Sunnyvale, CA 94085, USA

2 NTT Social Informatics Laboratories, Tokyo 180-8585, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-023-01219-3&domain=pdf
http://orcid.org/0000-0001-6278-0418

2918 P. Datta, T. Pal

Keywords Functional encryption · Attribute-weighted sums · Adaptive · Simulation
security

Mathematics Subject Classification 94A60

1 Introduction

Functional encryption Functional encryption (FE), formally introduced byBoneh et al. [20]
and O’Neill [59], redefines the classical encryption procedure with the motivation to over-
come the limitation of the “all-or-nothing” paradigmof decryption. In a traditional encryption
system, there is a single secret key such that a user given a ciphertext can either recover the
whole message or learns nothing about it, depending on the availability of the secret key.
FE in contrast provides fine grained access control over encrypted data by generating artistic
secret keys according to the desired functions of the encrypted data to be disclosed. More
specifically, in a public-key FE scheme for a function classF , there is a setup authority which
produces a master secret key and publishes a master public key. Using the master secret key,
the setup authority can derive secret keys or functional decryption keys SK f associated to
functions f ∈ F . Anyone can encrypt messagesmsg belonging to a specified message space
msg ∈ M using the master public key to produce a ciphertext CT. The ciphertext CT along
with a secret key SK f recovers the function of the message f (msg) at the time of decryption,
while unable to extract any other information about msg. More specifically, the security of
FE requires collusion resistancemeaning that any polynomial number of secret keys together
cannot gather more information about an encrypted message except the union of what each
of the secret keys can learn individually.

FE for attribute-weighted sum Recently, Abdalla et al. [3] proposed an FE scheme for
a new class of functionalities which they termed as “attribute-weighted sums”. This is a
generalization of the inner product functional encryption (IPFE) [1, 7]. In such a scheme, a
database of N attribute-value pairs (xi , zi)i=1,...,N are encrypted using the master public key
of the scheme,where xi is a public attribute (e.g., demographic data) and zi is a private attribute
containing sensitive information (e.g., salary, medical condition, loans, college admission
outcomes). A recipient having a secret key corresponding to a weight function f can learn
the attribute-weighted sum of the database, i.e.,

∑N
i=1 f (xi)zi . The attribute-weighted sum

functionality appears naturally in several real life applications. For instance, as discussed
by Abdalla et al. [3] if we consider the weight function f as a boolean predicate, then the
attribute-weighted sum functionality

∑N
i=1 f (xi)zi would correspond to the average zi over

all users whose attribute xi satisfies the predicate f . Important practical scenarios include
average salaries of minority groups holding a particular job (zi = salary) and approval ratings
of an election candidate amongst specific demographic groups in a particular state (zi =
rating). Similarly, if zi is boolean, then the attribute-weighted sum becomes

∑
i :zi=1 f (xi).

This could capture for instance the number of and average age of smokers with lung cancer
(zi = lung cancer, f = numbers/age).

The work of [3] considered a more general case of the notion where the domain and
range of the weight functions are vectors over some finite field Zp . In particular, the database
consists of N pairs of public/private attribute vectors (xi , zi)i=1,...,N which is encrypted to
a ciphertext CT. A secret key SK f generated for a weight function f allows a recipient to
learn

∑N
i=1 f (xi)�zi from CT without revealing any information about the private attribute

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2919

vectors (zi)i=1,...,N . To handle a large database where the number of users are not a-priori
bounded, Abdalla et al. considered the notion of unbounded-slot FE scheme for attribute-
weighted sum. Thus, in their scheme, the number of slots N is not fixed while generating
the system parameters and any secret key SK f can decrypt an encrypted database having an
arbitrary number of slots. Another advantage of unbounded-slot FE is that the same system
parameters and secret keys can be reused for different databases with variable lengths, which
saves storage space and reduces communication cost significantly.

The unbounded-slot FE of [3] supports expressive function class of arithmetic branching
programs (ABPs) which is capable of capturing boolean formulas, boolean span programs,
combinatorial computations, and arithmetic span programs. The FE scheme of [3] is built
in asymmetric bilinear groups of prime order and is proven secure in the simulation-based
security model, which is known to be the desirable security model for FE [20, 59], under
the k-Linear (k-Lin)/Matrix Diffie–Hellman (MDDH) assumption. Moreover, their scheme
enjoys ciphertext size that grows with the number of slots and the size of the private attribute
vectors but is independent of the size of the public attribute vectors. Towards constructing
their unbounded-slot scheme, Abdalla et al. first constructed a one-slot scheme and then
bootstrap to the unbounded-slot scheme via a semi-generic transformation.

However, one significant limitation of the FE scheme of [3] is that the scheme only achieves
semi-adaptive security. While semi-adaptive security, where the adversary is restricted to
making secret key queries only after making the ciphertext queries, may be sufficient for
certain applications, it is much weaker compared to the strongest and most natural notion of
adaptive securitywhich lets the adversary request secret keys both before and aftermaking the
ciphertext queries. Thus it is desirable to have an adaptively secure scheme for this important
functionality that supports unbounded number of slots.

One artifact of the standard techniques for proving adaptive security of FE schemes based
on the so called dual system encryption methodology [45, 46, 64] is the use of a core infor-
mation theoretic transition limiting the appearance of an attribute in the description of the
associated functions at most once (or an a-priori bounded number of times at the expense of
ciphertext and key sizes scaling with that upper bound [47, 55, 65]). Recently Kowalczyk
and Wee [44] and Lin and Luo [49] presented advanced techniques to overcome the one-use
restriction. However, their techniques were designed in the context of attribute-based encryp-
tion (ABE) where attributes are totally public. Currently, it is not known how to remove the
one-use restriction in the context of adaptively secure FE schemes where attributes are not
fully public as is the case for the attribute-weighted sum functionality. This leads us to the
following open problem explicitly posed by Abdalla et al. [3]:

Open Problem Can we construct adaptively simulation-secure one-slot/unbounded-slot FE
scheme for the attribute-weighted sum functionality with the weight functions expressed as
arithmetic branching programs featuring compact ciphertexts, that is, having ciphertexts that
do not grow with the number of appearances of the attributes within the weight functions,
from the k-Lin assumption?

Our contributions In this work, we resolve the above open problem. More precisely, we
make the following contributions.

(a) We start by presenting the first one-slot FE scheme for the attribute-weighted sum
functionality with the weight functions represented as ABPs that achieves adaptive
simulation-based security and compact ciphertexts, that is, the ciphertext size is inde-
pendent of the number of appearances of the attributes within the weight functions.
The scheme is secure against an adversary who is allowed to make an a-priori bounded

123

2920 P. Datta, T. Pal

number of ciphertext queries and an unbounded (polynomial) number of secret key
queries both before and after the ciphertext queries, which is the best possible level
of security one could hope to achieve in adaptive simulation-based framework [20].
Since simulation-based security also implies indistinguishability-based security and
indistinguishability-based security against single and multiple ciphertexts are equivalent
[20, 59], the proposed FE scheme is also adaptively secure in the indistinguishability-
based model against adversaries making unbounded number of ciphertext and secret key
queries in any arbitrary order.

(b) We next bootstrap our one-slot scheme to an unbounded-slot scheme that also achieves
simulation-based adaptive security against a bounded number of ciphertext queries and
an unbounded polynomial number of secret key queries. Just like our one-slot scheme,
the ciphertexts of our unbounded-slot scheme also do not depend on the number of
appearances of the attributes within the weight functions. However, the caveat here is
that the number of pre-ciphertext secret key queries is a priori bounded and all parameters
of the scheme, namely, the master public key, ciphertexts, and secret keys scale linearly
with that upper bound.

Like Abdalla et al. [3], our FE schemes are build upon asymmetric bilinear groups of
prime order. We prove the security of our FE schemes based on the standard (bilateral) k-Lin/
(bilateral) MDDH assumption(s) [31]. Thus our results can be summarized as follows.

Theorem 1 (Informal) Under the (bilateral) k-Lin/MDDH assumption(s), there exist adap-
tively simulation secure one-slot/unbounded-slot FE scheme for attribute-weighted sums
against a bounded number of ciphertext and an unbounded number of secret-key queries,
and having compact ciphertexts, that is, without the one-use restriction, in bilinear groups
of prime order.

The bilateral MDDH assumption is the plain MDDH assumption except that the elements
are available in the exponents of both source groups of a bilinear group simultaneously. This
assumption has recently been utilized in the context of achieving FE for quadratic functions
in the standard model [5, 67] and broadcast encryption scheme with O(N 1/3) parameter
sizes from bilinear maps, where N is the total number of users in the system [68]. Unlike
[3], our construction is semi-generic and is built upon two cryptographic building blocks,
namely a slotted inner product functional encryption (IPFE) [49, 51], which is a hybrid of a
public-key IPFE and a private-key function-hiding IPFE, and an information theoretic primitive
called arithmetic key garbling scheme (AKGS) [41, 49]. For bootstrapping from one-slot to
unbounded-slot construction, wemake use of the same semi-generic transformation proposed
in [3], but analyze its security in the adaptive simulation-based setting as opposed to the semi-
adaptive setting. Table 1 shows the current state of the art in the development of efficient
attribute-hiding1 FE schemes under standard computational assumptions.

On the technical side, our contributions lie in extending the recent framework of Lin
and Luo [49]. The techniques of [49] are developed to achieve compact ciphertexts, that
is, without the one-use restriction in the context of indistinguishability-based adaptively
secure ABE (that is, for payload-hiding security and not attribute-hiding). In this work, we
extend their techniques to overcome the one-use restriction into the context of adaptive
simulation-based attribute-hiding security for the first time. The high level approach of [49]
to mitigate the one-use restriction is to replace the core information theoretic step of the dual

1 In this paper, by attribute-hiding, we mean the so-called “strong” attribute-hiding, as stipulated by the
security definitions of FE, meaning that private attributes must remain hidden even to decryptors who are able
to perform a successful decryption.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2921

system technique with a computational step. However the application of this strategy in their
framework crucially rely on the payload hiding security requirement, that is, the adversaries
are not allowed to query secret keys that enable a successful decryption. In contrast, in the
setting of attribute-hiding, adversaries are allowed to request secret keys enabling successful
decryption and extending the technique of [49] into this context appears to be non-trivial.
We resolve this by developing a three-slot variant of their framework, integrating the pre-
image sampleability of the inner product functionality [28, 59], and carefully exploiting the
structures of the underlying building blocks, namely AKGS and slotted IPFE.

Current vs preliminary versions A preliminary version [30] of this work has appeared
in Asiacrypt 2021. This paper includes a significant and considerable amount of technical
contributions compared to the preliminary version [30]. The previous version contains only
the constructions of our single key, single ciphertext secure one-slot FE scheme and the one-
slot FE scheme without providing any concrete security analysis of these protocols. Further,
the single key, single ciphertext secure one-slot extFE (extended FE) scheme was absent in
the preliminary version which only includes the one-slot extFE scheme without any security
proof. In this current version, we not only present the single key, single ciphertext secure one-
slot extFE scheme but provide formal security analysis of all these FE schemes.We emphasize
that proving adaptive security for extFE scheme is more challenging since additional slots are
required to hide the extra private attribute. Apart from the one-slot FE schemes, we discuss the
transformation of bootstrapping the one-slot FE to unbounded-slot FE scheme that preserves
the level of adaptive security of the underlying one-slot extFE scheme where the vectors
associated to secret keys are available in the exponent of a source group. Note that, the
transformation of Abdalla et al. [3] was presented for the case of selective security whereas
we demonstrate that the same transformation can lead to (a level of) adaptive security under
the bilateral MDDH assumption. Moreover in the Appendix, for the shake of completeness,
we present an adaptively secure one-slot extFE scheme where the secret key vectors are
available in clear.

Related works Even before it was formally introduced by [20], FE has been studied for
various simplistic functionalities such as equality testing [17, 23, 63], subset membership
[19, 21, 62], inner product predicates [43], andNC1 access policies [39]. Sahai and Seyalioglu
[61] and Gorbunov, Vaikuntanathan, andWee [36] considered the problem of constructing FE
for general functions under standard computational assumptions. Main drawbacks of these
constructions are that the schemes support a-priori bounded number of functional keys and
ciphertext size grows linearly with the number of secret keys of the system. Moreover, the
ciphertext size is non-succinct meaning that the ciphertext size scales with the worst-case
circuit size of the functions in the function class. Goldwasser et al. [35] built a succinct FE
scheme for general circuits, which enables the authority to release only one secret decryption
key under the LWE assumption. Here, succinctness means that the ciphertext size depends
on the maximum depth of function class supported by the scheme rather than the size of it.
Another line of works [12, 33, 50–52, 60] based on multilinear maps [25, 32], constructs
collusion resistant FE scheme for general circuits with succinct ciphertexts. Since multilinear
maps are highly inefficient and suffers from many non-trivial attacks [22, 24, 53], conse-
quently these FE schemes are not assumed to be secure any more. As it seems hard to achieve
efficient FE schemes for general circuits from standard assumptions since such an FE scheme
would directly imply iO for general circuits [10, 11, 15], building efficient FE schemes for
specific practically useful classes of function has drawn special attention in the community,
e.g. attribute-based encryption [4, 8, 9, 18, 27, 37], predicate encryption (PE) [38, 43, 45],

123

2922 P. Datta, T. Pal

Ta
bl
e
1

C
ur
re
nt

st
at
e
of

th
e
ar
ti
n
at
tr
ib
ut
e-
hi
di
ng

FE

Sc
he
m
e

Fu
nc
tio

na
lit
y

N
um

be
r
of

sl
ot
s

IN
D
se
cu
ri
ty

SI
M

se
cu
ri
ty

|CT
|

A
ss
um

pt
io
n

[4
3]

φ
y∈

Z
n p

:Z
n p

→
{0,

1},
φ
y(
z)

=
(z

�
y

? =
0)

1
(−

,
p
ol
y,
p
ol
y)
-A
D

×
O

(|z
|)

2
no
n-
st
an
da
rd

as
su
m
pt
io
ns

[5
6]

φ
y∈

Z
n p

:Z
n p

→
{0,

1},
φ
y(
z)

=
(z

�
y

? =
0)

1
(p
ol
y,
p
ol
y,
p
ol
y)
-A
D

×
O

(|z
|)

D
LI
N

[1
]

φ
y∈

Z
n p

:Z
n p

→
Z
p
,
φ
y(
z)

=
z�

y

1
(−

,
p
ol
y,
p
ol
y)
-S
el

×
O

(|z
|)

D
D
H
,L
W
E

[6
,7
]

φ
y∈

Z
n p

:Z
n p

→
Z
p
,
φ
y(
z)

=
z�

y

1
(p
ol
y,
p
ol
y,
p
ol
y)
-A
D

(p
ol
y,
b
dd

,
p
ol
y)
-S
el

O
(|z

|)
D
D
H
,D

C
R,
LW

E

[4
]

φ
f∈

G
C

(n
,n

′)
:

Z
n p

×
Z
n′ p

→
{0,

1},
φ
f
(x

,
z)

=
(
f(
x)

�
z

? =
0)

1
(−

,
p
ol
y,
b
dd

)-
S-
A
D

(−
,
1,
b
dd

)-
S-
A
D

O
(|x

|+
|z|

)
LW

E

[6
6]

φ
f∈

F
(n

,n
′)

A
BP

:
Z
n p

×
Z
n′ p

→
{0,

1},
φ
f
(x

,
z)

=
(
f(
x)

�
z

? =
0)

1
(−

,
p
ol
y,
p
ol
y)
-S
-A
D

(−
,
1,
p
ol
y)
-S
-A
D

O
(|x

|+
|z|

)
k-
Li
n

[2
8]

φ
f∈

F
(n

,n
′)

A
BP

:
Z
n p

×
Z
n′ p

→
{0,

1},
φ
f
(x

,
z)

=
(
f(
x)

�
z

? =
0)

1
(p
ol
y,
p
ol
y,
p
ol
y)
-A
D

(p
ol
y,
b
dd

,
p
ol
y)
-A
D

O
(|x

|+
|z|

)
SX

D
LI
N

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2923

Ta
bl
e
1

co
nt
in
ue
d

Sc
he
m
e

Fu
nc
tio

na
lit
y

N
um

be
r
of

sl
ot
s

IN
D
se
cu
ri
ty

SI
M

se
cu
ri
ty

|CT
|

A
ss
um

pt
io
n

[2
]

φ
(
f∈

(N
C
1
)(
n)

,
y∈

Z
n′ p

)
:

Z
n p

×
Z
n′ p

→
Z
p
,
φ

(
f,
y)

(x
,
z)

=
(
f(
x)

? =
0)

·z
�
y

1
(p
ol
y,
p
ol
y,
p
ol
y)
-A
D

×
O

(|x
|+

|z|
)

SX
D
H

[3
]

φ
f∈

F
(n

,n
′)

A
BP

:
Z
n p

×
Z
n′ p

→
Z
p
,
φ
f
(x

,
z)

=
f(
x)

�
z

un
bo
un
de
d

(−
,
p
ol
y,
p
ol
y)
-A
D

(−
,
b
dd

,
p
ol
y)
-S
-A
D

O
(|z

|)
k-
Li
n

[6
7]

φ
f∈

F
(n

,n
1
n 2

)

A
BP

:
Z
n p

×
(Z

n 1 p
×

Z
n 2 p

)
→

Z
p
,
φ
f
(x

,
(z

1
,
z 2

))
=

f(
x)

� (
z 1

⊗
z 2

)

1
(−

,
p
ol
y,
p
ol
y)
-S
-A
D

(−
,
b
dd

,
p
ol
y)
-S
-A
D

O
(|z

1
|+

|z 2
|)

bi
la
te
ra
lk

-L
in

an
d
k-
Li
n

T
hi
s
W
or
k

φ
f∈

F
(n

,n
′)

A
BP

:
Z
n p

×
Z
n′ p

→
Z
p
,
φ
f
(x

,
z)

=
f(
x)

�
z

1
(p
ol
y,
p
ol
y,
p
ol
y)
-A
D

(p
ol
y,
b
dd

,
p
ol
y)
-A
D

O
(|x

|+
|z|

)
k-
Li
n

T
hi
s
W
or
k

φ
f∈

F
(n

,n
′)

A
BP

:
Z
n p

×
Z
n′ p

→
Z
p
,
φ
f
(x

,
z)

=
f(
x)

�
z

un
bo
un
de
d

(b
dd

,
p
ol
y,
p
ol
y)
-A
D

(b
dd

,
b
dd

,
p
ol
y)
-A
D

O
(|x

|+
|z|

+
B

)
bi
la
te
ra
lk

-L
in

an
d
k-
Li
n

T
he

no
ta
tio

ns
us
ed

in
th
is
ta
bl
e
ha
ve

th
e
fo
llo

w
in
g
m
ea
ni
ng

s:
–
G
C
:G

en
er
al
po

ly
no

m
ia
l-
si
ze

ci
rc
ui
ts
,A

BP
:A

ri
th
m
et
ic
br
an
ch
in
g
pr
og
ra
m
s

–
IN
D
:I
nd

is
tin

gu
is
ha
bi
lit
y-
ba
se
d
se
cu
ri
ty
,S
IM

:S
im

ul
at
io
n-
ba
se
d
se
cu
ri
ty

–
A
D
:A

da
pt
iv
e
se
cu
ri
ty
,S
-A
D
:S

em
i-
ad
ap
tiv

e
se
cu
ri
ty
,S
el
:S

el
ec
tiv

e
se
cu
ri
ty

–
p
ol
y:

A
rb
itr
ar
y
po

ly
no

m
ia
li
n
th
e
se
cu
ri
ty

pa
ra
m
et
er
,b

dd
:A

-p
ri
or
ib

ou
nd
ed

by
th
e
pu
bl
ic
pa
ra
m
et
er
s

–
|x|

:S
iz
e
of

x,
B
:A

bo
un
d
on

th
e
nu
m
be
r
of

pr
e-
ci
ph
er
te
xt

de
cr
yp
tio

n
ke
y
qu
er
ie
s

In
th
is
ta
bl
e,

(U
,
V

,
W

)
si
gn

ifi
es

th
at
th
e
ad
ve
rs
ar
y
is
al
lo
w
ed

to
m
ak
e
V
nu

m
be
r
of

ci
ph

er
te
xt

qu
er
ie
s
in

th
e
re
le
va
nt

se
cu
ri
ty

ex
pe
ri
m
en
t,
w
hi
le
U

an
d
W

nu
m
be
r
of

de
cr
yp

tio
n
ke
y
qu

er
ie
s

in
th
e
pr
e-

an
d
po

st
-c
ip
he
rt
ex
tp

ha
se
s
re
sp
ec
tiv

el
y

123

2924 P. Datta, T. Pal

partially-hiding PE [28, 66], IPFE [1, 7, 26, 42, 50, 51] attribute-based IPFE [2] and FE for
quadratic functions [5, 14, 34, 48, 67, 68].

Paper organization We discuss detailed technical overview of our results in Sect. 2. The
preliminaries, definitions and tools are provided in Sect. 3. We present our 1-key 1-ciphertext
secure 1-slot FE and fully collusion-resistant 1-slot FE for attribute-weighted sums in Sects.
4.1 and 4.2 respectively. We build unbounded slot FE scheme with the restriction that the
number of pre-ciphertext key queries is bounded. For this, we present 1-key 1-ciphertext 1-
slot extended FE scheme in Sect. 5.1 which plays an important role in the security reduction
of the (pre-ciphertext) bounded key 1-slot extended FE scheme described in Sect. 5.2 where
the secret key vector is available in the exponent of a pairing group. Finally, we present the
transformation of unbounded-slot FE schemewith adaptive simulation-security in Sect. 6.We
present an instantiation of AKGS in Appendix A. As a side contribution, we present a 1-key
1-ciphertext 1-slot extended FE scheme in Appendix B and then using it, construct a fully
collusion-resistant 1-slot extended FE scheme in Appendix C. However, the 1-slot extended
FE scheme can not be used in the transformation of achieving the unbounded-slot FE from a
1-slot extended FE.

2 Technical overview

In this section, we present our main technical ideas. Let G = (G1, G2, GT , g1, g2, e) be a
bilinear group of prime order p and [[a]]i denotes gai for any a ∈ Zp and i ∈ {1, 2, T }, which
notation can also be extended in case of vectors andmatrices. At the topmost level of strategy,
we follow [3] to first design an adaptively simulation-secure one-slot FE scheme and then
apply a compiler to bootstrap to an unbounded-slot scheme. For the later part, we use the same
compiler as the one presented in [3]. However, [3] only showed that the compiler works in the
context of semi-adaptive security, that is, they show that their compiler can bootstrap a semi-
adaptively secure one-slot FE scheme to a semi-adaptively secure unbounded-slot scheme. In
contrast, we analyze the security of the same transformation in the context of the simulation-
based adaptive security framework. We observe that in order to prove the adaptive security
for the compiler, the (bilateral) k-Lin/(bilateral) MDDH assumption is needed whereas for
semi-adaptive security, the plain k-Lin/MDDH was sufficient [3]. Moreover, we are only able
to establish the simulation-based adaptive security for the transformation for settings where
only a bounded number of secret-key queries are allowed prior to making the ciphertext
queries.

The majority of our technical ideas in this paper lies in the design and analysis of our
one-slot scheme which we describe first in this technical overview. Next, we would briefly
explain the modifications to our one-slot scheme leading to our extended one-slot scheme,
followed by explaining our analysis of the one-slot to unbounded-slot bootstrapping compiler
from [3] applied on our one-slot extended FE (extFE) scheme.

Recall that the adaptive simulation security of an FE scheme is proven by showing the
indistinguishability between a real game with all the real algorithms and an ideal game where
a simulator simulates all the ciphertexts and secret keys queried by the adversary. When an
adversarymakes a pre-ciphertext query for some function f , the simulator provides the secret
key to the adversary. When the adversary makes a challenge ciphertext query for an attribute
vector pair (x, z), the simulator receives the information of x but not z. Instead it receives the
functional values f (x)�z for all the pre-ciphertext secret keys. Based on this information,

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2925

the simulator must simulate the challenge ciphertext. Finally, when an adversary makes a
secret-key query for some function f after making a ciphertext query, the simulator receives
f along with the functional value f (x)�z for that key and simulates the key based on this
information.

2.1 Designing adaptively simulation secure one-slot extFE

Abdalla et al. [3] built their one-slot FE scheme for attribute-weighted sums by extending the
techniques devised by Wee [66] in the context of partially hiding predicate encryptions for
predicates expressed asABPs over public attributes followed by inner product evaluations over
private attributes. The proof strategy of [3, 66] is designed to achieve selective type security
where during the security reduction, the challenge ciphertext is made completely random
and then the secret keys are simulated using the functional value and the randomness used
in the challenge ciphertext. In particular, its simulated secret key is divided into two parts—
the first part is computed similar to the original key generation algorithm and is used for
decrypting the honestly computed ciphertext whereas the second part contains the functional
value and is used for decrypting the simulated ciphertext correctly. However, in the adaptive
setting, we must embed the correct functional values for the functions associated with the
pre-ciphertext secret keys into the challenge ciphertext and therefore the proof technique of
[3, 66] does not seem to extend to the adaptive setting. Datta et al. [29] designed an adaptively
simulation secure predicate encryption scheme for the same class of predicates as [66], but
their ciphertexts do not preserve compactness as they had to impose a read-once restriction
on the attributes due to the usual information theoretic argument required in dual system
encryption.

Overcoming the one-use restriction of the dual system proof techniques for adaptive
security, Lin and Luo [49] developed new techniques to obtain adaptive indistinguishability
secure ABEwith compact ciphertexts for the class of predicates expressed as ABPs. [49] takes
a semi-generic approach to design their ABE schemes. Their main idea is to replace the core
information theoretic step of the dual system methodology with a computational step and
thereby avoid the one-use restriction. Twomain ingredients of [49] are arithmetic key garbling
scheme (AKGS) which is the information theoretic component and function-hiding slotted
inner product functional encryption (IPFE) which is the computational component. We try to
adopt the techniques of [49] into our setting of simulation-based security for FE without the
one-use restriction. However, a straight-forward adaptation of the [49] framework into our
setting presents several challenges which we overcome with new ideas. Before describing
those challenges and our ideas, we first give a high-level overview of the two primitives,
namely, AKGS and function-hiding slotted IPFE.

Arithmetic key garbling schemes The notion of partial garbling scheme was proposed in
[41] and recently it was further refined by [49] in the context of arithmetic computations.
The refined notion is called arithmetic key garbling scheme (AKGS) which garbles a function
f : Z

n
p → Z

n′
p along with two secrets α, β ∈ Zp so that the evaluation with an input x ∈ Z

n
p

gives the value α f (x) + β. Note that the evaluation does not reveal any information about α
and β. In particular, the AKGS has the following algorithms:

• (�1, . . . , �m+1) ← Garble(α f (x)+β; r): The garbling algorithm outputs (m+1) affine
label functions L1, . . . , Lm+1, described by their coefficient vectors �1, . . . , �m+1 over
Zp , using the randomness r ∈ Z

m
p where (m + 1) denotes the size of the function f .

123

2926 P. Datta, T. Pal

• γ ← Eval(f , x, �1, . . . , �m+1): The linear evaluation procedure recoversγ = α f (x)+β

using the input x and the label function values � j = L j (x) = � j · (1, x) ∈ Zp .

AKGS is a partial garbling process as it only hides α, β which is captured by the usual
simulation security given by [41]. The simulator produces simulated labels (�̂1, . . . , �̂m+1) ←
SimGarble(f , x, α f (x)+β)which is the same distribution as the actual label function values
evaluated at input x. Additionally, [49] defines piecewise security of AKGS that consists of
two structural properties, namely reverse sampleability andmarginal randomness. The partial
garbling scheme for ABPs of Ishai and Wee [41] directly implies a piecewise secure AKGS
for ABPs. (See Sect. 3.6 for further details.)

Function-hiding slotted IPFEAprivate-key function-hiding inner product functional encryp-
tion (IPFE) scheme based on a bilinear group G = (G1, G2, GT , g1, g2, e) generates secret
keys IPFE.SK for vectors [[v]]2 ∈ G

n
2 and produces ciphertexts IPFE.CT for vectors [[u]]1 ∈ G

n
1

using the master secret key of the system. Both the key generation and encryption algorithm
perform linear operations in the exponent of the source groups G2, G1 respectively. The
decryption recovers the inner product [[v ·u]]T ∈ GT in the exponent of the target group. The
sizes of the secret keys, IPFE.SK, and ciphertexts, IPFE.CT, in such a system grow linearly
with the sizes of the vectors v and u respectively. Roughly, the function-hiding security of an
IPFE ensures that no information about the vectors v, u is revealed from IPFE.SK and IPFE.CT
except the inner product value v ·uwhich is trivially extracted using the decryption algorithm.
A slotted version of IPFE introduced in [49, 51] is a hybrid between a secret-key function-
hiding IPFE and a public-key IPFE. The index set of the vectors u is divided into two subsets:
public slots Spub and private slot Spriv so that the vector u is written as u = (upub ‖ upriv).
With addition to the usual (secret-key) encryption algorithm, the slotted IPFE has another
encryption algorithm that uses the master public key of the system to encrypt the public slots
of u, i.e. vectors with upriv = 0. The slotted IPFE preserves the function-hiding security with
respect to the private slots only as anyone can encrypt arbitrary vectors into the public slots.

Our one-slot FE

We first see how to combine IPFE and AKGS for constructing an FE scheme. Suppose we
want to design an FE scheme that generates a secret key for a function f : Z

n
p → Zp and

encrypts the message (x, z) ∈ Z
n
p × Zp where x is public and z is private. The functionality

outputs z f (x). It is easy to observe that this is a simple form of the one-slot FE scheme that
we desire to construct in this section. Let us recall that AKGS garbles a function z f (x) (with
β = 0) using a random coin r ∈ Z

m
p and outputs a set of coefficient vectors (�1, . . . , �m+1)

representing level functions L1, . . . , Lm+1. A crucial property of AKGS [41, 49] is that the
first m level functions are linear in x and the (m + 1)-th level function only depends on z. In
particular, we have the following

L j (x) = �i · (1, x), for j ∈ [m] and Lm+1(z) = (r[m], 1) · (−1, z)

. The linearity of AKGS allows us to encode the garbling coefficients into IPFE secret keys
and encrypt the vectors (1, x), (−1, z) into IPFE ciphertexts. At the time of decryption, we
can recover the level values by applying the IPFE decryption algorithm and finally employ
the evaluation algorithm of AKGS to get the final output.

SK f : IPFE.KeyGen([[� j]]2) for j ∈ [m]
IPFE.KeyGen([[(r[m], 1)]]2)

CTx,z : IPFE.Enc([[(1, x)]]1)
IPFE.Enc([[(−1, z)]]1)

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2927

Note that the decryption algorithm first recovers the level values in the exponent of the tar-
get group GT and then use the linear evaluation algorithm of AKGS to obtain [[z f (x)]]T =
Eval(f , x, [[�1]]T , . . . , [[�m+1]]T) where [[� j]]T ’s are obtained by the IPFE decryption algo-
rithm. Using this idea, we move forward to discussing our one-slot FE scheme.

We aim to design our decryption algorithm such that given a secret key for a weight
function ABP f : Z

n
p → Z

n′
p with coordinate functions f1, . . . , fn′ : Z

n
p → Zp and an

encryption of an attribute vector pair (x, z) ∈ Z
n
p × Z

n′
p , the decryption algorithm would

first recover the value for each coordinate z[t] ft (x) masked with a random scalar βt , that is,
z[t] ft (x) + βt and then sum over all these values to obtain the desired functional value (we
take the scalars {βt }t∈[n′] such that

∑n′
t=1 βt = 0 mod p). Thus we want our key generation

algorithm to use AKGS to garble the functions z[t] ft (x)+βt . Note that here, βt is a constant
but z[t] is a variable. While doing this garbling, we also want the label functions to involve
either only the variables x or the variable z[t]. This is because, in the construction we need
to handle x and z[t] separately since x is public whereas z[t] is private. This is unlike [49]
which garbles α f (x) + β where both α, β are known constants and only x is a variable. To
solve this issue, we garble an extended ABP where we extend the original ABP ft by adding
a new sink node and connecting the original sink node of ft to this new sink node with a
directed edge labeled with the variable z[t].

We also make use of a particular instantiation of AKGS given by [41] where we observe
that the first m coefficient vectors �1,t , . . . , �m,t are independent of z[t] and the last coeffi-
cient vector �m+1,t involves only the variable z[t]. In the setup phase, two pairs of IPFE

keys (IPFE.MSK, IPFE.MPK) and (̂IPFE.MSK, ̂IPFE.MPK) for a slotted IPFE are generated
for appropriate public and private index sets. The first instance of IPFE is used to han-
dle the public attributes x, whereas the second instance for the private attributes z. Let
f = (f1, . . . , fn′) : Z

n
p → Z

n′
p be a given weight function ABP such that ft : Z

n
p → Zp is

the t-th coordinate ABP of f . To produce a secret-key SK f , we proceed as follows:

– Sample vectors α,β t ← Z
k
p such that

∑
t∈[n′] β t [ι] = 0 mod p ∀ι ∈ [k]

– Suppose we want to base the security of the proposed scheme under theMDDHk assump-
tion. Generate k instances of the garblings (�

(ι)
1,t , . . . , �

(ι)
m+1,t) ← Garble(α[ι]z[t] ft (x)+

β t [ι]; r(ι)
t) for ι ∈ [k] where r(ι)

t ← Z
m
p . Using the instantiation of AKGS given by

[41], we have that the (m + 1)-th label functions L(ι)
m+1,t take the form L(ι)

m+1,t (z[t]) =
α[ι]z[t] − r (ι)

t [m] with α[ι] a constant.
– Compute the IPFE secret keys

IPFE.SK = IPFE.KeyGen(IPFE.MSK, [[v]]2)
IPFE.SK j,t = IPFE.KeyGen(IPFE.MSK, [[v j,t]]2) for j ∈ [m]

̂IPFE.SKm+1,t = IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2)
where the vectors are given by

v = (α, 0kn ‖ 0, 0n, 0n′ , 0n′)

v j,t = (�
(1)
j,t , . . . , �

(k)
j,t ‖ 0, 0n, 0n′ , 0n′) for j ∈ [m]

vm+1,t = (r(1)
t [m], . . . , r(k)

t [m],α ‖ 0, 0, 0, 0, 0, 0, 0)

– Return SK f = (IPFE.SK, {IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′])
Here, we separate public and private slots by “ ‖ " and 0n denotes a vector of all zero elements
of length n. We add zero vectors beforehand which have no role in the correctness and will

123

2928 P. Datta, T. Pal

only be used in the security analysis. The purpose of keeping these zero vectors is to get an
idea regarding the length of vectors that are needed to argue adaptive security of our scheme.
Now, to produce a ciphertext CT for some attribute vectors (x, z), we use the following steps:

– Sample s ← Z
k
p and use the slotted encryption of IPFE to compute the ciphertexts

IPFE.CT = IPFE.SlotEnc(IPFE.MSK, [[u]]1)
̂IPFE.CTt = IPFE.SlotEnc(̂IPFE.MSK, [[ht]]1) for all t ∈ [n′]

where the vectors are given by

u = (s, s ⊗ x), ht = (−s, s · z[t]) for all t ∈ [n′]
We denote ⊗ by the usual tensor product.

– return CT = (IPFE.CT, { ̂IPFE.CTt }t∈[n′])

Decryption first uses IPFE.Dec to compute

v · u = [[α · s]]T (1)

v j,t · u = [[
∑

ι

s[ι](�(ι)
j,t · (1, x))]]T = [[� j,t]]T for j ∈ [m], t ∈ [n′] (2)

vm+1,t · ht = [[
∑

ι

s[ι](α[ι]z[t] − r(ι)
t [m])]]T = [[�m+1,t]]T for t ∈ [n′] (3)

and then apply the evaluation procedure of AKGS to get

Eval(ft , x, [[�1,t]]T , . . . , [[�m+1,t]]T) = [[(α · s) · z[t] ft (x) + β t · s]]T . (4)

Finally, multiplying all these evaluated values and utilizing the fact
∑

t∈[n′] β t · s = 0, we
recover f (x)�z = ∑

t∈[n′] z[t] ft (x).

The simulator for our one-slot FE Scheme We now describe our simulator of the adaptive
game for our one-slot FE scheme. Note that the private slots on the right side of “ ‖ " will be
used by the simulator and we program them during the security analysis. For the q-th secret-
key query corresponding to a function fq = (fq,1, . . . , fq,n′), the simulator sets public
slots of all the vectors vq , vq, j,t for j ∈ {1, . . . ,mq + 1} as in the original key generation
algorithm. Instead of using the linear combination of the label vectors, the simulator uses
freshly sampled garblings to set the private slots. The pre-challenge secret key SK fq takes
the form

IPFE.SKq = IPFE.KeyGen(IPFE.MSK, [[α[ι], 0kn ‖ α̃q , 0n , 0n′ , 0n′]]2)
IPFE.SKq, j,t = IPFE.KeyGen(IPFE.MSK, [[�(1)

q, j,t , . . . , �
(k)
q, j,t ‖ �̃q, j,t , 0n′ , 0n′]]2) for j ∈ [mq]

̂IPFE.SKq,mq+1,t = IPFE.KeyGen(̂IPFE.MSK, [[r(1)t [mq], . . . , r(k)t [mq], α ‖ 0, 0, r̃q,t [mq], α̃q , 0, 0, 0]]2)

where (̃�q,1,t , . . . , �̃q,mq ,t) ← Garble(̃αq z[t] fq,t (x) + β̃q,t ; r̃q,t), α̃q , β̃q,t ← Zp such
that

∑
t∈[n′] β̃q,t = 0 mod p. We write 0n as a vector of length n with all zero elements.

To simulate the ciphertext for the challenge attribute x∗, the simulator uses the set of all
functional values V = {(fq , fq(x∗)�z∗) : q ∈ [Qpre]} to compute a dummy vector d
satisfying fq(x∗)�d = fq(x∗)�z∗ for all q ∈ [Qpre]. Since the inner product functionality
is pre-image sampleable and both fq , x∗ are known to the simulator, a dummy vector d
can be efficiently computed via a polynomial time algorithm given by O’Niell [59]. The
simulated ciphertext becomes

IPFE.CT = IPFE.Enc(IPFE.MSK, [[0k, 0kn ‖ 1, x∗, 0n′ , 0n′]]1)

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2929

̂IPFE.CTt = IPFE.Enc(̂IPFE.MSK, [[0k, 0k ‖ 1, 0,−1, d[t], 0, 0, 0]]1)
The post-challenge secret-key query for the q-th function fq = (fq,1, . . . , fq,n′) with q >

Qpre is answered using the simulator of AKGS. In particular, we choose βq,t ← Zp satisfying∑
t∈[n′] βq,t = 0 mod p and compute the simulated labels as follows:

(�̂q,1,1, . . . , �̂q,mq+1,1) ← SimGarble(fq,1, x∗, α̃q · fq(x∗)�z∗ + βq,1) (5)

(�̂q,1,t , . . . , �̂q,mq+1,t) ← SimGarble(fq,t , x∗, βq,t) for 1 < t ≤ n′ (6)

Note that, for post-challenge secret keys the functional value fq(x∗)�z∗ is known and hence
the simulator can directly embed the value into the secret keys. The post-challenge secret
key SK fq takes the form

IPFE.SKq = IPFE.KeyGen(IPFE.MSK, [[α, 0kn ‖ α̃q , 0n , 0n′ , 0n′]]2)
IPFE.SKq, j,t = IPFE.KeyGen(IPFE.MSK, [[�(1)

j,t , . . . , �
(k)
j,t ‖ �q, j,t , 0n , 0n′ , 0n′]]2) for j ∈ [mq]

̂IPFE.SKq,mq+1,t = IPFE.KeyGen(̂IPFE.MSK, [[r(1)t [mq], . . . , r(k)t [mq],α ‖ �q,mq+1,t , 0, 0, 0, 0, 0, 0]]2)

Security analysis of our one-slot FE scheme

To show the adaptive simulation-based security of our FE scheme, we follow a sequence
of hybrid experiments to move from the real game to the ideal game with the simulated
algorithms described above. The security analysis has three steps where in the first step we
apply function-hiding IPFE and MDDH assumption to use freshly sampled garblings instead
of linearly combined coefficient vectors. In the second step, the dummy vector d is utilized
in the challenge ciphertext to handle pre-challenge secret-key queries (more details are given
below). Finally, in the third step, we use the simulator of AKGS for simulating the post-
challenge secret-key queries.

Step 1

We start with the real adaptive simulation security gamewith all the real algorithms described
above. The first step is to activate the hidden slots in the ciphertext vectors. By the slot-mode
correctness of the IPFE where we replace the SlotEnc algorithm with the Enc algorithm of
slotted IPFE.

u = (s, s ⊗ x∗ ‖ 0 , 0n , 0n′ , 0n′),

ht = (−s, s · z∗[t] ‖ 0 , 0 , 0 , 0 , 0 , 0 , 0).

In the next hybrid, the level values are computed through only the hidden slots. We rely on
the function-hiding security of IPFE to set the key and ciphertext vectors as follows

vq = (α, 0kn ‖ αq , 0n, 0n′ , 0n′)

vq, j,t = (�
(1)
q, j,t , . . . , �

(k)
q, j,t ‖ �q, j,t , 0n′ , 0n′) for j ∈ [mq]

u = (0k , 0kn ‖ 1 , x∗ , 0n′ , 0n′)

vq,mq+1,t = (r(1)
t [mq], . . . , r(k)

t [mq], α ‖ rq,t [mq] , αq , 0, 0, 0, 0, 0)

ht = (0k , 0k ‖ −1 , z∗[t] , 0, 0, 0, 0, 0)

123

2930 P. Datta, T. Pal

where αq = αq · s, �q, j,t = ∑
ι s[ι]�(ι)

q, j,t and rq,t [mq] = ∑
ι s[ι]r(ι)

q,t [mq]. Since the inner
product values between the vectors remain the same, the indistinguishability follows from the
function-hiding property of IPFE. Next, the level values are computed using fresh randomness.
More precisely, the MDDH assumption is used to set the key vectors as

vq = (α, 0kn ‖ α̃q , 0n, 0n′ , 0n′)

vq, j,t = (�
(1)
j,t , . . . , �

(k)
j,t ‖ �̃q, j,t 0n′ , 0n′) for j ∈ [mq]

vq,mq+1,t = (r(1)
t [mq], . . . , r(k)

t [mq],α ‖ r̃q,t [mq] , α̃q , 0, 0, 0, 0, 0)

where α̃q , β̃q,t ← Zp satisfying
∑

t∈[n′] β̃q,t = 0 mod p and (̃�q,1,t , . . . , �̃q,mq+1,t) ←
Garble(̃αq z[t] fq,t (x)+β̃q,t ; r̃q,t). The indistinguishability follows from theMDDH assump-
tion in the source group G2. This completes the first step of the security analysis.

Step 2

In the second step, we face several technical obstacles in tackling the secret key queries that
are submitted before challenge ciphertext is computed. We briefly explain at a high level, the
main challenges in adapting the [49] technique into our setting and our ideas to overcome
those challenges.

1. To handle the pre-challenge secret-key queries, [49] formulates new properties of AKGS
such as reverse sampling and marginal randomness. Using such structural properties of
AKGS, their main motivation was to reversely sample the first garbling label using the
challenge attribute so that it can be shifted into the ciphertext component and make the
remaining labels uniformly random.This procedureworksfine for arguing zero advantage
for the adversary at the end of the hybrid sequence in case of ABE as functions in the
queried secret keys do not vanish on the challenge attribute and hence the challenge
ciphertext can never be decrypted using such secret keys available to the adversary such
that the value α f (x) + β becomes completely random. But, FE permits the adversary to
have secret keys that decrypts the challenge ciphertext, that is, we cannot afford to have
ft (x)z[t] + βt completely random. In order to handle this, we carefully integrate the
techniques of pre-image sampleability [29, 59] with the reverse sampling and marginal
randomness properties of AKGS to handle the pre-challenge queries.

2. The security proof of [49] implements a version of the dual system encryption method-
ology [45, 46, 64] via the function-hiding slotted IPFE. Since the ABE is only payload
hiding, the usual dual system encryption technique is sufficient for achieving adaptive
security where only one hidden subspace is required. More precisely, the secret keys
are made of two slots, out of which the first public slot contains the honestly computed
components which may be used to decrypt any honestly computed ciphertext and the
other hidden slot is used to embed its interaction with the challenge ciphertext. This dual
system encryption technique has been used in several prior works [29, 45, 46, 49, 55,
57, 58, 64]. Here, a single hidden slot is enough to handle the interaction between all
ciphertext and secret-key queries since by the game restrictions, no secret key queried
by the adversary can decrypt the challenge ciphertext and thus their interactions with
the challenge ciphertext always result in random outputs. For our application, a portion
of the attribute must be kept hidden from an adversary in the context of FE, who is
allowed to have polynomially many secret keys that successfully decrypts the challenge
ciphertext. The usual dual system encryption is not sufficient for our purpose. We require

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2931

three hidden subspaces or slots for our security reduction. We sample a dummy vector
d obtained via the pre-image sampling algorithm [59] and execute our three-slot dual
system encryption variant devised by extending the framework of [49].

ht = (· · · ‖ −1, z∗[t], −1 , d[t] , −1 , z∗[t] , 0)
︸ ︷︷ ︸
1st slot

︸ ︷︷ ︸
2nd slot

︸ ︷︷ ︸
3rd slot

The first hidden subspace of the challenge ciphertext is kept for handling the interactions
with the post-ciphertext secret keys. The second hidden subspace is required to place the
dummy vector (obtained from pre-image sampleability) which helps in simulating the
interactions between the challenge ciphertext and the pre-ciphertext secret keys. The
last hidden subspace is used as a temporary way station to switch each pre-ciphertext
secret key from interacting with the original hidden attribute of the challenge ciphertext
to interacting with the dummy attribute sampled using the pre-image sampleability.

We extend the framework of [49] to implement a three-slot dual system encryption procedure
for simulating adaptive queries in our one-slot FE scheme. We do this via a loop which takes
care of the pre-ciphertext key queries one-by-one. In the q-th execution of the loop, the vec-
tors related to the pre-ciphertext secret keys and the vector ht of the ciphertext take the form

vq ′,mq+1,t = (· · · ‖ 0, 0, r̃q ′,t [mq], α̃q ′ , 0, 0, 0) for q ′ < q

vq,mq+1,t = (· · · ‖ 0 , 0 , 0, 0, r̃q,t [mq] , α̃q , 0)

vq ′,mq+1,t = (· · · ‖ r̃q ′,t [mq], α̃q ′ , 0, 0, 0, 0, 0) for q < q ′ < Qpre

ht = (· · · ‖ −1, z∗[t], −1, d[t], −1, d[t] , 0)

where Qpre denotes the total number of pre-ciphertext key queries. In order to establish
the indistinguishability between the hybrids in the loop, we actually rely on a computa-
tional problem, namely the 1-key 1-ciphertext simulation security of a secret-key FE scheme
for attribute-weighted sums where the single key query is made before making the chal-
lenge ciphertext query. This scheme is presented in Sect. 4.1. The security of (secret-key)
one FE scheme follows from the piecewise security of AKGS and the function-hiding secu-
rity of IPFE. This is the core indistinguishability step that have been information theoretic
in all prior applications of the extended dual system encryption methodology for adaptive
attribute-hiding security [28, 56]. Built on the techniques of [49], we are able to make this
core indistinguishability step computational and thus remove the one-use restriction in the
context of adaptive attribute-hiding security for the first time.

At the end of the loop, all the pre-ciphertext secret keys are made to interact with the
the dummy vector sitting in the 2nd slot of ht . The 3rd slot of ht are filled with zeros since
we these subspaces will not be required in the rest of the hybrids. Using the function-hiding
security of IPFE, we set the vectors

vq,mq+1,t = (· · · ‖ 0, 0, r̃q,t [mq] , α̃q , 0 , 0 , 0) for q ≤ Qpre

ht = (· · · ‖ −1, z∗[t], −1, d[t], 0 , 0 , 0)

The second step of the security analysis is now over as all the pre-challenge secret keys
decrypt the challenge ciphertext using dummy vector d, instead of using the private attribute
z∗.

Step 3

However, we still require z∗ to be present in the vector ht for the successful decryption
of the challenge ciphertext by post-challenge secret keys since we have not yet altered the

123

2932 P. Datta, T. Pal

forms of the post-ciphertext secret keys. The last step of the security analysis is similar
to the selective game of [3] where the simulator of AKGS is employed to remove z∗ from
the challenge ciphertext and functional values are directly plugged into the post-challenge
secret keys. First, we use the honestly computed value �̃q, j,t = L̃q, j,t (x∗) for j ∈ [mq] and
�̃q,mq+1,t = α̃q z∗[t] − r̃q,t [mq] while simulating the keys. After that, we utilize simulator
of AKGS to simulate α̃q · z∗[t] fq,t (x∗) + β̃q,t using �̂q, j,t .

vq, j,t =
(
· · · ‖ �̂q, j,t , 0n , 0n′ , 0n′

)
for j ∈ [mq], q > Qpre

vq,mq+1,t =
(

· · · ‖ �̂q,mq+1,t , 0 , 0, 0, 0, 0, 0
)

for q > Qpre

ht =
(

· · · ‖ 1 , 0 , −1, d[t], 0, 0, 0
)

Finally, we change the distribution of {β̃q,t } to embed the value α̃q · fq(x∗)�z∗ + β̃q,1 into
�̂q, j,1 and the value β̃q,t into �̂q, j,1 for 1 < t ≤ n′, as in Eqs. (5) and (6). We observe that
this is exactly the same as the simulator of our FE scheme.

From one-slot FE to one-slot extFE

We extend our one-slot FE to an extended FE scheme which is required for applying the
compiler of [3] to bootstrap to the unbounded-slot FE scheme. In an extFE scheme, as opposed
to just taking a weight function f as input, the key generation procedure additionally takes a
vector y as input. Similarly, the encryption algorithm takes an additional vectorw in addition
to a usual public/private vector pair (x, z) such that

SK f , y ← KeyGen(MSK, (f , y)), CT ← Enc(MPK, (x, z ‖ w))

The decryption procedure recovers f (x)�z+ y�w instead of f (x)�z like a regular one-
slot scheme. The main idea is to use the linearity of the Eval algorithm of AKGS. We add an
extra term ψt = νt · (α · s) y�w to the first garbling value �1,t so that Eq. (4) becomes

Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T)

= Eval(ft , x, [[�1,t]]T , . . . , [[�m+1,t]]T) · [[ψt]]T
= [[(α · s) · (ft (x)z[t] + νt y�w) + β t · s]]T

where νt ← Zp for t ∈ [n′] be such that
∑

t∈[n′] νt = 1 mod p. Therefore, multiplying all
the evaluated terms and using the inner product v · u = α · s, as in our one-slot FE scheme,
we get [[f (x)�z + y�w]]T using the fact that

∑
t∈[n′] β t · s = 0. The security analysis is

similar to our one-slot scheme.

2.2 Bootstrapping from one-slot FE to unbounded-slot FE

Abdalla et al. [3] devised a compiler that upgrades the one-slot FE into an unbounded-slot
FE scheme where the number of slots N can be arbitrarily chosen at the time of encryption.
The transformation also preserves the compactness of ciphertexts of the underlying one-slot
scheme. However, their transformation actually needs a one-slot extFE scheme as defined
above.

The extFE scheme of [3] is built in a bilinear group G = (G1, G2, GT , g1, g2, e) where
ciphertexts are encoded in the group G1 and secret keys in the group G2. Interestingly, the

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2933

structure of the extFE scheme of [3] is such that the key generation procedure can still be
run if the vector y is given in the exponent of G2, that is, [[y]]2. The decryption, given
(SK f , y, (f , [[y]]2)), (CT, x), recovers [[f (x)�z + y�w]]T without leaking any additional
information about the vectors z,w. Now, the unbounded-slot FE (ubdFE) scheme follows
a natural masking procedure over the original one-slot scheme. More specifically, we use
N extFE encryptions to obtain ciphertexts {CTi }i∈[N] where CTi encrypts (xi , zi ‖ wi) with∑

i∈[N] wi = 0mod p. The decryption procedure first computes individual sum [[f (xi)�zi +
y�wi]]T and then multiply all the sums to learn

∑
i∈[N] f (xi)�zi via solving a discrete

logarithm problem (using brute force). Abdalla et al. [3] proved the semi-adaptive simulation-
based security of the scheme assumingMDDH assumption in the source group G2. The main
idea was to gradually shift the sum

∑
i∈[2,N] f (xi)�zi from the last (N − 1) ciphertexts

{CTi }i∈[2,N] to the first component of the ciphertext CT1.
We apply the same high level strategy for proving the adaptive simulation security of the

transformation. However, in order to do so, we face two main obstacles. First, the reduction
must incorporate the decryption results of all the pre-ciphertext secret keys into the challenge
ciphertext. Therefore, for all the pre-ciphertext secret key queries (f , y), the reduction needs
to know [[y]]1 in order to simulate the challenge ciphertext and [[y]]2 to simulate the key. The
reason why y cannot be made available to the reduction in the clear at a high level, is that
the shifting of the sums into the first ciphertext component CT1 from a subsequent ciphertext
component, say CTη, once both CT1 and CTη are in the simulated form is to be done via a
computational transition based on someMDDH-like assumption. In case of [3], there was no
pre-ciphertext key queries and hence the MDDH assumption in G2 was sufficient. However,
in our case, the MDDH assumption only in the source group G2 is not sufficient to shift the
sum

∑
i∈[2,N] f (xi)�zi to the first ciphertext component without changing the adversary’s

view. Thus, we consider the bilateral MDDH (bMDDH) assumption [5, 31, 67] which allows
the vector components to be available in the exponent of both the source groups G1, G2:

{[[y]]1, [[y]]2, [[y�wi]]1, [[y�wi]]2} c≈ {[[y]]1, [[y]]2, [[u]]1, [[u]]2}

where u is uniform.
The second and more subtle obstacle arises in handling the pre-ciphertext secret key

queries in the simulated game. The simulator algorithm of [3] uses the simulator of the
underlying one-slot scheme to simulate the ciphertext and secret key components for the
first slot while it generates all other ciphertexts and secret key components normally. Now
recall that in the simulated adaptive security game, the simulator embed the outputs of all
the functions { fq}q∈[Qpre], for which the pre-ciphertext secret key queries are made, on the
challenge message {(xi , zi)}i∈[N], that is, the values {∑i∈[N] fq(xi)�zi }q∈[Qpre] into the
challenge ciphertext. Since the simulator is only generating the ciphertext and secret key
components for the first slot in simulated format, we must embed the functional values
{∑i∈[N] fq(xi)�zi }q∈[Qpre] into the ciphertext component corresponding to the first slot. As
for the one-slot scheme, we aim to make use of the pre-image sampling procedure for this
embedding. However, this means we need to solve the system of equations { fq(x1)�d1 +
y�
q d2 = ∑

i∈[N] fq(xi)�zi }q∈[Qpre] for (d1, d2). Clearly, this system of equations may not
possess a solution since the right-hand side contains the sum of the functional values for all
the slots while the left-hand side only involves entries corresponding to the first slot. Further,
even if solution exists information theoretically, finding it out in polynomial time may not
be possible given the fact that the simulator does not receive the vectors { yq}q∈[Qpre] in the
clear, rather in the exponent of group elements.

123

2934 P. Datta, T. Pal

In fact, there is no known technique to solve a system of linear equations efficiently if the
co-efficient matrix is provided in the exponent of a pairing group, rather than given in the
clear. We observe that if the number of pre-ciphertext queries is known in advance then the
functional values corresponding to those secret key queries can be directly hardwired into
the vectors linked with the ciphertext. In other words, we add more hidden subspaces, one
for each pre-ciphertext query, to our current system. It enables successful decryption of the
challenge ciphertext by all the pre-ciphertext key queries. We emphasize that the number of
post-ciphertext secret key queries can be still arbitrary (but polynomially bounded) since the
reduction directly hardwire the functional value into the secret keys while simulating such
queries of the adversary.

To implement this idea, rather than solving the above system of equations, we instead
solve the system of equations

fq(x∗)�d1 + y�
q d2 + e�

q d3 =
∑

i∈[N]
fq(xi)�zi , where q ∈ [Qpre]

for (d1, d2, d3), where eq is the q-th unit vector. Note that this system of equations can be
easily solved by sampling the vectors d1, d2 randomly and then setting the q-th entry of the
vector d3 to be

∑
i∈[N] fq(xi)�zi − fq(x∗)�d1 − y�

q d2 for all q ∈ [Qpre]. We note that
the q-th entry of the vector d3 is used to hardwire the functional value corresponding to the
q-th pre-ciphertext query. However, this strategy would necessitate the introduction of Qpre
many additional subspaces into the ciphertext and secret key components for the underlying
one-slot extFE scheme to accommodate for d3. (Those subspaces will contain 0s in the real
scheme and only become active in the security proof). This, in turn, requires setting a bound
on Qpre, that is, the number of pre-ciphertext secret key queries, for both the underlying
extFE scheme and the resulting ubdFE scheme. We provide further details in the security
analysis of the extFE scheme.

Based on the bMDDH assumption and the above pre-image sampling strategy, we are
able to show that the ubdFE scheme provides adaptive simulation-based security against a
bounded number of pre-ciphertext secret key queries and an arbitrary polynomial number
of post-ciphertext secret key queries if the underlying extFE scheme is adaptive simulation
secure against such many secret key queries.

3 Preliminaries

In this section, we provide the necessary definitions and backgrounds that will be used in the
sequence.

3.1 Notations

We denote by λ the security parameter that belongs to the set of natural number N and 1λ

denotes its unary representation. We use the notation s ← S to indicate the fact that s is
sampled uniformly at random from the finite set S. For a distribution X , we write x ← X to
denote that x is sampled at random according to distribution X . A function negl : N → R is
said to be a negligible function of λ, if for every c ∈ N there exists a λc ∈ N such that for all
λ > λc, |negl(λ)| < λ−c.
Let Expt be an interactive security experiment played between a challenger and an adver-
sary, which always outputs a single bit. We assume that ExptCA is a function of λ and it is

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2935

parametrized by an adversary A and a cryptographic protocol C. Let ExptC,0
A and ExptC,1

A be
two such experiment. The experiments are computationally/statistically indistinguishable if
for any PPT/computationally unbounded adversary A there exists a negligible function negl
such that for all λ ∈ N,

AdvCA(λ) = |Pr[1 ← ExptC,0
A (1λ)] − Pr[1 ← ExptC,1

A (1λ)]| < negl(λ)

We write ExptC,0
A

c≈ ExptC,1
A if they are computationally indistinguishable (or simply

indistinguishable). Similarly, ExptC,0
A

s≈ ExptC,1
A means statistically indistinguishable and

ExptC,0
A ≡ ExptC,1

A means they are identically distributed.
For n ∈ N, we denote [n] the set {1, 2, . . . , n} and for n,m ∈ N with n < m, we denote
[n,m] be the set {n, n + 1, . . . ,m}. We use lowercase boldface, e.g., v, to denote column
vectors in Z

n
p and uppercase boldface, e.g.,M, to denote matrices in Z

n×m
p for p, n,m ∈ N.

The i-th component of a vector v ∈ Z
n
p is written as v[i] and the (i, j)-th element of a matrix

M ∈ Z
n×m
p is denoted by M[i, j]. The transpose of a matrix M is denoted by M� such that

M�[i, j] = M[j, i]. To write a vector of length n with all zero elements, we write 0n or
simply 0 when the length is clear from the context. Let u, v ∈ Z

n
p , then the inner product

between the vectors is denoted as u · v = u�v = ∑
i∈[n] u[i]v[i] ∈ Zp .

Let f : Z
n
p → Zp be an affine function with coefficient vector f = (f[const], f[coef1], . . . ,

f[coefn]). Then for any x ∈ Z
n
p , we have

f (x) = f[const] +
∑

i∈[n]
f[coefi]x[i] ∈ Zp.

3.2 Bilinear groups and hardness assumptions

We use a pairing group generator G that takes as input 1λ and outputs a tuple G =
(G1, G2, GT , g1, g2, e) where G1, G2, GT are groups of prime order p = p(λ) and gi
is a generator of the group Gi for i ∈ {1, 2}. The map e : G1 × G2 → GT satisfies the
following properties:

– bilinear: e(ga1 , g
b
2) = e(g1, g2)ab for all a, b ∈ Zp .

– non-degenerate: e(g1, g2) generates GT .

The group operations in Gi for i ∈ {1, 2, T } and the map e are efficiently computable in
deterministic polynomial time in the security parameter λ. For a matrix A and each i ∈
{1, 2, T }, we use the notation [[A]]i to denote gAi where the exponentiation is element-wise.
The group operation is written additively while using the bracket notation, i.e. [[Ai +B]]i =
[[A]]+[[B]]i formatricesA andB. Observe that, givenA and [[B]]i , we can efficiently compute
[[AB]]i = A · [[B]]i . We write the pairing operation multiplicatively, i.e. e([[A]]1, [[B]]2) =
[[A]]1[[B]]2 = [[AB]]T .
Assumption 1 (Matrix Diffie–Hellman Assumption) Let k = k(λ), � = �(λ), q = q(λ) be
positive integers. We say that the MDDHq

k,� assumption holds in Gi (i ∈ {1, 2, T }) if for all
PPT adversary A there exists a negligible function negl such that

Adv
MDDHq

k,�
A (λ) = |Pr[1 ← A(G, [[A]]i , [[S�A]]i)] − Pr[1 ← A(G, [[A]]i , [[U]]i)]|

< negl(λ)

where G = (G1, G2, GT , g1, g2, e) ← G(1λ),A ← Z
k×�
p ,S ← Z

k×q
p and U ← Z

q×�
p .

123

2936 P. Datta, T. Pal

Escala et al. [31] showed that the k-Linear (k-Lin) assumption [16] implies MDDH1
k,k+1 and

MDDH1
k,k+1 implies MDDHq

k,� for all k, q ∈ N and � > k with a tight security reduction.

Henceforth, we will use MDDHk to denote MDDH1
k,k+1.

We consider bilateralMDDHq
k,� assumptionwhich is a strengthening of theMDDHq

k,� assump-

tion. The bilateral MDDHq
k,� assumption is defined as follows.

Assumption 2 (Bilateral Matrix Diffie–Hellman Assumption) Let k = k(λ), � = �(λ), q =
q(λ) be positive integers. We say that the bilateral MDDHq

k,� (bMDDHq
k,�) assumption holds

if for all PPT adversary A there exists a negligible function negl such that

Adv
bMDDHq

k,�
A (λ) = |Pr[1 ← A(G, {[[A]]i , [[S�A]]i }i∈{1,2})]

−Pr[1 ← A(G, {[[A]]i , [[U]]i }i∈{1,2})]| < negl(λ)

where G = (G1, G2, GT , g1, g2, e) ← G(1λ),A ← Z
k×�
p ,S ← Z

k×q
p and U ← Z

q×�
p .

We consider the following lemma which will be useful in our security proof. This lemma is
a direct adaptation of Lemma 1 of [3] in context of bMDDH.

Lemma 1 For any Q ∈ N and {μq}q∈[Q] ∈ Zp, we have

{[[−w� yq]]1, [[−w� yq]]2, [[μq + w� yq]]1, [[μq + w� yq]]2, [[yq]]1, [[yq]]2}q∈[Q],
c≈{[[μq − w� yq]]1, [[μq − w� yq]]2, [[w� yq]]1, [[w� yq]]2, [[yq]]1, [[yq]]2}q∈[Q]

where w, { yq}q∈[Q] ← Z
k
p, under the bMDDH1

k,Q assumption. More specifically, for any
adversary A distinguishing the two distributions, there exists an adversary B against
the bMDDH1

k,Q problem such that the distinguishing advantage of A is bounded by

2 · AdvbMDDH1
k,Q

B (λ).

Proof The lemma can be proved by three simple hybrids as follows:

{[[−w� yq]]1, [[−w� yq]]2, [[μq + w� yq]]1, [[μq + w� yq]]2, [[yq]]1, [[yq]]2}q∈[Q]
c≈
{

[[− uq]]1, [[− uq]]2 , [[μq + uq]]1, [[μq + uq]]2, [[yq]]1, [[yq]]2
}

q∈[Q]
s≈
{

[[μq − uq]]1, [[μq − uq]]2 , [[uq]]1, [[uq]]2 , [[yq]]1, [[yq]]2
}

q∈[Q]
c≈
{

[[μq − w� yq]]1, [[μq − w� yq]]2 , [[w� yq]]1, [[w� yq]]2 , [[yq]]1, [[yq]]2
}

q∈[Q]

where uq is uniform over Zp . The first computational indistinguishability holds due to
bMDDH1

k,Q assumption. The second indistinguishability is statistical as we have changed the
variable uq by uq−μq where bothμq , uq are uniform overZp . Finally, the last computational
indistinguishability holds again due to bMDDH1

k,Q assumption. ��

3.3 Arithmetic branching program

Arithmetic Branching Program (ABP) is a computational model [54] that can be used to
model boolean formula, boolean branching program or arithmetic formula through a linear
time reduction with a constant blow-up in their respective sizes. In this work, we consider
ABP over Zp .

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2937

Definition 1 (Arithmetic Branching Program) An arithmetic branching program (ABP) over
Z
n
p is a weighted directed acyclic graph (V , E, φ, v0, v1), where V is the set of all vertices, E

is the set of all edges, φ : E → (Zn
p → Zp) specifies an affine weight function for each edge,

and v0, v1 ∈ V are two distinguished vertices (called the source and the sink respectively).
The in-degree of v0 and the out-degree of v1 are 0. It computes a function f : Z

n
p → Zp

given by

f (x) =
∑

P∈P

∏

e∈P

φ(e)(x)

where P is the set of all v0-v1 path and e ∈ P denotes an edge in the path P ∈ P. The size
of the ABP is |V |, the number of vertices.

We denote by F (n)
ABP the class of ABPs over Z

n
p:

F (n)
ABP = { f | f is an ABP over Z

n
p for some prime p and positive integer n}

The class of ABP can be extended in a coordinate-wise manner to a ABPs f : Z
n
p → Z

n′
p .

More precisely, an ABP f : Z
n
p → Z

n′
p has all its weight functions φ = (φ1, . . . , φn′) : E →

(Zn
p → Z

n′
p) with each coordinate function φt for t ∈ [n′] of φ being an affine function in

x having scalar constants and coefficients. Therefore, such a function f can be viewed as
f = (f1, . . . , fn′) with each coordinate function ft : Z

n
p → Zp being an ABP that has the

same underlying graph structure as that of f and having φt : E → (Zn
p → Zp) as the weight

functions. The class of all such functions is given by

F (n,n′)
ABP = { f = (f1, . . . , fn′) : Z

n
p → Z

(n′)
p | ft ∈ F (n)

ABP for t ∈ [n′]}
Thus F (n)

ABP can alternatively be viewed as F (n,1)
ABP .

Lemma 2 ([40]) Let f = (V , E, φ, v0, v1) ∈ F (n,1)
ABP be an ABP of size m and

v0, v2, . . . , vm−1, v1 be stored topologically. Let M be a square matrix of order (m − 1)
defined by

M[i + 1, j] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i > j;
−1, i = j;
0, i < j, ei, j = (vi , v j) /∈ E;
φ(ei, j), i < j, ei, j = (vi , v j) ∈ E .

Then the entries ofM are affine in x and f (x) = det(M).

3.4 Functional encryption for attribute-weighted sum

We formally present the syntax of FE for attribute-weighted sum and define adaptive sim-

ulation security of the primitive. We consider the function class F (n,n′)
ABP and message space

M = (Zn
p × Z

n′
p)∗.

Definition 2 (The Attribute-Weighted Sum Functionality) For any n, n′ ∈ N, the class of
attribute-weighted sum functionalities is defined as

⎧
⎨

⎩
(x ∈ Z

n
p, z ∈ Z

n′
p) �→ f (x)�z =

∑

t∈[n′]
ft (x)z[t] | f = (f1, . . . , fn′) ∈ F (n,n′)

ABP

⎫
⎬

⎭

123

2938 P. Datta, T. Pal

Definition 3 (Functional Encryption for Attribute-Weighted Sum) An unbounded-slot FE for
attribute-weighted sum associated to the function class F (n,n′)

ABP and the message space M
consists of four PPT algorithms defined as follows:

Setup(1λ, 1n, 1n
′
) The setup algorithm takes as input a security parameter λ along with

two positive integers n, n′ representing the lengths of message vectors. It outputs the master
secret-key MSK and the master public-key MPK.

KeyGen(MSK, f) The key generation algorithm takes as input MSK and a function f ∈
F (n,n′)
ABP . It outputs a secret-key SK f and make f available publicly.

Enc(MPK, (xi , zi)i∈[N]) The encryption algorithm takes as input MPK and a message
(xi , zi)i∈[N] ∈ (Zn

p ×Z
n′
p)∗. It outputs a ciphertext CT and make (xi)i∈[N] available publicly.

Dec((SK f , f), (CT, (xi)i∈[N])) The decryption algorithm takes as input SK f and CT along
with f and (xi)i∈[N]. It outputs a value in Zp .

Correctness The unbounded-slot FE for attribute-weighted sum is said to be correct if for

all (xi , zi)i∈[N] ∈ (Zn
p × Z

n′
p)∗ and f ∈ F (n,n′)

ABP , we get

Pr

⎡

⎢
⎣Dec((SK f , f), (CT, (xi)i∈[N])) =

∑

i∈[N]
f (xi)

� zi :
(MSK,MPK) ← Setup(1λ, 1n , 1n

′
),

SK f ← KeyGen(MSK, f),
CT ← Enc(MPK, (xi , zi)i∈[N])

⎤

⎥
⎦ = 1

We consider adaptively simulation-based security of FE for attribute-weighted sum.

Definition 4 Let (Setup, KeyGen, Enc, Dec) be an unbounded-slot FE for attribute-

weighted sum for function class F (n,n′)
ABP and message space M. The scheme is said to be

(Qpre, QCT, Qpost)-adaptively simulation secure if for any PPT adversaryAmaking at most
QCT ciphertext queries and Qpre, Qpost secret key queries before and after the ciphertext

queries respectively, we have ExptReal,ubdFEA (1λ)
c≈ ExptIdeal,ubdFEA (1λ), where the experi-

ments are defined as follows. Also, an unbounded-slot FE for attribute-weighted sums is said
to be (poly, QCT,poly)-adaptively simulation secure if it is (Qpre, QCT, Qpost)-adaptively
simulation secure as well as Qpre and Qpost are unbounded polynomials in the security
parameter λ.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2939

Expt
Real,ubdFE
A (1λ)

1. 1N ← A(1λ);
2. (MSK,MPK) ← Setup(1λ, 1n , 1n

′
);

3. ((x∗
i , z∗i)i∈[N]) ← AOKeyGen(MSK,·) (MPK);

4. CT∗ ← Enc(MPK, (x∗
i , z∗i)i∈[N]);

5. returnAOKeyGen(MSK,·) (MPK,CT∗)

Expt
Ideal,ubdFE
A (1λ)

1. 1N ← A(1λ);
2. (MSK∗,MPK) ← Setup∗(1λ, 1n , 1n

′
, 1N);

3. ((x∗
i , z∗i)i∈[N]) ← A

OKeyGen∗
0(MSK∗,·)

(MPK)

4. CT∗ ← Enc∗(MPK,MSK∗, (x∗
i)i∈[N],V);

5. returnA
OKeyGen∗

1(MSK∗,(x∗
i)i∈[N],·,·) (MPK,CT∗)

OKeyGen(MSK,·)
1. input: f
2. output: SK f

OKeyGen∗
0(MSK∗,·)

1. input: fq for q ∈ [Qpre]
2. output: SK∗

fq

Enc∗(MPK,MSK∗, (x∗
i)i∈[N], ·)

1. input:V = {((fq , SK fq),
∑

i∈[N] fq (x∗
i)� z∗i) : q ∈ [Qpre]}

2. output: CT∗

OKeyGen∗
1(MSK∗,(x∗

i)i∈[N],·,·)

1. input: fq ,
∑

i∈[N] fq (x∗
i)� z∗i for q > Qpre

2. output: SK∗
fq

3.5 Function-hiding slotted inner product functional encryption

A slotted inner product functional encryption (slotted IPFE), as defined by Lin and Luo [49],
is a hybrid variant of secret-key and public-key IPFE. More specifically, the index set S of
the vectors is partitioned into two sets Spub containing public slots and Spriv containing the
private slots. While computing secret-keys, the slotted IPFE encodes elements of the vector
in public/private slots using the master secret-key, similar to the case of secret-key IPFE.
However, the encryption procedure is only allowed to encode vector elements in the public
slots usingmaster public-key as is the case for public-key IPFE. Lin andLuo [49] demonstrated
that slotted IPFE lets us use the dual system encryption techniques [45, 46, 64] during the
security analysis of the cryptographic constructions built from it.Following Lin and Luo [49]
we consider the definition of slotted IPFE with respect to some pairing group , that is, all
the vectors and inner products in the scheme are encoded in the exponent of the underlying
pairing group.

We present the formal notion of slotted IPFE almost verbatim from [49].

Definition 5 (Slotted Inner Product Functional Encryption, [49]) LetG = (G1, G2, GT , g1,
g2, e) be a tuple of pairing groups of prime order p. A slotted inner product functional
encryption (IPFE) scheme based on G consists of 5 efficient algorithms:

IPFE.Setup(1λ, Spub, Spriv) The setup algorithm takes as input a security parameter λ and
two disjoint index sets, the public slot Spub and the private slot Spriv. It outputs the master
secret-key IPFE.MSK and the master public-key IPFE.MPK. Let S = Spub ∪ Spriv be the whole
index set and |S|, |Spub|, |Spriv| denote the number of indices in S, Spub and Spriv respectively.

IPFE.KeyGen(IPFE.MSK, [[v]]2) The key generation algorithm takes as input IPFE.MSK and
a vector [[v]]2 ∈ G

|S|
2 . It outputs a secret-key IPFE.SK for v ∈ Z

|S|
p .

IPFE.Enc(IPFE.MSK, [[u]]1) The encryption algorithm takes as input IPFE.MSK and a vector
[[u]]1 ∈ G

|S|
1 . It outputs a ciphertext IPFE.CT for u ∈ Z

|S|
p .

123

2940 P. Datta, T. Pal

IPFE.Dec(IPFE.SK, IPFE.CT) The decryption algorithm takes as input a secret-key IPFE.SK
and a ciphertext IPFE.CT. It outputs an element from GT .

IPFE.SlotEnc(IPFE.MPK, [[u]]1) The slot encryption algorithm takes as input IPFE.MPK and

a vector [[u]]1 ∈ G
|Spub|
1 . It outputs a ciphertext IPFE.CT for (u||0|Spriv|) ∈ Z

|S|
p .

Correctness The correctness of a slotted IPFE scheme requires the following two properties.

– Decryption Correctness: The slotted IPFE is said to satisfy decryption correctness if for
all u, v ∈ Z

|S|
p , we have

Pr

⎡

⎢
⎣Dec(IPFE.SK, IPFE.CT) = [[v · u]]T :

(IPFE.MSK, IPFE.MPK) ← Setup(1λ, Spub, Spriv),
IPFE.SK ← KeyGen(IPFE.MSK, [[v]]2),
IPFE.CT ← Enc(IPFE.MSK, [[u]]1)

⎤

⎥
⎦ = 1

– Slot-Mode Correctness: The slotted IPFE is said to satisfy the slot-mode correctness if

for all vectors u ∈ Z
|Spub|
p , we have

{

(IPFE.MSK, IPFE.MPK, IPFE.CT) : (IPFE.MSK, IPFE.MPK) ← Setup(1λ, Spub, Spriv),
IPFE.CT ← Enc(IPFE.MSK, [[u||0|Spriv |]]1)

}

,

≡
{

(IPFE.MSK, IPFE.MPK, IPFE.CT) : (IPFE.MSK, IPFE.MPK) ← Setup(1λ, Spub, Spriv),
IPFE.CT ← SlotEnc(IPFE.MPK, [[u]]1)

}

Security Let (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec, IPFE.SlotEnc) be a slotted
IPFE. The scheme is said to be adaptively function-hiding secure if for all PPT adversary

A, we have ExptFH-IPFEA (1λ, 0)
c≈ ExptFH-IPFEA (1λ, 1), where the experiment ExptFH-IPFEA (1λ, b)

for b ∈ {0, 1} is defined as follows:
ExptFH-IPFEA (1λ, b)

1. (Spub, Spriv) ← A(1λ);
2. (IPFE.MSK, IPFE.MPK) ← Setup(1λ, Spub, Spriv);
3. return AOKeyGenb

(·,·),OEncb
(·,·)

(IPFE.MPK) if
v0j |Spub = v1j |Spub and v0j · u0i = v1j · u1i

for all {[[v0j]]2, [[v1j]]2} j , {[[u0i]]1, [[u1i]]1}i queried by A to

OKeyGenb
(·, ·) andOEncb (·, ·) respectively.

OKeyGenb
(·, ·):

1. input: [[v0j]]2, [[v1j]]2 ∈ G
|S|
2

2. output
IPFE.SK j ← KeyGen(IPFE.MSK, [[vbj]]2)

OEncb (·, ·):

1. input: [[u0i]]1, [[u1i]]1 ∈ G
|S|
1

2. output
IPFE.CTi ← Enc(IPFE.MSK, [[ubi]]1)

where v j |Spub represents the elements of v j sitting at the indices in Spub.

Lemma 3 ([48, 49]) Let G = (G1, G2, GT , g1, g2, e) be a tuple of pairing groups of prime
order p and k ≥ 1 an integer constant. IfMDDHk holds in both groups G1, G2, then there is
an adaptively function-hiding secure IPFE scheme based on G.

3.6 Arithmetic key garbling scheme

Lin and Luo [49] introduced arithmetic key garbling scheme (AKGS). The notion of AKGS
is an information theoretic primitive, inspired by randomized encodings [13] and partial
garbling schemes [41]. It garbles a function f : Z

n
p → Zp (possibly of size (m + 1)) along

with two secrets z, β ∈ Zp and produces affine label functions L1, . . . , Lm+1 : Z
n
p → Zp .

Given f , an input x ∈ Z
n
p and the values L1(x), . . . , Lm+1(x), there is an efficient algorithm

which computes z f (x) + β without revealing any information about z and β.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2941

Definition 6 (Arithmetic Key Garbling Scheme (AKGS), [41, 49]) An arithmetic garbling
scheme (AKGS) for a function class F = { f }, where f : Z

n
p → Zp , consists of two efficient

algorithms:
Garble(z f (x)+β) The garbling is a randomized algorithm that takes as input a description
of the function z f (x) + β with f ∈ F and scalars z, β ∈ Zp where z, x are treated as
variables. It outputs (m + 1) affine functions L1, . . . , Lm+1 : Z

n+1
p → Zp which are called

label functions that specifies how input is encoded as labels. Pragmatically, it outputs the
coefficient vectors �1, . . . , �m+1.
Eval(f , x, �1, . . . , �m+1) The evaluation is a deterministic algorithm that takes as input a
function f ∈ F , an input vector x ∈ Z

n
p and integers �1, . . . , �m+1 ∈ Zp which are supposed

to be the values of the label functions at (x, z). It outputs a value in Zp .

Correctness The AKGS is said to be correct if for all f : Z
n
p → Zp ∈ F, z, β ∈ Zp and

x ∈ Z
n
p , we have

Pr

[

Eval(f , x, �1, . . . , �m+1) = z f (x) + β : (�1, . . . , �m+1) ← Garble(z f (x) + β),

� j ← L j (x, z) for j ∈ [m + 1]
]

= 1

The scheme have deterministic shape, meaning thatm is determined solely by f , independent
of z, β and the randomness in Garble. The number of label functions, (m + 1), is called the
garbling size of f under this scheme.

Linearity The AKGS is said to be linear if the following conditions hold:

– Garble(z f (x) + β) uses a uniformly random vector r ← Z
m′
p as its randomness, where

m′ is determined solely by f , independent of z, β.
– The coefficient vectors �1, . . . , �m produced by Garble(z f (x)+β) are linear in (x, β, r)

whereas the vector �m+1 is linear in z, r .
– Eval(f , x, �1, . . . , �m+1) is linear in �1, . . . , �m+1.

Simulation-based security In this work, we consider linear AKGS for our application. Now,
we state the usual simulation-based security of AKGS, which is similar to the security of
partial garbling scheme [41].

An AKGS = (Garble, Eval) for a function class F is secure if there exists an efficient
algorithm SimGarble such that for all f : Z

n
p → Zp, z, β ∈ Zp and x ∈ Z

n
p , the following

distributions are identically distributed:
{

(�1, . . . , �m+1) : (�1, . . . , �m+1) ← Garble(z f (x) + β),

� j ← L j (x, z) for j ∈ [m + 1]
}

,

{

(�̂1, . . . , �̂m+1) : (�̂1, . . . , �̂m+1) ← SimGarble(f , x, z f (x) + β)

}

The simulation security of AKGS is used to obtain semi-adaptive or selective security of FE
for attribute-weighted sum [3], however it is not sufficient for achieving adaptive security.
We consider the piecewise security of AKGS proposed by Lin and Luo [49] where they used
it to get adaptive security for ABE.

Definition 7 (Piecewise Security of AKGS, [49]) An AKGS = (Garble, Eval) for a function
class F is piecewise secure if the following conditions hold:

123

2942 P. Datta, T. Pal

– The first label value is reversely sampleable from the other labels together with f and
x. This reconstruction is perfect even given all the other label functions. Formally, there
exists an efficient algorithm RevSamp such that for all f : Z

n
p → Zp ∈ F, z, β ∈ Zp

and x ∈ Z
n
p , the following distributions are identical:

{

(�1, �2, . . . , �m+1) : (�1, . . . , �m+1) ← Garble(z f (x) + β),

�1 ← L1(x, z)

}

,

⎧
⎪⎨

⎪⎩
(�1, �2, . . . , �m+1) :

(�1, . . . , �m+1) ← Garble(z f (x) + β),

� j ← L j (x, z) for j ∈ [2,m + 1],
�1 ← RevSamp(f , x, z f (x) + β, �2, . . . , �m+1)

⎫
⎪⎬

⎪⎭

– For the other labels, each ismarginally random even given all the label functions after it.
Formally, thismeans for all f : Z

n
p → Zp ∈ F, z, β ∈ Zp, x ∈ Z

n
p and all j ∈ [2,m+1],

the following distributions are identical:
{

(� j , � j+1, . . . , �m+1) : (�1, . . . , �m+1) ← Garble(z f (x) + β),

� j ← L j (x, z)

}

,

{

(� j , � j+1, . . . , �m+1) : (�1, . . . , �m+1) ← Garble(z f (x) + β),

� j ← Zp

}

Lemma 4 ([49]) A piecewise secure AKGS = (Garble, Eval) for a function class F is also
simulation secure.

We now define special structural properties of AKGS as given in [49], related to the piecewise
security of it.

Definition 8 (Special Piecewise Security of AKGS, [49]) An AKGS = (Garble, Eval) for a
function class F is special piecewise secure if for any f : Z

n
p → Zp ∈ F, z, β ∈ Zp and

x ∈ Z
n
p , it has the following special form:

– The first label value �1 is always non-zero, i.e., Eval(f , x, 1, 0, . . . , 0) �= 0 where we
take �1 = 1 and � j = 0 for 1 < j ≤ (m + 1).

– Let r ← Z
m′
p be the randomness used in Garble(z f (x) + β). For all j ∈ [2,m + 1]. the

label function L j produced by Garble(z f (x) + β; r) can be written as

L j (x) = k j r[j − 1] + L ′
j (x; z, β, r[j], r[j + 1], . . . , r[m′])

where k j ∈ Zp is a non-zero constant (not depending on x, z, β, r) and L ′
j is an affine

function of x whose coefficient vector is linear in (z, β, r[j], r[j + 1], . . . , r[m′]). The
component r[j − 1] is called the randomizer of L j and � j .

Lemma 5 ([49]) A special piecewise secure AKGS = (Garble, Eval) for a function class F
is also piecewise secure. The RevSamp algorithm (required in piecewise security) obtained
for a special piecewise secure AKGS is linear in γ, �2, . . . , �m+1 and perfectly recovers �1
even if the randomness of Garble is not uniformly sampled. More specifically, we have the
following:

Eval(f , x, �1, . . . , �m+1) = �1Eval(f , x, 1, 0, . . . , 0) + Eval(f , x, 0, �2, . . . , �m+1) (7)
RevSamp(f , x, γ, �2, . . . , �m+1) = (Eval(f , x, 1, 0, . . . , 0))−1(γ − Eval(f , x, 0, �2, . . . , �m+1)) (8)

Note that, Eq. (7) follows from the linearity of Eval and Eq. (8) ensures that RevSamp
perfectly computes �1 (which can be verified by Eq. (7) with γ = z f (x) + β).

Lemma 6 ([49]) A piecewise secure AKGS = (Garble, Eval) is also special piecewise secure
after an appropriate change of variable for the randomness used by Garble.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2943

4 One-slot FE for attribute-weighted sums

4.1 Secret key 1-key 1-ciphertext secure one-slot FE for attribute-weighted sums

In this section, we first describe a private-key one-slot FE scheme for the attribute-weighted
sum functionality that is proven simulation secure against a single ciphertext query and
a single secret key query either before or after the ciphertext query. This scheme would
be crucially embedded into the hidden slots for our full-fledged public-key one-slot FE
scheme for attribute-weighted sums presented in the next section. We describe the con-
struction for any fixed value of the security parameter λ and suppress the appearance of
λ for simplicity of notations. Let (Garble, Eval) be a special piecewise secure AKGS for a

function class F (n,n′)
ABP , G = (G1, G2, GT , g1, g2, e) a tuple of pairing groups of prime order

p, and (SK-IPFE.Setup.SK-IPFE.KeyGen, SK-IPFE.Enc, SK-IPFE.Dec) a secret-key function-
hiding SK-IPFE based on G.

Setup(1n, 1n
′
) Define the index sets as follows

S1-FE = {
const, {coefi }i∈[n], {simτ , sim∗

τ }τ∈[n′]
}
, Ŝ1-FE = {ĉonst, ĉoef, ŝim∗}

It generates

IPFE.MSK ← SK-IPFE.Setup(S1-FE), ̂IPFE.MSK ← SK-IPFE.Setup(Ŝ1-FE).

Finally, it returns MSK = (IPFE.MSK, ̂IPFE.MSK).

KeyGen(MSK, f) Let f ∈ F (n,n′)
ABP be a function such that f = (f1, . . . , fn′) : Z

n
p × Z

n′
p →

Zp where f1, . . . , fn′ : Z
n
p → Zp are ABPs of size (m + 1). Sample βt ← Zp for t ∈ [n′]

such that
∑

t∈[n′] βt = 0 mod p. Next, sample independent random vectors r t ← Z
m
p for

garbling and compute the coefficient vectors

(�1,t , . . . , �m,t , �m+1,t) ← Garble(z[t] ft (x) + βt ; r t)
for all t ∈ [n′]. Here we make use of the instantiation of the AKGS described in Sect. 3.6.
From the description of that AKGS instantiation, we note that the (m + 1)-th label function
�m+1,t would be of the form �m+1,t = z[t]− r t [m]. Also all the label functions �1,t , . . . , �m,t

involve only the variables x and not the variable z[t]. Next, for all j ∈ [m] and t ∈ [n′], it
defines the vectors v j,t corresponding to the label functions � j,t obtained from the partial
garbling:

vector const coefi simτ sim∗
τ

v j,t � j ,t [const] � j ,t [coefi] 0 0

vector ĉonst ĉoef ŝim∗

vm+1,t r t [m] 1 0

It generates the secret-keys as

123

2944 P. Datta, T. Pal

IPFE.SK j,t ← SK-IPFE.KeyGen(IPFE.MSK, [[v j,t]]2) for j ∈ [m], t ∈ [n′]
̂IPFE.SKm+1,t ← SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

It returns the secret-key as SK f = ({IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]).
Enc(MSK, x ∈ Z

n
p, z ∈ Z

n′
p) It sets the vectors for all t ∈ [n′]. It encrypts the vectors as

vector const coefi simτ sim∗
τ

u 1 x[i] 0 0

vector ĉonst ĉoef ŝim∗

ht −1 z[t] 0

IPFE.CT ← SK-IPFE.Enc(IPFE.MSK, [[u]]1)
̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]).
Dec((SK f , f), (CT, x)) It parses the secret-key SK f = ({IPFE.SK j,t } j∈[m],t∈[n′],
{ ̂IPFE.SKm+1,t }t∈[n′]) and the ciphertext CT = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]). It uses the decryp-
tion algorithm of SK-IPFE to compute

[[� j,t]]T = SK-IPFE.Dec(IPFE.SK j,t , IPFE.CT) for j ∈ [m], t ∈ [n′]
[[�m+1,t]]T = SK-IPFE.Dec(̂IPFE.SKm+1,t , ̂IPFE.CTt) for t ∈ [n′]

Next, it utilizes the evaluation procedure of AKGS and obtain a combined value

[[ρ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t]]T , . . . , [[�m+1,t]]T).

Finally, it returns a value ρ by solving a discrete logarithm problem. Similar to [3], we assume
that the desired attribute-weighted sum lies within a specified polynomial-sized domain so
that discrete logarithm can be solved via brute force.

Correctness By the correctness of IPFE, we have for all j ∈ [m], t ∈ [n′],
SK-IPFE.Dec(IPFE.SK j,t , IPFE.CT) = [[� j,t]]T = [[L j,t (x)]]T and for all t ∈ [n′],
SK-IPFE.Dec(̂IPFE.SKm+1,t , ̂IPFE.CTt) = [[�m+1,t]]T = [[z[t] − r t [m]]]T . Next, using the
correctness of AKGS and the linearity of the Eval function, we have

Eval(ft , x, [[�1,t]]T , . . . , [[�m+1,t]]T) = [[ft (x)z[t] + βt]]T
Therefore, we get by multiplying

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2945

[[ρ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t]]T , . . . , [[�m+1,t]]T)

=
⎡

⎣

⎡

⎣
n′
∑

t=1

Eval(ft , x, �1,t , . . . , �m+1,t)

⎤

⎦

⎤

⎦

T

=
⎡

⎣

⎡

⎣
n′
∑

t=1

ft (x)z[t] + βt

⎤

⎦

⎤

⎦

T

=
[[
f (x)�z

]]

T

where the last equality holds since
∑

t∈[n′] βt = 0 mod p.

4.1.1 Security analysis

Theorem 2 The 1-FE scheme for attribute-weighted sum is 1-key, 1-ciphertext adaptive sim-
ulation secure as per Definition 4 assuming the AKGS is piecewise secure as per Definition 7
and the IPFE is function hiding as per Definition 5.

We proceeds with the description of the simulator and then security reduction of our 1-key
1-ciphertext secure one-slot FE. Recall that, we have designed the 1-key 1-ciphertext secure
one-slot FE for the purpose of showing the indistinguishability in a particular hybrid required
in the security reduction of the one-slot FE of Sect. 4.2. In that particular hybrid, we deal with
a single pre-ciphertext secret key query of the one-slot FE scheme. Thus, while proving the
security of our 1-key 1-ciphertext secure one-slot FE, we assume that the adversary queries
a single secret key before the challenge ciphertext is sent. However, we emphasize that if we
consider the single secret key query after the challenge phase then the security can also be
proved using the techniques involved in the security reduction (in Sect. 4.2.1) of our one-slot
FE.

The simulator

We describe the simulator for the 1-FE scheme. Let us assume that f is the only secret-key
query made by the adversary before it sends the challenge ciphertext vectors.
Setup∗(1λ, 1n, 1n

′
) To generate the master secret-key, it executes as follows:

1. Define the index sets as follows

S1-FE = {
const, {coefi }i∈[n], {simτ , sim∗

τ }τ∈[n′]
}
, Ŝ1-FE = {ĉonst, ĉoef, ŝim∗}

2. It then generates

IPFE.MSK ← SK-IPFE.Setup(S1-FE) and ̂IPFE.MSK ← SK-IPFE.Setup(Ŝ1-FE)

.
3. It outputs MSK∗ = (IPFE.MSK, ̂IPFE.MSK).

KeyGen∗
0(MSK∗, f)On inputMSK∗ and a function f = (f1, . . . fn′) ∈ F (n,n′)

ABP , the simulator
proceeds as in the original scheme:

1. It first samples {βt ← Zp}t∈[n′] and {r t = (r t [1], . . . , r t [m]) ← Z
m
p }t∈[n′] where it

holds that
∑

t∈[n′] βt = 0 mod p.

123

2946 P. Datta, T. Pal

2. Next, it computes the coefficient vectors for the label functions as

(�1,t , . . . , �m,t , �m+1,t) ← Garble(z∗[t] ft (x∗) + βt ; r t)
for each t ∈ [n′]. From the description of AKGS, we note that the (m+1)-th label function
�m+1,t would be of the form �m+1,t = z[t] − r t [m].

3. It sets the following vectors

vector const coefi simτ sim∗
τ

v j,t � j ,t [const] � j ,t [coefi] 0 0

for all j ∈ [m] and t ∈ [n′]. It also sets the following vectors

vector ĉonst ĉoef ŝim∗

vm+1,t r t [m] 1 0

for all t ∈ [n′].
4. It generates the IPFE secret-keys

IPFE.SK j,t ← SK-IPFE.KeyGen(IPFE.MSK, [[v j,t]]2) for j ∈ [m], t ∈ [n′]
̂IPFE.SKm+1,t ← SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

5. Finally, it returns the secret-key

SK f = ({IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]).

Enc∗(MSK∗, x∗, (f , f (x∗)�z∗)) On input MSK∗, a vector x∗ ∈ Z
n
p and the tuple

(f , f (x∗)�z∗) for some f ∈ F (n,n′)
ABP and z∗ ∈ Z

n′
p the simulator executes the following

steps:

1. It samples a dummy vector d ← D from the set

D = {d ∈ Z
n′
p : f (x∗)�d = f (x∗)�z∗}.

The simulator does this byfinding a randomvector d ∈ Z
n′
p such that

∑
t∈[n′] ft (x∗)z∗[t] =

∑
t∈[n′] ft (x∗)d[t].Hence,D is identical to the setDIP = {d ∈ Z

n′
p : (f1(x∗), . . . , fn′(x∗))·

(d[1], . . . , d[n′]) = f (x∗)�z∗}. A vector d from a set of the form DIP can be efficiently
sampled via a polynomial time algorithm given by O’Neill [59] as the inner product func-
tionality is pre-image-sampleable. Therefore, given x∗ and (f , f (x∗)�z∗), the simulator
can find a dummy vector d such that f (x∗)�d = f (x∗)�z∗.

2. Next, it sets the following vectors

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2947

vector const coefi simτ sim∗
τ

u 1 x∗[i] 0 0

vector ĉonst ĉoef ŝim∗

ht −1 d[t] 0

for all t ∈ [n′].
3. It encrypts the vectors as

IPFE.CT ← SK-IPFE.Enc(IPFE.MPK, [[u]]1)
̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

4. It returns the ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]).

Hybrids and reductions

Proof We employ a sequence of hybrid experiments to demonstrate the indistinguishability
between the real experiment ExptReal,1-FEA (1λ) and the ideal experiment ExptIdeal,1-FEA (1λ)

with the simulator described above where A is any PPT adversary. We assume that in each

experiment,Aqueries the single secret-key query for a function f ∈ F (n,n′)
ABP before submitting

the challenge message (x∗, z∗) ∈ Z
n
p × Z

n′
p . The overall hybrid reduction is shown in Fig. 1.

Hybrid H0: This is the real experiment ExptReal,1-FEA (1λ) defined in Sect. 3.4. The secret-

key SK f = ({IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]) is associated with the vectors v j,t

given by

vector const coefi simτ sim∗
τ

v j,t � j ,t [const] � j ,t [coefi] 0 0

for j ∈ [m] and t ∈ [n′] and

vector ĉonst ĉoef ŝim∗

vm+1,t r t [m] 1 0

for t ∈ [n′] where
(�1,t , . . . , �m,t , �m+1,t) ← Garble(z∗[t] ft (x∗) + βt ; r t)

123

2948 P. Datta, T. Pal

Fig. 1 Structure of the hybrid reduction proving Theorem 2

such that f = (f1, . . . , fn′) ∈ F (n,n′)
ABP , r t ← Z

m
p and βt ← Zp with

∑
t∈[n′] βt = 0

mod p. The challenge ciphertextCT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]) corresponds to (x∗, z∗) ∈
Z
n
p × Z

n′
p is associated with the vectors u and ht given by

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2949

vector const coefi simτ sim∗
τ

u 1 x∗[i] 0 0

vector ĉonst ĉoef ŝim∗

ht −1 z∗[t] 0

for t ∈ [n′]. In the subsequent hybrids, we’ll omit the names of the indices of the vectors
{v j,t } j∈[m+1],t∈[n′], u, {ht }t∈[n′] and we’ll assume that the entries of those vectors lie in those
indices as in the order mentioned in H0.
Hybrid H1: This hybrid is exactly the same as H0 except that we change the vectors v1,t in
the secret-key and u in the challenge ciphertext as follows.

v1,t = (0 , 0 , δtτ , 0),

v j,t = (� j,t [const], � j,t [coefi], 0, 0) ∀1 < j ≤ m,

vm+1,t = (r t [m], 1, 0, 0),

u = (1, x∗[i], �1,τ , 0),

ht = (−1, z∗[t], 0).

Here δtτ is the Kronecker Delta where δtτ = 1 if t = τ , and 0 otherwise. Thus the difference
between H0 and H1 is that instead of embedding the coefficient vectors �1,t of the label
functions L1,t obtained from Garble(z∗[t] ft (x∗) + βt ; r t), we embed the value of the label
functions L1,t (x∗) = �1,t within the ciphertext vector u. Note that the inner products v1,t ·u =
�1,t , for all t ∈ [n′], remain the same as in H0. Therefore, the function hiding security of IPFE
ensures the indistinguishability between the hybrids H0 and H1.
Hybrid H2: This hybrid is identical to H1 except that we replace the actual garbling values
�1,t with the reverse sampling �̃1,t of AKGS computed as

�̃1,t ← RevSamp(ft , x∗, ft (x∗)z∗[t] + βt , �2,t , . . . , �m,t , �m+1,t)

where � j,t = L j,t (x∗) for all j ∈ [2,m] and �m+1,t = z∗[t] − r t [m] obtained by running
Garble(z∗[t] ft (x∗)+βt ; r t) honestly. Therefore, the challenge ciphertext is now associated
with the vectors

u = (1, x∗[i], �̃1,τ , 0),

ht = (−1, z∗[t], 0).

For each t ∈ [n′], the piecewise security of AKGS guarantees that given (�2,t , . . . , �m,t ,

�m+1,t), the actual garbling �1,t and the reversely sampled value �̃1,t are identically dis-
tributed. Hence, the hybrids H1 and H2 are indistinguishable by the reverse sampleability of
AKGS.
Hybrid H3, j (j ∈ [m]): This is analogous to H2 except that we change the secret-key as
follows. For all j ′ such that 1 < j ′ < j , the coefficient vector � j ′,t is taken away from v j ′,t
and a random value �′

j ′,t ← Zp is put into v j ′,t [const]. The modified secret-key is now

123

2950 P. Datta, T. Pal

associated with the vectors

v1,t = (0, 0, δtτ , 0),

v j ′,t = (�′
j ′,t , 0 , 0, 0) ∀1 < j ′ < j,

v j,t = (� j,t [const], � j,t [coefi], 0, 0),

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0) ∀ j < j ′ ≤ m,

vm+1,t = (r t [m], 1, 0)

Note that, in this hybrid �̃1,t is reversely sampled using the random values �′
2,t , . . . , �

′
j−1,t

and the actual values � j,t , . . . , �m+1,t for each t ∈ [n′]. Observe that H3,1 coincides with H2.
We will show that for all j ∈ [2,m], the hybrids H3,(j−1) and H3, j are indistinguishable via
the following sequence of sub-hybrids, namely, {H3, j,1,H3, j,2,H3, j,3} j∈[2,m].
Hybrid H3, j,1 (j ∈ [2,m]): This is exactly same as H3,(j−1) except that the coefficient
vector � j,t is removed from v j,t and v j,t [sim∗

τ] is set to δtτ . We hardwire the actual garbling
value � j,τ = L j,τ (x∗) into u[sim∗

τ] to ensure the inner product v j,τ · u remains the same
as in H3,(j−1). The changes in the vectors associated with the secret-key and the challenge
ciphertext are given below.

v1,t = (0, 0, δtτ , 0),

v j ′,t = (�′
j ′,t , 0, 0 0) ∀1 < j ′ < j,

v j,t = (0 , 0 , 0, δtτ),

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0) ∀ j < j ′ ≤ m,

vm+1,t = (r t [m], 1, 0),

u = (1, x∗[i], �̃1,τ , � j,τ),

ht = (−1, z∗[t], 0).

Therefore, the hybridsH3,(j−1) andH3, j,1 are indistinguishable by the functionhiding security
of IPFE.
Hybrid H3, j,2 (j ∈ [2,m]): It proceeds exactly the same as H3, j,1 except that the label � j,τ

(sitting at u[sim∗
τ]) is replaced with a random value �′

j,τ ← Zp . The vectors associated to
the challenge ciphertext are given by

u = (1, x∗[i], �̃1,τ , �′
j,τ),

ht = (−1, z∗[t], 0)

where �′
j,τ are randomly sampled fromZp . Now the first label �̃1,t is reversely sampled using

the random values �′
2,t , . . . , �

′
j,t and the actual labels � j+1,t = L j+1,t (x∗), . . . , �m,t =

Lm,t (x∗), �m+1,t = −r t [m] + z∗[t]. Hence, the marginal randomness property of AKGS
ensures that the hybrids H3, j,1 and H3, j,2 are identically distributed.
HybridH3, j,3 (j ∈ [2,m]): This hybrid is exactly the same asH3, j,2 except that the random
value �′

j,τ is sifted from u[sim∗
τ] to v j,t [const]. Also, the positions u[sim∗

τ] and v j,t [sim∗
τ]

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2951

are set to zero. The vectors associated to the secret-key and the challenge ciphertext become

v1,t = (0, 0, δtτ , 0),

v j ′,t = (�′
j ′,t , 0, 0, 0) ∀1 < j ′ < j,

v j,t = (�′
j,t , 0, 0, 0),

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0) ∀ j < j ′ ≤ m,

vm+1,t = (r t [m], 1, 0),

u = (1, x∗[i], �̃1,τ , 0),

ht = (−1, z∗[t], 0).

Since the inner products v j,t · u for all j ∈ [m], t ∈ [n′] remain the same as in H3, j,2, the
indistinguishability between the hybrids H3, j,2 and H3, j,3 follows from the function hiding
security of IPFE. We observe that the hybrids H3, j,3 is identical to H3, j for all j ∈ [2,m].
Hybrid H4: It proceeds exactly the same as hybrid H3,m except that the the actual garbling
value �m+1,t = z∗[t]−r t [m] for the label function Lm+1,t obtained from theGarble algorithm

is used in ht [ŝim∗]. The changes are given by
v1,t = (0, 0, δtτ , 0),

v j,t = (�′
j,t , 0, 0, 0) ∀1 < j ≤ m,

vm+1,t = (0 , 0 , 1),

u = (1, x∗[i], �̃1,τ , 0),

ht = (1 , 0 , �m+1,t).

Since the inner products vm+1,t · ht for all t ∈ [n′] remain the same as in H3,m , the indistin-
guishability between the hybrids H3,m and H4 follows from the function hiding security of
IPFE.
Hybrid H5: It is exactly the same as H4 except that the actual label �m+1,t is now replaced
with a random value �′

m+1,t ← Zp . The vectors used in the challenge ciphertext are as
follows.

u = (1, x∗[i], �̃1,τ , 0),

ht = (1, 0, �′
m+1,t)

Note that, in this hybrid the labels �̃1,t for t ∈ [n′] are now reversely sampled using all random
values �′

2,t , . . . , �
′
m+1,t which are randomly picked from Zp . By the marginal randomness

property of AKGS, the hybrids H4 and H5 are identically distributed.
Hybrid H6: This hybrid proceeds exactly the same as H5 except that the random values

�′
m+1,t are shifted from ht [ŝim∗] to vm+1,t [ĉonst]. The changes are indicated as follows.

v1,t = (0, 0, δtτ , 0),

v j,t = (�′
j,t , 0, 0, 0) ∀1 < j ≤ m,

vm+1,t = (�′
m+1,t , 0, 0),

u = (1, x∗[i], �̃1,τ , 0),

ht = (1, 0, 0).

Observe that the inner products vm+1,t · ht for t ∈ [n′] are unchanged as in H5. Hence, the
function hiding security of IPFE ensures the indistinguishability between the hybrids H5 and
H6.

123

2952 P. Datta, T. Pal

Hybrid H7: It is analogous to H6 except that the values ft (x∗)z∗[t] is removed from �̃1,t for
all 1 < t ≤ n′ and the value f (x∗)�z∗ is directly encoded into the label �̃1,1. For this, we
replace the random elements βt by β ′

t = βt − ft (x∗)z∗[t] for all 1 < t ≤ n′ and change the
element β1 with β ′

1 = β1 − f1(x∗)z∗[1] + f (x∗)�z∗. Note that, the distributions

{βt ← Zp :
∑

t∈[n′]
βt = 0} and {β ′

t :
∑

t∈[n′]
βt = 0}

are statistically close since {β ′
t }t∈[n′] are also uniform over Zp and

∑
t∈[n′] β ′

t = 0. Thus the
vectors of the challenge ciphertext become

u = (1, x∗[i], �̃1,τ , 0),

ht = (1, 0, 0).

where the labels �̃1,τ are given by

�̃1,1 ← RevSamp(f1, x∗, f1(x∗)z∗[1] + β ′
1, �2,1, . . . , �m+1,1)

= RevSamp(f1, x∗, f (x∗)�z∗ + β1, �2,1, . . . , �m+1,1)

�̃1,τ ← RevSamp(fτ , x∗, fτ (x∗)z[τ] + βτ , �2,τ , . . . , �m+1,τ) ∀1 < τ ≤ n′

= RevSamp(fτ , x∗, βτ , �2,τ , . . . , �m+1,τ)

Thus, H6 and H7 are indistinguishable as they are statistically close.
Hybrid H8: This hybrid is exactly the same as H7 except that we use a dummy vector d
such that f (x∗)�z∗ = f (x∗)�d while generating �̃1,1. After the secret-key query made
by A, the dummy vector d can be sampled via an efficient algorithm which only need
f1(x∗), . . . , fn′(x∗) and f (x∗)�z∗. This is due to the pre-image-sampleability property of
inner product functionality demonstrated by [59]. Thus, the vector u associated with the
challenge ciphertext is now defined as

u = (1,

coefi
︷ ︸︸ ︷
x∗[1], . . . , x∗[n],

simτ
︷ ︸︸ ︷

�̃1,1 , �̃1,2 . . . , �̃1,n′ ,

sim∗
τ

︷ ︸︸ ︷
0, . . . , 0)

where the labels {�̃1,τ }τ∈[n′] are computed as

�̃1,1 ← RevSamp(f1, x∗, f (x∗)�d + β1, �2,1, . . . , �m+1,1)

�̃1,τ ← RevSamp(fτ , x∗, βτ , �2,τ , . . . , �m+1,τ) ∀1 < τ ≤ n′.

Above, we write the full expression of the vector u as opposed to its compressed expression
used so far in order to highlight the change. Since the inner products v j,t · u for j ∈ [m], t ∈
[n′] are unaltered between the two hybrids, the function hiding security of IPFE preserved
the indistinguishability of the hybrids H7 and H8.
HybridH9: The following sequence of hybrids is basically the reverse of the previous hybrids
with z∗ replaced with d. Therefore, in this hybrid the vectors of the challenge ciphertext are
distributed as

u = (1, x∗[i], �̃1,τ , 0),

ht = (1, 0, 0).

where �̃1,τ ← RevSamp(fτ , x∗, fτ (x∗)d[τ] + βτ , �2,τ , . . . , �m+1,τ). This can be done by
replacingβ1 byβ1− f (x∗)�d+ f1(x∗)d[1] and for τ > 1,βτ is replaced byβτ + fτ (x∗)d[τ].
Note that, H8 and H9 are statistically close.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2953

Hybrid H10: In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, δtτ , 0),

v j,t = (�′
j,t , 0, 0, 0) ∀1 < j ≤ m,

vm+1,t = (0 , 0, 1),

u = (1, x∗[i], �̃1,τ , 0),

ht = (1, 0, �′
m+1,t).

where �′
m+1,t ← Zp . The indistinguishability between the hybrids H9 and H10 follows from

the function hiding security of IPFE.
Hybrid H11: It is exactly the same as H10 except that the random value �′

m+1,t ← Zp

is changed to actual �m+1,t = d[t] − r t [m]. Then the vectors in the challenge ciphertext
become

u = (1, x∗[i], �̃1,τ , 0),

ht = (1, 0, �m+1,t).

The hybrids H10 and H11 are identical due to the marginal randomness property of AKGS.
Hybrid H12: In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, δtτ , 0),

v j,t = (�′
j,t , 0, 0, 0) ∀1 < j ≤ m,

vm+1,t = (r t [m] , 1 , 0),

u = (1, x∗[i], �̃1,τ , 0),

ht = (−1 , d[t] , 0).

The indistinguishability between the hybrids H11 and H12 follows from the function hiding
security of IPFE.
Hybrid H13,m+1− j (j ∈ [m − 1]): It is analogous to H12 except the secret-key is modified
as follows. For all j ′ such that m + 1 − j ≤ j ′ < m + 1, the random value �′

j ′,t ← Zp is
discarded from v j ′,t [const] and the coefficient vector � j ′,t is used in v j ′,t .

v1,t = (0, 0, δtτ , 0),

v j ′,t = (�′
j ′,t , 0, 0, 0) ∀1 < j ′ < m + 1 − j,

v j ′,t = (� j ′,t [const] , � j ′,t [coefi] , 0, 0) ∀m + 1 − j ≤ j ′ < m + 1,

vm+1,t = (r t [m], 1, 0).

In this hybrid, the label �̃1,t is reversely sampled using the random values �′
2,t , . . . , �

′
m+1− j,t

and the actual values �m− j+2,t , . . . , �m+1,t for each t ∈ [n′]. The hybrids H13,m+1−(j−1) and
H13,m+1− j can be shown to be indistinguishable via the following sequence of sub-hybrids,
namely, {H13,m+1− j,1,H13,m+1− j,2,H13,m+1− j,3}.
Hybrid H13,m+1− j ,1 (j ∈ [m − 1]): It proceeds exactly the same as H13,m+1−(j−1) except
that the random values �′

m+1− j,t are sifted from vm+1− j,t [const] to u[sim∗
τ]. We modify

123

2954 P. Datta, T. Pal

vectors associated with the secret-key and the challenge ciphertext as follows

v1,t = (0, 0, δtτ , 0),

v j ′,t = (�′
j ′,t , 0, 0, 0) ∀1 < j ′ < m + 1 − j,

vm+1− j,t = (0 , 0, 0, δtτ),

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0) ∀m + 1 − j < j ′ < m + 1,
vm+1,t = (r t [m], 1, 0),

u = (1, x∗[i], �̃1,τ , �′
m+1− j,τ),

ht = (−1, d[t], 0).

The indistinguishability between the hybrids H13,m+1−(j−1) and H13,m+1− j,1 follows from
the function hiding security of IPFE.
Hybrid H13,m+1− j ,2 (j ∈ [m − 1]): It is exactly same as H13,m+1− j,1 except that the
random values �′

m+1− j,τ at u[sim∗
τ] are now replaced with the actual labels �m+1− j,τ =

Lm+1− j,τ (x∗). The change in the vector u associated to the challenge ciphertext is indicated
as below.

u = (1, x∗[i], �̃1,τ , �m+1− j,τ),

ht = (−1, d[t], 0, 0).

The indistinguishability between the hybrids H13,m+1− j,1 and H13,m+1− j,2 follows from the
marginal randomness property of AKGS.
Hybrid H13,m+1− j,3 (j ∈ [m − 1]): It proceeds analogously to H13,m+1− j,2 except that
instead of the actual labels �m+1− j,t = Lm+1− j,t (x∗)we use the coefficient vectors �m+1− j,t

to set vm+1− j,t . Also, the positions u[sim∗
τ] are set to zero to keep the inner products vm+1− j,t ·

u unaltered as in H13,m+1− j,2. The changes in vectors associated with the secret-key and the
challenge ciphertext are shown below.

v1,t = (0, 0, δtτ , 0),

v j ′,t = (�′
j ′,t , 0, 0, 0) ∀1 < j ′ < m + 1 − j,

vm+1− j,t = (�m+1− j,t [const] , �m+1− j,t [coefi] , 0, 0),

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0) ∀m + 1 − j < j ′ < m + 1,
vm+1,t = (r t [m], 1, 0, 0),

u = (1, x∗[i], �̃1,τ , 0),

ht = (−1, d[t], 0, 0).

The indistinguishability between the hybrids H13,m+1− j,2 and H13,m+1− j,3 follows from
the function hiding security of IPFE. We observe that H13,m+1− j,3 is identical to H13,m+1− j

for all j ∈ [m − 1].
HybridH14: This hybrid proceeds exactly the same asH13,2 except that the reversely sampled
labels �̃1,τ are replaced with the actual labels �1,τ = L1,τ (x∗) when setting u[simτ]. The
vectors associated with the challenge ciphertext are given by

u = (1, x∗[i], �1,τ , 0),

ht = (−1, d[t], 0).

The indistinguishability between the hybrids H13,2 and H14 follows from the reversely sam-
pleability guaranteed by the piecewise security of AKGS.
HybridH15: It is analogous to H14 except that the actual labels �1,τ = L1,τ (x∗) are removed
from u[simτ] and the coefficient vectors �1,t are utilized while setting the vectors v1,t for all
t ∈ [n′]. The vectors associated with the secret-key and the challenge ciphertext are shown

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2955

below.

v1,t = (�1,t [const] , �1,t [coefi] , 0 , 0),

v j,t = (� j,t [const], � j,t [coefi], 0, 0) ∀1 < j ≤ m,

vm+1,t = (r t [m], 1, 0),

u = (1, x∗[i], 0 , 0),

ht = (−1, d[t], 0).

Since the inner products v1,t · u = �1,t , for all t ∈ [n′], remain the same as in H14, the
function hiding security of IPFE ensures the indistinguishability between the hybrids H14 and
H15. Observe that the hybrid H15 coincides with the ideal experiment ExptIdeal,1-FEA (1λ). ��

4.2 Public key one-slot FE for attribute-weighted sums

In this section we present our public-key one-slot FE scheme Πone for the attribute-weighted
sum functionality that is proven adaptively simulation secure against a single ciphertext query
and an arbitrary polynomial number of secret key queries both before and after the ciphertext
query.

We will use our 1-key, 1-ciphertext secure 1-FE scheme from the previous section in
particular hybrid of the full-fledged public-key one-slot FE scheme. In particular, it is not
hard to observe that the 1-FE scheme already supports multiple secret keys, however the
scheme completely breaks down if release two ciphertexts. Suppose we publish only a single
secret key SK f for a function f = (f1, . . . , fn′) and two ciphertexts CT1,CT2 encrypting
(x1, z1), (x2, z2). The system eventually allows the decrypter to evaluate the same AKGS
levels (�1,t , · · · , �m,t , �m+1,t) encoding the function z[t] ft (x)+βt twicewith inputs x1 and
x2. However, AKGS does not guarantee security when the same level functions are evaluated
with two different inputs.

We exploit the fact, similar to [49], that the level values and the inputs are encoded in the
exponent of source groups and the AKGS evaluation is performed via the underlying IPFE
in the exponent of the target group. In fact, computational assumptions such as MDDH can
be used along with the function hiding security of IPFE to randomize the level functions in
the exponent of source groups. Instead of encrypting the vectors (1, x), (−1, z[t]) directly
using IPFE, we first randomize the vectors by sampling a uniformly random vector s and then
encrypt the randomized vectors using IPFE. Consequently, the level functions associated with
the secret key can be randomized with s using the function hiding security of IPFE. Then, the
MDDH assumption ensures that the randomized level functions are computationally uniform.
It seems like the same level functions are sampled independently each time we decrypt a
ciphertext with the same secret key. However, in order to handle a polynomial number of
secret keys in the setting of FE, the techniques developed in [49] is not sufficient. As discussed
in Sect. 2.1, we devise a three-slot dual system encryption mechanism and utilize the security
of our 1-FE scheme in one of the hidden slots for handling pre-ciphertext key queries one at
a time in a loop.

As outlined in Remark 1 below, this scheme can naturally be extended to one supporting
a bounded number of ciphertext queries. We describe the construction for any fixed value
of the security parameter λ and suppress the appearance of λ for simplicity of notations.

Let (Garble, Eval) be a special piecewise secure AKGS for a function class F (n,n′)
ABP , G =

(G1, G2, GT , g1, g2, e) a tuple of pairing groups of prime order p such that MDDHk holds

123

2956 P. Datta, T. Pal

in G2, and (IPFE.Setup.IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a slotted IPFE based on G. We
construct an FE scheme for attribute-weighted sums with the message space M = Z

n
p × Z

n′
p .

Setup(1n, 1n
′
) Define the following index sets as follows

Spub =
{
{const(ι)}ι∈[k], {coef(ι)i }ι∈[k],i∈[n]

}
, Ŝpub = {

ĉonst
(ι)

, ĉoef
(ι)}

ι∈[k]
Spriv = {

const, {coefi }i∈[n], {simτ , sim∗
τ }τ∈[n′]

}
,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim∗}.
It generates (IPFE.MSK, IPFE.MPK) ← IPFE.Setup(Spub, Spriv) and (̂IPFE.MSK, ̂IPFE.MPK) ←
IPFE.Setup(Ŝpub, Ŝpriv). Finally, it returns MSK = (IPFE.MSK, ̂IPFE.MSK) and MPK =
(IPFE.MPK, ̂IPFE.MPK).

KeyGen(MSK, f) Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP . Sample α,β t ← Z

k
p for t ∈ [n′] such

that
∑

t∈[n′]
β t [ι] = 0 mod p for all ι ∈ [k]

Next, sample independent random vectors r(ι)
t ← Z

m
p and computes

(�
(ι)
1,t , . . . , �

(ι)
m,t , �

(ι)
m+1,t) ← Garble(α[ι]z[t] ft (x) + β t [ι]; r(ι)

t)

for all ι ∈ [k], t ∈ [n′]. Here we make use of the instantiation of the AKGS described in
Sect. 3.6. From the description of that AKGS instantiation, we note that the (m + 1)-th label
function �

(ι)
m+1,t would be of the form �

(ι)
m+1,t = α[ι]z[t] − r(ι)

t [m] where α[ι] is a constant.
Also all the label functions �

(ι)
1,t , . . . , �

(ι)
m,t involve only the variables x and not the variable

z[t]. Next, for all j ∈ [m] and t ∈ [n′], it defines the vectors v j,t corresponding to the label

functions �
(ι)
j,t obtained from the partial garbling above as

vector const(ι) coef(ι)i Spriv

v α[ι] 0 0

v j,t �
(ι)
j ,t [const] �

(ι)
j ,t [coefi] 0

vector ĉonst
(ι)

ĉoef
(ι)

Ŝpriv

vm+1,t r(ι)t [m] α[ι] 0

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2957

It generates the secret-keys as

IPFE.SK ← IPFE.KeyGen(IPFE.MSK, [[v]]2)
IPFE.SK j,t ← IPFE.KeyGen(IPFE.MSK, [[v j,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]
It returns SK f = (IPFE.SK, {IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]).
Enc(MPK , x ∈ Z

n
p, z ∈ Z

n′
p) It samples s ← Z

k
p and set the vectors for all t ∈ [n′]. It

vector const(ι) coef(ι)i

u s[ι] s[ι]x[i]

vector ĉonst
(ι)

ĉoef
(ι)

ht −s[ι] s[ι]z[t]

encrypts the vectors as

IPFE.CT ← IPFE.SlotEnc(IPFE.MPK, [[u]]1)
̂IPFE.CTt ← IPFE.SlotEnc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]).
Dec((SK f , f), (CT, x)) It parses SK f = (IPFE.MSK, {IPFE.MSK j,t } j∈[m],t∈[n′],
{ ̂IPFE.MSKm+1,t }t∈[n′]) and the ciphertext CT = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]). It uses the
decryption algorithm of IPFE to compute

[[μ]]T = IPFE.Dec(IPFE.SK, IPFE.CT)

[[� j,t]]T = IPFE.Dec(IPFE.SK j,t , IPFE.CT) for j ∈ [m], t ∈ [n′]
[[�m+1,t]]T = IPFE.Dec(̂IPFE.SKm+1,t , ̂IPFE.CTt) for t ∈ [n′]

Next, it utilizes the evaluation procedure of AKGS and obtain a combined value

[[ρ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t]]T , . . . , [[�m+1,t]]T).

Finally, it returns a value ζ fromapolynomially bounded setP such that [[ρ]]T = [[μ]]T ·[[ζ]]T ;
otherwise ⊥.

123

2958 P. Datta, T. Pal

Correctness By the correctness of IPFE, AKGS and the linearity of the Eval function we
have

Eval(ft , x, [[�1,t]]T , . . . , [[�m+1,t]]T)

= [[
k∑

ι=1

α[ι]s[ι] · ft (x)z[t] + β t [ι]s[ι]]]T

= [[α · s · ft (x)z[t] + β t · s]]T
Therefore, [[ρ]]T = [[∑n′

t=1 α ·s · ft (x)z[t]+β t ·s]]T = [[α ·s f (x)�z]]T since
∑

t∈[n′] β t [ι] =
0 mod p for all ι ∈ [k]. Also, by the correctness of IPFE we see that [[μ]]T = [[α · s]]T and
hence [[ζ]]T = [[f (x)�z]]T ∈ P .

Remark 1 (Multi-Ciphertext Scheme)Theone-slot FE schemeΠone described above is secure
against adversaries that are restricted to query a single ciphertext. However, we can easily
modify the FE scheme to another FE that is secure for any a-priori bounded number of
ciphertext queries from the adversary’s end. For the extension, we introduce additional (2n′+
2)qCT private slots on each ciphertext and decryption key sides, where qCT denotes the number
of ciphertext queries. More specifically, we add 2n′qCT and 2qCT dimensional hidden slots to
Spriv and Ŝpriv respectively to handle the qCT ciphertext queries during the security reduction.
Consequently, the sizes of system parameters, secret-keys and ciphertext would grow linearly
with qCT. A similar strategy can be followed to convert our extended one-slot FE scheme (of
Sect. 1) that only supports a single ciphertext query to one that is secure for any a-priori
bounded number of ciphertext queries.

4.2.1 Security analysis

Theorem 3 The one slot FE schemeΠone for attribute-weighted sum is adaptively simulation-
secure assuming the AKGS is piecewise secure as per Definition 7, the MDDHk assumption
holds in group G2 as per Assumption 1, and the slotted IPFE is function hiding as per
Definition 5.

The simulator

We describe the simulator for the one slot FE scheme Πone.
Setup∗(1λ, 1n, 1n

′
) To generate the master public/secret keys, it executes as follows:

1. Define the following index sets as follows

Spub =
{
{const(ι)}ι∈[k], {coef(ι)i }ι∈[k],i∈[n]

}
,

Ŝpub = {
ĉonst

(ι)
, ĉoef

(ι)}
ι∈[k]

Spriv = {
const, {coefi }i∈[n], {simτ , sim∗

τ }τ∈[n′]
}
,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim∗}.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2959

2. It generates (IPFE.MSK, IPFE.MPK)← IPFE.Setup(Spub, Spriv) and (̂IPFE.MSK, ̂IPFE.MPK)

← IPFE.Setup(Ŝpub, Ŝpriv).

3. It outputs MSK∗ = (IPFE.MSK, ̂IPFE.MSK) and MPK∗ = (IPFE.MPK, ̂IPFE.MPK).

KeyGen∗
0(MSK∗, f q) On input MSK∗, a function fq = (fq,1, . . . fq,n′) for q ∈ [Qpre] the

simulator proceeds as follows:
Setting Public Positions: The public positions are set as in the original scheme.

1. It first samples βq,t = (βq,t [1], . . . ,βq,t [k]) ← Z
k
p and r(ι)

q,t = (r(ι)
q,t [1], . . . , r(ι)

q,t [mq])
← Z

mq
p where it holds that

∑

t∈[n′]
βq,t [ι] = 0 mod p for all ι ∈ [k].

2. Next, it computes the coefficient vectors for the label functions as

(�
(ι)
q,1,t , . . . , �

(ι)
q,mq ,t , �

(ι)
q,mq+1,t) ← Garble(αq [ι]z∗[t] fq,t (x∗) + βq,t [ι]; r(ι)

q,t)

for all ι ∈ [k], t ∈ [n′]. From the description of AKGS, we note that the (mq + 1)-th label

function �
(ι)
q,mq+1,t would be of the form �

(ι)
q,mq+1,t = αq [ι]z∗[t] − r(ι)

q,t [mq].
3. It picks αq ← Z

k
p and sets the public positions at the indexes in Spub, Ŝpub of following

vectors

vector const(ι) coef(ι)i

vq αq [ι] 0

vq, j,t �
(ι)
q, j ,t [const] �

(ι)
q, j ,t [coefi]

for all j ∈ [mq] and t ∈ [n′]. It also sets the following vectors

vector ĉonst
(ι)

ĉoef
(ι)

vq,mq+1,t r(ι)q,t [mq] αq [ι]

for all t ∈ [n′].
Setting Private Positions:

4. It samples α̃q , β̃q,t ← Zp for t ∈ [n′] satisfying∑t∈[n′] β̃q,t = 0.

123

2960 P. Datta, T. Pal

5. Next, it picks r̃q,t ← Z
mq
p and computes the coefficient vectors for the label functions

as

(̃�q,1,t , . . . , �̃q,mq ,t , �̃q,mq+1,t) ← Garble(̃αq z∗[t] fq,t (x∗) + β̃q,t ; r̃q,t).

for all t ∈ [n′]. From the description of AKGS, we note that the (mq +1)-th label function
�̃q,mq+1,t would be of the form �̃q,mq+1,t = α̃q z∗[t] − r̃q,t [mq].

6. Now, it fills the private positions at the indexes in Spriv, Ŝpriv as follows

vector const coefi simτ sim∗
τ

vq α̃q 0 0 0
vq, j,t �̃q, j ,t [const] �̃q, j ,t [coefi] 0 0

for all j ∈ [mq] and t ∈ [n′]; and

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim∗

vq,mq+1,t 0 0 r̃q,t [mq] α̃q 0 0 0

for all t ∈ [n′].
7. It generates the IPFE secret-keys as

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)
IPFE.SKq, j,t ← IPFE.KeyGen(IPFE.MSK, [[vq, j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.SKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]
8. Finally, it returns

SK fq = (IPFE.SKq , {IPFE.SKq, j,t } j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t }t∈[n′]).

Enc∗(MPK∗,MSK∗, x∗,V)On inputMSK∗, a vector x∗ ∈ Z
n
p and a setV = {(fq , fq(x∗)�z∗)

: q ∈ [Qpre]} the simulator executes the following steps:

1. It samples a dummy vector d from the set

D = {d ∈ Z
n′
p : fq(x∗)�d = fq(x∗)�z∗ for all q ∈ [Qpre]}.

The simulator does this by finding a randomvector d ∈ Z
n′
p such that

∑
t∈[n′] fq,t (x∗)d[t]

= ∑
t∈[n′] fq,t (x∗)z∗[t] for all q ∈ [Qpre]. Hence, D is identical to the set DIP = {d ∈

Z
n′
p : (fq,1(x∗), . . . , fq,n′(x∗)) · (d[1], . . . , d[n′]) = fq(x∗)�z∗ for all q ∈ [Qpre]}. A

vector d from a set of the form DIP can be efficiently sampled via a polynomial time
algorithm given by O’Neill [59] as noted earlier. Therefore, given x∗ and V , the simulator
can find a dummy vector d such that fq(x∗)�d = fq(x∗)�z∗ holds for every q ∈ [Qpre].

2. Next, it sets the following vectors

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2961

vector const(ι) coef(ι)i const coefi simτ sim∗
τ

u 0 0 1 x∗[i] 0 0

and for all t ∈ [n′].

vector ĉonst
(ι)

ĉoef
(ι)

ht 0 0

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim∗

ht 1 0 −1 d[t] 0 0 0

3. It encrypts the vectors as

IPFE.CT ← IPFE.Enc(IPFE.MPK, [[u]]1)
̂IPFE.CTt ← IPFE.Enc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

4. It returns the ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]).
KeyGen∗

1(MSK∗, x∗, f q , f q(x
∗)�z∗) On input MSK∗, x∗ ∈ Z

n
p , a function fq =

(fq,1, . . . fq,n′) ∈ F (n,n′)
ABP for q ∈ [Qpre+1, Q] and fq(x∗)�z∗ ∈ Zp the simulator proceeds

as follows:
Setting Public Positions:

1. The simulator sets the public positions at the indexes in Spub, Ŝpub of the vectors vq and
vq, j,t analogous to KeyGen∗

0(MSK∗, fq).

Setting Private Positions:

2. First, it samples a random elements α̃q , β̃q,t ← Zp , for t ∈ [n′], satisfying∑t∈[n′] β̃q,t =
0 and then runs the simulator of the AKGS to obtain

(�̂q,1,1, . . . , �̂q,mq ,1, �̂q,mq+1,1) ← SimGarble(fq,1, x∗, α̃q · fq(x∗)�z∗ + β̃q,1)

(�̂q,1,t , . . . , �̂q,mq ,t , �̂q,mq+1,t) ← SimGarble(fq,t , x∗, β̃q,t) for 1 < t ≤ n′.

3. Next, it fills the private positions at the indices in Spriv, Ŝpriv as follows

vector const coefi simτ sim∗
τ

vq α̃q 0 0 0
vq, j,t �̂q, j ,t 0 0 0

for all j ∈ [mq] and t ∈ [n′]; and
for all t ∈ [n′].

123

2962 P. Datta, T. Pal

Fig. 2 Structure of the hybrid reduction proving Theorem 3

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim∗

vq,mq+1,t �̂q,mq+1,t 0 0 0 0 0 0

4. It generates the IPFE secret-keys as

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)
IPFE.SKq, j,t ← IPFE.KeyGen(IPFE.MSK, [[vq, j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.MSKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]

5. It outputs

SK fq = (IPFE.SKq , {IPFE.SKq, j,t } j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t }t∈[n′]).

Hybrids and reductions

Proof We employ a sequence of hybrid experiments to demonstrate the indistinguishability
between the real experiment ExptReal, FEA (1λ) and the ideal experiment ExptIdeal, FEA (1λ) with
the simulator described above where A is any PPT adversary. The overall hybrid reduction
is shown in Fig. 2. In each experiment, A can query a polynomial number of secret-key

queries for functions fq ∈ F (n,n′)
ABP , both before and after submitting the challenge message

(x∗, z∗) ∈ Z
n
p × Z

n′
p . Let Q be the total number of secret-key queries and Qpre (< Q)

be the number of secret-keys queried before making the challenge message. We denote the

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2963

q-th secret-key by SK fq corresponding to a function fq . For the ease of presentation, we
write the vector elements sitting in the public slots Spub, Ŝpub in blue color and the vector
elements sitting in the private slots Spriv, Ŝpriv in red color. More precisely, we do this so that
while describing the hybrid games, we sometimes omit the public parts of the vectors and
write down only the private parts when the changes occur only in the private parts. Now, we
describe the hybrids as follows:
HybridH0 This is the real experiment ExptReal, FEA (1λ) defined inDefinition 4 (with single slot,
i.e., N = 1). For anyq ∈ [Q], theq-th secret-keySK fq = (IPFE.SKq , {IPFE.SKq, j,t } j∈[mq],t∈[n′],
{ ̂IPFE.SKq,mq+1,t }t∈[n′]) is associated with the vectors vq , vq, j,t given by

vq = (αq [ι], 0, 0, 0, 0, 0),

vq, j,t = (�
(ι)
q, j,t [const], �

(ι)
q, j,t [coefi], 0, 0, 0, 0),

vq,mq+1,t = (r(ι)
q,t [mq], αq [ι], 0, 0, 0, 0, 0, 0, 0).

for j ∈ [mq] and t ∈ [n′]. Note that αq and r(ι)
q,t are random vectors sampled from Z

k
p and

Z
mq
p respectively. For all t ∈ [n′], the garblings are computed as

(�q,1,t , . . . , �q,mq ,t , �q,mq+1,t) ← Garble(αq [ι]z∗[t] fq,t (x∗) + βq,t [ι]; r(ι)
q,t)

where fq = (fq,1, . . . , fq,n′) and βq,t ← Z
k
p with

∑
t∈[n′] βq,t [ι] = 0 mod p ∀ι ∈ [k]. The

challenge ciphertext CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]) corresponds to (x∗, z∗) ∈ Z
n
p × Z

n′
p

is associated with the vectors u and ht given by

u = (s[ι], s[ι]x∗[i],⊥,⊥,⊥,⊥),

ht = (−s[ι], s[ι]z∗[t],⊥,⊥,⊥,⊥,⊥,⊥,⊥),

for t ∈ [n′] and s ← Z
k
p .Note that, in the real experiment,CT∗ is computed using IPFE.SlotEnc

and therefore the elements sitting at the indexes in Spriv are set as ⊥ for the vectors u and ht .
HybridH1 It is exactly the same as hybridH0 except the fact that here the challenge ciphertext
CT∗ is generated using IPFE.Enc usingMSK = (IPFE.MSK, ̂IPFE.MSK). As a result the private
positions of u and ht (in CT∗) are changed from ⊥ to 0. Thus the vectors u and ht become

u = (s[ι], s[ι]x∗[i], 0 , 0 , 0 , 0),

ht = (−s[ι], s[ι]z∗[t], 0 , 0 , 0 , 0 , 0 , 0 , 0).

The slot-mode correctness of IPFE guarantees that the two hybrids H0 and H1 are identically
distributed.
Hybrid H2 This hybrid is similar to H1 except that in the private slots of the vectors used
to compute SK fq , we put one single garbling that linearly combines k garblings with weight
vector s ∈ Z

k
p instead of using k independent garblings associated to each index j ∈ [mq] of

the vectors vq, j,t and a single random element combining the weight vector s in vq instead of
using a random vector αq . Accordingly, we modify the challenge ciphertext CT∗ by omitting
the weight vector s and setting the public slots to zero of the vectors u, ht to ensure the inner
products computed at the time of decryption remains the same in both the hybrids.
In H1, the public slots of the vectors vq , vq, j,t are occupied by a vector αq ∈ Z

k
p and the

garblings �
(ι)
q, j,t computed using randomness r(ι)

q,t ∈ Z
mq
p . In the public slots of the vectors

u, ht , we use (s[ι], s[ι]x∗[i]), (−s[ι], s[ι]z∗[t]) respectively. Therefore, the IPFE decryption

123

2964 P. Datta, T. Pal

lets us recover [[μq]]T , [[�q, j,t]]T such that

μq = αq · s = αq (say),

�q, j,t = (�
(1)
q, j,t , . . . , �

(k)
q, j,t) · (s[1](1, x∗), . . . , s[k](1, x∗))

= (s[1]�(1)
q, j,t , . . . , s[k]�(k)

q, j,t) · ((1, x∗), . . . , (1, x∗))

= �q, j,t · (1, x∗)

where �q, j,t = ∑
ι∈[k] s[ι]�(ι)

q, j,t for all j ∈ [mq] and t ∈ [n′]. Similarly, the (mq + 1)-th
garbling returns

�q,mq+1,t = ((r(1)q,t [mq],αq [1]), . . . , (r(k)q,t [mq],αq [k])) · (s[1](−1, z∗[t]), . . . , s[k](−1, z∗[t]))
= (s[1](r(1)q,t [mq], αq [1]), . . . , s[k](r(k)q,t [mq],αq [k])) · ((−1, z∗[t]), . . . , (−1, z∗[t]))
= (rq,t [mq], αq) · (−1, z∗[t])

where rq,t [mq] = ∑
ι∈[k] s[ι]r(ι)

q,t [mq]. In H2, we use αq , �q, j,t and rq,t [mq] in the private
slots of the vectors associated to SK fq as described below

vq = (αq [ι], 0, αq , 0, 0, 0),

vq, j,t = (�
(ι)
q, j,t [const], �

(ι)
q, j,t [coefi], �q, j,t [const] , �q, j,t [coefi] , 0, 0),

vq,mq+1,t = (r(ι)
q,t [mq],αq [ι], rq,t [mq] , αq , 0, 0, 0, 0, 0)

Since the weight vector s is not required to generate the challenge ciphertext CT∗, we omit
it in the vectors u and ht . Moreover, the public slots of u and ht are set to zero as the inner
product is computed through the private slots only. We describe the changes below.

u = (0 , 0 , 1 , x∗[i] , 0, 0),

ht = (0 , 0 , −1 , z∗[t] , 0, 0, 0, 0, 0),

Finally, we observe that the inner products vq · u, vq, j,t · u and vq,mq+1,t · ht for all j ∈
[mq], t ∈ [n′] remain the same as in H1. Thus, the function hiding property of IPFE preserves
the indistinguishability between the hybrids H1 and H2.

Note that, in this hybrid we pick αq ,βq,t , s ← Z
k
p and r

(ι)
q,t ← Z

mq
p for all t ∈ [n′], ι ∈ [k]

satisfying
∑

t∈[n′] βq,t [ι] = 0 mod p for each ι ∈ [k]. Then, the linearity of the Garble
algorithm allows us to write

(�q,1,t , . . . , �q,mq ,t , �q,mq+1,t) ← Garble(αq z∗[t] fq,t (x∗) + βq,t ; rq,t)

where �q, j,t = ∑
ι∈[k] s[ι]�(ι)

q, j,t , rq,t = ∑
ι∈[k] s[ι]r(ι)

q,t and βq,t = βq,t · s.
Hybrid H3 It is analogous to H2 except the liner combinations αq , �q, j,t , rq,t in the private
slots of the vectors vq , vq, j,t , vq,mq+1,t are replacedwith freshly and independently generated
random values and garblings α̃q , �̃q, j,t , r̃q,t . More specifically, we sample random elements
α̃q , β̃q,t ← Zp for all t ∈ [n′] such that∑t∈[n′] β̃q,t = 0 mod p and a vector r̃q,t ← Z

mq
p .

Then, the garblings are computed as

(̃�q,1,t , . . . , �̃q,mq ,t , �̃q,mq+1,t) ← Garble(̃αq z∗[t] fq,t (x∗) + β̃q,t ; r̃q,t)

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2965

for all t ∈ [n′]. The vectors involved in SK fq are modified as follows:

vq = (αq [ι], 0, α̃q , 0, 0, 0),

vq, j,t = (�
(ι)
q, j,t [const], �

(ι)
q, j,t [coefi], �̃q, j,t [const] , �̃q, j,t [coefi] , 0, 0),

vq,mq+1,t = (r(ι)
q,t [mq],αq [ι], r̃q,t [mq] , α̃q , 0, 0, 0, 0, 0)

Recall that in H2, the following linear combinations

αq = αq · s, βq,t = βq,t · s, rq,t =
∑

ι∈[k]
s[ι]r(ι)

q,t

where a common weight vector s has been used to set vq , vq, j,t . On the other hand, in H3,
fresh and independent random elements α̃q , β̃q,t , r̃q,t are used to compute SK fq . Note that the
elements of the vectors vq , vq, j,t are only used in the exponent of the source group G2 while
generating the IPFE secret-keys. Let us consider the matrix Aq,t = (αq ‖ βq,t ‖ (Rq,t)

�) ∈
Z
k×(mq+2)
p where Rq,t = (r(1)

q,t ‖ . . . ‖ r(k)
q,t) ∈ Z

mq×k
p . Since the matrix Aq,t is uniformly

chosen from Z
k×(mq+2)
p and s is uniform over Z

k
p , by the MDDHk assumption in group G2

we have

([[Aq,t]]2, [[s�Aq,t]]2
︸ ︷︷ ︸

in H2

)
c≈ ([[Aq,t]]2, [[(̃αq , β̃q,t , r̃q,t)]]2

︸ ︷︷ ︸
in H3

)

holds for all q ∈ [Q] and t ∈ [n′]. Hence, the two hybrids H2 and H3 are indistinguishable
under the MDDHk assumption with k < mq + 2.
HybridH4 It is exactly the same as hybridH3 except we change the way the vectors ht for all
t ∈ [n′] are computed while producing the challenge ciphertext. After all the pre-challenge
secret-key queries made by A, a dummy vector d is picked from the set

D = {d ∈ Z
n′
p : fq(x∗)�d = fq(x∗)�z∗ for all q ∈ [Qpre]}

via an efficient algorithm proposed in [59], and then the vectors u, ht associated with the
ciphertext are defined as below.

u = (0, 0, 1, x∗[i], 0, 0),
ht = (0, 0,−1, z∗[t], −1 , d[t] , −1 , z∗[t] , 0),

Note that, these changes in ht have no effect in the final inner product between vq,mq+1,t and

ht since the slots (ĉonst2, ĉoef2, ĉonst, ĉoef) where the changes take place in ht correspond
to zero entries in vq,mq+1,t . Therefore, by the function hiding property of IPFE, the hybrids
H3 and H4 remain indistinguishable to the adversary.

From the next hybridwewillmodify the pre-challenge secret-key queries and the challenge
ciphertext so that the decryption results become fq(x∗)�d for all q ∈ [Qpre] for some
vector d ∈ Z

n′
p . Note that, d is a dummy vector which is sampled from Z

n′
p such that

fq(x∗)�d = fq(x∗)�z∗ for all q ∈ [Qpre]. This is done through a loop of hybrids described
below.
Hybrid H5,q (q ∈ [Qpre]) It proceeds similar to H4 except that for each 1 ≤ q ′ ≤ q , we
modify the vector vq,mq+1,t as described below.

vq ′,mq′+1,t = (0, 0, r̃q ′,t [mq ′] , α̃q ′ , 0, 0, 0) for q ′ ≤ q

vq ′,mq′+1,t = (r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre

123

2966 P. Datta, T. Pal

Note that, the post-challenge secret-key queries are still answered according to H4. Observe
that H5,0 coincides with H4. We will prove that H5,(q−1) and H5,q are indistinguishable via
the following sequence of sub-hybrids, namely {H5,q,1,H5,q,2,H5,q,3}.
Hybrid H5,q,1 (q ∈ [Qpre]) It is analogous to H5,(q−1) except that in the qth secret-key
query the vector vq,mq+1,t is modified as follows.

vq ′,mq′+1,t = (0, 0, r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0) for q ′ < q

vq,mq+1,t = (0 , 0 , 0, 0, r̃q,t [mq] , α̃q , 0),

vq ′,mq′+1,t = (r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre

We observe that this change in vq,mq+1,t has no effect in the inner product vq,mq+1,t · ht for
all t ∈ [n′]. Therefore, the function hiding security of IPFE ensures that the hybrids H5,(q−1)
and H5,q,1 are indistinguishable.

In this hybrid, the positions of vq, j,t |Spriv and vq,mq+1,t [ĉonst], vq,mq+1,t [ĉoef],
vq,mq+1,t [ŝim], vq,mq+1,t [ŝim∗] are exactly the same as in the secret-key of our 1-FE
scheme. Similarly, in the case of the challenge ciphertext, the positions of u|Spriv and

ht [ĉonst], ht [ĉoef], ht [ŝim], ht [ŝim∗] are also identical to the ciphertext of our 1-FE scheme.

Hybrid H5,q,2 (q ∈ [Qpre]) It is exactly the same as H5,q,1 except that the position ht [ĉoef]
is changed from z∗[t] to d[t] as shown below.

u = (0, 0, 1, x∗[i], 0, 0),
ht = (0, 0,−1, z∗[t],−1, d[t],−1, d[t] , 0),

All the secret-keys are answered as in the previous hybrid. The indistinguishability follows
from the security of our 1-FE scheme. We note that the security of our 1-FE relies on the
function hiding security of IPFE and the security of AKGS. In particular, we use the security
of IPFE and AKGS to reversely sample the first label and make all the other labels random as
shown below

�̃q,1,1 ← RevSamp(fq,1, x∗, α̃q fq(x∗)�z∗ + β̃q,1, �2,1, . . . , �mq+1,1)

�̃q,1,τ ← RevSamp(fq,τ , x∗, β̃q,τ , �2,τ , . . . , �mq+1,τ) for 1 < τ ≤ n′,

where
∑

τ∈[n′] β̃q,τ = 0. Then, the dummy vector d replaces z∗ while computing �̃q,1,1 and

d[t] is placed at ht [ĉoef]. Finally, we move in the reverse direction so that the vectors vq, j,t

for all j ∈ [mq] and t ∈ [n′] are back in the form as they were in H5,q,1. Note that, the
hybrids involved in our 1-FE scheme uses the positions simτ , sim∗

τ , ŝim, ŝim
∗
of the vectors

vq, j,t , u and ht , which does not effect the decryption using any post-challenge secret-key.
Hybrid H5,q,3 (q ∈ [Qpre]) It proceeds analogously to H5,q,2 except that we change
vq,mq+1,t and ht as below.

vq ′,mq′+1,t = (0, 0, r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0) for q ′ < q

vq,mq+1,t = (0, 0, r̃q,t [mq] , α̃q , 0 , 0 , 0),

vq ′,mq′+1,t = (r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre

u = (1, x∗[i], 0, 0)
ht = (−1, z∗[t],−1, d[t],−1, z∗[t] , 0)

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2967

Note that the inner product vq,mq+1,t ·ht remains the same as inH5,q,2. Therefore, the hybrids
H5,q,2 andH5,q,3 are indistinguishable due to the function hiding security of IPFE.We observe
that H5,q,3 is identical to H5,q for all q ∈ [Qpre].
HybridH6 It is exactly the sameasH5,Qpre except that the positions ht [ĉonst] and ht [ĉoef] are
set to zero. We describe the vectors associated with the pre-ciphertext secret-key queries and
the challenge ciphertext below. Note that the post-challenge secret-key queries are answered
in the same way as in H4 (or in H5,Qpre).

1 ≤ q < Qpre

⎧
⎪⎨

⎪⎩

vq = (αq [ι], 0, α̃q , 0, 0, 0),

vq, j,t = (�
(ι)
q, j,t [const], �

(ι)
q, j,t [coefi], �̃q, j,t [const], �̃q, j,t [coefi], 0, 0),

vq,mq+1,t = (r(ι)q,t [mq], αq [ι], 0, 0, r̃q,t [mq], α̃q , 0, 0, 0)

u = (0, 0, 1, x∗[i], 0, 0),
ht = (0, 0, −1, z∗[t], −1, d[t], 0 , 0 , 0)

Qpre < q ≤ Q

⎧
⎪⎨

⎪⎩

vq = (αq [ι], 0, α̃q , 0, 0, 0),

vq, j,t = (�
(ι)
q, j,t [const], �

(ι)
q, j,t [coefi], �̃q, j,t [const], �̃q, j,t [coefi], 0, 0),

vq,mq+1,t = (r(ι)q,t [mq],αq [ι], r̃q,t [mq], α̃q , 0, 0, 0, 0, 0)

Since the inner product vq,mq+1,t · ht for all q ∈ [Q], t ∈ [n′] is unaltered with this change,
the function hiding security of IPFE ensures indistinguishability between the hybrids H5,Qpre

and H6.
Hybrid H7 This hybrid proceeds exactly similar to H6 except that we use the honest levels
�̃q, j,t = �̃q, j,t (x∗) for j ∈ [mq] and �̃q,mq+1,t = α̃q z∗[t] − r̃q,t [mq] at the index const of
the vectors vq, j,t in all the post-challenge secret-key queries. Moreover, all the other private
positions of vq, j,t are set to zero for all j ∈ [mq]. We also modify ht of the challenge
ciphertext as shown below.

u = (0, 0, 1, x∗[i], 0, 0),
ht = (0, 0, 1 , 0 ,−1, d[t], 0, 0, 0)

Qpre < q ≤ Q

⎧
⎪⎪⎨

⎪⎪⎩

vq = (αq [ι], 0, α̃q , 0, 0, 0),

vq, j,t = (�
(ι)
q, j,t [const], �

(ι)
q, j,t [coefi], �̃q, j,t , 0 , 0, 0),

vq,mq+1,t = (r(ι)
q,t [mq],αq [ι], �̃q,mq+1,t , 0 , 0, 0, 0, 0, 0)

Since the inner products vq, j,t ·u, vq,mq+1,t ·ht gives the same result as in the previous hybrid,
the function hiding property of IPFE ensures that the hybridsH6 and H7 are indistinguishable.
HybridH8 This hybrid proceeds analogous toH7 except that in the post-challenge secret-key
queries we use the simulated garblings instead of the honest garblings. More specifically, we
sample α̃q , β̃q,t ← Zp satisfying

∑
t∈[n′] β̃q,t = 0 and compute the simulated garblings

(�̂q,1,t , . . . , �̂q,mq ,t , �̂q,mq+1,t) ← SimGarble(fq,t , x∗, α̃q · z∗[t] fq,t (x∗) + β̃q,t)

for all q ∈ [Qpre + 1, Q] and t ∈ [n′]. Then, the post-challenge secret-keys are generated
using the vectors given below.

vq = (αq [ι], 0, α̃q , 0, 0, 0),

vq, j,t = (�
(ι)
q, j,t [const], �

(ι)
q, j,t [coefi], �̂q, j,t , 0, 0, 0),

123

2968 P. Datta, T. Pal

vq,mq+1,t = (r(ι)
q,t [mq],αq [ι], �̂q,mq+1,t , 0, 0, 0, 0, 0, 0)

The simulated levels of AKGS is used in place of actual garblings. The simulation security
of AKGS implies that the hybrids H7 and H8 are indistinguishable.
HybridH9 This is exactly the same asH8 except that the distribution of {β̃q,t }t∈[n′] is changed.
We replace β̃q,t by β̃ ′

q,t = β̃q,t − α̃q · z∗[t] fq,t (x∗) for all 1 < t ≤ n′ and replace the element

β̃q,1 by β̃ ′
q,1 = β̃q,1 − α̃q · z∗[t] fq,1(x∗) + α̃q · fq(x∗)�z∗. Note that, the distributions

{β̃q,t ← Zp :
∑

t∈[n′]
β̃q,t = 0} and {β̃ ′

q,t :
∑

t∈[n′]
β̃q,t = 0}

are statistically close since {β̃ ′
q,t }t∈[n′] are also uniform overZp and

∑
t∈[n′] β̃ ′

q,t = 0. Finally,
the vectors associated to the post-challenge secret-keys are given by

vq = (αq [ι], 0, α̃q , 0, 0, 0),

vq, j,t = (�
(ι)
q, j,t [const], �

(ι)
q, j,t [coefi], �̂q, j,t , 0, 0, 0),

vq,mq+1,t = (r(ι)
q,t [mq],αq [ι], �̂q,mq+1,t , 0, 0, 0, 0, 0, 0)

where the simulated garblings take the form

(
�̂q,1,1, . . . , �̂q,mq ,1, �̂q,mq+1,1

)
← SimGarble

(

fq,1, x
∗, α̃q · fq (x∗)� z∗ + β̃q,1

)

(
�̂q,1,t , . . . , �̂q,mq ,t , �̂q,mq+1,t

)
← SimGarble

(

fq,t , x∗, β̃q,t

)

for 1 < t ≤ n′.

Observe that H9 is the same as the ideal experiment ExptFE, IdealA (1λ). This completes the
security analysis. ��

5 One-slot extended FE for attribute-weighted sums designed for
achieving unbounded-slot FE for attribute-weighted sums

5.1 Secret key 1-key 1-ciphertext secure one-slot extended FE

In this section,we present a private-key one-slot FE scheme for an extended attribute-weighted
sum functionality that is proven simulation secure against a single ciphertext query and a
single secret key query either before or after the ciphertext query. This scheme will be
embedded into the hidden subspaces of the public-key multi-key FE scheme for the same
functionality presented in the next section in its security proof. We describe the construction
for any fixed value of the security parameter λ and suppress the appearance of λ for sim-
plicity of notations. Let (Garble, Eval) be a special piecewise secure AKGS for a function

class F (n,n′)
ABP , G = (G1, G2, GT , g1, g2, e) a tuple of pairing groups of prime order p, and

(IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a secret-key function-hiding SK-IPFE based
on G.
Setup(1λ, 1n, 1n

′
) Define the following index sets as follows

S1-extFE = {
const, {coefi }i∈[n], {extndκ }κ∈[k],query, {simτ , sim∗

τ }τ∈[n′]
}
,

Ŝ1-extFE = {ĉonst, ĉoef, ŝim∗}

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2969

It generates two IPFE master secret-keys IPFE.MSK ← SK-IPFE.Setup(S1-extFE) and
̂IPFE.MSK ← SK-IPFE.Setup(Ŝ1-extFE). Finally, it returns MSK = (IPFE.MSK, ̂IPFE.MSK).

KeyGen(MSK, (f , y)) Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP and y ∈ Z

k
p . Samples integers

νt , βt ← Zp for t ∈ [n′] such that
∑

t∈[n′]
νt = 1 and

∑

t∈[n′]
βt = 0 modulo p.

Next, samples independent random vectors r t ← Z
m
p for garbling and computes the coeffi-

cient vectors

(�1,t , . . . , �m,t , �m+1,t) ← Garble(z[t] ft (x) + βt ; r t)
for each t ∈ [n′]. Here we make use of the instantiation of the AKGS described in Sect. 3.6.
From the description of that AKGS instantiation, we note that the (m + 1)-th label function
�m+1,t would be of the form �m+1,t = z[t]− r t [m]. Also all the label functions �1,t , . . . , �m,t

involve only the variables x and not the variable z[t]. Next, for all j ∈ [m] and t ∈ [n′], it
defines the vectors v j,t corresponding to the label functions � j,t obtained from the partial
garbling above and the vector y as

vector const coefi extndκ query simτ sim∗
τ

v1,t �1,t [const] �1,t [coefi] y[κ]νt 0 0 0
v j,t � j,t [const] � j ,t [coefi] 0 0 0 0

It also sets the vectors vm+1,t for t ∈ [n′] corresponding to the (m + 1)-th label function
�m+1,t as

vector ĉonst ĉoef ŝim∗

vm+1,t r t [m] 1 0

Now, it uses the key generation algorithm of IPFE to generate the secret-keys

IPFE.SK j,t ← SK-IPFE.KeyGen(IPFE.MSK, [[v j,t]]2) for j ∈ [m], t ∈ [n′]
̂IPFE.SKm+1,t ← SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

It returns the secret-key SK f , y = ({IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]).

Remark We note that the key-generation process can be performed if the vector y is not
given in the clear, but [[y]]2 ∈ G

k
2 is known. This is because while running the IPFE.KeyGen

algorithm above, the vectors v j,t are not inputted in the clear but in the exponent of the group
G2. This fact will be used in the security analysis of our unbounded FE scheme.

Enc(MSK, (x, z||w) ∈ Z
n
p × Z

n′+k
p) It sets the following vectors:

123

2970 P. Datta, T. Pal

vector const coefi extndκ query simτ sim∗
τ

u 1 x[i] w[κ] 0 0 0

vector ĉonst ĉoef ŝim∗

ht −1 z[t] 0

for all t ∈ [n′]. Then, it encrypts the vectors using IPFE and obtain the ciphertexts

IPFE.CT ← SK-IPFE.Enc(IPFE.MSK, [[u]]1)
̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

Finally, it returns the ciphertext as CTx,z||w = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]).
Dec((SK f , y, f), (CTx,z||w, x)) It parses SK f , y = ({IPFE.SK j,t } j∈[m],t∈[n′],
{ ̂IPFE.SKm+1,t }t∈[n′]) and CTx,z||w = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]). It uses the decryption algo-
rithm of SK-IPFE to compute

[[�1,t + ψt]]T ← SK-IPFE.Dec(IPFE.SK1,t , IPFE.CT) for t ∈ [n′]
[[� j,t]]T ← SK-IPFE.Dec(IPFE.SK j,t , IPFE.CT) for j ∈ [2,m], t ∈ [n′]

[[�m+1,t]]T ← SK-IPFE.Dec(̂IPFE.SKm+1,t , ̂IPFE.CTt) for t ∈ [n′]
where ψt = νt · y�w. Next, it utilizes the evaluation procedure of AKGS and returns the
combined value

[[ρ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T).

Correctness From the correctness of IPFE, we have SK-IPFE.Dec(IPFE.SK1,t , IPFE.CT) =
[[�1,t +ψt]]T whereψt = νt · y�w. Next, using the correctness of IPFE and AKGS evaluation,
we get

Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T)

= Eval(ft , x, [[�1,t]]T , . . . , [[�m+1,t]]T) + Eval(ft , x, [[ψt]]T , [[0]]T , . . . , [[0]]T)

= [[z[t] ft (x) + βt + νt · y�w]]T
The first equality follows from the linearity of Eval function. Now, multiplying all the eval-
uated values we have

[[ρ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T)

= [[
n′
∑

t=1

(z[t] ft (x) + νt · y�w + βt)]]T

= [[f (x)�z + y�w]]T
The last equality is obtained from the fact that

∑
t∈[n′] νt = 1 and

∑
t∈[n′] βt = 0.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2971

5.1.1 Security analysis

Theorem 4 The 1-extFE scheme for attribute-weighted sum is 1-key, 1-ciphertext simulation-
secure as per Definition 4 assuming the AKGS is piecewise secure as per Definition 7 and the
IPFE is function hiding as per Definition 5.

As in the case of our 1-key 1-ciphertext secure one-slot FE, here also we assume that the
adversary queries the single secret key before the challenge ciphertext is sent. This is because
we will use the security of the 1-key 1-ciphertext secure one-slot extFE in a particular hybrid
of the security reduction of our one-slot extFE scheme (presented in Sect. 1) where we deal
with a single pre-ciphertext secret key of the one-slot extFE. However, we emphasize that if
we consider the single secret key query after the challenge phase then the security can also
be proved using the security reduction of our one-slot extFE.

The simulator

We describe the simulator for the 1-extFE scheme. Let us assume that (f , y) ∈ F (n,n′)
ABP × Z

k
p

is the only secret-key query made by the adversary before it sends challenge vectors
(x∗, z∗||w∗) ∈ Z

n
p × Z

n′+k
p . The algorithm Setup∗(1λ, 1n, 1n

′
) is exactly the same as

Setup(1λ, 1n, 1n
′
) which outputs a master secret-key MSK∗ = (IPFE.MSK, ̂IPFE.MSK). The

key generation procedure KeyGen∗
0(MSK∗, (f , y)) of the simulator is similar to the original

algorithm KeyGen(MSK∗, (f , y)) except the fact that v1,t [query] = νt . We describe the
encryption process of the simulator which uses the information μ = f (x∗)�z∗ + y�w∗.
Enc∗(MSK∗, x∗, ((f , y),μ))On inputMSK∗, a vector x∗ ∈ Z

n
p , the tuple (f , y) ∈ F (n,n′)

ABP ×
Z
k
p and an integer μ ∈ Zp the simulator executes the following steps:

1. First, it picks two random vectors d1 ← Z
n′
p , d2 ← Z

k
p and sets σ = μ − f (x∗)�d1 −

y�d2.
2. Next, it sets the following vectors

vector const coefi extndκ query simτ sim∗
τ

u 1 x∗[i] d2[κ] σ 0 0

and

vector ĉonst ĉoef ŝim∗

ht −1 d1[t] 0

for all t ∈ [n′].
3. Finally, it encrypts the vectors as

IPFE.CT ← SK-IPFE.Enc(IPFE.MSK, [[u]]1)
̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

123

2972 P. Datta, T. Pal

Fig. 3 Structure of the hybrid reduction proving Theorem 4

4. It returns the simulated ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]).

Remark Observe that Enc∗ is designed in such a way that the simulator is also able to
generate the ciphertext CT∗ even when it gets [[y]]1, [[μ]]1 instead of y, μ in the clear. In such
a scenario, the simulator will obtain [[σ]]1 = [[μ]]1 · [[y�d2]]−1

1 · [[f (x∗)�d1]]−1 by sampling
d1 ← Z

n′
p , d2 ← Z

k
p . Hence, it can define [[u]]1 and [[ht]]1 as above before applying the

encryption process of IPFE. This procedure is indeed required for the security analysis of our
unbounded FE construction.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2973

Hybrids and reductions

Proof We employ a sequence of hybrid experiments to demonstrate the indistinguishability
between the real experiment ExptReal,1-extFEA (1λ) and the ideal experiment ExptIdeal,1-extFEA (1λ)

where A is any PPT adversary. We assume that in each experiment, A queries the single

secret-key query for a pair (f , y) ∈ F (n,n′)
ABP × Z

k
p before submitting the challenge message

(x∗, z∗||w∗) ∈ Z
n
p × Z

n′+k
p . The overall hybrid reduction is shown in Fig. 3.

Hybrid H0 This is the real experiment ExptReal,1-extFEA (1λ) where the secret-key SK f , y =
({IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]) such that IPFE.SK j,t ← SK-IPFE.KeyGen(IPFE.

MSK, [[v j,t]]2) for j ∈ [m], t ∈ [n′] and ̂IPFE.SKm+1,t ← SK-IPFE.KeyGen(̂IPFE.MSK,

[[vm+1,t]]2) for t ∈ [n′] where the vectors v j,t , vm+1,t are given as follows:

v1,t = (�1,t [const], �1,t [coefi], y[κ]νt , 0, 0, 0)

v j,t = (� j,t [const], � j,t [coefi], 0, 0, 0, 0) for 1 < j ≤ m,

vm+1,t = (r t [m], 1, 0)
for j ∈ [m], t ∈ [n′] and r t ← Z

m
p . Note that {νt }t∈[n′] ← Zp is such that

∑
t∈[n′] νt = 1

modulo p. Then, the garblings are computed as

(�1,t , . . . , �m,t , �m+1,t) ← Garble(z∗[t] ft (x∗) + βt ; r t)
where βt ← Zp for all t ∈ [n′] with

∑
t∈[n′] βt = 0 modulo p. The challenge

ciphertext CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]) corresponding to the challenge message
(x∗, z∗||w∗) ∈ Z

n
p × Z

n′+k
p is given by IPFE.CT ← SK-IPFE.Enc(IPFE.MSK, [[u]]1) and

̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′] where
u = (1, x∗[i], w[κ], 0, 0, 0), ht = (−1, z∗[t], 0)

for t ∈ [n′]. Note that the components of the vectors u and v j,t are associated with the indices
in S1-extFE, and the components of the vectors ht and vm+1,t are associated with the indices
in Ŝ1-extFE.
Hybrid H1 This hybrid is exactly the same as H0 except that we directly hardwire the value
�1,τ + ψτ = �1,τ (x∗) + ντ · y�w into u[simτ] for all τ ∈ [n′] and remove the coefficient
vector �1,t from v1,t for all t ∈ [n′]. We change the vectors v1,t in the secret-key and u in
the challenge ciphertext as follows:

v1,t = (0 , 0 , 0 , 0, δtτ , 0)

v j,t = (� j,t [const], � j,t [coefi], 0, 0, 0, 0) for 1 < j < m,

u = (1, x∗[i], 0 , 0, �1,τ + ψτ , 0)

vm+1,t = (r t [m], 1, 0)

ht = (−1, z∗[t], 0)

We denote by δtτ the usual Kronecker delta function such that δtτ = 1 if t = τ , 0 otherwise.
Note that the inner product v1,t · u = �1,t + ψt , for all t ∈ [n′], remain the same as in H0.
Therefore, the function hiding security of IPFE ensures the indistinguishability between the
hybrids H0 and H1.
Hybrid H2 This is analogous to H1 except that instead of using the actual garbling value �1,τ
at u[simτ], we now use �̃1,τ which is computed via reverse sampling algorithm of AKGS:

�̃1,τ ← RevSamp(fτ , x∗, fτ (x∗)z∗[τ] + ντ · y�w + βτ , �2,τ , . . . , �m+1,τ)

123

2974 P. Datta, T. Pal

where � j,τ = � j,τ (x∗) for all j ∈ [2,m] and �m+1,τ = −rτ [m] + z∗[τ] for all τ ∈ [n′].
Therefore, the vectors in the challenge ciphertext becomes

u = (1, x∗[i], 0, 0, �̃1,τ , 0), ht = (−1, z∗[t], 0).

For each τ ∈ [n′], the piecewise security of AKGS guarantees that given the label functions
(�2,τ , . . . , �m,τ , �m+1,τ), the actual garbled label �1,τ and the reversely sampled value �̃1,τ
are identically distributed. Hence, the hybrids H1 and H2 are indistinguishable by the reverse
sampleability of AKGS.

Remark Suppose in this hybrid instead of the vector y, the challenger only receives [[y]]1
from the adversary as part of its secret-key query. Then, it can also simulate the game by
computing the vector [[u]]1 using the fact

RevSamp(fτ , x∗, [[γτ]]1, [[�2,τ]]1, . . . , [[�m+1,τ]]1)
= [[γτ]]1 · ([[Eval(fτ , x∗, 0, �2,τ , . . . , �m+1,τ)]]1)−1

with γτ = fτ (x∗)z∗[τ]+ ντ · y�w +βτ . Although, it is not necessary for this proof, we will
need this formulation of RevSamp during the security analysis of our unbounded FE scheme.

Hybrid H3, j (j ∈ [2,m]) The hybrid proceeds similar to H2 except that we change the
secret-key as follows. For all j ′ such that 1 < j ′ < j , the coefficient vector � j,t is taken
away from v j ′,t and a random value �′

j ′,t ← Zp is put into v j ′,t [const]. We describe the
vectors associated with the secret-key and the ciphertext below.

v1,t = (0, 0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0 , 0, 0, 0, 0) for 1 < j ′ ≤ j,

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0, 0, 0) for j < j ′ ≤ m,

u = (1, x∗[i], 0, 0, �̃1,τ , 0)

vm+1,t = (r t [m], 1, 0)

ht = (−1, z∗[t], 0)

Note that, in this hybrid �̃1,τ is reversely sampled using the random values �2,τ , . . . , � j−1,τ

(which are randomly chosen from Zp) and the actual values � j,τ , . . . , �m+1,τ for each τ ∈
[n′]. Observe that H3,1 coincides with H2. We will show that for all j ∈ [2,m], the hybrids
H3,(j−1) and H3, j are indistinguishable via the following sequence of sub-hybrids, namely,
{H3, j,1,H3, j,2,H3, j,3} j∈[2,m].
Hybrid H3, j,1 (j ∈ [2,m]) This is exactly the same as H3,(j−1) except that the coefficient
vector � j,t is removed from v j,t and v j,t [sim∗

τ] is set to δtτ . The actual garbling value
� j,τ = � j,τ (x∗) is hardwired into u[sim∗

τ] to ensure the inner product v j,τ · u remains the
same as in H3,(j−1). The changes in the vectors involved while computing secret-key and the
challenge ciphertext as given below.

v1,t = (0, 0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0, 0, 0, 0, 0) for 1 < j ′ < j,

v j,t = (0 , 0 , 0, 0, 0, δtτ)

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0, 0, 0) for j < j ′ ≤ m,

u = (1, x∗[i], 0, 0, �̃1,τ , � j,τ)

vm+1,t = (r t [m], 1, 0)
ht = (−1, z∗[t], 0)

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2975

The hybrids H3,(j−1) and H3, j,1 are indistinguishable by the function hiding security of IPFE
since the inner product v j,τ · u for all τ ∈ [n′] remains the same as in H3,(j−1).
HybridH3, j,2 (j ∈ [2,m]) It proceeds exactly the same asH3, j,1 except that the actual label
� j,τ (sitting at u[sim∗

τ]) is replaced with a random value �′
j,τ ← Zp . The vectors associated

to the challenge ciphertext are given by

u = (1, x∗[i], 0, 0, �̃1,τ , �′
j,τ), ht = (−1, z∗[t], 0)

where �′
j,τ is randomly sampled from Zp . Now, the first label �̃1,τ is reversely sampled using

the random values �′
2,τ , . . . , �

′
j,τ and the actual labels � j+1,τ = � j+1,τ (x∗), . . . , �m,τ =

�m,τ (x∗), �m+1,τ = −rτ [m] + z∗[τ]. The marginal randomness property of AKGS implies
that the hybrids H3, j,1 and H3, j,2 are identically distributed.
Hybrid H3, j,3 (j ∈ [2,m]) The hybrid is analogous to H3, j,2 except that the random value
�′
j,τ is sifted from the ciphertext component u[sim∗

τ] to the secret-key component v j,t [const].
Also, the positions u[sim∗

τ] and v j,t [sim∗
τ] are set to zero. Thus, the vectors in the secret-key

and the challenge ciphertext become

v1,t = (0, 0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0, 0, 0, 0, 0) for 1 < j ′ < j,

v j,t = (�′
j,t , 0, 0, 0, 0, 0)

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0, 0, 0) for j < j ′ ≤ m,

u = (1, x∗[i], 0, 0, �̃1,τ , 0)

vm+1,t = (r t [m], 1, 0)
ht = (−1, z∗[t], 0)

Since the inner products v j,t ·u for all j, t remain the same as inH3, j,2, the indistinguishability
between the hybrids H3, j,2 and H3, j,3 follows from the function hiding security of IPFE. We
observe that the hybrids H3, j,3 is identical to H3, j for all j ∈ [2,m].
Hybrid H4 It proceeds exactly the same as hybrid H3,m except that the actual garbling value

�m+1,t = −r t [m] + z∗[t] is used in ht [ŝim∗]. Also, ht [ĉoef], vm+1,t [ĉonst], vm+1,t [ĉoef]
are set to zero. The changes are indicated below.

v1,t = (0, 0, 0, 0, δtτ , 0)

v j,t = (�′
j,t , 0, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, 0, �̃1,τ , 0)

vm+1,t = (0 , 0 , 1)

ht = (1 , 0 , �m+1,t)

Since the inner products vm+1,t · ht for all t ∈ [n′] are unaltered as in H4, the indistin-
guishability between the hybrids H3,m and H4 follows from the function hiding security of
IPFE.
Hybrid H5 It is analogous to H4 except that the actual label �m+1,t is now replaced with
a random value �′

m+1,t ← Zp . The vectors associated with the challenge ciphertext are
modified as follows.

u = (1, x∗[i], 0, 0, �̃1,τ , 0), ht = (1, 0, �′
m+1,t)

Note that, in this hybrid the labels �̃1,t for t ∈ [n′] are now reversely sampled using all random
values �′

2,t , . . . , �
′
m+1,t which are randomly picked from Zp . By the marginal randomness

property of AKGS, the hybrids H4 and H5 are identically distributed.

123

2976 P. Datta, T. Pal

Hybrid H6 This hybrid proceeds exactly the same as H5 except that the simulated labels

�′
m+1,t are shifted from ht [ŝim∗] to vm+1,t [r̂and]. The positions vm+1,t [ŝim∗] and ht [ŝim∗]
are set to zero. The changes are indicated as follows.

v1,t = (0, 0, 0, 0, δtτ , 0)

v j,t = (�′
j,t , 0, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, 0, �̃1,τ , 0)

vm+1,t = (�′
m+1,t , 0, 0)

ht = (1, 0, 0)

Observe that the inner products vm+1,t · ht for all t ∈ [n′] are unchanged as in H5. Hence,
the function-hiding security of IPFE ensures the indistinguishability between the hybrids H5
and H6.
Hybrid H7 It is analogous to H6 except that the value fτ (x∗)z∗[τ] is removed from �̃1,τ for
all 1 < τ ≤ n′ and the value f (x∗)�z∗ + y�w∗ is directly encoded into the label �̃1,1. To
make this change, we replace the random elements βτ by β ′

τ = βτ − fτ (x∗)z∗[τ]−ντ · y�w∗
for all 1 < τ ≤ n′ and change the element β1 with β ′

1 = β1 − (f1(x∗)z∗[1] + ν1 · y�w∗) +
f (x∗)�z∗ + y�w∗. Note that, the distributions

{βτ ← Zp :
∑

τ∈[n′]
βτ = 0 mod p} and {β ′

τ :
∑

τ∈[n′]
βτ = 0 mod p}

are statistically close since β ′
τ is also uniform over Zp and

∑
τ∈[n′] β ′

τ = 0 mod p. Thus
the vectors associated to the challenge ciphertext become

u = (1, x∗[i], 0, 0, �̃1,τ , 0), ht = (1, 0, 0)

where the labels �̃1,τ are given by

�̃1,1 ← RevSamp(f1, x∗, f1(x∗)z∗[1] + ν1 · y�w∗ + β ′
1, �

′
2,1, . . . , �

′
m+1,1)

= RevSamp(f1, x∗, f (x∗)�z∗ + y�w∗ + β1, �
′
2,1, . . . , �

′
m+1,1)

�̃1,τ ← RevSamp(fτ , x∗, fτ (x∗)z∗[τ] + ντ · y�w∗ + β ′
τ , �

′
2,τ , . . . , �

′
m+1,τ)

= RevSamp(fτ , x∗, βτ , �
′
2,τ , . . . , �

′
m+1,τ) for 1 < τ ≤ n′

Thus, H6 and H7 are indistinguishable from the adversary’s view as they are statistically
close. As discussed in the remark of H2, the challenger can also simulate this hybrid when
[[y]]1 is known instead of y.
Hybrid H8 This hybrid is exactly the same as H7 except that we use a dummy vector
(d1 ‖ d2) ∈ Z

n′+k
p in place of (z∗ ‖ w∗) while computing �̃1,1 where it holds that μ =

f (x∗)�z∗ + y�w∗ = f (x∗)�d1+ y�d2+σ . In particular, we choose d1 ← Z
n′
p , d2 ← Z

k
p

and set σ = μ − f (x∗)�d1 − y�d2 ∈ Zp . It can be seen that f (x∗)�d1 + y�d2 + σ = μ

as required. The vector u is now defined as

u = (1,

coefi
︷ ︸︸ ︷
x∗[1], . . . , x∗[n],

extndκ
︷ ︸︸ ︷
0, . . . , 0, 0,

simτ
︷ ︸︸ ︷

�̃1,1 , �̃1,2 . . . , �̃1,n′ ,

sim∗
τ

︷ ︸︸ ︷
0, . . . , 0)

where the labels are computed as

�̃1,1 ← RevSamp(f1, x∗, f (x∗)�d1 + y�d2 + σ + β1, �
′
2,1, . . . , �

′
m+1,1)

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2977

�̃1,τ ← RevSamp(fτ , x∗, βτ , �
′
2,τ , . . . , �

′
m+1,τ) for 1 < τ ≤ n′

Above, we write the full expression of the vector u as opposed to its compressed expression
used so far in order to highlight the change. Since β1 is uniformly distributed and f (x∗)�z∗+
y�w∗ = f (x∗)�d1 + y�d2 + σ , hybrids H7 and H8 are statistically close.

Remark Suppose, the vector [[y]]1 is known to the challenger instead of y, then it can directly
computes [[σ]]1 = [[μ]]1 · [[f (x∗)�d1]]−1

1 · [[y�d2]]−1
1 . To simulate this hybrid the challenger

uses [[f (x∗)�d1+ y�d2+σ +β1]]1 to obtain [[�̃1,1]]1 as it has d1 ∈ Z
n′
p , d2 ∈ Z

k
p, [[σ]]1 ∈ G1

and β1 ∈ Zp .

HybridH9 The following sequence of hybrids is basically the reverse of the previous hybrids
with (z∗ ‖ w∗) replacedwith (d1 ‖ d2). In this hybrid, we change the distribution ofβτ similar
towhatwedid inH7. In particular,βτ is replacedwithβ ′

τ = βτ + fτ (x∗)d1[τ]+ντ ·(y�d2+σ)

and β1 is replaced with β ′
1 = β1+ f1(x∗)d1[1]+ν1 ·(y�d2+σ)−(f (x∗)�d1+ y�d2+σ).

So, the vectors associated with challenge ciphertext are distributed as

u = (1, x∗[i], 0, 0, �̃1,τ , 0), ht = (1, 0, 0)

where �̃1,τ ← RevSamp(fτ , x∗, fτ (x∗)d1[τ] + ντ · (y�d2 + σ) + βτ , �
′
2,τ , . . . , �

′
m+1,τ)

Note that, H8 and H9 are statistically close as {βτ : τ ∈ [n′]} and {β ′
τ : τ ∈ [n′]} are both

uniform over Zp with
∑

τ∈[n′] βτ = ∑
τ∈[n′] β ′

τ = 0 mod p. Hence, hybrids H8 and H9 are
indistinguishable.
Hybrid H10 In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, 0, 0, δtτ , 0)

v j,t = (�′
j,t , 0, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, 0, �̃1,τ , 0)

vm+1,t = (0 , 0, 1)

ht = (1, 0, �′
m+1,t)

where �′
m+1,t ← Zp . The indistinguishability between the hybrids H9 and H10 follows from

the function-hiding security of IPFE.
Hybrid H11 It is exactly the same as H10 except that the random values �′

m+1,t ← Zp are
changed to the actual label �m+1,t = d1[t] − r t [m]. Then the vectors associated with the
challenge ciphertext become

u = (1, x∗[i], 0, 0, �̃1,τ , 0), ht = (1, 0, �m+1,t)

The hybrids H10 and H11 are identical due to the marginal randomness property of AKGS.
Hybrid H12 In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, 0, 0, δtτ , 0)

v j,t = (�′
j,t , 0, 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, 0, �̃1,τ , 0)

vm+1,t = (r t [m] , 1 , 0)

ht = (−1 , d1[t] , 0)

The indistinguishability between the hybrids H11 and H12 follows from the function-hiding
security of IPFE.

123

2978 P. Datta, T. Pal

Hybrid H13,m+1− j (j ∈ [m − 1]) It is analogous to H12 except the secret-key is modified
as follows. For all j ′ such that m + 1 − j ≤ j ′ < m + 1, the random value �′

j ′,t ← Zp is
discarded from v j ′,t [const] and the coefficient vector � j ′,t is used in v j ′,t .

v1,t = (0, 0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0, 0, 0, 0, 0) for 1 < j ′ < m + 1 − j,

v j ′,t = (� j ′,t [const] , � j ′,t [coefi] , 0, 0, 0, 0) for m + 1 − j ≤ j ′ < m + 1,

vm+1,t = (r t [m], 1, 0)

In this hybrid, the label �̃1,t is reversely sampled using the random values �′
2,t , . . . , �

′
m+1− j,t

and the actual values �m− j+2,t , . . . , �m+1,t for each t ∈ [n′]. The hybrids H13,m+1−(j−1) and
H13,m+1− j can be shown to be indistinguishable via the following sequence of sub-hybrids,
namely, {H13,m+1− j,1,H13,m+1− j,2,H13,m+1− j,3} j∈[m−1].
Hybrid H13,m+1− j,1 (j ∈ [m − 1]) It proceeds exactly the same as H13,m+1−(j−1) except
that the random labels �′

m+1− j,t are sifted from vm+1− j,t [const] to u[sim∗
τ]. We modify the

vectors associated with the secret-key and the challenge ciphertext as follows
v1,t = (0, 0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0, 0, 0, 0, 0) for 1 < j ′ < m + 1 − j,

vm+1− j,t = (0 , 0, 0, 0, 0, δtτ)

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0, 0, 0) for m+1− j< j ′<m+1,

u = (1, x∗[i], 0, 0, �̃1,τ , �′
m+1− j,τ)

vm+1,t = (r t [m], 1, 0)

ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1−(j−1) and H13,m+1− j,1 follows from
the function-hiding security of IPFE.
HybridH13,m+1− j,2 (j ∈ [m − 1]) It is exactly same asH13,m+1− j,1 except that the random
label �′

m+1− j,τ ← Zp at u[sim∗
τ] are now replaced with the actual labels �m+1− j,τ =

�m+1− j,τ (x∗). The change in the vector u associated to the challenge ciphertext is indicated
below.

u = (1, x∗[i], 0, 0, �̃1,τ , �m+1− j,τ), ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1− j,1 and H13,m+1− j,2 follows from the
marginal randomness property of AKGS.
Hybrid H13,m+1− j,3 (j ∈ [m − 1]) It proceeds analogous to H13,m+1− j,2 except that the
actual label �m+1− j,τ = �m+1− j,τ (x∗) is removed from u[sim∗

τ] and the coefficient vector
�m+1− j,t is used to set vm+1− j,t . The inner product vm+1− j,t ·u is unaltered as inH13,m+1− j,2.
The changes in the vectors associated to the secret-key and the challenge ciphertext are shown
below.

v1,t = (0, 0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0, 0, 0, 0, 0) for 1< j ′<m+1− j,

vm+1− j,t = (�m+1− j,t [const] , �m+1− j,t [coefi] , 0, 0, 0, 0)

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0, 0, 0) for m+1− j< j ′<m+1,
u = (1, x∗[i], 0, 0, �̃1,τ , 0)

vm+1,t = (r t [m], 1, 0)

ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1− j,2 and H13,m+1− j,3 follows from

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2979

the function-hiding security of IPFE. We observe that H13,m+1− j,3 is identical to H13,m+1− j

for all j ∈ [m − 1].
Hybrid H14 It proceeds exactly the same as H13,2 except that the reversely sampled labels
�̃1,τ are replaced with the actual labels �1,τ +ψτ = �1,τ (x∗)+ ντ · (y�d2 +σ) when setting
u[simτ]. The vectors associated with the challenge ciphertext are now written as

u = (1, x∗[i], 0, 0, �1,τ + ψτ , 0), ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,2 and H14 follows from the piecewise secu-
rity of AKGS.
HybridH15 It is analogous toH14 except that the actual label �1,τ = �1,τ (x∗)+ντ ·(y�d2+σ)

is removed from u[simτ] and the coefficient vectors �1,t are utilized while setting the vectors
v1,t for all t ∈ [n′]. Also, the positions v1,t [extndκ], v1,t [query] and u[extndκ], u[query]
are set as y[κ]νt , νt and d2[κ], σ respectively. The vectors associated with the secret-key
and the challenge ciphertext are shown below.

v1,t = (�1,t [const] , �1,t [coefi] , y[κ]νt , νt , 0, 0)

v j,t = (� j,t [const], � j,t [coefi], 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], d2[κ] , σ , 0 , 0)

vm+1,t = (r t [m], 1, 0)

ht = (−1, d1[t], 0)

Since the inner products v1,t · u = �1,t + ψt , for all t ∈ [n′], remain the same as in H14, the
function-hiding security of IPFE ensures the indistinguishability between the hybridsH14 and
H15. This completes the security analysis as H15 is the ideal experiment ExptIdeal,1−extFE

A (1λ).
��

5.2 Public key one-slot extended FE for attribute-weighted sums

In this section, we present a public-key one-slot FE schemeΠbdd
extOne for an extended attribute-

weighted sum functionality. This scheme is proven adaptively simulation secure against
one ciphertext query, an a priori bounded number of pre-ciphertext secret key queries, and
an arbitrary polynomial number of post-ciphertext secret key queries. We will apply the
bootstrapping compiler from [3] onto this FE scheme to obtain our unbounded-slot FE scheme
for attribute-weighted sums in the next section. We describe the construction for any fixed
value of the security parameter λ and suppress the appearance of λ for simplicity of notations.

Let (Garble, Eval) be a special piecewise secure AKGS for a function class F (n,n′)
ABP , G =

(G1, G2, GT , g1, g2, e) a tuple of pairing groups of prime order p such that MDDHk holds
in G2, and (IPFE.Setup.IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a slotted IPFE based on G. We
construct an FE scheme for attribute-weighted sumswith themessage spaceM = Z

n
p×Z

n′+k
p .

Setup(1λ, 1n, 1n
′
, 1B) Defines the following index sets as follows

Spub =
{
{const(ι)}ι∈[k], {coef(ι)i }ι∈[k],i∈[n], {extnd(ι)

κ }ι,κ∈[k]
}

, Ŝpub = {ĉonst(ι), ĉoef(ι)}ι∈[k]

Spriv = {const, {coefi }i∈[n], {extndκ,1, extndκ,2, extndκ }κ∈[k], {queryη}η∈[B], {simτ ,

sim∗
τ }τ∈[n′]},

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim∗}

123

2980 P. Datta, T. Pal

where B denotes a bound on the number of pre-challenge queries. It generates two pair of
IPFE keys (IPFE.MSK, IPFE.MPK) ← IPFE.Setup(Spub, Spriv) and (̂IPFE.MSK, ̂IPFE.MPK) ←
IPFE.Setup(Ŝpub, Ŝpriv). Finally, it returns the master secret-key of the system as MSK =
(IPFE.MSK, ̂IPFE.MSK) and master public-key as MPK = (IPFE.MPK, ̂IPFE.MPK).

KeyGen(MSK, (f , y)) Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP and y ∈ Z

k
p . It samples integers

νt ← Zp and vectors α,β t ← Z
k
p for t ∈ [n′] such that

∑

t∈[n′]
νt = 1 and

∑

t∈[n′]
β t [ι] = 0 mod p for all ι ∈ [k]

Next, sample independent random vectors r(ι)
t ← Z

m
p and computes

(�
(ι)
1,t , . . . , �

(ι)
m,t , �

(ι)
m+1,t) ← Garble(α[ι]z[t] ft (x) + β t [ι]; r(ι)

t)

for all ι ∈ [k], t ∈ [n′]. Here, we make use of the instantiation of the AKGS described in
Sect. 3.6. From the description of that AKGS instantiation, we note that the (m + 1)-th label
function �

(ι)
m+1,t would be of the form �

(ι)
m+1,t = α[ι]z[t] − r(ι)

t [m] where α[ι] is a constant.
Also all the label functions �

(ι)
1,t , . . . , �

(ι)
m,t involve only the variables x and not the variable

z[t]. Next, for all j ∈ [2,m] and t ∈ [n′], it defines the vectors v j,t corresponding to the
label functions � j,t obtained from the partial garbling above and the vector y as

vector const(ι) coef(ι)i extnd(ι)
κ Spriv

v α[ι] 0 0 0

v1,t �
(ι)
1,t [const] �

(ι)
1,t [coefi] α[ι] y[κ]νt 0

v j,t �
(ι)
j,t [const] �

(ι)
j ,t [coefi] 0 0

vector ĉonst
(ι)

ĉoef
(ι)

Ŝpriv

vm+1,t r(ι)t [m] α[ι] 0

It generates the secret-keys as

IPFE.SK ← IPFE.KeyGen(IPFE.MSK, [[v]]2)
IPFE.SK j,t ← IPFE.KeyGen(IPFE.MSK, [[v j,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]
Finally, it returns the secret-key as SK f , y = (IPFE.SK, {IPFE.SK j,t } j∈[m],t∈[n′],
{ ̂IPFE.SKm+1,t }t∈[n′]) and (f , y).

Remark 2 Wenote that the vector y is only used to set v1,t [extnd(ι)
κ] and the IPFE.KeyGen only

requires [[v1,t]]2 ∈ G
k
2 to compute the secret-key IPFE.SK1,t . Therefore, the key generation

process can compute the same secret-key SK f , y if (f , [[y]]2) is supplied as input instead of

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2981

(f , y) and we express this by writing KeyGen(MSK, (f , [[y]]2)) = KeyGen(MSK, (f , y)).
This fact will be crucial while describing the unbounded slot FE.

Enc(MPK, (x, z||w) ∈ Z
n
p×Z

n′+k
p) It samples a random vector s ← Z

k
p and sets the vectors

for all t ∈ [n′]. It encrypts the vectors as

vector const(ι) coef(ι)i extnd(ι)
κ

u s[ι] s[ι]x[i] s[ι]w[κ]

vector ĉonst
(ι)

ĉoef
(ι)

ht −s[ι] s[ι]z[t]

IPFE.CT ← IPFE.SlotEnc(IPFE.MPK, [[u]]1)
̂IPFE.CTt ← IPFE.SlotEnc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]) and x.

Dec((SK f , y, f), (CT, x)) It parses the secret-key and ciphertext as SK f , y =
(IPFE.SK, {IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]) andCTx,z=(IPFE.CT, { ̂IPFE.CTt }t∈[n′]).
It uses the decryption algorithm of IPFE to compute

[[ρ]]T ← IPFE.Dec(IPFE.SK, IPFE.CT)

[[�1,t + ψt]]T ← IPFE.Dec(IPFE.SK1,t , IPFE.CT)

[[� j,t]]T ← IPFE.Dec(IPFE.SK j,t , IPFE.CT) for j ∈ [2,m], t ∈ [n′]
[[�m+1,t]]T ← IPFE.Dec(̂IPFE.SKm+1,t , ̂IPFE.CTt) for t ∈ [n′]

where ψt = ∑k
ι=1 α[ι]s[ι] · νt · y�w = α · s · νt · y�w. Next, it utilizes the evaluation

procedure of AKGS and obtain a combined value

[[ζ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T).

Finally, it returns a value [[μ]]T = [[ζ]]T · [[ρ]]−1
T ∈ GT .

Correctness First, the IPFE correctness implies IPFE.Dec(IPFE.SK1,t , IPFE.CT) = [[�1,t +ψt]]
where ψt = ∑k

ι=1 α[ι]s[ι] · νt · y�w = α · s · νt · y�w. Next, by the correctness of IPFE,
AKGS we have

Eval(ft , x, �1,t + ψt , . . . , �m+1,t)

= Eval(ft , x, �1,t , . . . , �m+1,t) + Eval(ft , x, ψt , 0, . . . , 0)

= Eval(ft , x, �1,t , . . . , �m+1,t) + ψt

=
k∑

ι=1

(α[ι]s[ι] · z[t] ft (x) + β t [ι]s[ι]) + α · s · νt · y�w

123

2982 P. Datta, T. Pal

= α · s · (z[t] ft (x) + νt · y�w) + β t · s
The first equality follows from the linearity of Eval algorithm. Therefore, multiplying all the
evaluated values we have

[[ζ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T)

= [[
n′
∑

t=1

α · s · (z[t] ft (x) + νt · y�w) + β t · s]]T = [[α · s · (f (x)�z + y�w)]]T

where the last equality follows from the fact that
∑

t∈n′ νt = 1 mod p and
∑

t∈[n′] β t [ι] =
0 mod p for all ι ∈ [k]. Also, by the correctness of IPFE we see that [[ρ]]T = [[α · s]]T and
hence [[μ]]T = [[f (x)�z + y�w]]T .

5.2.1 Security analysis

The simulator

Theorem 5 The extended one slot FE schemeΠbdd
extOne for attribute-weighted sum is adaptively

simulation-secure against an adversary making at most B pre-ciphertext secret key queries
and an arbitrary polynomial number of post-ciphertext secret key queries assuming the AKGS
is piecewise-secure as per Definition 7, the MDDHk assumption holds in group G2, and the
slotted IPFE is function hiding as per Definition 5.

We describe the simulator for the extended one-slot FE scheme Πbdd
extOne. The simulated

setup algorithm is the same setup of the original scheme. Let (MSK,MPK) ← Setup∗(1λ, 1n,
1n

′
, 1B) = Setup(1λ, 1n, 1n

′
, 1B) where MSK = (IPFE.MSK, ̂IPFE.MSK) and MPK =

(IPFE.MPK, ̂IPFE.MPK).

KeyGen∗
0(MSK, (f q , yq)) On input MSK, a function fq = (fq,1, . . . fq,n′) ∈ F (n,n′)

ABP and a
vector yq ∈ Z

k
p the simulator proceeds as follows:

Setting Public Positions: The public positions are set as in the original scheme.

1. It first samples βq,t = (βq,t [1], . . . ,βq,t [k]) ← Z
k
p, νq,t ← Zp for t ∈ [n′], and

r(ι)
q,t = (r(ι)

q,t [1], . . . , r(ι)
q,t [mq]) ← Z

mq
p where it holds that

∑

t∈[n′]
βq,t [ι] = 0 mod p for all ι ∈ [k] and

∑

t∈[n′]
νq,t = 1 mod p

2. Next, it computes the coefficient vectors for the label functions as

(�
(ι)
q,1,t , . . . , �

(ι)
q,mq ,t , �

(ι)
q,mq+1,t) ← Garble(αq [ι]z∗[t] fq,t (x∗) + βq,t [ι]; r(ι)

q,t)

for all ι ∈ [k], t ∈ [n′]. From the description of AKGS, we note that the (mq + 1)-th label

function �
(ι)
q,mq+1,t would be of the form �

(ι)
q,mq+1,t = αq [ι]z∗[t] − r(ι)

q,t [mq].
3. It picks αq ← Z

k
p and sets the public positions at the indexes in Spub, Ŝpub of following

vectors

for all j ∈ [2,mq] and t ∈ [n′]. It also sets the following vectors for all t ∈ [n′].
Setting Private Positions: It now fills the private indices as follows.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2983

vector const(ι) coef(ι)i extnd(ι)
κ

vq αq [ι] 0 0

vq,1,t �
(ι)
q,1,t [const] �

(ι)
q,1,t [coefi] αq [ι] yq [κ]νq,t

vq, j,t �
(ι)
q, j ,t [const] �

(ι)
q, j ,t [coefi] 0

vector ĉonst
(ι)

ĉoef
(ι)

vq,mq+1,t r(ι)q,t [mq] αq [ι]

4. It samples α̃q , β̃q,t ← Zp for t ∈ [n′] satisfying∑t∈[n′] β̃q,t = 0.

5. Next, it picks r̃q,t ← Z
mq
p and computes the coefficient vectors for the label functions

as

(̃�q,1,t , . . . , �̃q,mq ,t , �̃q,mq+1,t) ← Garble(̃αq z∗[t] fq,t (x∗) + β̃q,t ; r̃q,t).

for all t ∈ [n′]. From the description of AKGS, we note that the (mq +1)-th label function
�̃q,mq+1,t would be of the form �̃q,mq+1,t = α̃q z∗[t] − r̃q,t [mq].

6. Now, it fills the private positions at the indexes in Spriv, Ŝpriv as follows

vector const coefi extndκ,1 extndκ,2 extndκ queryη simτ sim∗
τ

vq α̃q 0 0 0 0 0 0 0
vq,1,t �̃q,1,t [const] �̃q,1,t [coefi] 0 α̃q yq [κ]νq,t 0 α̃q eq [η]νq,t 0 0
vq, j,t �̃q, j,t [const] �̃q, j,t [coefi] 0 0 0 0 0 0

for all j ∈ [2,mq] and t ∈ [n′]; and for all t ∈ [n′]

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim∗

vq,mq+1,t 0 0 r̃q,t [mq] α̃q 0 0 0

where eq ∈ {0, 1}B such that eq [η] = 1 if η = q; 0 otherwise.

7. It generates the IPFE secret-keys

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)
IPFE.SKq, j,t ← IPFE.KeyGen(IPFE.MSK, [[vq, j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.SKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]
8. Finally, it returns the secret-key

SK fq , yq = (IPFE.SKq , {IPFE.SKq, j,t } j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t }t∈[n′]).

123

2984 P. Datta, T. Pal

Let Qpre be the total number of secret-key queries made before the challenge query and
hence without loss of generality we take B = Qpre.

Remark Suppose the simulator only gets [[yq]]2 instead of yq . We observe that the com-
ponents of yq are used to set vq,1,t [extnd ι

κ] and vq,1,t [extndκ,2]. Since the elements
αq [ι], α̃q and νq,t are sampled by the simulator, it can compute [[vq,1,t [extnd ι

κ]]]2 =
αq [ι]νq,t · [[yq [κ]]]2 and [[vq,1,t [extndκ,2]]]2 = α̃qνq,t · [[yq [κ]]]2. The simulator only
requires to know [[vq,1,t]]2 in order to generate IPFE.SKq,1,t . In this context, we write
KeyGen∗

0(MSK, (fq , [[yq]]2)) = KeyGen∗
0(MSK, (fq , yq)) for all q ∈ [Qpre]. We empha-

size that this fact is crucial for the security analysis of the unbounded slot scheme.

Enc∗(MPK,MSK, x∗,V) On input MPK,MSK, a vector x∗ ∈ Z
n
p and a set V =

{(fq , fq(x∗)�z∗ + y�
q w∗) : q ∈ [Qpre]} the simulator executes the following steps:

1. It samples a dummy vector (d1||d2||d3) ∈ Z
n′+k+Qpre
p from the set

D =
{

(d1||d2||d3) ∈ Z
n′+k+Qpre
p : fq(x∗)�d1 + y�

q d2 + e�
q d3 = μq

for all q ∈ [Qpre]
}

where μq = fq(x∗)�z∗ + y�
q w∗. The sampling procedure works as follows. First,

the simulator selects two random vectors d1 ∈ Z
n′
p , d2 ← Z

k
p and sets σq = μq −

fq(x∗)�d1 − y�
q d2 ∈ Zp . Then, it sets d3[η] = ση

2 for all η ∈ [Qpre]. Therefore, one
may observe that fq(x∗)�d1 + y�

q d2 + e�
q d3 = μq for all q ∈ [Qpre].

2. Next, it sets the following vectors:

vector const(ι) coef(ι)i extnd(ι)
κ

u 0 0 0

vector const coefi extndκ,1 extndκ,2 extndκ queryη simτ sim∗
τ

u 1 x∗[i] 0 d2[κ] 0 d3[η] 0 0

and for all t ∈ [n′]

vector ĉonst
(ι)

ĉoef
(ι)

ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim∗

ht 0 0 1 0 −1 d1[t] 0 0 0

2 If the number of pre-challenge query Qpre is strictly less than B, then d3 ∈ Z
B
p and we can simply take

d3[η] = 0 for all Qpre < η ≤ B.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2985

3. It encrypts the vectors as

IPFE.CT ← IPFE.Enc(IPFE.MPK, [[u]]1)
̂IPFE.CTt ← IPFE.Enc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

4. It returns the ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]).

KeyGen∗
1(MSK∗, x∗, (f q , yq), f q(x

∗)�z∗ + y�
q w∗) On input MSK∗, x∗ ∈ Z

n
p , a function

fq = (fq,1, . . . , fq,n′) ∈ F (n,n′)
ABP , a vector yq ∈ Z

k
p for q ∈ [Qpre +1, Q] and (fq(x∗)�z∗ +

y�
q w∗) ∈ Zp the simulator proceeds as follows:

Setting Public Positions:

1. The simulator sets the public positions at the indexes in Spub, Ŝpub of the vectors vq and
vq, j,t analogous to KeyGen∗

0(MSK∗, (fq , yq)).

Setting Private Positions:

2. First, it samples a random element α̃q , β̃q,t ← Zp , for t ∈ [n′], satisfying∑t∈[n′] β̃q,t =
0 and then runs the simulator of the AKGS to obtain

(�̂q,1,1, . . . , �̂q,mq ,1, �̂q,mq+1,1) ← SimGarble(fq,1, x∗, α̃q · (fq(x∗)�z∗ + y�
q w∗) + β̃q,1)

(�̂q,1,t , . . . , �̂q,mq ,t , �̂q,mq+1,t) ← SimGarble(fq,t , x∗, β̃q,t) for 1 < t ≤ n′.

3. Next, it fills the private positions at the indices in Spriv, Ŝpriv as follows

vector const coefi extndκ,1 extndκ,2 extndκ queryη simτ sim∗
τ

vq α̃q 0 0 0 0 0 0 0
vq, j,t �̂q, j,t 0 0 0 0 0 0 0

for all j ∈ [mq] and t ∈ [n′]; and

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim∗

vq,mq+1,t �̂q,mq+1,t 0 0 0 0 0 0

for all t ∈ [n′].
4. It generates the IPFE secret-keys

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)
IPFE.SKq, j,t ← IPFE.KeyGen(IPFE.MSK, [[vq, j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.SKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]
5. It outputs the secret-key SK fq , yq = (IPFE.SKq , {IPFE.SKq, j,t } j∈[mq],t∈[n′],

{ ̂IPFE.SKq,mq+1,t }t∈[n′]).

123

2986 P. Datta, T. Pal

Fig. 4 Structure of the hybrid reduction proving Theorem 5

Remark Suppose the simulator is provided with (fq , [[yq]]2) as secret-key query and it only
knows [[fq(x∗)�z∗ + y�

q w∗]]2 = [[μq]]2. Then, it can simulate the public positions using
[[yq]]2 as described at the end of the description of KeyGen∗

0(·). Now, for private positions,
the simulator samples α̃q , β̃q,t ← Zp (as above) and computes α̃q · [[μq]]2 = [[̃αqμq]]2.
Next, it employs the simulator of AKGS as follows:

(�̂q,1,1, . . . , �̂q,mq ,1, �̂q,mq+1,1) ← SimGarble(fq,1, x∗, [[̃αqμq + β̃q,1]]2)
(�̂q,1,t , . . . , �̂q,mq ,t , �̂q,mq+1,t) ← SimGarble(fq,t , x∗, [[β̃q,t]]2) for 1 < t ≤ n′.

Thus, the vectors vq, j,t for all j ∈ [mq] are available in the exponent of source group G2 and
hence the simulator successfully executes key generation of IPFEwith [[vq, j,t]]2.We express it
by writing KeyGen∗

1(MSK∗, x∗, (fq , [[yq]]2), [[μq]]2) = KeyGen∗
1(MSK∗, x∗, (fq , yq), μq)

and note that this fact is, in particular, useful for the security analysis of our unbounded slot
scheme.

Hybrids and reductions

Proof We use a sequence of hybrid experiments to establish the indistinguishability between
the real experiment ExptReal,extFEA (1λ) and the ideal experiment ExptIdeal,extFEA (1λ) where A
is any PPT adversary. The overall hybrid reduction is shown in Fig. 4. In each experiment,A
can query a polynomial number of secret-key queries for pairs (f , y) ∈ F (n,n′)

ABP × Z
k
p , both

before and after submitting the challenge message (x∗, z∗||w∗) ∈ Z
n
p × Z

n′+k
p . Let Q be

the total number of secret-key queries and B = Qpre (≤ Q) be the number of secret-keys

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2987

queried before submitting the challenge message. We denote the q-th secret-key by SK fq , yq
corresponding to a function fq and a vector yq . For the ease of presentation, we write the
vector elements sitting in the public slots Spub, Ŝpub in blue color and the vector elements
sitting in the private slots Spriv, Ŝpriv in red color. More precisely, we do this so that while
describing the hybrid games, we sometimes omit the public parts of the vectors and write
down only the private partswhen the changes occur only in the private parts. Now,we describe
the hybrids as follows:
HybridH0: This is the real experiment ExptReal,extFEA (1λ) defined in Definition 4 (with single
slot, i.e., N = 1). The q-th secret-key SK fq , yq = (IPFE.SKq , {IPFE.SKq, j,t } j∈[mq],t∈[n′],
{ ̂IPFE.SKq,mq+1,t }t∈[n′]) is computed using the vectors vq , vq, j,t given by

vq = (αq [ι], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

vq,1,t = (�
(ι)
q,1,t [const], �

(ι)
q,1,t [coefi], αq [ι] yq [κ]νq,t , 0, 0, 0, 0, 0, 0, 0, 0),

vq, j,t = (�
(ι)
q, j,t [const], �

(ι)
q, j,t [coefi], 0, 0, 0, 0, 0, 0, 0, 0, 0),

vq,mq+1,t = (r(ι)q,t [mq], αq [ι], 0, 0, 0, 0, 0, 0, 0)

for j ∈ [2,mq] and t ∈ [n′]. Note that αq and r(ι)
q,t are random vectors sampled from Z

k
p

and Z
mq
p respectively. The integers νq,t for t ∈ [n′] is picked randomly from Zp such that∑

t∈[n′] νq,t = 1. For all t ∈ [n′], the garblings are computed as

(�
(ι)
q,1,t , . . . , �

(ι)
q,mq ,t , �

(ι)
q,mq+1,t) ← Garble(αq [ι]z∗[t] fq,t (x∗) + βq,t [ι]; r(ι)

q,t)

where fq = (fq,1, . . . , fq,n′) and βq,t ← Z
k
p with

∑
t∈[n′] βq,t [ι] = 0 ∀ι ∈ [k]. The

challenge ciphertext CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]) corresponds to the challenge vectors
(x∗, z∗||w∗) ∈ Z

n
p × Z

n′+k
p is computed using the vectors u and ht given by

u = (s[ι], s[ι]x∗[i], s[ι]w∗[κ], ⊥, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥),

ht = (−s[ι], s[ι]z∗[t], ⊥, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥)

for t ∈ [n′] and s ← Z
k
p . Note that, in real experiment CT∗ is computed using IPFE.SlotEnc

and therefore the elements sitting at the indices in Spriv are set as ⊥ for the vectors u and ht .
Hybrid H1 It is exactly the same as hybrid H0 except the fact that instead of using
IPFE.SlotEnc, here the challenge ciphertext CT∗ is generated applying IPFE.Enc which uses
MSK = (IPFE.MSK, ̂IPFE.MSK) to encrypt the vectors. We indicate this change by changing
the private positions of u and ht from ⊥ to 0. Thus the vectors u and ht become

u = (s[ι], s[ι]x∗[i], s[ι]w∗[κ], 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0),

ht = (−s[ι], s[ι]z∗[t], 0 , 0 , 0 , 0 , 0 , 0 , 0).

The slot-mode correctness of IPFE guarantees that the two hybrids H0 and H1 are identically
distributed.
Hybrid H2 This hybrid is similar to H1 except that in the private slots of the vectors vq, j,t

we put a garbling that linearly combines k garblings (of the public slots) with weight vector
s ∈ Z

k
p and in the private slots of the vector vq we use a single random element combining

the weight vector s. Accordingly, we modify the challenge ciphertext CT∗ by omitting the
weight vector s and setting the public slots of the vectors u, ht to zero so that the inner
products computed at the time of decryption remains the same in the previous hybrids.

InH1, the public slots of the vectors vq , vq, j,t are occupied by vectors αq ∈ Z
k
p, νq,t ∈ Zp

for t ∈ [n′] and the garblings �
(ι)
q, j,t computed using randomness r(ι)

q,t ∈ Z
mq
p . In the public

slots of the vectors u, ht , we use (s[ι], s[ι]x∗[i]), (−s[ι], s[ι]z∗[t]) respectively. Therefore,

123

2988 P. Datta, T. Pal

at the time of decryption we recover [[ρq]]T , [[�q, j,t]]T such that

ρq = αq · s = αq (say),

�q,1,t = (�
(1)
q,1,t , . . . , �

(k)
q,1,t) · (s[1](1, x∗), . . . , s[k](1, x∗)) + α · s · y�w · νq,t

= (s[1]�(1)
q,1,t , . . . , s[k]�(k)

q,1,t) · ((1, x∗), . . . , (1, x∗)) + αq · y�w · νq,t

= �q,1,t · (1, x∗) + αq · y�w · νq,t

�q, j,t = (�
(1)
q, j,t , . . . , �

(k)
q, j,t) · (s[1](1, x∗), . . . , s[k](1, x∗))

= �q, j,t · (1, x∗)

where �q, j,t = ∑
ι∈[k] s[ι]�(ι)

q, j,t for all j ∈ [2,mq] and t ∈ [n′]. Similarly, the mq + 1-the
garbling returns

�q,mq+1,t = ((r(1)q,t [mq],αq [1]), . . . , (r(k)q,t [mq],αq [k])) · (s[1](−1, z∗[t]), . . . , s[k](−1, z∗[t]))
= (s[1](r(1)q,t [mq], αq [1]), . . . , s[k](r(k)q,t [mq],αq [k])) · ((−1, z∗[t]), . . . , (−1, z∗[t]))
= (rq,t [mq], αq) · (−1, z∗[t])

where rq,t [mq] = ∑
ι∈[k] s[ι]r(ι)

q,t [mq]. In H2, we use αq , �q, j,t and rq,t [mq] in the private
slots of the vectors vq and vq, j,t as described below

vq = (αq , 0, 0, 0, 0, 0, 0, 0),

vq,1,t = (�q,1,t [const] , �q,1,t [coefi] , αq yq [κ]νq,t , 0, 0, 0, 0, 0),

vq, j,t = (�q, j,t [const] , �q, j,t [coefi] , 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (rq,t [mq] , αq , 0, 0, 0, 0, 0)

Since the weight vector s is not required to generate the challenge ciphertext CT∗, we omit
using it in the vectors u and ht . Moreover, the public slots of u and ht are set to zero as the
inner product is computed through the private slots only. We describe the changes below.

u = (0 , 0 , 0 , 1 , x∗[i] , w∗[κ] , 0, 0, 0, 0, 0),

ht = (0 , 0 , −1 , z∗[t] , 0, 0, 0, 0, 0).

Finally, we observe that the inner products vq · u, vq, j,t · u and vq,mq+1,t · ht remain the
same as in H1. Thus, the function hiding property of IPFE preserves the indistinguishability
between the hybrids H1 and H2.

Note that, in this hybrid we pick αq ,βq,t , s ← Z
k
p, νq,t ← Zp and r(ι)

q,t ← Z
mq
p for all

t ∈ [n′], ι ∈ [k] satisfying ∑t∈[n′] βq,t [ι] = 0 for each ι ∈ [k] and ∑t∈[n′] νq,t = 1. Then,
the linearity of the Garble algorithm allows us to write

(�q,1,t , . . . , �q,mq ,t , �q,mq+1,t) ← Garble(αq z∗[t] fq,t (x∗) + βq,t ; rq,t)

where �q, j,t = ∑
ι∈[k] s[ι]�(ι)

q, j,t , rq,t = ∑
ι∈[k] s[ι]r(ι)

q,t and βq,t = βq,t · s.
From the next hybrid onward the public slots of the vectors vq and vq, j,t are unaltered

for all q ∈ [Q], j ∈ [k] and t ∈ [n′]. Therefore, we only write the components sitting in the
private slots of the vectors vq and vq, j,t assuming that the components of public slots are the
same as in the real experiment.We denote the private slots of the vectors by vq |Spriv , vq, j,t |Spriv
and vq,mq+1,t |Ŝpriv .
Hybrid H3 It is analogous to H2 except the liner combinations αq , �q, j,t , rq,t in the private
slots of the vectors vq , vq, j,t , vq,mq+1,t are replacedwith freshly and independently generated

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2989

random values and garblings α̃q , �̃q, j,t , r̃q,t . More specifically, we sample random elements
α̃q , β̃q,t ← Zp for all t ∈ [n′] such that

∑
t∈[n′] β̃q,t = 0 and a vector rq,t ← Z

mq
p . Then,

the garblings are computed as

(̃�q,1,t , . . . , �̃q,mq ,t , �̃q,mq+1,t) ← Garble(̃αq z∗[t] fq,t (x∗) + β̃q,t ; r̃q,t)

for all t ∈ [n′]. The vectors involved in the computation of SK fq , yq are as follows:

vq = (α̃q , 0, 0, 0, 0, 0, 0, 0),

vq,1,t = (�̃q,1,t [const] , �̃q,1,t [coefi] , α̃q yq [κ]νq,t , 0, 0, 0, 0, 0),

vq, j,t = (�̃q, j,t [const] , �̃q, j,t [coefi] , 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (r̃q,t [mq] , α̃q , 0, 0, 0, 0, 0)

Recall that in H2, the following linear combinations

αq = αq · s, βq,t = βq,t · s, rq,t =
∑

ι∈[k]
s[ι]r(ι)

q,t

with a common weight vector s has been used to set vq , vq, j,t . On the other hand, in H3

fresh and independent random elements α̃q , β̃q,t , r̃q,t are used to compute SK fq , yq . Note that
the elements of the vectors vq , vq, j,t are only used in the exponent of the source group G2

while generating the IPFE secret-keys. Let us consider thematrixAq,t = (αq |βq,t |(Rq,t)
�) ∈

Z
k×(mq+1)
p where Rq,t = (r(1)

q,t | . . . |r(k)
q,t) ∈ Z

m×k
p . Since the matrix Aq,t is uniformly chosen

from Z
k×(mq+1)
p and s is uniform over Z

k
p , by theMDDHk assumption in group G2 we have

([[Aq,t]]2, [[A�
q,t s]]

︸ ︷︷ ︸
in H2

) ≈ ([[Aq,t]]2, [[(̃αq , β̃q,t , r̃q,t)]]2
︸ ︷︷ ︸

in H3

)

holds for all q ∈ [Q] and t ∈ [n′]. Hence, the two hybrids H2 and H3 are indistinguishable
under the MDDHk assumption.

We have completed the first phase of our security analysis as we see that the private slots of
the vectors associated to secret-keys and the challenge ciphertext are now computed similar
to our extended 1-FE scheme. From the next hybrid, we modify the vectors in such a way
that all the pre-challenge secret-key queries decrypt the challenge ciphertext without using
the slots of u and ht where the challenge massage (x∗, z∗||w∗) are used.
Hybrid H4 It proceeds similar to hybrid H3 except we change the vectors u and ht for
all t ∈ [n′] which are used in the computation of the challenge ciphertext. After all the

pre-challenge secret-key queries made by A, a dummy vector (d1||d2||d3) ∈ Z
n′+k+Qpre
p is

picked from the set

D = {(d1||d2||d3) ∈ Z
n′+k+Qpre
p : fq(x∗)�d1 + y�

q d2 + e�
q d3 = μq for all q ∈ [Qpre]}

where μq = fq(x∗)�z∗ + y�
q w∗. The sampling procedure is as described in the algorithm

Enc∗(·). Then the vectors u, ht are defined as below.

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ] , w∗[κ] , 0, 0, 0),

ht = (0, 0, −1, z∗[t], −1 , d1[t] , −1 , z∗[t] , 0).

Note that, these changes in u and ht have no effect in the final inner product values of
vq ·u, vq, j,t ·u and vq,mq+1,t ·ht . This is because the elements at the slots (extndκ,2, extndκ)

123

2990 P. Datta, T. Pal

of the vectors vq , vq, j,t ht and the elements at the slots (ĉonst2, ĉoef2, ĉonst, ĉoef) of the
vector vq,mq+1,t (where the changes take place in u, ht) are all zero. Therefore, by the function
hiding property of IPFE the hybrids H3 and H4 remain indistinguishable to the adversary.
Hybrid H5,q (q ∈ [Qpre]) It proceeds similar to H4 except that for each 1 ≤ q ′ ≤ q , we
modify the vectors vq,1,t and vq,mq+1,t as described below.

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], 0 , α̃q ′ yq ′ [κ]νq ′,t , 0, α̃q ′eq ′ [η]νq ′,t , 0, 0) for 1 ≤ q ′ ≤ q,

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], α̃q ′ yq ′ [κ]νq ′,t , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre,

vq ′,mq′+1,t = (0, 0, r̃q ′,t [mq ′] , α̃q ′ , 0, 0, 0) for 1 ≤ q ′ ≤ q,

vq ′,mq′+1,t = (r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre

Note that, the post-challenge secret-key queries are still answered according to H4. Observe
that H5,0 coincides with H4. We will prove that H5,(q−1) and H5,q are indistinguishable via
the following sequence of sub-hybrids, namely {H5,q,1,H5,q,2,H5,q,3}.
Hybrid H5,q,1 (q ∈ [Qpre]) It is analogous to H5,(q−1) except that in the qth secret-key
query the vectors vq,1,t and vq,mq+1,t are modified as follow. The element α̃q yq [κ]νq,t is
shifted from vq,1,t [extndκ,1] to vq,1,t [extndκ] and the elements r̃q,t [mq], α̃q are shifted from

vq,mq+1,t [ĉonst1], vq,mq+1,t [ĉoef1] to vq,mq+1,t [ĉonst], vq,mq+1,t [ĉoef] respectively.
vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], 0, α̃q ′ yq ′ [κ]νq ′,t , 0, α̃q ′eq ′ [η]νq ′,t , 0, 0) for 1 ≤ q ′ < q,

vq,1,t = (�̃q,1,t [const], �̃q,1,t [coefi], 0 , 0, α̃q yq [κ]νq,t , 0, 0, 0),

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], α̃q ′ yq ′ [κ]νq ′,t , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre,

vq ′,mq′+1,t = (0, 0, r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0) for 1 ≤ q ′ < q,

vq,mq+1,t = (0 , 0 , 0, 0, r̃q,t [mq] , α̃q , 0) ,

vq ′,mq′+1,t = (r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre

We observe that the inner products vq,1,t · u and vq,mq+1,t · ht are unchanged due to the
modification occurred in vq,1,t and vq,mq+1,t . Therefore, the function hiding security of IPFE
ensures that the hybrids H5,(q−1) and H5,q,1 are indistinguishable.

In this hybrid, the components of vq, j,t corresponding to the slots {const, coefi , extndκ ,

queryq , simτ , sim∗
τ } and the components of vq,mq+1,t corresponding to the slots {ĉonst, ĉoef,

ŝim
∗} are exactly the same as in the secret-key of our extended 1-FE scheme. Similarly, in case

of the challenge ciphertext, the components ofu at the positions {const, coefi , extndκ ,queryq ,

simτ , sim∗
τ } and the components of ht at the positions {ĉonst, ĉoef, ŝim∗} are also identical

to the ciphertext of our extended 1-FE scheme.
Hybrid H5,q,2 (q ∈ [Qpre]) It is exactly the same as H5,q,1 except that the components

u[extndκ], u[queryq] and ht [ĉoef] are changed from z∗[t], 0,w∗[κ] to d1[t], σq , d2[κ]
respectively. Thus, the secret key vectors and the vectors u, ht become

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], 0, α̃q ′ yq ′ [κ]νq ′,t , 0, α̃q ′eq ′ [η]νq ′,t , 0, 0) for 1 ≤ q ′ < q,

vq,1,t = (�̃q,1,t [const], �̃q,1,t [coefi], 0, 0, α̃q yq [κ]νq,t , α̃q eq [η]νq,t , 0, 0),

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], α̃q ′ yq ′ [κ]νq ′,t , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre,

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ], d2[κ] , d≤q
3 [η] 0, 0),

ht = (0, 0, −1, z∗[t], −1, d1[t], −1, d1[t] , 0)

where d≤q
3 [η] = σq if η ≤ q; 0 otherwise. The indistinguishability follows from the security

of 1-extFE scheme. We note that the security of our 1-extFE scheme relies on the function
hiding security of IPFE and the security of AKGS. In particular, we use the security of IPFE
and AKGS to reversely sample the first label and make all the other labels random as shown
below

�̃q,1,1 ← RevSamp(fq,1, x∗, α̃q fq(x∗)�z∗ + y�
q w∗ + β̃q,1, �q,2,1, . . . , �q,mq ,1)

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2991

�̃q,1,τ ← RevSamp(fq,τ , x∗, β̃q,τ , �q,2,τ , . . . , �q,mq ,τ) for 1 < τ < n′,

where
∑

τ∈[n′] β̃q,τ = 0 and �q, j,τ is picked randomly for all j ∈ [2,mq]. Then, the dummy
vector (d1||d2) replaces the challenge message (z∗||w∗) and d3[q] = σq is added to the term
α̃q fq(x∗)�d1 + y�

q d2 while computing �̃q,1,1. Finally, we move in the reverse direction so
that the vectors vq, j,t for all j ∈ [mq] and t ∈ [n′] are back in form as they were in H5,q,1 and

d1[t], d2[κ] are placed at ht [ĉoef], u[extndκ] respectively. Note that, the hybrids involved
in our 1-extFE scheme uses the positions simτ , sim∗

τ , ŝim, ŝim
∗
of the vectors vq, j,t , u and

ht , which does not affect the decryption using any post-challenge secret-key.
HybridH5,q,3 (q ∈ [Qpre]) It proceeds analogous to H5,q,2 except that we change vq,mq+1,t

and ht as below. The element α̃q yq [κ]νq,t is shifted from vq,1,t [extndκ] to vq,1,t [extndκ,2]
and the elements r̃q,t [mq], α̃q are shifted from vq,mq+1,t [ĉonst], vq,mq+1,t [ĉoef]
to vq,mq+1,t [ĉonst2], vq,mq+1,t [ĉoef2] respectively.

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], 0, α̃q ′ yq ′ [κ]νq ′,t , 0, α̃q ′eq ′ [η]νq ′,t , 0, 0) for 1 ≤ q ′ < q,

vq,1,t = (�̃q,1,t [const], �̃q,1,t [coefi], 0, α̃q yq [κ]νq,t , 0 , α̃q eq [η]νq,t , 0, 0),

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], α̃q ′ yq ′ [κ]νq ′,t , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre,

vq ′,mq′+1,t = (0, 0, r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0) for 1 ≤ q ′ < q,

vq,mq+1,t = (0, 0, r̃q,t [mq] , α̃q , 0 , 0 , 0) ,

vq ′,mq′+1,t = (r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre,

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ], w∗[κ] , d≤q
3 [η], 0, 0),

ht = (0, 0, −1, z∗[t], −1, d1[t], −1, z∗[t] , 0)

Note that the inner products vq,1,t ·u and vq,mq+1,t ·ht remains the same as inH5,q,2. There-
fore, the hybrids H5,q,2 and H5,q,3 are indistinguishable due to the function hiding security
of IPFE. We observe that H5,q,3 is identical to H5,q for all q ∈ [Qpre].
Hybrid H6 It is exactly the same as H5,Qpre except that the elements u[extndκ], ht [ĉonst]
and ht [ĉoef] are set to zero. We describe the vectors associated to secret-key queries and the
challenge ciphertext below. Note that the post-challenge secret-key queries are released in
the same way as in H4 (or in H5,Qpre).

1 ≤ q ≤ Qpre

⎧
⎪⎪⎨

⎪⎪⎩

vq = (α̃q , 0, 0, 0, 0, 0, 0, 0) ,

vq,1,t = (�̃q,1,t [const], �̃q,1,t [coefi], 0, α̃q yq [κ]νq,t , 0, α̃q eq [η]νq,t , 0, 0) ,

vq, j,t = (�̃q, j,t [const], �̃q, j,t [coefi], 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (0, 0, r̃q,t [mq], α̃q , 0, 0, 0) ,

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ], 0 , d3[η], 0, 0),

ht = (0, 0, −1, z∗[t], −1, d1[t], 0 , 0 , 0)

Qpre < q ≤ Q

⎧
⎪⎪⎨

⎪⎪⎩

vq = (α̃q , 0, 0, 0, 0, 0, 0, 0) ,

vq,1,t = (�̃q,1,t [const], �̃q,1,t [coefi], α̃q yq [κ]νq,t , 0, 0, 0, 0, 0) ,

vq, j,t = (�̃q, j,t [const], �̃q, j,t [coefi], 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (r̃q,t [mq], α̃q , 0, 0, 0, 0, 0)

Since the inner products vq,1,t · u and vq,mq+1,t · ht is unaltered due to the modification
in this hybrid, the function hiding security of IPFE ensures indistinguishability between the
hybrids H5,Qpre and H6.

The second part of the proof is completed as all the pre-challenge secret-keys are now
able to decrypt the challenge ciphertext without the components of u, ht that make use of

z∗ and w∗. Note that, u[extndκ,1] = w∗[κ] and ht [ĉoef1] = z∗[t] are only needed for the
successful decryption of the challenge ciphertext by post-challenge secret-keys. From the
next hybrid we change the computation of post-challenge secret-keys so that the challenge
ciphertext can be simulated without using (z∗||w∗).
Hybrid H7 This hybrid proceeds exactly similar to H6 except that we use the honest levels
�̃q,1,t = �̃q,1,t (x∗), �̃q, j,t = �̃q, j,t (x∗) for j ∈ [2,mq] and �̃q,mq+1,t = −r̃q,t [mq]+ α̃q z∗[t]
while defining the vectors vq, j,t in all the post-challenge secret-key queries. Moreover, all

123

2992 P. Datta, T. Pal

the other private components vq, j,t [coefi] and vq, j,t [extndκ,1] are zero for all j ∈ [mq]. We
also modify u and ht of the challenge ciphertext as shown below.

u = (0, 0, 0, 1, x∗[i], 0 , d2[κ], 0, d3[η], 0, 0),

ht = (0, 0, 1 , 0 , −1, d1[t], 0, 0, 0),

Qpre < q ≤ Q

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vq = (α̃q , 0, 0, 0, 0, 0, 0, 0),

vq,1,t = (�̃q,1,t + α̃q yq [κ]νq,t , 0 , 0 , 0, 0, 0, 0, 0),

vq, j,t = (�̃q, j,t , 0 , 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (�̃q,mq+1,t , 0 , 0, 0, 0, 0, 0)

Since the inner products vq, j,t · u, vq,mq+1,t · ht for all q ∈ [Qpre + 1, Q] are the same as
in the previous hybrid, the function hiding property of IPFE ensures that the hybrids H6 and
H7 are indistinguishable.
Hybrid H8: This hybrid proceeds analogous to H7 except that the post-challenge secret-key
queries use the simulated garblings instead of the honest garblings. More specifically, we
sample α̃q , β̃q,t , ν̃q,t ← Zp satisfying

∑
t∈[n′] β̃q,t = 0,

∑
t∈[n′] ν̃q,t = 1 and compute the

simulated garblings
(�̂q,1,t , . . . , �̂q,mq ,t , �̂q,mq+1,t) ← SimGarble(fq,t , x∗, α̃q · (z∗[t] fq,t (x∗) + ν̃q,t · y�

q w∗) + β̃q,t)

for all q ∈ [Qpre + 1, Q] and t ∈ [n′]. Then, the post-challenge secret-keys are generated
using the vectors described below.

Qpre < q ≤ Q

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vq |Spriv = (α̃q , 0, 0, 0, 0, 0, 0, 0),

vq,1,t |Spriv = (�̂q,1,t , 0, 0, 0, 0, 0, 0, 0)

vq, j,t |Spriv = (�̂q, j,t , 0, 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t |Ŝpriv = (�̂q,mq+1,t , 0, 0, 0, 0, 0, 0)

The simulated levels of AKGS is used in place of actual garblings. The simulation security
of AKGS implies that the hybrids H7 and H8 are indistinguishable.
HybridH9: This proceeds exactly the same asH8 except that the distribution of {β̃q,t }t∈[n′] is
changed.We replace β̃q,t by β̃ ′

q,t = β̃q,t −α̃q ·(z∗[t] fq,t (x∗)+ ν̃q,t · y�
q w∗) for all 1 < t ≤ n′

and replace the element β̃q,1 by β̃ ′
q,1 = β̃q,1 − α̃q · (z∗[1] fq,1(x∗) + ν̃q,1 · y�

q w∗) + α̃q ·
(fq(x∗)�z∗ + y�

q w∗). Note that, the distributions

{β̃t,q ← Zp :
∑

t∈[n′]
β̃t,q = 0} and {β̃ ′

t,q :
∑

t∈[n′]
β̃t,q = 0}

are statistically close since {β̃ ′
q,t }t∈[n′] are also uniform overZp and

∑
t∈[n′] β̃ ′

q,t = 0. Finally,
the vectors associated to the post-challenge secret-keys are given by

Qpre < q ≤ Q

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vq |Spriv = (α̃q , 0, 0, 0, 0, 0, 0, 0),

vq,1,t |Spriv = (�̂q,1,t , 0, 0, 0, 0, 0, 0, 0)

vq, j,t |Spriv = (�̂q, j,t , 0, 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t |Ŝpriv = (�̂q,mq+1,t , 0, 0, 0, 0, 0, 0)

where the simulated garblings take the form

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2993

(�̂q,1,1, . . . , �̂q,mq ,1, �̂q,mq+1,1) ← SimGarble(fq,1, x∗, α̃q · (fq(x∗)�z∗ + y�
q w∗) + β̃q,1)

(�̂q,1,t , . . . , �̂q,mq ,t , �̂q,mq+1,t) ← SimGarble(fq,t , x∗, β̃q,t) for 1 < t ≤ n′.

Observe that H9 is the same as the ideal experiment ExptIdeal,extFEA (1λ). This completes the
security proof.
Note: Recall that the simulation goes through even if the challenger gets [[yq]]2 (and hence
[[̃αq fq(x∗)�z∗ + y�

q w∗]]2) as we have already mentioned it while describing KeyGen∗
1(·). ��

6 Unbounded-slot FE for attribute-weighted sum

In this section, we describe the transformation from extended one-slot FE to unbounded-
slot FE. The conversion is proposed in [3] with semi-adaptive simulation security relying on
MDDHk assumption. We show the same transformation works to achieve adaptive simula-
tion security against an a priori bounded number of pre-ciphertext secret key queries while
an arbitrary polynomial number of post-ciphertext secret key queries under the bMDDHk

assumption.
Let ΠextOne = (SetupextFE, KeyGenextFE, EncextFE,DecextFE) be the extended one-slot

FE scheme described in Sect. 5.2. The unbounded-slot FE scheme Πubd = (Setup,

KeyGen, Enc,Dec) works as follows:
Setup(1λ, 1n, 1n

′
, 1B) On input integers λ, n, n′ as unary, the setup algorithm runs

(MSK1,MPK1) ← SetupextFE(1
λ, 1n, 1n

′
, 1B),

(MSK2,MPK2) ← SetupextFE(1
λ, 1n, 1n

′
, 1B)

and outputs the master secret-key MSK = (MSK1,MSK2) and the master public-key MPK =
(MPK1,MPK2).
KeyGen(MSK, f) The key generation algorithm takes input MSK = (MSK1,MSK2) and a

function f ∈ F (n,n′)
ABP . It samples y ← Z

k
p and computes

SK f ,1 ← KeyGenextFE(MSK1, (f , [[y]]2)), SK f ,2 ← KeyGenextFE(MSK2, (f , [[y]]2))
Then, It returns the secret-key as SK f = (SK f ,1, SK f ,2) and f . Here, we use the property of
extFE that KeyGenextFE(MSK j , (f , y)) = KeyGenextFE(MSK j , (f , [[y]]2)) for j ∈ [2].
Enc(MPK, (xi , zi)i∈[N]) The encryption algorithm takes inputMPK and message (xi , zi) ∈
Z
n
p × Z

n′
p for i ∈ [N]. It samples random vectors w2, . . . ,wN ← Z

k
p and computes

CT1 ← EncextFE(MPK1, (x1, z1|| −
∑

i∈[2,N]
wi))

CTi ← EncextFE(MPK2, (xi , zi ||wi)), for i ∈ [2, N]
It returns the ciphertext CT(xi ||zi) = (CT1, . . . ,CTN).
Dec((SK f , f), (CT(xi ||zi), (xi)i∈[N])) The decryption algorithmparses the secret-keySK f =
(SK f ,1, SK f ,2) and the ciphertext CT(xi ||zi) = (CT1, . . . ,CTN). Then it computes

[[D1]]T ← DecextFE((SK f ,1, f), (CT1, x1))

[[Di]]T ← DecextFE((SK f ,2, f), (CTi , xi)) for i ∈ [2, N]
and multiply those values to get [[D]]T = [[D1]]T · · · [[DN]]T . Finally, it returns D by solving
discrete log via brute-force.

123

2994 P. Datta, T. Pal

Correctness. By the correctness of underlying extFE scheme, we get

[[D1]]T = [[f (x1)�z1 −
∑

i∈[2,N]
y�wi]]T

[[Di]]T = [[f (xi)�zi + y�wi]]T for i ∈ [2, N]
Therefore, multiplying all [[Di]]T for i ∈ [N], we have [[D]]T = [[∑i∈[N] f (xi)�zi]]T .

6.1 Security analysis

Theorem 6 The unbounded-slot FE scheme Πubd for attribute weighted sum is adaptively
simulation-secure under bilateralMDDHk assumption if the underlying extended one-slot FE
scheme ΠextOne is adaptively simulation secure.

The simulator

In this section, we describe the simulator of our unbounded slot FE scheme Πubd. First, we
recall the syntax of the simulator of our extended one-slot FE scheme presented in Sect. 5.2.
Simulator of ΠextOne. Let Q be the total number of secret-key queries by the adversary
and B = Qpre be the number of secret-keys asked before the challenge phase. We consider
(x∗, z∗||w∗) as the challenge message.

• Setup∗
extFE(1

λ, 1n, 1n
′
, 1B) → (MSK∗

1,MPK1)
• KeyGen∗

extFE,0(MSK∗
1, (fq , [[yq]]2)) → SK fq , y

• Enc∗
extFE(MPK1,MSK∗

1, x
∗,V1) → CT∗ where V1 = {((fq , [[yq]]1), [[fq(x∗)�z∗ +

y�
q w∗]]1) : q ∈ [Qpre]}

• KeyGen∗
extFE,1(MSK∗

1, x
∗, (fq , [[yq]]2), [[fq(x∗)� + y�

q w∗]]2) → SK fq , y

Remark 3 Note that, the simulator is given yq and fq(x∗)� + y�
q w∗ in the power of the

source groups. The simulator still runs efficiently as we are utilizing the following facts from
our ΠextOne:

1. KeyGen∗
extFE,0(MSK∗

1, (fq , [[yq]]2)) = KeyGen∗
extFE,0(MSK∗

1, (fq , yq)) in case of our
ΠextOne for all q ∈ [Qpre]

2. Enc∗
extFE(MPK1,MSK∗

1, x
∗,V1) = Enc∗

extFE(MPK1,MSK∗
1, x

∗,V ′
1) where V ′

1 =
{((fq , [[yq]]1), fq(x∗)�z∗ + y�

q w∗) : q ∈ [Qpre]}
3. KeyGen∗

extFE,1(MSK∗
1, x

∗, (fq , [[yq]]2), [[fq(x∗)� + y�
q w∗]]2) =

KeyGen∗
extFE,1(MSK∗

1, x
∗, (fq , yq), fq(x∗)� + y�

q w∗) for all q ∈ [Qpre + 1, Q]

Now, we present the simulator of Πubd as follows:
Setup∗(1λ, 1n, 1n

′
, 1B, 1N) On input integers λ, n, n′, N and a bound on the pre-challenge

query B as unary, the simulated setup algorithm samples w2, . . . ,wN ← Z
k
p and generates

the keys

(MSK∗
1,MPK1) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B),

(MSK2,MPK2) ← SetupextFE(1
λ, 1n, 1n

′
, 1B)

It returns MSK∗ = (MSK∗
1,MSK2,w2, . . . ,wN) and MPK = (MPK1,MPK2).

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2995

KeyGen∗
0(MSK∗, f q) This is the pre-challenge key generation algorithm. On input MSK∗

and a function fq ∈ F (n,n′)
ABP , the algorithm samples yq ← Z

k
p and computes

SK∗
fq ,1 ← KeyGen∗

extFE,0(MSK∗
1, (f , [[yq]]2)),

SK fq ,2 ← KeyGenextFE(MSK2, (f , [[yq]]2))
It outputs the simulated key SK fq = (SK∗

fq ,1, SK fq ,2).
Let B = Qpre be the total number of pre-challenge keys queried by the adversary and

(x∗
i , z

∗
i)i∈[N] be the challenge message.

Enc∗(MPK,MSK∗, (xi)i∈[N],V) On input MPK,MSK∗, a set of vectors (x∗
i)i∈[N] and a set

V = {((fq , [[yq]]1), μq = ∑
i∈[N] fq(x∗

i)
�z∗i) : q ∈ [Qpre]}, the simulated encryption

algorithm defines the set V1 = {((fq , [[yq]]1), [[μq − ∑
i∈[2,N] y�

q wi]]1) : q ∈ [Qpre]} and
computes

CT∗
1 ← Enc∗

extFE(MPK1,MSK∗
1, x

∗
1,V1)

CT∗
i ← EncextFE(MPK2, (x∗

i , 0||wi)) for i ∈ [2, N]
It returns the simulated ciphertext CT∗ = (CT∗

1,CT2, . . . ,CTN).
KeyGen∗

1(MSK∗, (x∗
i)i∈[2,N], f q ,μq) This is the post-challenge key generation algorithm.

On input MSK∗, a set of vectors (x∗
i)i∈[2,N], a function fq ∈ F (n,n′)

ABP and an integer μq =
∑

i∈[N] fq(x∗
i)

�z∗i , the algorithm samples yq ← Z
k
p and computes

SK∗
fq ,1 ← KeyGen∗

extFE,1(MSK∗
1, x

∗
1, (fq , [[yq]]2), [[μq −

∑

i∈[2,N]
y�
q wi]]2)

SK fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2))
It outputs the simulated secret-key SK∗

fq = (SK∗
fq ,1, SK fq ,2)

Hybrids and reductions

Proof We prove the theorem by showing the indistinguishability between the real experiment
ExptReal,ubdFEA (1λ) and the ideal experiment ExptIdeal,ubdFEA (1λ) via a sequence of hybrid
games. In each experiment, the adversary A can query a polynomial number of secret-key

queries corresponding to functions f ∈ F (n,n′)
ABP , both before and after submitting the challenge

message (xi , zi)i∈[N] ∈ (Zn
p × Z

n′
p)N . Let Q be the total number of key queries and without

loss of generality let B = Qpre be the number of keys queried before the challenge phase.We
denote the q-th secret-key by SK fq for a function fq . The sequence of hybrids are described
as follows:
Hybrid H0: This is the real experiment ExptReal,ubdFEA (1λ).

– The master keys are sampled as follows:

(MSK1,MPK1) ← SetupextFE(1
λ, 1n, 1n

′
, 1B),

(MSK2,MPK2) ← SetupextFE(1
λ, 1n, 1n

′
, 1B)

The challenger sets MSK = (MSK1,MSK2) and MPK = (MPK1,MPK2).
– The q-th secret-key SK fq , for all q ∈ [Q], is computed as follows: The challenger samples

yq ← Z
k
p and generate the keys

SK fq ,1 ← KeyGenextFE(MSK1, (fq , [[yq]]2)),

123

2996 P. Datta, T. Pal

SK fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2))
The challenger sends SK fq = (SK fq ,1, SK fq ,2).

– The challenge ciphertext is computed as follows: The challenger samplesw2, . . . ,wN ←
Z
k
p and compute the ciphertexts

CT1 ← EncextFE(MPK1, (x∗
1, z

∗
1|| −

∑

i∈[2,N]
wi))

CTi ← EncextFE(MPK2, (x∗
i , z

∗
i ||wi)), for i ∈ [2, N]

The challenger returns CT = (CT1, . . . ,CTN).

Hybrid H1: This is exactly the same H0 except that all the algorithms of the first instant
of ΠextOne is now replaced with their simulated counterpart. The changes are indicated as
follows:

– The master keys as sampled as follows:

(MSK∗
1,MPK1) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B) ,

(MSK2,MPK2) ← SetupextFE(1
λ, 1n, 1n

′
, 1B)

The challenger samples w2, . . . ,wN ← Z
k
p and sets the master keys as

MSK = (MSK∗
1,MSK2,w2, . . . ,wN) and MPK = (MPK1,MPK2).

– The q-th secret-key SK fq , for all q ∈ [Qpre], is computed as follows: The challenger
samples yq ← Z

k
p and generate the keys

SK∗
fq ,1 ← KeyGen∗

extFE,0(MSK∗
1, (fq , [[yq]]2)) ,

SK fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2))
The challenger sends SK fq = (SK∗

fq ,1 , SK fq ,2).

– The challenge ciphertext is computed as follows: After all the pre-challenge secret-key
queries, the challenger defines a set

V1 = {((fq , [[yq]]1), [[fq(x∗
1)

�z∗1 −
∑

i∈[2,N]
y�
q wi]]1) : q ∈ [Qpre]}

and computes the ciphertexts

CT∗
1 ← Enc∗

extFE(MPK1,MSK∗
1,V1)

CTi ← EncextFE(MPK2, (x∗
i , z

∗
i ||wi)), for i ∈ [2, N]

The challenger returns CT = (CT∗
1 ,CT2, . . . ,CTN).

– The post-challenge secret-key SK fq for q ∈ [Qpre + 1, Q] is computed as follows: The
challenger yq ← Z

k
p and generates the keys

SK∗
fq ,1 ← KeyGen∗

extFE,1(MSK∗
1, x

∗
1, (fq , [[yq]]2), [[fq(x∗

1)
�z∗1 −

∑

i∈[2,N]
y�
q wi]]2) ,

SK fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2))

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2997

and returns SK fq = (SK∗
fq ,1 , SK fq ,2)

In Lemma 7, we show that the hybrids H0 and H1 are indistinguishable by the adaptive
simulation-security of ΠextOne scheme.
HybridH2,η (η ∈ [2, N]): It is exactly the sameas hybridH1 except that the changes indicated
below.

– The master keys as sampled as follows:

(MSK∗
1,MPK1) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B),

(MSK2,MPK2) ← SetupextFE(1
λ, 1n, 1n

′
, 1B)

Thechallenger samplesw2, . . . ,wN ← Z
k
p and setsMSK = (MSK∗

1,MSK2,w2, . . . ,wN)

and MPK = (MPK1,MPK2).
– The q-th secret-key SK fq , for all q ∈ [Qpre], is computed as follows: The challenger

samples yq ← Z
k
p and generate the keys

SK∗
fq ,1 ← KeyGen∗

extFE,0(MSK∗
1, (fq , [[yq]]2)),

SK fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2))
The challenger sends SK fq = (SK∗

fq ,1, SK fq ,2).

– The challenge ciphertext is computed as follows: After all the pre-challenge secret-key
queries, the challenger defines a set

V1 = {((fq , [[yq]]1), [[
∑

i∈[η−1]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]1) : q ∈ [Qpre]}

and computes the ciphertexts

CT∗
1 ← Enc∗

extFE(MPK1,MSK∗
1,V1)

CTi ← EncextFE(MPK2, (x∗
i , 0||wi)) for i ∈ [2, η],

CTi ← EncextFE(MPK2, (x∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

The challenger returns CT = (CT∗
1,CT2, . . . ,CTη−1,CTη, . . . ,CTN).

– The post-challenge secret-key SK fq for q ∈ [Qpre + 1, Q] is computed as follows: The
challenger samples yq ← Z

k
p and generates the keys

SK∗
fq ,1 ← KeyGen∗

extFE,1(MSK∗
1, x

∗
1, (fq , [[yq]]2), [[

∑

i∈[η−1]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]2),

SK fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2))
and returns SK fq = (SK∗

fq ,1, SK fq ,2)

Observe that H2,1 coincides with H1. We will show that for all η ∈ [2, N], the hybrids
H2,(η−1) and H2,η are indistinguishable via the following sequence of sub-hybrids, namely,
{H2,η,1,H2,η,2,H2,η,3}η∈[2,N].
HybridH2,η,1 (η ∈ [2, N]): It is exactly the same as hybrid H2,(η−1) except that the changes
indicated below.

– The master keys as sampled as follows:

(MSK∗
1,MPK1) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B),

123

2998 P. Datta, T. Pal

(MSK∗
2,MPK2) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B)

Thechallenger samplesw2, . . . ,wN ← Z
k
p and setsMSK = (MSK∗

1, MSK∗
2 ,w2, . . . ,wN)

and MPK = (MPK1,MPK2).
– The q-th secret-key SK fq , for all q ∈ [Qpre], is computed as follows: The challenger

samples yq ← Z
k
p and generate the keys

SK∗
fq ,1 ← KeyGen∗

extFE,0(MSK∗
1, (fq , [[yq]]2)),

SK∗
fq ,2 ← KeyGen∗

extFE,0(MSK∗
2, (fq , [[yq]]2))

The challenger sends SK fq = (SK∗
fq ,1, SK∗

fq ,2).

– The challenge ciphertext is computed as follows: After all the pre-challenge secret-key
queries, the challenger defines the sets

V1 = {((fq , [[yq]]1), [[
∑

i∈[η−1]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]1) : q ∈ [Qpre]}

V2 = {((fq , [[yq]]1), [[fq(x∗
η)

�z∗η + y�
q wη]]1) : q ∈ [Qpre]}

and computes the ciphertexts

CT∗
1 ← Enc∗

extFE(MPK1,MSK∗
1,V1)

CTi ← EncextFE(MPK2, (x∗
i , 0||wi)) for i ∈ [2, η − 1],

CT∗
η ← Enc∗

extFE(MPK2,MSK∗
2,V2) ,

CTi ← EncextFE(MPK2, (x∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

The challenger returns CT = (CT∗
1,CT2, . . . ,CTη−1, CT∗

η ,CTη+1, . . . ,CTN).

– The post-challenge secret-key SK fq for q ∈ [Qpre + 1, Q] is computed as follows: The
challenger samples yq ← Z

k
p and generates the keys

SK∗
fq ,1 ← KeyGen∗

extFE,1(MSK∗
1, x

∗
1, (fq , [[yq]]2), [[

∑

i∈[η−1]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]2),

SK∗
fq ,2 ← KeyGen∗

extFE,1(MSK∗
2, x

∗
η, (fq , [[yq]]2), [[fq(x∗

η)
�z∗η + y�

q wη]]2)
and returns SK fq = (SK∗

fq ,1, SK∗
fq ,2)

We demonstrate in Lemma 8 that H2,(η−1) and H2,η,1 are indistinguishable by the adaptive
simulation-security of ΠextOne.
Hybrid H2,η,2 (η ∈ [2, N]): It is exactly the same as hybrid H2,η,1 except that the changes
indicated below.

– The master keys as sampled as follows:

(MSK∗
1,MPK1) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B),

(MSK∗
2,MPK2) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B)

Thechallenger samplesw2, . . . ,wN ← Z
k
p and setsMSK = (MSK∗

1,MSK∗
2,w2, . . . ,wN)

and MPK = (MPK1,MPK2).

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 2999

– The q-th secret-key SK fq , for all q ∈ [Qpre], is computed as follows: The challenger
samples yq ← Z

k
p and generate the keys

SK∗
fq ,1 ← KeyGen∗

extFE,0(MSK∗
1, (fq , [[yq]]2)),

SK∗
fq ,2 ← KeyGen∗

extFE,0(MSK∗
2, (fq , [[yq]]2))

The challenger sends SK fq = (SK∗
fq ,1, SK

∗
fq ,2).

– The challenge ciphertext is computed as follows: After all the pre-challenge secret-key
queries, the challenger defines the sets

V1 = {((fq , [[yq]]1), [[
∑

i∈[η]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]1) : q ∈ [Qpre]}

V2 = {((fq , [[yq]]1), [[y�
q wη]]1) : q ∈ [Qpre]}

and computes the ciphertexts

CT∗
1 ← Enc∗

extFE(MPK1,MSK∗
1, V1)

CTi ← EncextFE(MPK2, (x∗
i , 0||wi)) for i ∈ [2, η − 1],

CT∗
η ← Enc∗

extFE(MPK2,MSK∗
2, V2),

CTi ← EncextFE(MPK2, (x∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

The challenger returns CT = (CT∗
1 ,CT2, . . . ,CTη−1, CT∗

η ,CTη+1, . . . ,CTN).

– The post-challenge secret-key SK fq for q ∈ [Qpre + 1, Q] is computed as follows: The
challenger yq ← Z

k
p and generates the keys

SK∗
fq ,1 ← KeyGen∗

extFE,1(MSK∗
1, x

∗
1, (fq , [[yq]]2), [[

∑

i∈[η]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]2),

SK∗
fq ,2 ← KeyGen∗

extFE,1(MSK∗
2, x

∗
η, (fq , [[yq]]2), [[y�

q wη]]2)

and returns SK fq = (SK∗
fq ,1, SK

∗
fq ,2)

Lemma 9 ensures that the hybrids H2,η,1 and H2,η,2 are indistinguishable due to bilateral
MDDHk assumption.
Hybrid H2,η,3 (η ∈ [2, η]): It is exactly the same as hybrid H2,η,2 except that the changes
indicated below.

– The master keys as sampled as follows:

(MSK∗
1,MPK1) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B),

(MSK2,MPK2) ← SetupextFE(1
λ, 1n, 1n

′
, 1B)

Thechallenger samplesw2, . . . ,wN ← Z
k
p and setsMSK = (MSK∗

1, MSK2 ,w2, . . . ,wN)

and MPK = (MPK1,MPK2).
– The q-th secret-key SK fq , for all q ∈ [Qpre], is computed as follows: The challenger

samples yq ← Z
k
p and generate the keys

SK∗
fq ,1 ← KeyGen∗

extFE,0(MSK∗
1, (fq , [[yq]]2)),

123

3000 P. Datta, T. Pal

SK fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2))

The challenger sends SK fq = (SK∗
fq ,1, SK fq ,2).

– The challenge ciphertext is computed as follows: After all the pre-challenge secret-key
queries, the challenger defines the sets

V1 = {((fq , [[yq]]1), [[
∑

i∈[η]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]1) : q ∈ [Qpre]}

and computes the ciphertexts

CT∗
1 ← Enc∗

extFE(MPK1,MSK∗
1,V1)

CTi ← EncextFE(MPK2, (x∗
i , 0||wi)) for i ∈ [2, η − 1],

CTη ← EncextFE(MPK2, (x∗
η, 0||wη)) ,

CTi ← EncextFE(MPK2, (x∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

The challenger returns CT = (CT∗
1,CT2, . . . ,CTη−1, CTη ,CTη+1, . . . ,CTN).

– The post-challenge secret-key SK fq for q ∈ [Qpre + 1, Q] is computed as follows: The
challenger samples yq ← Z

k
p and generates the keys

SK∗
fq ,1 ← KeyGen∗

extFE,1(MSK∗
1, x

∗
1, (fq , [[yq]]2), [[

∑

i∈[η]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]2),

SK fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2))
and returns SK fq = (SK∗

fq ,1, SK fq ,2)

We show in Lemma 10 that the hybridsH2,η,2 andH2,η,3 are indistinguishable by the adaptive
simulation security of ΠextOne.

Now, we observe that the hybrid H2,1 is identical to H1 and H2,η,3 is identical to H2,η for

all η ∈ [2, N]. Finally, we note that H2,N is the ideal experiment ExptIdeal,ubdFEA (1λ). ��
Lemma 7 The hybrids H0 and H1 are computationally indistinguishable by adaptive
simulation-security of ΠextOne. More specifically, for any PPT adversary A, there exists
another PPT adversary B1 such that

|AdvH0
A (λ) − AdvH1

A (λ)| ≤ AdvextFEB1
(λ)

Proof We establish the indistinguishability by constructing an adversaryB1 against the adap-
tive simulation-security of ΠextOne. Let C1 be the challenger of the security experiment of
ΠextOne. The adversary B1 works as follows:

– Setup: B1 gets MPK1 from C1 and computes

(MSK2,MPK2) ← SetupextFE(1
λ, 1n, 1n

′
, 1B)

It returns MPK = (MPK1,MPK2) to A.
– Key Queries: A asks for a secret-key corresponding to the function fq at the q-th key

query for q ∈ [Q]. First, B1 samples yq ← Z
k
p and generates

SK fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2))
Next, B1 forwards (fq , yq) to C1 and gets a secret-key S̃K fq ,1. Finally, B1 returns SK fq =
(S̃K fq ,1, SK fq ,2) to A.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3001

– Ciphertext Query: A sends the challenge ciphertext (x∗
i , z

∗
i)i∈[N]. Now, B1 samples

w2, . . . ,wN ← Z
k
p and computes

CTi ← EncextFE(MPK2, (x∗
i , z

∗
i ||wi)), for i ∈ [2, N]

Next, B1 sends (x∗
1, z

∗
1|| − ∑

i∈[2,N] wi) as its challenge ciphertext to C1 and receives

a ciphertext C̃T1. Finally, B1 sends the challenge ciphertext CT = (C̃T1,CT2, . . . ,
CTN) to A.

Observe that, if C1 chooses the real algorithms of ΠextOne then

(MSK1,MPK1) ← SetupextFE(1
λ, 1n, 1n

′
, 1B)

S̃K fq ,1 ← KeyGenextFE(MSK1, (fq , [[yq]]2)) ∀q ∈ [Q]
C̃T1 ← EncextFE(MPK1, (x∗

1, z
∗
1|| −

∑

i∈[2,N]
wi))

and hence B1 simulates H0. If C1 chooses the the simulator of ΠextOne then

(MSK∗
1,MPK1) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B)

S̃K fq ,1 ← KeyGen∗
extFE,0(MSK∗

1, (fq , [[yq]]2)) ∀q ∈ [Qpre]
C̃T1 ← EncextFE(MPK1, (x∗

1, z
∗
1|| −

∑

i∈[2,N]
wi))

S̃K fq ,1 ← KeyGen∗
extFE,1(MSK∗

1, x
∗
1, (fq , [[yq]]2), [[fq(x∗

1)
�z∗1 −

∑

i∈[2,N]
y�
q wi]]2)

∀q ∈ [Qpre + 1, Q]
and hence B1 simulates H1. ��
Lemma 8 The hybridsH2,(η−1) andH2,η,1 are computationally indistinguishable by adaptive
simulation-security of ΠextOne. More specifically, for any PPT adversary A, there exists
another PPT adversary B2 such that

|AdvH2,(η−1)
A (λ) − Adv

H2,η,1
A (λ)| ≤ AdvextFEB2

(λ)

Proof We prove the lemma by constructing an adversary B2 against the adaptive simulation-
security of ΠextOne. Let C2 be the challenger of the security experiment of ΠextOne. The
adversary B2 works as follows:

• Setup: B2 gets MPK2 from C2 and computes

(MSK∗
1,MPK1) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B)

It returns MPK = (MPK1,MPK2) to A.
• Pre-challenge Key Queries: A asks for a secret-key corresponding to the function fq at

the q-th key query for q ∈ [Qpre]. First, B2 samples yq ← Z
k
p and computes

SK∗
fq ,1 ← KeyGen∗

extFE,0(MSK∗
1, (fq , [[yq]]2))

Next, B2 forwards (fq , yq) to C2 and gets a secret-key S̃K fq ,2. Finally, B2 returns SK fq =
(SK∗

fq ,1, S̃K fq ,2) to A.

123

3002 P. Datta, T. Pal

• Ciphertext Query: A sends the challenge ciphertext (x∗
i , z

∗
i)i∈[N]. Now, B2 samples

w2, . . . ,wN ← Z
k
p and defines the set

V1 = {((fq , [[yq]]1), [[
∑

i∈[η−1]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]1) : q ∈ [Qpre]}

Now, B2 computes the ciphertexts

CT∗
1 ← Enc∗

extFE(MPK1,MSK∗
1,V1)

CTi ← EncextFE(MPK2, (x∗
i , 0||wi)) for i ∈ [2, η − 1],

CTi ← EncextFE(MPK2, (x∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

Next,B2 sends (x∗
η, z

∗
η||wη) as its challenge ciphertext to C2 and receives a ciphertext C̃Tη.

Finally,B2 sends the challenge ciphertext CT = (CT∗
1,CT2, . . . ,CTη−1, C̃Tη,CTη+1, . . . ,

CTN) to A.
• Post-challenge Key Queries:A asks for a secret-key corresponding to the function fq at

the q-th key query for q ∈ [Qpre + 1, Q]. First, B2 samples yq ← Z
k
p and computes

SK∗
fq ,1 ← KeyGen∗

extFE,1(MSK∗
1, x

∗
1, (fq , [[yq]]2), [[

∑
i∈[η−1] fq(x∗

i)
�z∗i − ∑

i∈[2,N] y�
q wi]]2)

Next, B2 forwards (fq , yq) to C2 and gets a secret-key S̃K fq ,2. Finally, B2 returns SK fq =
(SK∗

fq ,1, S̃K fq ,2) to A.

Observe that, if C2 chooses the real algorithms of ΠextOne then

(MSK2,MPK2) ← SetupextFE(1
λ, 1n, 1n

′
, 1B)

S̃K fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2)) ∀q ∈ [Q]
C̃Tη ← EncextFE(MPK2, (x∗

η, z
∗
η||wη))

and hence B2 simulates H2,(η−1). If C2 chooses the the simulator of ΠextOne then

(MSK∗
2,MPK2) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B)

S̃K fq ,2 ← KeyGen∗
extFE,0(MSK∗

2, (fq , [[yq]]2)) ∀q ∈ [Qpre]
C̃Tη ← Enc∗

extFE(MPK2,MSK∗
2,V2)

S̃K fq ,2 ← KeyGen∗
extFE,1(MSK∗

2, x
∗
η, (fq , [[yq]]2), [[fq(x∗

η)
�z∗η + y�

q wη]]2)
∀q ∈ [Qpre + 1, Q]

where V2 = {((fq , [[yq]]1), [[fq(x∗
η)

�z∗η + y�
q wη]]1) : q ∈ [Qpre]} and hence B2 simulates

H2,η,1. ��
Lemma 9 The hybrids H2,η,1 and H2,η,2 are computationally indistinguishable by bilateral
MDDH1

k,Q assumption. More specifically, for any PPT adversaryA, there exists another PPT
adversary B3 such that

|AdvH2,η,1
A (λ) − Adv

H2,η,2
A (λ)| ≤ AdvB3

bMDDH1
k,Q

(λ)

Proof We prove the indistinguishability using Lemma 1 withw = wη andμq = fq(x∗
η)

�z∗η.
Let B3 be an adversary of Lemma 1, who gets a challenge instance

{[[ρq,1]]1, [[ρq,1]]2, [[ρq,2]]1, [[ρq,2]]2, [[yq]]1, [[yq]]2}q∈[Q]
from its challenger. Now, B3 simulates the game as follows:

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3003

– Setup: B3 generates the master keys as follows:

(MSK∗
1,MPK1) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B),

(MSK∗
2,MPK2) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B)

and sends MPK = (MPK1,MPK2) to A.
– Pre-challenge Key Queries: A asks for a secret-key corresponding to the function fq at

the q-th key query for q ∈ [Qpre]. First, B3 generate the keys

SK∗
fq ,1 ← KeyGen∗

extFE,0(MSK∗
1, (fq , [[yq]]2)),

SK∗
fq ,2 ← KeyGen∗

extFE,0(MSK∗
2, (fq , [[yq]]2))

Then it sends SK fq = (SK∗
fq ,1, SK

∗
fq ,2) to A.

– Ciphertext Query: A sends the challenge ciphertext (x∗
i , z

∗
i)i∈[N]. Now, B3 samples

wi ← Z
k
p for all i ∈ [2, N] \ {η} and defines the set

V1 = {((fq , [[yq]]1), [[
∑

i∈[η−1]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]\{η}
y�
q wi + ρq,1]]1) : q ∈ [Qpre]}

V2 = {((fq , [[yq]]1), [[ρq,2]]1) : q ∈ [Qpre]}
Next, it computes the ciphertexts

CT∗
1 ← Enc∗

extFE(MPK1,MSK∗
1,V1)

CTi ← EncextFE(MPK2, (x∗
i , 0||wi)) for i ∈ [2, η − 1],

CT∗
η ← Enc∗

extFE(MPK2,MSK∗
2,V2),

CTi ← EncextFE(MPK2, (x∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

and sends the challenge ciphertext asCT = (CT∗
1,CT2, . . . ,CTη−1,CT∗

η,CTη+1, . . . ,CTN).
– Post-challenge Key Queries:A asks for a secret-key corresponding to the function fq at

the q-th key query for q ∈ [Qpre + 1, Q]. First, B2 samples yq ← Z
k
p and computes

SK∗
fq ,1 ← KeyGen∗

extFE,1(MSK∗
1, x

∗
1, (fq , [[yq]]2),

[[
∑

i∈[η−1]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]\{η}
y�
q wi + ρq,1]]2),

SK∗
fq ,2 ← KeyGen∗

extFE,1(MSK∗
2, x

∗
η, (fq , [[yq]]2), [[ρq,2]]2)

and sends SK fq = (SK∗
fq ,1, SK

∗
fq ,2) to A.

Observe that, if B3 gets the challenge instance such that ρq,1 = y�
q wη and ρq,2 =

fq(x∗
η)

�z∗η + y�
q wη which corresponds to the first distribution in Lemma 1, then we have

∑

i∈[η−1]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]\{η}
y�
q wi + ρq,1 =

∑

i∈[η−1]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi

and henceB3 simulatesH2,η,1. IfB3 gets the challenge instance such thatρq,1 = fq(x∗
η)

�z∗η−
y�
q wη and ρq,2 = y�

q wη which corresponds to the second distribution in Lemma 1, then we
have

∑

i∈[η−1]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]\{η}
y�
q wi + ρq,1 =

∑

i∈[η]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi

123

3004 P. Datta, T. Pal

and hence B3 simulates H2,η,2. ��
Lemma 10 The hybrids H2,η,2 and H2,η,3 are computationally indistinguishable by adaptive
simulation-security of ΠextOne. More specifically, for any PPT adversary A, there exists
another PPT adversary B4 such that

|AdvH2,η,2
A (λ) − Adv

H2,η,3
A (λ)| ≤ AdvextFEB4

(λ)

Proof The proof is similar to the Lemma 8 with a few changes. We construct an adversary
B4 against the adaptive simulation-security of ΠextOne depending on the the adversary A.
Let C4 be the challenger of the security experiment of ΠextOne. The adversary B4 works as
follows:

– Setup: B4 gets MPK2 from C4 and computes

(MSK∗
1,MPK1) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B)

It returns MPK = (MPK1,MPK2) to A.
– Pre-challenge Key Queries: A asks for a secret-key corresponding to the function fq at

the q-th key query for q ∈ [Qpre]. First, B4 samples yq ← Z
k
p and computes

SK∗
fq ,1 ← KeyGen∗

extFE,0(MSK∗
1, (fq , [[yq]]2))

Next, B4 forwards (fq , yq) to C4 and gets a secret-key S̃K fq ,2. Finally, B4 returns SK fq =
(SK∗

fq ,1, S̃K fq ,2) to A.
– Ciphertext Query: A sends the challenge ciphertext (x∗

i , z
∗
i)i∈[N]. Now, B4 samples

w2, . . . ,wN ← Z
k
p and defines the set

V1 = {((fq , [[yq]]1), [[
∑

i∈[η]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]1) : q ∈ [Qpre]}

Now, B4 computes the ciphertexts

CT∗
1 ← Enc∗

extFE(MPK1,MSK∗
1,V1)

CTi ← EncextFE(MPK2, (x∗
i , 0||wi)) for i ∈ [2, η − 1],

CTi ← EncextFE(MPK2, (x∗
i , z

∗
i ||wi)) for i ∈ [η + 1, N]

Next,B4 sends (x∗
η, 0||wη) as its challenge ciphertext to C4 and receives a ciphertext C̃Tη.

Finally,B4 sends the challenge ciphertext CT = (CT∗
1,CT2, . . . ,CTη−1, C̃Tη,CTη+1, . . . ,

CTN) to A.
– Post-challenge Key Queries:A asks for a secret-key corresponding to the function fq at

the q-th key query for q ∈ [Qpre + 1, Q]. First, B4 samples yq ← Z
k
p and computes

SK∗
fq ,1 ← KeyGen∗

extFE,1(MSK∗
1, x

∗
1, (fq , [[yq]]2), [[

∑

i∈[η]
fq(x∗

i)
�z∗i −

∑

i∈[2,N]
y�
q wi]]2)

Next, B4 forwards (fq , yq) to C4 and gets a secret-key S̃K fq ,2. Finally, B4 returns SK fq =
(SK∗

fq ,1, S̃K fq ,2) to A.

Observe that, if C4 chooses the simulator of ΠextOne then

(MSK∗
2,MPK2) ← Setup∗

extFE(1
λ, 1n, 1n

′
, 1B)

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3005

S̃K fq ,2 ← KeyGen∗
extFE,0(MSK∗

2, (fq , [[yq]]2)) ∀q ∈ [Qpre]
C̃Tη ← Enc∗

extFE(MPK2,MSK∗
2,V2)

S̃K fq ,2 ← KeyGen∗
extFE,1(MSK∗

2, x
∗
η, (fq , [[yq]]2), [[y�

q wη]]2) ∀q ∈ [Qpre + 1, Q]
where V2 = {((fq , [[yq]]1), [[y�

q wη]]1) : q ∈ [Qpre]} and hence B4 simulates H2,η,2. If C4
chooses the real algorithms of ΠextOne then

(MSK2,MPK2) ← SetupextFE(1
λ, 1n, 1n

′
, 1B)

S̃K fq ,2 ← KeyGenextFE(MSK2, (fq , [[yq]]2)) ∀q ∈ [Q]
C̃Tη ← EncextFE(MPK2, (x∗

η, 0||wη))

and hence B4 simulates H2,η,3. ��

Declarations

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Conflict of interest The authors have no relevant financial or non-financial conflict of interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Instantiation of AKGS [41, 49]

We now discuss an instantiation of AKGS = (Garble, Eval) for the function class F = F (n,1)
ABP

following [41, 49].
Garble(z f (x) + β) It takes input an ABP f : Z

n
p → Zp ∈ F (n,1)

ABP of size (m + 1) and two
secrets z, β ∈ Zp . The algorithm works as follows:

1. Using Lemma 2, it computes a matrix M ∈ Z
m×m
p such that det(M) is the output of the

function f .
2. Next, it augmentsM into an (m + 1) × (m + 1) matrix M′:

M′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ · · · ∗ ∗ β

−1 ∗ · · · ∗ ∗ 0

−1 · · · ∗ ∗ 0
. . .

...
...

...

0 −1 ∗ 0

0 0 · · · 0 −1 z

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
⎛

⎝
M m1

m�
2 z

⎞

⎠

123

http://creativecommons.org/licenses/by/4.0/

3006 P. Datta, T. Pal

3. It samples its randomness r ← Z
m
p and sets N =

(
Im r
0 1

)

.

4. Finally, it defines the label functions by computing

M̂ = M′N =
⎛

⎝
M Mr + m1

m�
2 m�

2 r + z

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

L1(x)

L2(x)

M
...

Lm(x)

0 0 · · · 0 −1 Lm+1(z)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and outputs the coefficient vectors �1, . . . , �m+1 of L1, . . . , Lm+1.

Remark 4 We note down some structural properties of Garble as follows:

– The label function L j for every j ∈ [m] is an affine function of the input x and Lm+1

is an affine function of z. It follows from the fact that M′ is affine in x, z and N is
independent of x, z. Hence, the last column of the product M′N, which is the label
functions L1, . . . , Lm+1, are affine in x, z.

– The output size of Garble is determined solely by the size of f (as an ABP), hence Garble
has deterministic shape.

– Note that Garble is linear in (z, β, r), i.e., the coefficient vectors �1, . . . , �m+1 are linear
in (z, β, r). It follows from the fact thatM,m2 are independent of (z, β, r), and r,m1, z
are linear in (z, β, r). Hence, Mr + m1, which defines the label functions L1, . . . , Lm ,
and m�

2 r + z, which is the label function Lm+1, are linear in (z, β, r).
– The last label function Lm+1 is in a special form, meaning that it is independent of x, β

and r[j < m]. In particular, it takes the form Lm = m�
2 r + z = z − r[m]. Thus,

the elements of the coefficient vector �m+1 are all zero except the constant term, i.e.,
�m[const] = z − r[m] and �m[coefi] = 0 for all i ∈ [n].

Eval(f , x, �1, . . ., �m) It takes input an ABP f : Z
n
p → Zp ∈ F (n,1)

ABP of size (m + 1), an
input x ∈ Z

n
p and (m + 1) labels �1, . . . , �m+1. It proceeds as follows:

1. It computes the matrixM using Lemma 2 after substituting x.
2. Next, it augmentsM to get the matrix

M̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�1

�2

M
...

�m

0 0 · · · 0 −1 �m+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3. It returns det(M̂).

For correctness of the evaluation procedure, we see that when � j = L j (x) for all j ∈ [m]
and �m+1 = Lm+1(z), Eval computes

det(M̂) = det(M′N) = det(M′)det(N) = det(M′) = zdet(M) + β = z f (x) + β.

The determinant ofM′ is calculated via Laplace expansion in the last column.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3007

Remark 5 Here, we observe some structural properties of Eval which we require for our
application.

– If we consider the Laplace expansion of det(M̂) in the last column then Eval can be
written as

Eval(f , x, �1, . . . , �m+1) = A1�1 + A2�2 + · · · + Am+1�m+1 (9)

where A j is the (j, (m+1))-cofactor of M̂. This shows that Eval is linear in �1, . . . , �m+1.
Due to this linearity feature, Eval can be computed in the exponent of any bilinear group.
More precisely, suppose G = (G1, G2, GT , g1, g2, e) be a bilinear group then for any
i ∈ {1, 2, T }, we have Eval(f , x, [[�1]]i , . . . , [[�m+1]]i) = [[Eval(f , x, �1, . . . , �m+1)]]i .

– Now, in particular, the coefficient of �1 is A1 = (−1)2+m(−1)m = 1. Therefore, for any
non-zero δ ∈ Zp , we can write

δ + Eval(f , x, �1, . . . , �m+1) = Eval(f , x, δ, 0, . . . , 0) + Eval(f , x, �1, . . . , �m+1)

(10)

= Eval(f , x, �1 + δ, �2, . . . , �m+1) (11)

where Eq. (10) holds due to Eq. (9) and A1 = 1; and Eq. (11) holds by the linearity of
Eval. We will utilize Eq. (11) in our extended one slot FE construction.

Now, we describe the simulator of AKGS which simulates the values of label functions by
using f , x and z f (x) + β.
SimGarble(f , x, z f (x) + β) The simulator works as follows:

1. It defines a set H =
{(

Im r
0 1

) ∣
∣
∣
∣r ∈ Z

m
p

}

which forms a matrix subgroup.

2. Following Lemma 2, it computes the matrix M using f , x and sets the matrix

M′′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z f (x) + β

0

M
...

0

0 0 · · · 0 −1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

which defines a left cosetM′′H = {M′′N|N ∈ H}.
3. It uniformly samples a random matrix from the coset M′′H and returns the last column

of the matrix as simulated values of the label functions.

The simulation security follows from [41]. They observed that M′′ belongs to the coset
M′H and hence by the property of cosetsM′′H = M′H which proves the security. We omit
the details here and state the security of AKGS in the following lemma.

Lemma 11 ([49]) The above construction of AKGS = (Garble, Eval) is secure. Moreover, it
is special piecewise secure as per Definition 8.

123

3008 P. Datta, T. Pal

Appendix B: Secret key 1-key 1-ciphertext secure one-slot extended
FE designed for unbounded-key one-slot extended FE for attribute-
weighted sums

In this section,we present a private-key one-slot FE scheme for an extended attribute-weighted
sum functionality that is proven simulation secure against a single ciphertext query and a
single secret key query either before or after the ciphertext query. This scheme will be
embedded into the hidden subspaces of the public-key multi-key FE scheme for the same
functionality presented in the next section in its security proof. We describe the construction
for any fixed value of the security parameter λ and suppress the appearance of λ for sim-
plicity of notations. Let (Garble, Eval) be a special piecewise secure AKGS for a function

class F (n,n′)
ABP , G = (G1, G2, GT , g1, g2, e) a tuple of pairing groups of prime order p, and

(IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a secret-key function-hiding SK-IPFE based
on G.
Setup(1λ, 1n, 1n

′
) Define the following index sets as follows

S1-extFE = {
const, {coefi }i∈[n], {extndκ }κ∈[k], {simτ , sim∗

τ }τ∈[n′]
}
,

Ŝ1-extFE = {ĉonst, ĉoef, ŝim∗}
It generates two IPFE master secret-keys IPFE.MSK ← SK-IPFE.Setup(S1-extFE) and

̂IPFE.MSK ← SK-IPFE.Setup(Ŝ1-extFE). Finally, it returns MSK = (IPFE.MSK, ̂IPFE.MSK).

KeyGen(MSK, (f , y)) Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP and y ∈ Z

k
p . Samples integers

νt , βt ← Zp for t ∈ [n′] such that
∑

t∈[n′]
νt = 1 and

∑

t∈[n′]
βt = 0 modulo p.

Next, samples independent random vectors r t ← Z
m
p for garbling and computes the coeffi-

cient vectors

(�1,t , . . . , �m,t , �m+1,t) ← Garble(z[t] ft (x) + βt ; r t)
for each t ∈ [n′]. Here we make use of the instantiation of the AKGS described in Sect. 3.6.
From the description of that AKGS instantiation, we note that the (m + 1)-th label function
�m+1,t would be of the form �m+1,t = z[t]− r t [m]. Also all the label functions �1,t , . . . , �m,t

involve only the variables x and not the variable z[t]. Next, for all j ∈ [m] and t ∈ [n′], it
defines the vectors v j,t corresponding to the label functions � j,t obtained from the partial
garbling above and the vector y as

vector const coefi extndκ simτ sim∗
τ

v1,t �1,t [const] �1,t [coefi] y[κ]νt 0 0
v j,t � j,t [const] � j ,t [coefi] 0 0 0

It also sets the vectors vm+1,t for t ∈ [n′] corresponding to the (m + 1)-th label function
�m+1,t as

Now, it uses the key generation algorithm of IPFE to generate the secret-keys

IPFE.SK j,t ← SK-IPFE.KeyGen(IPFE.MSK, [[v j,t]]2) for j ∈ [m], t ∈ [n′]

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3009

vector ĉonst ĉoef ŝim∗

vm+1,t r t [m] 1 0

̂IPFE.SKm+1,t ← SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]
It returns the secret-key as SK f , y = ({IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]).
Enc(MSK, (x, z||w) ∈ Z

n
p × Z

n′+k
p) It sets the following vectors:

vector const coefi extndκ simτ sim∗
τ

u 1 x[i] w[κ] 0 0

vector ĉonst ĉoef ŝim∗

ht −1 z[t] 0

for all t ∈ [n′]. Then, it encrypts the vectors using IPFE and obtain the ciphertexts

IPFE.CT ← SK-IPFE.Enc(IPFE.MSK, [[u]]1)
̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

Finally, it returns the ciphertext as CTx,z||w = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]).
Dec((SK f , y, f), (CTx,z||w, x)) It parses the key SK f , y = ({IPFE.SK j,t } j∈[m],t∈[n′],
{ ̂IPFE.SKm+1,t }t∈[n′]) and CTx,z||w = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]). It uses the decryption algo-
rithm of SK-IPFE to compute

[[�1,t + ψt]]T ← SK-IPFE.Dec(IPFE.SK1,t , IPFE.CT) for t ∈ [n′]
[[� j,t]]T ← SK-IPFE.Dec(IPFE.SK j,t , IPFE.CT) for j ∈ [2,m], t ∈ [n′]

[[�m+1,t]]T ← SK-IPFE.Dec(̂IPFE.SKm+1,t , ̂IPFE.CTt) for t ∈ [n′]
where ψt = νt · y�w. Next, it utilizes the evaluation procedure of AKGS and returns the
combined value

[[ρ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T).

Correctness From the correctness of IPFE, we have SK-IPFE.Dec(IPFE.SK1,t , IPFE.CT) =
[[�1,t +ψt]]T whereψt = νt · y�w. Next, using the correctness of IPFE and AKGS evaluation,
we get

Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T)

= Eval(ft , x, [[�1,t]]T , . . . , [[�m+1,t]]T) + Eval(ft , x, [[ψt]]T , [[0]]T , . . . , [[0]]T)

123

3010 P. Datta, T. Pal

= [[z[t] ft (x) + βt + νt · y�w]]T
The first equality follows from the linearity of Eval function. Now, multiplying all the eval-
uated values we have

[[ρ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T)

= [[
n′
∑

t=1

(z[t] ft (x) + νt · y�w + βt)]]T

= [[f (x)�z + y�w]]T
The last equality is obtained from the fact that

∑
t∈[n′] νt = 1 and

∑
t∈[n′] βt = 0.

Appendix B.1: Security analysis

Theorem 7 The 1-extFE scheme for attribute-weighted sum is 1-key, 1-ciphertext simulation-
secure as per Definition 4 assuming the AKGS is piecewise secure as per Definition 7 and the
IPFE is function hiding as per Definition 5.

As in the case of our 1-key 1-ciphertext secure one-slot FE, here also we assume that the
adversary queries the single secret key before the challenge ciphertext is sent. This is because
we will use the security of the 1-key 1-ciphertext secure one-slot extFE in a particular hybrid
of the security reduction of our one-slot extFE scheme (presented in Sect. 1) where we deal
with a single pre-ciphertext secret key of the one-slot extFE. However, we emphasize that if
we consider the single secret key query after the challenge phase then the security can also
be proved using the security reduction of our one-slot extFE, given in Sect. 1.

The simulator

We describe the simulator for the 1-extFE scheme. Let us assume that (f , y) ∈ F (n,n′)
ABP × Z

k
p

is the only secret-key query made by the adversary before it sends challenge vectors
(x∗, z∗||w∗) ∈ Z

n
p × Z

n′+k
p . The algorithm Setup∗(1λ, 1n, 1n

′
) is exactly the same as

Setup(1λ, 1n, 1n
′
) which outputs a master secret-key MSK∗ = (IPFE.MSK, ̂IPFE.MSK). The

key generation procedure KeyGen∗
0(MSK∗, (f , y)) of the simulator is also similar to the orig-

inal algorithm KeyGen(MSK∗, (f , y)). We describe the encryption process of the simulator
which uses the information μ = f (x∗)�z∗ + y�w∗.
Enc∗(MSK∗, x∗, ((f , y),μ))On inputMSK∗, a vector x∗ ∈ Z

n
p , the tuple (f , y) ∈ F (n,n′)

ABP ×
Z
k
p and an integer μ ∈ Zp the simulator executes the following steps:

1. It finds a dummy vector (d1||d2) ∈ Z
n′+k
p by solving the linear equation f (x∗)�d1 +

y�d2 = μ. Note that by the restriction of the ideal game, there must exist some vector
(z∗,w∗) ∈ Z

n′
p × Z

k
p such that f (x∗)z∗ + y�w∗ = μ. Consequently the existence of

the vectors (d1, d2) ∈ Z
n′
p × Z

k
p is guaranteed.

2. Next, it sets the following vectors

and for all t ∈ [n′].
3. Finally, it encrypts the vectors as

IPFE.CT ← SK-IPFE.Enc(IPFE.MSK, [[u]]1)

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3011

vector const coefi extndκ simτ sim∗
τ

u 1 x∗[i] d2[κ] 0 0

vector ĉonst ĉoef ŝim∗

ht −1 d1[t] 0

̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]
4. It returns the simulated ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]).

Hybrids and reductions

Proof We employ a sequence of hybrid experiments to demonstrate the indistinguishability
between the real experiment ExptReal,1-extFEA (1λ) and the ideal experiment ExptIdeal,1-extFEA (1λ)

where A is any PPT adversary. We assume that in each experiment, A queries the single

secret-key query for a pair (f , y) ∈ F (n,n′)
ABP × Z

k
p before submitting the challenge message

(x∗, z∗||w∗) ∈ Z
n
p × Z

n′+k
p . We depict a pictorial representation of the hybrids in Fig. 5.

Hybrid H0 This is the real experiment ExptReal,1-extFEA (1λ) where the secret-key SK f , y =
({IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]) such that IPFE.SK j,t

← SK-IPFE.KeyGen(IPFE.MSK, [[v j,t]]2) for j ∈ [m], t ∈ [n′] and ̂IPFE.SKm+1,t ←
SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′] where the vectors v j,t , vm+1,t are given
as follows:

v1,t = (�1,t [const], �1,t [coefi], y[κ]νt , 0, 0)

v j,t = (� j,t [const], � j,t [coefi], 0, 0, 0) for 1 < j ≤ m,

vm+1,t = (r t [m], 1, 0)

for j ∈ [m], t ∈ [n′] and r t ← Z
m
p . Note that {νt }t∈[n′] ← Zp is such that

∑
t∈[n′] νt = 1

modulo p. Then, the garblings are computed as

(�1,t , . . . , �m,t , �m+1,t) ← Garble(z∗[t] ft (x∗) + βt ; r t)
where βt ← Zp for all t ∈ [n′] with

∑
t∈[n′] βt = 0 modulo p. The challenge

ciphertext CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]) corresponding to the challenge message
(x∗, z∗||w∗) ∈ Z

n
p × Z

n′+k
p is given by IPFE.CT ← SK-IPFE.Enc(IPFE.MSK, [[u]]1) and

̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′] where
u = (1, x∗[i], w[κ], 0, 0), ht = (−1, z∗[t], 0)

for t ∈ [n′]. Note that the components of the vectors u and v j,t are associated with the indices
in S1-extFE, and the components of the vectors ht and vm+1,t are associated with the indices
in Ŝ1-extFE.
Hybrid H1 This hybrid is exactly the same as H0 except that we directly hardwire the value
�1,τ + ψτ = �1,τ (x∗) + ντ · y�w into u[simτ] for all τ ∈ [n′] and remove the coefficient

123

3012 P. Datta, T. Pal

Fig. 5 Structure of the hybrid reduction proving Theorem 7

vector �1,t from v1,t for all t ∈ [n′]. We change the vectors v1,t in the secret-key and u in
the challenge ciphertext as follows:

v1,t = (0 , 0 , 0 , δtτ , 0)

v j,t = (� j,t [const], � j,t [coefi], 0, 0, 0) for 1 < j < m,

u = (1, x∗[i], 0 , �1,τ + ψτ , 0)

vm+1,t = (r t [m], 1, 0)

ht = (−1, z∗[t], 0)

We denote by δtτ the usual Kronecker delta function such that δtτ = 1 if t = τ , 0 otherwise.
Note that the inner product v1,t · u = �1,t + ψt , for all t ∈ [n′], remain the same as in H0.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3013

Therefore, the function hiding security of IPFE ensures the indistinguishability between the
hybrids H0 and H1.
Hybrid H2 This is analogous to H1 except that instead of using the actual garbling value �1,τ
at u[simτ], we now use �̃1,τ which is computed via reverse sampling algorithm of AKGS:

�̃1,τ ← RevSamp(fτ , x∗, fτ (x∗)z∗[τ] + ντ · y�w + βτ , �2,τ , . . . , �m+1,τ)

where � j,τ = � j,τ (x∗) for all j ∈ [2,m] and �m+1,τ = −rτ [m] + z∗[τ] for all τ ∈ [n′].
Therefore, the vectors in the challenge ciphertext becomes

u = (1, x∗[i], 0, �̃1,τ , 0), ht = (−1, z∗[t], 0).

For each τ ∈ [n′], the piecewise security of AKGS guarantees that given the label functions
(�2,τ , . . . , �m,τ , �m+1,τ), the actual garbled label �1,τ and the reversely sampled value �̃1,τ
are identically distributed. Hence, the hybrids H1 and H2 are indistinguishable by the reverse
sampleability of AKGS.
Hybrid H3, j (j ∈ [2,m]) The hybrid proceeds similar to H2 except that we change the
secret-key as follows. For all j ′ such that 1 < j ′ < j , the coefficient vector � j,t is taken
away from v j ′,t and a random value �′

j ′,t ← Zp is put into v j ′,t [const]. We describe the
vectors associated with the secret-key and the ciphertext below.

v1,t = (0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0 , 0, 0, 0) for 1 < j ′ ≤ j,

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0, 0) for j < j ′ ≤ m,

u = (1, x∗[i], 0, �̃1,τ , 0)

vm+1,t = (r t [m], 1, 0)

ht = (−1, z∗[t], 0)

Note that, in this hybrid �̃1,τ is reversely sampled using the random values �2,τ , . . . , � j−1,τ

(which are randomly chosen from Zp) and the actual values � j,τ , . . . , �m+1,τ for each τ ∈
[n′]. Observe that H3,1 coincides with H2. We will show that for all j ∈ [2,m], the hybrids
H3,(j−1) and H3, j are indistinguishable via the following sequence of sub-hybrids, namely,
{H3, j,1,H3, j,2,H3, j,3} j∈[2,m].
Hybrid H3, j,1 (j ∈ [2,m]) This is exactly the same as H3,(j−1) except that the coefficient
vector � j,t is removed from v j,t and v j,t [sim∗

τ] is set to δtτ . The actual garbling value
� j,τ = � j,τ (x∗) is hardwired into u[sim∗

τ] to ensure the inner product v j,τ · u remains the
same as in H3,(j−1). The changes in the vectors involved while computing secret-key and the
challenge ciphertext as given below.

v1,t = (0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0, 0, 0, 0) for 1 < j ′ < j,

v j,t = (0 , 0 , 0, 0, δtτ)

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0, 0) for j < j ′ ≤ m,

u = (1, x∗[i], 0, �̃1,τ , � j,τ)

vm+1,t = (r t [m], 1, 0)

ht = (−1, z∗[t], 0)

The hybrids H3,(j−1) and H3, j,1 are indistinguishable by the function hiding security of IPFE
since the inner product v j,τ · u for all τ ∈ [n′] remains the same as in H3,(j−1).

123

3014 P. Datta, T. Pal

HybridH3, j,2 (j ∈ [2,m]) It proceeds exactly the same asH3, j,1 except that the actual label
� j,τ (sitting at u[sim∗

τ]) is replaced with a random value �′
j,τ ← Zp . The vectors associated

to the challenge ciphertext are given by

u = (1, x∗[i], 0, �̃1,τ , �′
j,τ), ht = (−1, z∗[t], 0)

where �′
j,τ is randomly sampled from Zp . Now, the first label �̃1,τ is reversely sampled using

the random values �′
2,τ , . . . , �

′
j,τ and the actual labels � j+1,τ = � j+1,τ (x∗), . . . , �m,τ =

�m,τ (x∗), �m+1,τ = −rτ [m] + z∗[τ]. The marginal randomness property of AKGS implies
that the hybrids H3, j,1 and H3, j,2 are identically distributed.
Hybrid H3, j,3 (j ∈ [2,m]) The hybrid is analogous to H3, j,2 except that the random value
�′
j,τ is sifted from the ciphertext component u[sim∗

τ] to the secret-key component v j,t [const].
Also, the positions u[sim∗

τ] and v j,t [sim∗
τ] are set to zero. Thus, the vectors in the secret-key

and the challenge ciphertext become

v1,t = (0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0, 0, 0, 0) for 1 < j ′ < j,

v j,t = (�′
j,t , 0, 0, 0, 0)

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0, 0) for j < j ′ ≤ m,

u = (1, x∗[i], 0, �̃1,τ , 0)

vm+1,t = (r t [m], 1, 0)

ht = (−1, z∗[t], 0)

Since the inner products v j,t ·u for all j, t remain the same as inH3, j,2, the indistinguishability
between the hybrids H3, j,2 and H3, j,3 follows from the function hiding security of IPFE. We
observe that the hybrids H3, j,3 is identical to H3, j for all j ∈ [2,m].
Hybrid H4 It proceeds exactly the same as hybrid H3,m except that the actual garbling value

�m+1,t = −r t [m] + z∗[t] is used in ht [ŝim∗]. Also, ht [ĉoef], vm+1,t [ĉonst], vm+1,t [ĉoef]
are set to zero. The changes are indicated below.

v1,t = (0, 0, 0, δtτ , 0)

v j,t = (�′
j,t , 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, �̃1,τ , 0)

vm+1,t = (0 , 0 , 1)

ht = (1 , 0 , �m+1,t)

Since the inner products vm+1,t · ht for all t ∈ [n′] are unaltered as in H4, the indistin-
guishability between the hybrids H3 and H4 follows from the function hiding security of
IPFE.
Hybrid H5 It is analogous to H4 except that the actual label �m+1,t is now replaced with
a random value �′

m+1,t ← Zp . The vectors associated with the challenge ciphertext are
modified as follows.

u = (1, x∗[i], 0, �̃1,τ , 0), ht = (1, 0, �′
m+1,t)

Note that, in this hybrid the labels �̃1,t for t ∈ [n′] are now reversely sampled using all random
values �′

2,t , . . . , �
′
m+1,t which are randomly picked from Zp . By the marginal randomness

property of AKGS, the hybrids H4 and H5 are identically distributed.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3015

Hybrid H6 This hybrid proceeds exactly the same as H5 except that the simulated labels

�′
m+1,t are shifted from ht [ŝim∗] to vm+1,t [r̂and]. The positions vm+1,t [ŝim∗] and ht [ŝim∗]
are set to zero. The changes are indicated as follows.

v1,t = (0, 0, 0, δtτ , 0)

v j,t = (�′
j,t , 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, �̃1,τ , 0)

vm+1,t = (�′
m+1,t , 0, 0)

ht = (1, 0, 0)

Observe that the inner products vm+1,t · ht for all t ∈ [n′] are unchanged as in H5. Hence,
the function-hiding security of IPFE ensures the indistinguishability between the hybrids H5
and H6.
Hybrid H7 It is analogous to H6 except that the value fτ (x∗)z∗[τ] is removed from �̃1,τ for
all 1 < τ ≤ n′ and the value f (x∗)�z∗ + y�w∗ is directly encoded into the label �̃1,1. To
make this change, we replace the random elements βτ by β ′

τ = βτ − fτ (x∗)z∗[τ]−ντ · y�w∗
for all 1 < τ ≤ n′ and change the element β1 with β ′

1 = β1 − (f1(x∗)z∗[1] + ν1 · y�w∗) +
f (x∗)�z∗ + y�w∗. Note that, the distributions

{βτ ← Zp :
∑

τ∈[n′]
βτ = 0 mod p} and {β ′

τ :
∑

τ∈[n′]
βτ = 0 mod p}

are statistically close since β ′
τ is also uniform over Zp and

∑
τ∈[n′] β ′

τ = 0 mod p. Thus
the vectors associated to the challenge ciphertext become

u = (1, x∗[i], 0, �̃1,τ , 0), ht = (1, 0, 0)

where the labels �̃1,τ are given by

�̃1,1 ← RevSamp(f1, x∗, f1(x∗)z∗[1] + ν1 · y�w∗ + β ′
1, �

′
2,1, . . . , �

′
m+1,1)

= RevSamp(f1, x∗, f (x∗)�z∗ + y�w∗ + β1, �
′
2,1, . . . , �

′
m+1,1)

�̃1,τ ← RevSamp(fτ , x∗, fτ (x∗)z∗[τ] + ντ · y�w∗ + β ′
τ , �

′
2,τ , . . . , �

′
m+1,τ)

= RevSamp(fτ , x∗, βτ , �
′
2,τ , . . . , �

′
m+1,τ) for 1 < τ ≤ n′

Thus, H6 and H7 are indistinguishable from the adversary’s view as they are statistically
close. As discussed in the remark of H2, the challenger can also simulate this hybrid when
[[y]]1 is known instead of y.
Hybrid H8 This hybrid is exactly the same as H7 except that we use a dummy vec-
tor (d1 ‖ d2) ∈ Z

n′+k
p in place of (z∗ ‖ w∗) while computing �̃1,1 where it holds that

μ = f (x∗)�z∗ + y�w∗ = f (x∗)�d1 + y�d2. The vector u is now defined as

u = (1,

coefi
︷ ︸︸ ︷
x∗[1], . . . , x∗[n],

extndκ
︷ ︸︸ ︷
0, . . . , 0,

simτ
︷ ︸︸ ︷

�̃1,1 , �̃1,2 . . . , �̃1,n′ ,

sim∗
τ

︷ ︸︸ ︷
0, . . . , 0)

where the labels are computed as

�̃1,1 ← RevSamp(f1, x∗, f (x∗)�d1 + y�d2 + β1, �
′
2,1, . . . , �

′
m+1,1)

�̃1,τ ← RevSamp(fτ , x∗, βτ , �
′
2,τ , . . . , �

′
m+1,τ) for 1 < τ ≤ n′

123

3016 P. Datta, T. Pal

Above, we write the full expression of the vector u as opposed to its compressed expression
used so far in order to highlight the change. Since the inner product v j,t · u for each j ∈
[m], t ∈ [n′] are unaltered between the two hybrids, the function-hiding security of IPFE
preserved the indistinguishability of the hybrids H7 and H8.
HybridH9 The following sequence of hybrids is basically the reverse of the previous hybrids
with (z∗ ‖ w∗) replacedwith (d1 ‖ d2). In this hybrid, we change the distribution ofβτ similar
to what we did in H7. In particular, βτ is replaced with β ′

τ = βτ + fτ (x∗)d1[τ] + ντ · y�d2
and β1 is replaced with β ′

1 = β1 + f1(x∗)d1[1] + ν1 · y�d2 − (f (x∗)�d1 + y�d2). So, the
vectors associated with challenge ciphertext are distributed as

u = (1, x∗[i], 0, �̃1,τ , 0), ht = (1, 0, 0)

where �̃1,τ ← RevSamp(fτ , x∗, fτ (x∗)d1[τ] + ντ · y�d2 + βτ , �
′
2,τ , . . . , �

′
m+1,τ) Note

that, H8 and H9 are statistically close as {βτ : τ ∈ [n′]} and {β ′
τ : τ ∈ [n′]} are both

uniform over Zp with
∑

τ∈[n′] βτ = ∑
τ∈[n′] β ′

τ = 0 mod p. Hence, hybrids H8 and H9 are
indistinguishable.
Hybrid H10 In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, 0, δtτ , 0)

v j,t = (�′
j,t , 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, �̃1,τ , 0)

vm+1,t = (0 , 0, 1)

ht = (1, 0, �′
m+1,t)

where �′
m+1,t ← Zp . The indistinguishability between the hybrids H9 and H10 follows from

the function-hiding security of IPFE.
Hybrid H11 It is exactly the same as H10 except that the random values �′

m+1,t ← Zp are
changed to the actual label �m+1,t = d1[t] − r t [m]. Then the vectors associated with the
challenge ciphertext become

u = (1, x∗[i], 0, �̃1,τ , 0), ht = (1, 0, �m+1,t)

The hybrids H11 and H12 are identical due to the marginal randomness property of AKGS.
Hybrid H12 In this hybrid we change the vectors vm+1,t and ht as follows

v1,t = (0, 0, 0, δtτ , 0)

v j,t = (�′
j,t , 0, 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], 0, �̃1,τ , 0)

vm+1,t = (r t [m] , 1 , 0)

ht = (−1 , d1[t] , 0)

The indistinguishability between the hybrids H11 and H12 follows from the function-hiding
security of IPFE.
Hybrid H13,m+1− j (j ∈ [m − 1]) It is analogous to H12 except the secret-key is modified
as follows. For all j ′ such that m + 1 − j ≤ j ′ < m + 1, the random value �′

j ′,t ← Zp is
discarded from v j ′,t [const] and the coefficient vector � j ′,t is used in v j ′,t .

v1,t = (0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0, 0, 0, 0) for 1 < j ′ < m + 1 − j,

v j ′,t = (� j ′,t [const] , � j ′,t [coefi] , 0, 0, 0) for m + 1 − j ≤ j ′ < m + 1,

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3017

vm+1,t = (r t [m], 1, 0)

In this hybrid, the label �̃1,t is reversely sampled using the random values �′
2,t , . . . , �

′
m+1− j,t

and the actual values �m− j+2,t , . . . , �m+1,t for each t ∈ [n′]. The hybrids H13,m+1−(j−1) and
H13,m+1− j can be shown to be indistinguishable via the following sequence of sub-hybrids,
namely, {H13,m+1− j,1,H13,m+1− j,2,H13,m+1− j,3} j∈[m−1].
Hybrid H13,m+1− j,1 (j ∈ [m − 1]) It proceeds exactly the same as H13,m+1−(j−1) except
that the random labels �′

m+1− j,t are sifted from vm+1− j,t [const] to u[sim∗
τ]. We modify the

vectors associated with the secret-key and the challenge ciphertext as follows
v1,t = (0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0, 0, 0, 0) for 1 < j ′ < m + 1 − j,

vm+1− j,t = (0 , 0, 0, 0, δtτ)

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0, 0) for m + 1 − j < j ′ < m + 1,

u = (1, x∗[i], 0, �̃1,τ , �′
m+1− j,τ)

vm+1,t = (r t [m], 1, 0)

ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1−(j−1) and H13,m+1− j,1 follows from
the function-hiding security of IPFE.
HybridH13,m+1− j,2 (j ∈ [m − 1]) It is exactly same asH13,m+1− j,1 except that the random
label �′

m+1− j,τ ← Zp at u[sim∗
τ] are now replaced with the actual labels �m+1− j,τ =

�m+1− j,τ (x∗). The change in the vector u associated to the challenge ciphertext is indicated
below.

u = (1, x∗[i], 0, �̃1,τ , �m+1− j,τ), ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1− j,1 and H13,m+1− j,2 follows from the
marginal randomness property of AKGS.
Hybrid H13,m+1− j,3 (j ∈ [m − 1]) It proceeds analogous to H13,m+1− j,2 except that the
actual label �m+1− j,τ = �m+1− j,τ (x∗) is removed from u[sim∗

τ] and the coefficient vector
�m+1− j,t is used to set vm+1− j,t . The inner product vm+1− j,t ·u is unaltered as inH13,m+1− j,2.
The changes in the vectors associated to the secret-key and the challenge ciphertext are shown
below.

v1,t = (0, 0, 0, δtτ , 0)

v j ′,t = (�′
j ′,t , 0, 0, 0, 0) for 1 < j ′ < m + 1 − j,

vm+1− j,t = (�m+1− j,t [const] , �m+1− j,t [coefi] , 0, 0, 0)

v j ′,t = (� j ′,t [const], � j ′,t [coefi], 0, 0, 0) for m + 1 − j < j ′ < m + 1,
u = (1, x∗[i], 0, �̃1,τ , 0)

vm+1,t = (r t [m], 1, 0)

ht = (−1, d1[t], 0)

The indistinguishability between the hybrids H13,m+1− j,2 and H13,m+1− j,3 follows from
the function-hiding security of IPFE. We observe that H13,m+1− j,3 is identical to H13,m+1− j

for all j ∈ [m − 1].
Hybrid H14 It proceeds exactly the same as H13,2 except that the reversely sampled labels
�̃1,τ are replaced with the actual labels �1,τ + ψτ = �1,τ (x∗) + ντ · y�d2 when setting
u[simτ]. The vectors associated with the challenge ciphertext are now written as

u = (1, x∗[i], 0, �1,τ + ψτ , 0), ht = (−1, d1[t], 0)

123

3018 P. Datta, T. Pal

The indistinguishability between the hybrids H13,m and H14 follows from the piecewise
security of AKGS.
Hybrid H15 It is analogous to H14 except that the actual label �1,τ = �1,τ (x∗)+ ντ · y�d2 is
removed from u[simτ] and the coefficient vectors �1,t are utilized while setting the vectors
v1,t for all t ∈ [n′]. Also, the positions v1,t [extndκ] and u[extndκ] are set as y[κ]νt and
d2[κ] respectively. The vectors associated with the secret-key and the challenge ciphertext
are shown below.

v1,t = (�1,t [const] , �1,t [coefi] , y[κ]νt , 0, 0)

v j,t = (� j,t [const], � j,t [coefi], 0, 0, 0) for 1 < j ≤ m,

u = (1, x∗[i], d2[κ] , 0 , 0)

vm+1,t = (r t [m], 1, 0)

ht = (−1, d1[t], 0)

Since the inner products v1,t · u = �1,t + ψt , for all t ∈ [n′], remain the same as in H14, the
function-hiding security of IPFE ensures the indistinguishability between the hybridsH14 and
H15. This completes the security analysis as H15 is the ideal experiment ExptIdeal,1−extFE

A (1λ).
��

Appendix C: Unbounded-key one-slot extended FE for attribute-
weighted sums

In this section, we present a public-key one-slot FE scheme Πubd
extOne for an extended

attribute-weighted sum functionality. This scheme is proven adaptively simulation secure
against one ciphertext query and an arbitrary polynomial number of secret key queries
both before and after the ciphertext query. We describe the construction for any fixed
value of the security parameter λ and suppress the appearance of λ for simplicity of
notations. Let (Garble, Eval) be a special piecewise secure AKGS for a function class

F (n,n′)
ABP , G = (G1, G2, GT , g1, g2, e) a tuple of pairing groups of prime order p such

that MDDHk holds in G2, and (IPFE.Setup.IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a slotted IPFE
based on G. We construct an FE scheme for attribute-weighted sums with the message space
M = Z

n
p × Z

n′+k
p .

Setup(1λ, 1n, 1n
′
) Defines the following index sets as follows

Spub =
{
{const(ι)}ι∈[k], {coef(ι)i }ι∈[k],i∈[n], {extnd(ι)

κ }ι,κ∈[k]
}

,

Ŝpub = {ĉonst(ι), ĉoef(ι)}ι∈[k]
Spriv = {

const, {coefi }i∈[n], {extndκ,1, extndκ,2, extndκ }κ∈[k], {simτ , sim∗
τ }τ∈[n′]

}
,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim∗}

It generates two pair of IPFE keys (IPFE.MSK, IPFE.MPK) ← IPFE.Setup(Spub, Spriv) and

(̂IPFE.MSK, ̂IPFE.MPK) ← IPFE.Setup(Ŝpub, Ŝpriv). Finally, it returns the master secret-key

as MSK = (IPFE.MSK, ̂IPFE.MSK) and master public-key as MPK = (IPFE.MPK, ̂IPFE.MPK).

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3019

KeyGen(MSK, (f , y)) Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP and y ∈ Z

k
p . It samples integers

νt ← Zp and vectors α,β t ← Z
k
p for t ∈ [n′] such that

∑

t∈[n′]
νt = 1 and

∑

t∈[n′]
β t [ι] = 0 mod p for all ι ∈ [k]

Next, sample independent random vectors r(ι)
t ← Z

m
p and computes

(�
(ι)
1,t , . . . , �

(ι)
m,t , �

(ι)
m+1,t) ← Garble(α[ι]z[t] ft (x) + β t [ι]; r(ι)

t)

for all ι ∈ [k], t ∈ [n′]. Here, we make use of the instantiation of the AKGS described in
Sect. 3.6. From the description of that AKGS instantiation, we note that the (m + 1)-th label
function �

(ι)
m+1,t would be of the form �

(ι)
m+1,t = α[ι]z[t] − r(ι)

t [m] where α[ι] is a constant.
Also all the label functions �

(ι)
1,t , . . . , �

(ι)
m,t involve only the variables x and not the variable

z[t]. Next, for all j ∈ [2,m] and t ∈ [n′], it defines the vectors v j,t corresponding to the
label functions � j,t obtained from the partial garbling above and the vector y as

vector const(ι) coef(ι)i extnd(ι)
κ Spriv

v α[ι] 0 0 0

v1,t �
(ι)
j,t [const] �

(ι)
j ,t [coefi] α[ι] y[κ]νt 0

v j,t �
(ι)
j,t [const] �

(ι)
j ,t [coefi] 0 0

vector ĉonst
(ι)

ĉoef
(ι)

Ŝpriv

vm+1,t r(ι)t [m] α[ι] 0

It generates the secret-keys as

IPFE.SK ← IPFE.KeyGen(IPFE.MSK, [[v]]2)
IPFE.SK j,t ← IPFE.KeyGen(IPFE.MSK, [[v j,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]
Finally, it returns SK f , y = (IPFE.SK, {IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]) and
(f , y).
Enc(MPK, (x, z||w) ∈ Z

n
p×Z

n′+k
p) It samples a random vector s ← Z

k
p and sets the vectors

vector const(ι) coef(ι)i extnd(ι)
κ

u s[ι] s[ι]x[i] s[ι]w[κ]

123

3020 P. Datta, T. Pal

vector ĉonst
(ι)

ĉoef
(ι)

ht −s[ι] s[ι]z[t]

for all t ∈ [n′]. It encrypts the vectors as
IPFE.CT ← IPFE.SlotEnc(IPFE.MPK, [[u]]1)
̂IPFE.CTt ← IPFE.SlotEnc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]) and x.

Dec((SK f , y, f), (CT, x)) It parses the ciphertext as CTx,z = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]) and
the secret-key as SK f = (IPFE.SK, {IPFE.SK j,t } j∈[m],t∈[n′], { ̂IPFE.SKm+1,t }t∈[n′]). It uses the
decryption algorithm of IPFE to compute

[[ρ]]T ← IPFE.Dec(IPFE.SK, IPFE.CT)

[[�1,t + ψt]]T ← IPFE.Dec(IPFE.SK1,t , IPFE.CT)

[[� j,t]]T ← IPFE.Dec(IPFE.SK j,t , IPFE.CT) for j ∈ [2,m], t ∈ [n′]
[[�m+1,t]]T ← IPFE.Dec(̂IPFE.SKm+1,t , ̂IPFE.CTt) for t ∈ [n′]

where ψt = ∑k
ι=1 α[ι]s[ι] · νt · y�w = α · s · νt · y�w. Next, it utilizes the evaluation

procedure of AKGS and obtain a combined value

[[ζ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T).

Finally, it returns a value [[μ]]T = [[ζ]]T · [[ρ]]−1
T ∈ GT .

Correctness First, the IPFE correctness implies IPFE.Dec(IPFE.SK1,t , IPFE.CT) = [[�1,t +ψt]]
where ψt = ∑k

ι=1 α[ι]s[ι] · νt · y�w = α · s · νt · y�w. Next, by the correctness of IPFE,
AKGS we have

Eval(ft , x, �1,t + ψt , . . . , �m+1,t)

= Eval(ft , x, �1,t , . . . , �m+1,t) + Eval(ft , x, ψt , 0, . . . , 0)

= Eval(ft , x, �1,t , . . . , �m+1,t) + ψt

=
k∑

ι=1

(α[ι]s[ι] · z[t] ft (x) + β t [ι]s[ι]) + α · s · νt · y�w

= α · s · (z[t] ft (x) + νt · y�w) + β t · s
The first equality follows from the linearity of Eval algorithm. Therefore, multiplying all the
evaluated values we have

[[ζ]]T =
∏

t∈[n′]
Eval(ft , x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T)

= [[
n′
∑

t=1

α · s · (z[t] ft (x) + νt · y�w) + β t · s]]T

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3021

= [[α · s · (f (x)�z + y�w)]]T
where the last equality follows from the fact that

∑
t∈n′ νt = 1 and

∑
t∈[n′] β t [ι] = 0 for

all ι ∈ [k]. Also, by the correctness of IPFE we see that [[ρ]]T = [[α · s]]T and hence
[[μ]]T = [[f (x)�z + y�w]]T .

Appendix C.1: Security analysis

Theorem 8 The extended one slot FE schemeΠubd
extOne for attribute-weighted sum is adaptively

simulation-secure assuming the AKGS is piecewise-secure as per Definition 7, the MDDHk

assumption holds in group G2, and the slotted IPFE is function hiding as per Definition 5.

The simulator

We describe the simulator for the extended one slot FE scheme Πubd
extOne. The simu-

lated setup algorithm is the same setup of the original scheme. Let (MSK,MPK) ←
Setup∗(1λ, 1n, 1n

′
) = Setup(1λ, 1n, 1n

′
) where MSK = (IPFE.MSK, ̂IPFE.MSK) and MPK =

(IPFE.MPK, ̂IPFE.MPK).
KeyGen∗

0(MSK, (f q , yq)) On input MSK, a function fq = (fq,1, . . . fq,n′) ∈ F (n,n′)
ABP and a

vector yq ∈ Z
k
p the simulator proceeds as follows:

Setting Public Positions: The public positions are set as in the original scheme.

1. It first samples βq,t = (βq,t [1], . . . ,βq,t [k]) ← Z
k
p, νq,t ← Zp for t ∈ [n′], and

r(ι)
q,t = (r(ι)

q,t [1], . . . , r(ι)
q,t [mq]) ← Z

mq
p where it holds that

∑

t∈[n′]
βq,t [ι] = 0 for all ι ∈ [k] and

∑

t∈[n′]
νq,t = 1.

2. Next, it computes the coefficient vectors for the label functions as

(�
(ι)
q,1,t , . . . , �

(ι)
q,mq ,t , �

(ι)
q,mq+1,t) ← Garble(αq [ι]z∗[t] fq,t (x∗) + βq,t [ι]; r(ι)

q,t)

for all ι ∈ [k], t ∈ [n′]. From the description of AKGS, we note that the (mq + 1)-th label

function �
(ι)
q,mq+1,t would be of the form �

(ι)
q,mq+1,t = αq [ι]z∗[t] − r(ι)

q,t [mq].
3. It picks αq ← Z

k
p and sets the public positions at the indexes in Spub, Ŝpub of following

vectors

vector const(ι) coef(ι)i extnd(ι)
κ

vq αq [ι] 0 0

vq,1,t �
(ι)
q,1,t [const] �

(ι)
q,1,t [coefi] αq [ι] yq [κ]νq,t

vq, j,t �
(ι)
q, j ,t [const] �

(ι)
q, j ,t [coefi] 0

for all j ∈ [2,mq] and t ∈ [n′]. It also sets the following vectors for all t ∈ [n′].
Setting Private Positions: It now fills the private indices as follows.

4. It samples α̃q , β̃q,t ← Zp for t ∈ [n′] satisfying∑t∈[n′] β̃q,t = 0.

123

3022 P. Datta, T. Pal

vector ĉonst
(ι)

ĉoef
(ι)

vq,mq+1,t r(ι)q,t [mq] αq [ι]

5. Next, it picks r̃q,t ← Z
mq
p and computes the coefficient vectors for the label functions

as

(̃�q,1,t , . . . , �̃q,mq ,t , �̃q,mq+1,t) ← Garble(̃αq z∗[t] fq,t (x∗) + β̃q,t ; r̃q,t).

for all t ∈ [n′]. From the description of AKGS, we note that the (mq +1)-th label function
�̃q,mq+1,t would be of the form �̃q,mq+1,t = α̃q z∗[t] − r̃q,t [mq].

6. Now, it fills the private positions at the indexes in Spriv, Ŝpriv as follows

vector const coefi extndκ,1 extndκ,2 extndκ simτ sim∗
τ

vq α̃q 0 0 0 0 0 0
vq,1,t �̃q,1,t [const] �̃q,1,t [coefi] 0 α̃q yq [κ]νq,t 0 0 0
vq, j,t �̃q, j,t [const] �̃q, j ,t [coefi] 0 0 0 0 0

for all j ∈ [2,mq] and t ∈ [n′]; and for all t ∈ [n′]

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim∗

vq,mq+1,t 0 0 r̃q,t [mq] α̃q 0 0 0

7. It generates the IPFE secret-keys

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)
IPFE.SKq, j,t ← IPFE.KeyGen(IPFE.MSK, [[vq, j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.SKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]
8. Finally, it returns SK fq = (IPFE.SKq , {IPFE.SKq, j,t } j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t }t∈[n′]).
Let Qpre be the total number of secret-key queries made before the challenge query.
Enc∗(MPK,MSK, x∗,V) On input MPK,MSK, a vector x∗ ∈ Z

n
p and a set V =

{(fq , fq(x∗)�z∗ + y�
q w∗) : q ∈ [Qpre]} the simulator executes the following steps:

1. It samples a dummy vector (d1||d2) ∈ Z
n′+k
p from the set

D = {(d1||d2) ∈ Z
n′+k
p : fq(x∗)�d1 + y�

q d2 = μq for all q ∈ [Qpre]}
where μq = fq(x∗)�z∗ + y�

q w∗. Since the inner product functionality is pre-image
sampleable, there exists an efficient algorithm (proposed by O’Neill [59]) which on
input (fq,1(x∗), . . . , fq,n′(x∗), yq , μq) samples a vector (d1||d2) ∈ Z

n′+k
p such that

(fq,1(x∗), . . . , fq,n′(x∗)) · d1 + yq · d2 = fq(x∗)�d1 + y�
q d2 = μq for all q ∈ [Qpre].

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3023

vector const(ι) coef(ι)i extnd(ι)
κ const coefi

u 0 0 0 1 x∗[i]
extndκ,1 extndκ,2 extndκ simτ sim∗

τ

0 d2[κ] 0 0 0

2. Next, it sets the following vectors:

and for all t ∈ [n′]

vector ĉonst
(ι)

ĉoef
(ι)

ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim∗

ht 0 0 1 0 −1 d1[t] 0 0 0

3. It encrypts the vectors as

IPFE.CT ← IPFE.Enc(IPFE.MPK, [[u]]1)
̂IPFE.CTt ← IPFE.Enc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

4. It returns the ciphertext as CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]).
KeyGen∗

1(MSK∗, x∗, (f q , yq), f q(x
∗)�z∗ + y�

q w∗) On input MSK∗, x∗ ∈ Z
n
p , a function

fq = (fq,1, . . . , fq,n′) ∈ F (n,n′)
ABP , a vector yq ∈ Z

k
p for q ∈ [Qpre +1, Q] and (fq(x∗)�z∗ +

y�
q w∗) ∈ Zp the simulator proceeds as follows:

Setting Public Positions:

1. The simulator sets the public positions at the indexes in Spub, Ŝpub of the vectors vq and
vq, j,t analogous to KeyGen∗

0(MSK∗, (fq , yq)).
Setting Private Positions:

2. First, it samples a random element α̃q , β̃q,t ← Zp , for t ∈ [n′], satisfying∑t∈[n′] β̃q,t =
0 and then runs the simulator of the AKGS to obtain

(�̂q,1,1, . . . , �̂q,mq ,1, �̂q,mq+1,1) ← SimGarble(fq,1, x
∗, α̃q · (fq (x∗)� z∗+ y�q w∗)+β̃q,1)

(�̂q,1,t , . . . , �̂q,mq ,t , �̂q,mq+1,t) ← SimGarble(fq,t , x∗, β̃q,t) for 1 < t ≤ n′.

3. Next, it fills the private positions at the indices in Spriv, Ŝpriv as follows

vector const coefi extndκ,1 extndκ,2 extndκ simτ sim∗
τ

vq α̃q 0 0 0 0 0 0
vq, j,t �̂q, j,t 0 0 0 0 0 0

for all j ∈ [mq] and t ∈ [n′]; and
for all t ∈ [n′].

123

3024 P. Datta, T. Pal

vector ĉonst1 ĉoef1 ĉonst2 ĉoef2 ĉonst ĉoef ŝim∗

vq,mq+1,t �̂q,mq+1,t 0 0 0 0 0 0

Fig. 6 Structure of the hybrid reduction proving Theorem 8

4. It generates the IPFE secret-keys

IPFE.SKq ← IPFE.KeyGen(IPFE.MSK, [[vq]]2)
IPFE.SKq, j,t ← IPFE.KeyGen(IPFE.MSK, [[vq, j,t]]2) for j ∈ [mq], t ∈ [n′]

̂IPFE.SKq,mq+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vq,mq+1,t]]2) for t ∈ [n′]
5. It outputs SK fq = (IPFE.SKq , {IPFE.SKq, j,t } j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t }t∈[n′]).

Hybrids and reductions

Proof We use a sequence of hybrid experiments to establish the indistinguishability between
the real experiment ExptReal,extFEA (1λ) and the ideal experiment ExptIdeal,extFEA (1λ) where A
is any PPT adversary. The overall hybrid games are presented in Fig. 6. In each experiment,

A can query a polynomial number of secret-key queries for pairs (f , y) ∈ F (n,n′)
ABP × Z

k
p ,

both before and after submitting the challenge message (x∗, z∗||w∗) ∈ Z
n
p × Z

n′+k
p . Let

Q be the total number of secret-key queries and Qpre (≤ Q) be the number of secret-keys
queried before submitting the challenge message. We denote the q-th secret-key by SK fq , yq
corresponding to a function fq and a vector yq . For the ease of presentation, we write the

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3025

vector elements sitting in the public slots Spub, Ŝpub in blue color and the vector elements
sitting in the private slots Spriv, Ŝpriv in red color. More precisely, we do this so that while
describing the hybrid games, we sometimes omit the public parts of the vectors and write
down only the private partswhen the changes occur only in the private parts. Now,we describe
the hybrids as follows:
Hybrid H0: This is the real experiment ExptReal,extFEA (1λ) defined in Definition 4 (with
single slot, i.e., N = 1). For each q ∈ [Q], the q-th secret-key SK fq , yq = (IPFE.SKq ,

{IPFE.SKq, j,t } j∈[mq],t∈[n′], { ̂IPFE.SKq,mq+1,t }t∈[n′]) is computed using the vectors vq , vq, j,t

given by

vq = (αq [ι], 0, 0, 0, 0, 0, 0, 0, 0, 0),

vq,1,t = (�
(ι)
q,1,t [const], �

(ι)
q,1,t [coefi], αq [ι] yq [κ]νq,t , 0, 0, 0, 0, 0, 0, 0),

vq, j,t = (�
(ι)
q, j,t [const], �

(ι)
q, j,t [coefi], 0, 0, 0, 0, 0, 0, 0, 0),

vq,mq+1,t = (r(ι)
q,t [mq], αq [ι], 0, 0, 0, 0, 0, 0, 0)

for j ∈ [2,mq] and t ∈ [n′]. Note that αq and r(ι)
q,t are random vectors sampled from Z

k
p

and Z
mq
p respectively. The integers νq,t for t ∈ [n′] is picked randomly from Zp such that∑

t∈[n′] νq,t = 1. For all t ∈ [n′], the garblings are computed as

(�
(ι)
q,1,t , . . . , �

(ι)
q,mq ,t , �

(ι)
q,mq+1,t) ← Garble(αq [ι]z∗[t] fq,t (x∗) + βq,t [ι]; r(ι)

q,t)

where fq = (fq,1, . . . , fq,n′) and βq,t ← Z
k
p with

∑
t∈[n′] βq,t [ι] = 0 ∀ι ∈ [k]. The

challenge ciphertext CT∗ = (IPFE.CT, { ̂IPFE.CTt }t∈[n′]) corresponds to the challenge vectors
(x∗, z∗||w∗) ∈ Z

n
p × Z

n′
p is computed using the vectors u and ht given by

u = (s[ι], s[ι]x∗[i], s[ι]w∗[κ], ⊥, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥),

ht = (−s[ι], s[ι]z∗[t], ⊥, ⊥, ⊥, ⊥, ⊥, ⊥, ⊥)

for t ∈ [n′] and s ← Z
k
p . Note that, in real experiment CT∗ is computed using IPFE.SlotEnc

and therefore the elements sitting at the indices in Spriv are set as ⊥ for the vectors u and ht .
Hybrid H1 It is exactly the same as hybrid H0 except the fact that instead of using
IPFE.SlotEnc, here the challenge ciphertext CT∗ is generated applying IPFE.Enc which uses
MSK = (IPFE.MSK, ̂IPFE.MSK) to encrypt the vectors. We indicate this change by changing
the private positions of u and ht from ⊥ to 0. Thus the vectors u and ht become

u = (s[ι], s[ι]x∗[i], s[ι]w∗[κ], 0 , 0 , 0 , 0 , 0 , 0 , 0),

ht = (−s[ι], s[ι]z∗[t], 0 , 0 , 0 , 0 , 0 , 0 , 0).

The slot-mode correctness of IPFE guarantees that the two hybrids H0 and H1 are identically
distributed.
Hybrid H2 This hybrid is similar to H1 except that in the private slots of the vectors vq, j,t

we put a garbling that linearly combines k garblings (of the public slots) with weight vector
s ∈ Z

k
p and in the private slots of the vector vq we use a single random element combining

the weight vector s. Accordingly, we modify the challenge ciphertext CT∗ by omitting the
weight vector s and setting the public slots of the vectors u, ht to zero so that the inner
products computed at the time of decryption remains the same in the previous hybrids.

InH1, the public slots of the vectors vq , vq, j,t are occupied by vectors αq ∈ Z
k
p, νq,t ∈ Zp

for t ∈ [n′] and the garblings �
(ι)
q, j,t computed using randomness r(ι)

q,t ∈ Z
mq
p . In the public

123

3026 P. Datta, T. Pal

slots of the vectors u, ht , we use (s[ι], s[ι]x∗[i]), (−s[ι], s[ι]z∗[t]) respectively. Therefore,
at the time of decryption we recover [[ρq]]T , [[�q, j,t]]T such that

ρq = αq · s = αq (say),

�q,1,t = (�
(1)
q,1,t , . . . , �

(k)
q,1,t) · (s[1](1, x∗), . . . , s[k](1, x∗)) + α · s · y�w · νq,t

= (s[1]�(1)
q,1,t , . . . , s[k]�(k)

q,1,t) · ((1, x∗), . . . , (1, x∗)) + αq · y�w · νq,t

= �q,1,t · (1, x∗) + αq · y�w · νq,t

�q, j,t = (�
(1)
q, j,t , . . . , �

(k)
q, j,t) · (s[1](1, x∗), . . . , s[k](1, x∗))

= �q, j,t · (1, x∗)

where �q, j,t = ∑
ι∈[k] s[ι]�(ι)

q, j,t for all j ∈ [2,mq] and t ∈ [n′]. Similarly, the mq + 1-the
garbling returns

�q,mq+1,t = ((r(1)q,t [mq], αq [1]), . . . , (r(k)q,t [mq], αq [k])) · (s[1](−1, z∗[t]), . . . , s[k](−1, z∗[t]))
= (s[1](r(1)q,t [mq], αq [1]), . . . , s[k](r(k)q,t [mq], αq [k])) · ((−1, z∗[t]), . . . , (−1, z∗[t]))
= (rq,t [mq], αq) · (−1, z∗[t])

where rq,t [mq] = ∑
ι∈[k] s[ι]r(ι)

q,t [mq]. In H2, we use αq , �q, j,t and rq,t [mq] in the private
slots of the vectors vq and vq, j,t as described below

vq = (αq , 0, 0, 0, 0, 0, 0),

vq,1,t = (�q, j,t [const] , �q, j,t [coefi] , αq yq [κ]νq,t , 0, 0, 0, 0),

vq, j,t = (�q, j,t [const] , �q, j,t [coefi] , 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (rq,t [mq] , αq , 0, 0, 0, 0, 0)

Since the weight vector s is not required to generate the challenge ciphertext CT∗, we omit
using it in the vectors u and ht . Moreover, the public slots of u and ht are set to zero as the
inner product is computed through the private slots only. We describe the changes below.

u = (0 , 0 , 0 , 1 , x∗[i] , w∗[κ] , 0, 0, 0, 0),

ht = (0 , 0 , −1 , z∗[t] , 0, 0, 0, 0, 0)

Finally, we observe that the inner products vq · u, vq, j,t · u and vq,mq+1,t · ht remain the
same as in H1. Thus, the function hiding property of IPFE preserves the indistinguishability
between the hybrids H1 and H2.

Note that, in this hybrid we pick αq ,βq,t , s ← Z
k
p, νq,t ← Zp and r(ι)

q,t ← Z
mq
p for all

t ∈ [n′], ι ∈ [k] satisfying ∑t∈[n′] βq,t [ι] = 0 for each ι ∈ [k] and ∑t∈[n′] νq,t = 1. Then,
the linearity of the Garble algorithm allows us to write

(�q,1,t , . . . , �q,mq ,t , �q,mq+1,t) ← Garble(αq z∗[t] fq,t (x∗) + βq,t ; rq,t)

where �q, j,t = ∑
ι∈[k] s[ι]�(ι)

q, j,t , rq,t = ∑
ι∈[k] s[ι]r(ι)

q,t and βq,t = βq,t · s.
From the next hybrid onward the public slots of the vectors vq and vq, j,t are unaltered

for all q ∈ [Q], j ∈ [k] and t ∈ [n′]. Therefore, we only write the components sitting in the
private slots of the vectors vq and vq, j,t assuming that the components of public slots are the

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3027

same as in the real experiment.We denote the private slots of the vectors by vq |Spriv , vq, j,t |Spriv
and vq,mq+1,t |Ŝpriv .
Hybrid H3 It is analogous to H2 except the liner combinations αq , �q, j,t , rq,t in the private
slots of the vectors vq , vq, j,t , vq,mq+1,t are replacedwith freshly and independently generated
random values and garblings α̃q , �̃q, j,t , r̃q,t . More specifically, we sample random elements
α̃q , β̃q,t ← Zp for all t ∈ [n′] such that

∑
t∈[n′] β̃q,t = 0 and a vector rq,t ← Z

mq
p . Then,

the garblings are computed as

(̃�q,1,t , . . . , �̃q,mq ,t , �̃q,mq+1,t) ← Garble(̃αq z∗[t] fq,t (x∗) + β̃q,t ; r̃q,t)

for all t ∈ [n′]. The vectors involved in the computation of SK fq , yq are as follows:

vq = (α̃q , 0, 0, 0, 0, 0, 0),

vq,1,t = (�̃q, j,t [const] , �̃q, j,t [coefi] , α̃q yq [κ]νq,t , 0, 0, 0, 0),

vq, j,t = (�̃q, j,t [const] , �̃q, j,t [coefi] , 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (r̃q,t [mq] , α̃q , 0, 0, 0, 0, 0)

Recall that in H2, the following linear combinations

αq = αq · s, βq,t = βq,t · s, rq,t =
∑

ι∈[k]
s[ι]r(ι)

q,t

with a common weight vector s has been used to set vq , vq, j,t . On the other hand, in H3

fresh and independent random elements α̃q , β̃q,t , r̃q,t are used to compute SK fq , yq . Note that
the elements of the vectors vq , vq, j,t are only used in the exponent of the source group G2

while generating the IPFE secret-keys. Let us consider thematrixAq,t = (αq |βq,t |(Rq,t)
�) ∈

Z
k×(mq+1)
p where Rq,t = (r(1)

q,t | . . . |r(k)
q,t) ∈ Z

m×k
p . Since the matrix Aq,t is uniformly chosen

from Z
k×(mq+1)
p and s is uniform over Z

k
p , by theMDDHk assumption in group G2 we have

([[Aq,t]]2, [[A�
q,t s]]

︸ ︷︷ ︸
in H2

) ≈ ([[Aq,t]]2, [[(̃αq , β̃q,t , r̃q,t)]]2
︸ ︷︷ ︸

in H3

)

holds for all q ∈ [Q] and t ∈ [n′]. Hence, the two hybrids H2 and H3 are indistinguishable
under the MDDHk assumption.

We have completed the first phase of our security analysis as we see that the private slots of
the vectors associated to secret-keys and the challenge ciphertext are now computed similar
to our extended 1-FE scheme. From the next hybrid, we modify the vectors in such a way
that all the pre-challenge secret-key queries decrypt the challenge ciphertext without using
the slots of u and ht where the challenge massage (x∗, z∗||w∗) are used.
Hybrid H4 It proceeds similar to hybrid H3 except we change the vectors u and ht for all
t ∈ [n′] which are used in the computation of the challenge ciphertext. After all the pre-
challenge secret-key queries made by A, a dummy vector (d1||d2) ∈ Z

n′+k
p is picked from

the set

D = {(d1||d2) ∈ Z
n′+k
p : fq(x∗)�d1 + y�

q d2 = μq for all q ∈ [Qpre]}

123

3028 P. Datta, T. Pal

where μq = fq(x∗)�z∗ + y�
q w∗. The sampling procedure is as described in the algorithm

Enc∗(·). Then the vectors u, ht are defined as below.

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ] , w∗[κ] , 0, 0),

ht = (0, 0, −1, z∗[t], −1 , d1[t] , −1 , z∗[t] , 0)

Note that, these changes in u and ht have no effect in the final inner product values of
vq ·u, vq, j,t ·u and vq,mq+1,t ·ht . This is because the elements at the slots (extndκ,2, extndκ)

of the vectors vq , vq, j,t ht and the elements at the slots (ĉonst2, ĉoef2, ĉonst, ĉoef) of the
vector vq,mq+1,t (where the changes take place in u, ht) are all zero. Therefore, by the function
hiding property of IPFE the hybrids H3 and H4 remain indistinguishable to the adversary.
Hybrid H5,q (q ∈ [Qpre]) It proceeds similar to H4 except that for each 1 ≤ q ′ ≤ q , we
modify the vectors vq,1,t and vq,mq+1,t as described below.

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], 0 , α̃q ′ yq ′ [κ]νq ′,t , 0, 0, 0) for 1 ≤ q ′ < q,

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], α̃q ′ yq ′ [κ]νq ′,t , 0, 0, 0, 0) for q < q ′ ≤ Qpre,

vq ′,mq′+1,t = (0, 0, r̃q ′,t [mq ′] , α̃q ′ , 0, 0, 0) for 1 ≤ q ′ < q,

vq ′,mq′+1,t = (r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0, 0, 0) for q < q ′ ≤ Qpre

Note that, the post-challenge secret-key queries are still answered according to H4. Observe
that H5,0 coincides with H4. We will prove that H5,(q−1) and H5,q are indistinguishable via
the following sequence of sub-hybrids, namely {H5,q,1,H5,q,2,H5,q,3}.
Hybrid H5,q,1 (q ∈ [Qpre]) It is analogous to H5,(q−1) except that in the qth secret-
key query the vector vq,mq+1,t is modified as follows. The element α̃q yq [κ]νq,t is shifted
from vq,1,t [extndκ,1] to vq,1,t [extndκ] and the elements r̃q,t [mq], α̃q are shifted from

vq,mq+1,t [ĉonst1], vq,mq+1,t [ĉoef1] to vq,mq+1,t [ĉonst], vq,mq+1,t [ĉoef] respectively.
vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], 0, α̃q ′ yq ′ [κ]νq ′,t , 0, 0, 0)

for 1 ≤ q ′ < q,

vq,1,t = (�̃q,1,t [const], �̃q,1,t [coefi], 0 , 0, α̃q yq [κ]νq,t , 0, 0),

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], α̃q ′ yq ′ [κ]νq ′,t , 0, 0, 0, 0)

for q < q ′ ≤ Qpre,

vq ′,mq′+1,t = (0, 0, r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0)

for 1 ≤ q ′ < q,

vq,mq+1,t = (0 , 0 , 0, 0, r̃q,t [mq] , α̃q , 0),

vq ′,mq′+1,t = (r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0, 0, 0)

for q < q ′ ≤ Qpre

We observe that the inner products vq,1,t · u and vq,mq+1,t · ht are unchanged due to the
modification occurred in vq,1,t and vq,mq+1,t . Therefore, the function hiding security of IPFE
ensures that the hybrids H5,(q−1) and H5,q,1 are indistinguishable.

In this hybrid, the components of vq, j,t corresponding to the slots {const, coefi , extndκ ,

simτ , sim∗
τ } and the components of vq,mq+1,t corresponding to the slots {ĉonst, ĉoef, ŝim∗}

are exactly the same as in the secret-key of our extended 1-FE scheme. Similarly, in case of the
challenge ciphertext, the components of u at the positions {const, coefi , extndκ , simτ , sim∗

τ }
and the components of ht at the positions {ĉonst, ĉoef, ŝim∗} are also identical to the cipher-
text of our extended 1-FE scheme.

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3029

Hybrid H5,q,2 (q ∈ [Qpre]) It is exactly the same as H5,q,1 except that the components

u[extndκ] and ht [ĉoef] are changed from z∗[t],w∗[κ] to d1[t], d2[κ] respective. Thus, the
vectors u, ht become

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ], d2[κ] , 0, 0),

ht = (0, 0, −1, z∗[t], −1, d1[t], −1, d1[t] , 0)

All the secret-keys are answered as in the previous hybrid. The indistinguishability follows
from the security of our 1-FE scheme. We note that the security of our extended 1-FE scheme
which relies on the function hiding security of IPFE and the security of AKGS. In particular,
we use the security of IPFE and AKGS to reversely sample the first label and make all the
other labels random as shown below

�̃q,1,1 ← RevSamp(fq,1, x∗, α̃q fq(x∗)�z∗ + y�
q w∗ + β̃q,1, �q,2,1, . . . , �q,mq ,1)

�̃q,1,τ ← RevSamp(fq,τ , x∗, β̃q,τ , �q,2,τ , . . . , �q,mq ,τ) for 1 < τ < n′,

where
∑

τ∈[n′] β̃q,τ = 0 and �q, j,τ is picked randomly for all j ∈ [2,mq]. Then, the dummy
vector (d1||d2) replaces the challenge message (z∗||w∗) while computing �̃q,1,1. Finally,
we move in the reverse direction so that the vectors vq, j,t for all j ∈ [mq] and t ∈ [n′]
are back in form as they were in H5,q,1 and d1[t], d2[κ] are placed at ht [ĉoef], u[extndκ]
respectively. Note that, the hybrids involved in our extended 1-FE scheme uses the positions
simτ , sim∗

τ , ŝim
∗
of the vectors vq, j,t , u and ht , which does not effect the decryption using

any post-challenge secret-key.
HybridH5,q,3 (q ∈ [Qpre]) It proceeds analogous to H5,q,2 except that we change vq,mq+1,t

and ht as below. The element α̃q yq [κ]νq,t is shifted from vq,1,t [extndκ] to vq,1,t [extndκ,2]
and the elements r̃q,t [mq], α̃q are shifted from vq,mq+1,t [ĉonst], vq,mq+1,t [ĉoef]
to vq,mq+1,t [ĉonst2], vq,mq+1,t [ĉoef2] respectively.

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], 0, α̃q ′ yq ′ [κ]νq ′,t , 0, 0, 0)

for 1 ≤ q ′ < q,

vq,1,t = (�̃q,1,t [const], �̃q,1,t [coefi], 0, α̃q yq [κ]νq,t , 0 , 0, 0),

vq ′,1,t = (�̃q ′,1,t [const], �̃q ′,1,t [coefi], α̃q ′ yq ′ [κ]νq ′,t , 0, 0, 0, 0)

for q < q ′ ≤ Qpre,

vq ′,mq′+1,t = (0, 0, r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0)

for 1 ≤ q ′ < q,

vq,mq+1,t = (0, 0, r̃q,t [mq] , α̃q , 0 , 0 , 0),

vq ′,mq′+1,t = (r̃q ′,t [mq ′], α̃q ′ , 0, 0, 0, 0, 0)

for q < q ′ ≤ Qpre,

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ], w∗[κ] , 0, 0),

ht = (0, 0, −1, z∗[t], −1, d1[t], −1, z∗[t] , 0)

Note that the inner products vq,1,t · u and vq,mq+1,t · ht remains the same as in H5,q,2.
Therefore, the hybrids H5,q,2 and H5,q,3 are indistinguishable due to the function hiding
security of IPFE. We observe that H5,q,3 is identical to H5,q for all q ∈ [Qpre].
Hybrid H6 It is exactly the same as H5,Qpre,4 except that the elements u[extndκ], ht [ĉonst]
and ht [ĉoef] are set to zero. We describe the vectors associated to secret-key queries and the

123

3030 P. Datta, T. Pal

challenge ciphertext below. Note that the post-challenge secret-key queries are released in
the same way as in H4 (or in H5,Qpre).

1 ≤ q ≤ Qpre
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vq = (α̃q , 0, 0, 0, 0, 0, 0),

vq,1,t = (�̃q,1,t [const], �̃q,1,t [coefi], 0, α̃q yq [κ]νq,t , 0, 0, 0),

vq, j,t = (�̃q, j,t [const], �̃q, j,t [coefi], 0, 0, 0, 0, 0)

for j ∈ [2,mq],
vq,mq+1,t = (0, 0, r̃q,t [mq], α̃q , 0, 0, 0),

u = (0, 0, 0, 1, x∗[i], w∗[κ], d2[κ], 0 , 0, 0),

ht = (0, 0, −1, z∗[t], −1, d1[t], 0 , 0 , 0)

Qpre < q ≤ Q
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vq = (α̃q , 0, 0, 0, 0, 0, 0),

vq,1,t = (�̃q,1,t [const], �̃q,1,t [coefi], α̃q yq [κ]νq,t , 0, 0, 0, 0),

vq, j,t = (�̃q, j,t [const], �̃q, j,t [coefi], 0, 0, 0, 0, 0)

for j ∈ [2,mq],
vq,mq+1,t = (r̃q,t [mq], α̃q , 0, 0, 0, 0, 0)

Since the inner products vq,1,t · u and vq,mq+1,t · ht is unaltered due to the modification
in this hybrid, the function hiding security of IPFE ensures indistinguishability between the
hybrids H5,Qpre,4 and H6.

The second part of the proof is completed as all the pre-challenge secret-keys are now
able to decrypt the challenge ciphertext without the components of u, ht that make use of

z∗ and w∗. Note that, u[extndκ,1] = w∗[κ] and ht [ĉoef1] = z∗[t] are only needed for the
successful decryption of the challenge ciphertext by post-challenge secret-keys. From the
next hybrid we change the computation of post-challenge secret-keys so that the challenge
ciphertext can be simulated without using (z∗||w∗).
Hybrid H7 This hybrid proceeds exactly similar to H6 except that we use the honest levels
�̃q,1,t = �̃q,1,t (x∗), �̃q, j,t = �̃q, j,t (x∗) for j ∈ [mq] and �̃q,mq+1,t = −r̃q,t [mq] + α̃q z∗[t]
while defining the vectors vq, j,t in all the post-challenge secret-key queries. Moreover, all
the other private components vq, j,t [coefi] and vq, j,t [extndκ,1] are zero for all j ∈ [mq]. We
also modify u and ht of the challenge ciphertext as shown below.

u = (0, 0, 0, 1, x∗[i], 0 , d2[κ], 0, 0, 0),

ht = (0, 0, 1 , 0 , −1, d1[t], 0, 0, 0),

Qpre < q ≤ Q
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vq = (α̃q , 0, 0, 0, 0, 0, 0),

vq,1,t = (�̃q,1,t + α̃q yq [κ]νq,t , 0 , 0 , 0, 0, 0, 0)

vq, j,t = (�̃q, j,t , 0 , 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (�̃q,mq+1,t , 0 , 0, 0, 0, 0, 0)

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3031

Since the inner products vq, j,t · u, vq,mq+1,t · ht for all q ∈ [Qpre + 1, Q] are the same as
in the previous hybrid, the function hiding property of IPFE ensures that the hybrids H6 and
H7 are indistinguishable.
Hybrid H8: This hybrid proceeds analogous to H7 except that the post-challenge secret-key
queries use the simulated garblings instead of the honest garblings. More specifically, we
sample α̃q , β̃q,t , ν̃q,t ← Zp satisfying

∑
t∈[n′] β̃q,t = 0,

∑
t∈[n′] ν̃q,t = 1 and compute the

simulated garblings

(�̂q,1,t , . . . , �̂q,mq ,t , �̂q,mq+1,t) ← SimGarble(fq,t , x∗, α̃q · (z∗[t] fq,t (x∗)
+ν̃q,t · y�

q w∗) + β̃q,t)

for all q ∈ [Qpre + 1, Q] and t ∈ [n′]. Then, the post-challenge secret-keys are generated
using the vectors described below.

Qpre < q ≤ Q

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vq = (α̃q , 0, 0, 0, 0, 0, 0),

vq,1,t = (�̂q,1,t , 0, 0, 0, 0, 0, 0)

vq, j,t = (�̂q, j,t , 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (�̂q,mq+1,t , 0, 0, 0, 0, 0, 0)

The simulated levels of AKGS is used in place of actual garblings. The simulation security
of AKGS implies that the hybrids H7 and H8 are indistinguishable.
HybridH9: This proceeds exactly the same asH8 except that the distribution of {β̃q,t }t∈[n′] is
changed.We replace β̃q,t by β̃ ′

q,t = β̃q,t −α̃q ·(z∗[t] fq,t (x∗)+ ν̃q,t · y�
q w∗) for all 1 < t ≤ n′

and replace the element β̃q,1 by β̃ ′
q,1 = β̃q,1 − α̃q · (z∗[1] fq,1(x∗) + ν̃q,1 · y�

q w∗) + α̃q ·
(fq(x∗)�z∗ + y�

q w∗). Note that, the distributions

{β̃t,q ← Zp :
∑

t∈[n′]
β̃t,q = 0} and {β̃ ′

t,q :
∑

t∈[n′]
β̃t,q = 0}

are statistically close since {β̃ ′
q,t }t∈[n′] are also uniform overZp and

∑
t∈[n′] β̃ ′

q,t = 0. Finally,
the vectors associated to the post-challenge secret-keys are given by

Qpre < q ≤ Q

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vq = (α̃q , 0, 0, 0, 0, 0, 0),

vq,1,t = (�̂q,1,t , 0, 0, 0, 0, 0, 0)

vq, j,t = (�̂q, j,t , 0, 0, 0, 0, 0, 0) for j ∈ [2,mq],
vq,mq+1,t = (�̂q,mq+1,t , 0, 0, 0, 0, 0, 0)

where the simulated garblings take the form

(
�̂q,1,1, . . . , �̂q,mq ,1, �̂q,mq+1,1

) ← SimGarble
(

fq,1, x∗, α̃q · (fq(x∗)�z∗ + y�
q w∗) + β̃q,1

)

(
�̂q,1,t , . . . , �̂q,mq ,t , �̂q,mq+1,t

) ← SimGarble
(
fq,t , x∗, β̃q,t

)
for 1 < t ≤ n′.

Observe that H9 is the same as the ideal experiment ExptIdeal,extFEA (1λ). This completes the
security proof. ��

123

3032 P. Datta, T. Pal

References

1. Abdalla M., Bourse F., De Caro A., Pointcheval D.: Simple functional encryption schemes for inner
products. In: PKC 2015, pp. 733–751. Springer, New York (2015).

2. Abdalla M., Catalano D., Gay R., Ursu B.: Inner-product functional encryption with fine-grained access
control. In: ASIACRYPT 2020, pp. 467–497. Springer, New York (2020).

3. AbdallaM., Gong J.,WeeH.: Functional encryption for attribute-weighted sums from k-Lin. In: CRYPTO
2020, pp. 685–716. Springer, New York (2020).

4. Agrawal S.: Stronger security for reusable garbled circuits, general definitions and attacks. In: CRYPTO
2017, pp. 3–35. Springer, New York (2017).

5. Agrawal S., Goyal R., Tomida J.: Multi-input quadratic functional encryption from pairings. In: CRYPTO
2021, pp. 208–238. Springer, New York (2021).

6. Agrawal S., Libert B., Maitra M., Titiu R.: Adaptive simulation security for inner product functional
encryption. In: PKC 2020, pp. 34–64. Springer, New York (2020).

7. Agrawal S., Libert B., Stehlé D.: Fully secure functional encryption for inner products, from standard
assumptions. In: CRYPTO 2016, pp. 333–362. Springer, New York (2016).

8. Agrawal S., Yamada S.: CP-ABE for circuits (and more) in the symmetric key setting. In: TCC 2020, pp.
117–148. Springer, New York (2020).

9. Agrawal S., Yamada S.: Optimal broadcast encryption from pairings and LWE. In: EUROCRYPT 2020,
pp. 13–43. Springer, New York (2020).

10. Ananth P., Jain A.: Indistinguishability obfuscation from compact functional encryption. In: CRYPTO
2015, pp. 308–326. Springer, New York (2015).

11. Ananth P., Jain A., Sahai A.: Indistinguishability obfuscation from functional encryption for simple
functions. IACR Cryptology ePrint Archive, Report 2015/730 (2015).

12. Ananth P., Sahai A.: Projective arithmetic functional encryption and indistinguishability obfuscation from
degree-5 multilinear maps. In: EUROCRYPT 2017, pp. 152–181. Springer, New York (2017).

13. Applebaum B., Ishai Y., Kushilevitz E.: How to garble arithmetic circuits. In: FOCS 2011, pp. 120–129.
IEEE Computer Society, Washington (2011).

14. Baltico C.E.Z., Catalano D., Fiore D., Gay R.: Practical functional encryption for quadratic functions
with applications to predicate encryption. In: CRYPTO 2017, pp. 67–98. Springer, New York (2017).

15. Bitansky N., Vaikuntanathan V.: Indistinguishability obfuscation from functional encryption. In: FOCS
2015, pp. 171–190. IEEE Computer Society, Washington (2015).

16. Boneh D., Boyen X., Shacham H.: Short group signatures. In: CRYPTO 2004, pp. 41–55. Springer, New
York (2004).

17. Boneh D., FranklinM.: Identity-based encryption from the weil pairing. In: CRYPTO 2001, pp. 213–229.
Springer, New York (2001).

18. Boneh D., Gentry C., Gorbunov S., Halevi S., Nikolaenko V., Segev G., Vaikuntanathan V., Vinayaga-
murthy D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In:
EUROCRYPT 2014, pp. 533–556. Springer, New York (2014).

19. Boneh D., Gentry C., Waters B.: Collusion resistant broadcast encryption with short ciphertexts and
private keys. In: CRYPTO 2005, pp. 258–275. Springer, New York (2005).

20. Boneh D., Sahai A., Waters B.: Functional encryption: definitions and challenges. In: TCC 2011, pp.
253–273. Springer, New York (2011).

21. Boneh D., Waters B.: Conjunctive, subset, and range queries on encrypted data. In: TCC 2007, pp.
535–554. Springer, New York (2007).

22. Cheon J.H., Han K., Lee C., Ryu H., Stehlé D.: Cryptanalysis of the multilinear map over the integers.
In: EUROCRYPT 2015, pp. 3–12. Springer, New York (2015).

23. Cocks C.C.: An identity based encryption scheme based on quadratic residues. In: IMACC 2001, pp.
360–363. Springer, New York (2001).

24. Coron J.S., Gentry C., Halevi S., Lepoint T., Maji H.K., Miles E., Raykova M., Sahai A., Tibouchi M.:
Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: CRYPTO 2015, pp.
247–266. Springer, New York (2015).

25. Coron J.S., Lepoint T., Tibouchi M.: Practical multilinear maps over the integers. In: CRYPTO 2013, pp.
476–493. Springer, New York (2013).

26. Datta P., Dutta R., Mukhopadhyay S.: Functional encryption for inner product with full function privacy.
In: PKC 2016, pp. 164–195. Springer, New York (2016).

27. Datta P., Komargodski I., Waters B.: Decentralized multi-authority ABE for dnfs from LWE. In: EURO-
CRYPT 2021, pp. 177–209. Springer, New York (2021).

28. Datta P., Okamoto T., Takashima K.: Adaptively simulation-secure attribute-hiding predicate encryption.
In: ASIACRYPT 2018, pp. 640–672. Springer, New York (2018).

123

(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin 3033

29. Datta P., Okamoto T., Takashima K.: Adaptively simulation-secure attribute-hiding predicate encryption.
IEICE Trans. Inf. Syst. 103(7), 1556–1597 (2020).

30. Datta P., Pal T.: (Compact) adaptively secure fe for attribute-weighted sums from k-lin. In: International
Conference on theTheory andApplication ofCryptology and InformationSecurity, pp. 434–467. Springer,
New York (2021).

31. Escala A., Herold G., Kiltz E., Rafols C., Villar J.: An algebraic framework for Diffie-Hellman assump-
tions. J. Cryptol. 30(1), 242–288 (2017).

32. Garg S., Gentry C., Halevi S.: Candidate multilinear maps from ideal lattices. In: EUROCRYPT 2013,
pp. 1–17. Springer, New York (2013).

33. GargS.,GentryC.,Halevi S., RaykovaM., SahaiA.,WatersB.: Candidate indistinguishability obfuscation
and functional encryption for all circuits. SIAM J. Comput. 45(3), 882–929 (2016).

34. Gay R.: A new paradigm for public-key functional encryption for degree-2 polynomials. In: PKC 2020,
pp. 95–120. Springer, New York (2020).

35. Goldwasser S., Kalai Y., Popa R.A., Vaikuntanathan V., Zeldovich N.: Reusable garbled circuits and
succinct functional encryption. In: STOC 2013, pp. 555–564. ACM (2013).

36. Gorbunov S., Vaikuntanathan V., Wee H.: Functional encryption with bounded collusions via multi-party
computation. In: CRYPTO 2012, pp. 162–179. Springer, New York (2012).

37. Gorbunov S., Vaikuntanathan V., Wee H.: Attribute-based encryption for circuits. J. ACM 62(6), 1–33
(2015).

38. Gorbunov S., Vaikuntanathan V., Wee H.: Predicate encryption for circuits from LWE. In: CRYPTO 2015,
pp. 503–523. Springer, New York (2015).

39. Goyal V., Pandey O., Sahai A., Waters B.: Attribute-based encryption for fine-grained access control of
encrypted data. In: CCS 2006, pp. 89–98. ACM (2006).

40. Ishai Y., Kushilevitz E.: Perfect constant-round secure computation via perfect randomizing polynomials.
In: ICALP 2002, pp. 244–256. Springer, New York (2020).

41. Ishai Y., Wee H.: Partial garbling schemes and their applications. In: ICALP 2014, pp. 650–662. Springer,
New York (2014).

42. Jain A., LinH., Sahai A.: Simplifying constructions and assumptions for iO. Tech. rep., IACRCryptology
ePrint Archive, Report 2019/1252 (2019).

43. Katz J., Sahai A., Waters B.: Predicate encryption supporting disjunctions, polynomial equations, and
inner products. In: EUROCRYPT 2008, pp. 146–162. Springer, New York (2008).

44. Kowalczyk L., Wee H.: Compact adaptively secure ABE for NC1 from k-Lin. J. Cryptol. 1–49 (2019).
45. Lewko A., Okamoto T., Sahai A., Takashima K., Waters B.: Fully secure functional encryption: attribute-

based encryption and (hierarchical) inner product encryption. In: EUROCRYPT 2010, pp. 62–91.
Springer, New York (2010).

46. Lewko A.B., Waters B.: New techniques for dual system encryption and fully secure HIBE with short
ciphertexts. In: TCC 2010, pp. 455–479. Springer, New York (2010).

47. Lewko A.B., Waters B.: Decentralizing attribute-based encryption. In: EUROCRYPT 2011, pp. 568–588.
Springer, New York (2011).

48. Lin H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 prgs. In: CRYPTO
2017, pp. 599–629. Springer, New York (2017).

49. Lin H., Luo J.: Compact adaptively secure abe from k-Lin: beyondNC1 and towardsNL. In: EUROCRYPT
2020, pp. 247–277. Springer, New York (2020).

50. Lin H., Tessaro S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. In:
CRYPTO 2017, pp. 630–660. Springer, New York (2017).

51. Lin H., Vaikuntanathan V.: Indistinguishability obfuscation from DDH-like assumptions on constant-
degree graded encodings. In: FOCS 2016, pp. 11–20. IEEE (2016).

52. Lombardi A., Vaikuntanathan V.: Limits on the locality of pseudorandom generators and applications to
indistinguishability obfuscation. In: TCC 2017, pp. 119–137. Springer, New York (2017).

53. Miles E., Sahai A., Zhandry M.: Annihilation attacks for multilinear maps: cryptanalysis of indistin-
guishability obfuscation over GGH13. In: CRYPTO 2016, pp. 629–658. Springer, New York (2016).

54. Nisan N.: Lower bounds for non-commutative computation (extended abstract). In: STOC 1991, pp.
410–418. ACM (1991).

55. Okamoto T., Takashima K.: Fully secure functional encryption with general relations from the decisional
linear assumption. In: CRYPTO 2010, pp. 191–208. Springer, New York (2010).

56. Okamoto T., Takashima K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In:
EUROCRYPT 2012, pp. 591–608. Springer, New York (2012).

57. Okamoto T., Takashima K.: Fully secure unbounded inner-product and attribute-based encryption. In:
ASIACRYPT 2012, pp. 349–366. Springer, New York (2012).

123

3034 P. Datta, T. Pal

58. Okamoto T., Takashima K.: Efficient (hierarchical) inner-product encryption tightly reduced from the
decisional linear assumption. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 96(1), 42–52
(2013).

59. O’Neill A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive, Report
2010/556 (2010).

60. Pass R., Seth K., Telang S.: Indistinguishability obfuscation from semantically-secure multilinear encod-
ings. In: CRYPTO 2014, pp. 500–517. Springer, New York (2014).

61. Sahai A., Seyalioglu H.: Worry-free encryption: functional encryption with public keys. In: CCS 2010,
pp. 463–472. ACM (2010).

62. Sahai A, Waters B.: Fuzzy identity-based encryption. In: EUROCRYPT 2005, pp. 457–473. Springer,
New York (2005).

63. Shamir A.: Identity-based cryptosystems and signature schemes. In: CRYPTO 1984, pp. 47–53. Springer,
New York (1984).

64. Waters B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In:
CRYPTO 2009, pp. 619–636. Springer, New York (2009).

65. Waters B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure
realization. In: PKC 2011, pp. 53–70. Springer, New York (2011).

66. Wee H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: TCC 2017, pp. 206–233.
Springer, New York (2017).

67. Wee H.: Functional encryption for quadratic functions from k-Lin, revisited. In: TCC 2020, pp. 210–228.
Springer, New York (2020).

68. Wee H.: Broadcast encryption with size n1/3 and more from k-lin. In: Annual International Cryptology
Conference, pp. 155–178. Springer, New York (2021).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	(Compact) Adaptively secure FE for attribute-weighted sums from k-Lin
	Abstract
	1 Introduction
	2 Technical overview
	2.1 Designing adaptively simulation secure one-slot extFE
	Our one-slot FE
	Security analysis of our one-slot FE scheme
	Step 1
	Step 2
	Step 3
	From one-slot FE to one-slot extFE

	2.2 Bootstrapping from one-slot FE to unbounded-slot FE

	3 Preliminaries
	3.1 Notations
	3.2 Bilinear groups and hardness assumptions
	3.3 Arithmetic branching program
	3.4 Functional encryption for attribute-weighted sum
	3.5 Function-hiding slotted inner product functional encryption
	3.6 Arithmetic key garbling scheme

	4 One-slot FE for attribute-weighted sums
	4.1 Secret key 1-key 1-ciphertext secure one-slot FE for attribute-weighted sums
	4.1.1 Security analysis
	The simulator
	Hybrids and reductions

	4.2 Public key one-slot FE for attribute-weighted sums
	4.2.1 Security analysis
	The simulator
	Hybrids and reductions

	5 One-slot extended FE for attribute-weighted sums designed for achieving unbounded-slot FE for attribute-weighted sums
	5.1 Secret key 1-key 1-ciphertext secure one-slot extended FE
	5.1.1 Security analysis
	The simulator
	Hybrids and reductions

	5.2 Public key one-slot extended FE for attribute-weighted sums
	5.2.1 Security analysis
	The simulator

	Hybrids and reductions

	6 Unbounded-slot FE for attribute-weighted sum
	6.1 Security analysis
	The simulator
	Hybrids and reductions

	Appendix A: Instantiation of AKGS ishai2014partial,lin2020compact
	Appendix B: Secret key 1-key 1-ciphertext secure one-slot extended FE designed for unbounded-key one-slot extended FE for attribute-weighted sums
	Appendix B.1: Security analysis
	The simulator
	Hybrids and reductions

	Appendix C: Unbounded-key one-slot extended FE for attribute-weighted sums
	Appendix C.1: Security analysis
	The simulator

	Hybrids and reductions

	References

