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Abstract
Broadcast Encryption (BE) is public-key encryption allowing a sender to encrypt a message
by specifing recipients, and only the specified recipients can decrypt the message. In several
BE applications, since the privacy of recipients allowed to access the message is often as
important as the confidentiality of the message, anonymity is introduced as an additional but
important security requirement forBE.Kiayias andSamari (IH2013) presented an asymptotic
lower bound on the ciphertext sizes in BE schemes satisfying anonymity (ANO-BE for short).
More precisely, their lower bound is derived under the assumption that ANO-BE schemes
have a special property. However, it is insufficient to show their lower bound is asymptotically
tight since it is unclear whether existing ANO-BE schemes meet the special property. In
this work, we derive asymptotically tight lower bounds on the ciphertext size in ANO-BE
by assuming only properties that most existing ANO-BE schemes satisfy. With a similar
technique, we first derive asymptotically tight lower bounds on the authenticator sizes in
Anonymous Broadcast Authentication (ABA). Furthermore, we extend the above result and
present (non-asymptotically) tight lower and upper bounds on the ciphertext sizes in ANO-
BE. We show that a variant of ANO-BE scheme proposed by Li and Gong (ACNS 2018)
is optimal. We also provide tight bounds on the authenticator sizes in ABA via the same
approach as ANO-BE, and propose an optimal construction for ABA.
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1 Introduction

(Anonymous) Broadcast encryption Broadcast Encryption (BE) [11] enables a sender
to encrypt a message by designating a set of recipients so that only designated recipients
can decrypt the encrypted message. In more detail, in a BE system, the sender encrypts a
messagem to a subsetS, called a privileged set, chosen from N recipients.Any recipient in the
privileged set S can decrypt the corresponding ciphertexts ctS , but the recipients outside of S
cannot. BE has several applications such as pay-TV services and access control in encrypted
file systems thanks to its functionality. The scheme is said to be collusion resistant, which is
a de-facto standard security notion of BE, even if all of recipients outside of S collude they
cannot obtain any information about an encryptedmessage. To date, many collusion-resistant
BE schemes have been proposed (e.g., [1, 2, 5, 6, 15, 16, 38, 40]).

These schemes guarantee the confidentiality of the message, but the information of the
privileged set is transmitted with the ciphertext publicly for decryption in the schemes while
the confidentiality of the recipients authorized to access the message is an important secu-
rity requirement from a practical perspective. For example, the pay-TV service sometimes
requires users’ privacy as well as the confidentiality of contents. To address to the security
requirement, several works [3, 20, 24, 25] have proposed BE schemes meeting anonymity,1

which ensures that no information on the designated recipients inS is leaked from ciphertexts
ctS . Two main notions were introduced for anonymity, called anonymity and full anonymity
by Barth et al. [3] and Kiayias and Samari [20], respectively. Anonymity guarantees that no
information on a set of designated recipients is leaked from ciphertexts except for its size
while full anonymity guarantees that ciphertexts never leak even the information on the size
of the set. Also Fazio et al. [10] introduced a weaker notion of anonymity, called outsider
anonymity, where recipients in a privileged set are not considered to be malicious. Previous
work in [10, 27] has presented Anonymous BE schemes with compact ciphertexts using
this notion.2 But the notion may not be sufficient for the security requirement of some BE
applications since an adversary in a privileged set can obtain information on other designated
recipients. Throught this paper, we do not deal with outsider anonymity, and refer to BE with
anonymity and full anonymity as ANO-BE and Full-ANO-BE, respectively. Also, we refer
to ANO-BE and Full-ANO-BE collectively as Anonymous BE.

There is a MAC variant of Anonymous BE, Anonymous Broadcast Authentication
(ABA) [37]. ABA enables a sender to choose an arbitrary subset of receivers so that only
the designated receivers can check the validity of a pair of a message and its authenticator.
Moreover, ABA achieves anonymity; the authenticator does not reveal any information on
which receivers are designated.3 ABA is expected to be a core cryptographic primitive for a
remote-control system over IoT networks [37]. In such a system based on ABA, a systems
manager can choose an arbitrary command to have only the designated IoT devices exe-

1 The term privacy is often used instead of anonymity (e.g., [3, 20]).
2 Precisely, Mandal and Nuida [27] proposed an “identity-based outsider anonymous broadcast encryption
scheme with personalized messages” with constant-size ciphertexts, which is a variant of BE with outsider
anonymity. See [27] for more details.
3 Note that ABA has different functionality from ring signatures [35]; ABA provides anonymity of receivers,
while ring signatures guarantees anonymity of senders.
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Tight lower bounds of anonymous BE and BA

cute it. For example, the systems manager can bring IoT devices infected with malware to a
halt remotely and securely. Moreover, anonymity of ABA guarantees that authenticators do
not reveal any information on which devices are designated, which is sensitive information
(see [37] for details). In this work, we also give an analysis of the authenticator sizes required
for ABA, though we mainly focus on Anonymous BE.
Ciphertext size of anonymous BE The previous work [3, 20, 24, 25] has presented several
Anonymous BE schemes having ciphertexts where its size grows linearly with the number
of designated recipients or all recipients. Specifically, the ciphertext sizes of the ANO-BE
schemes are O (|S| · κ) and those of the Full-ANO-BE schemes are O (N · κ), where |S|
and N are the numbers of designated recipients and all recipients in the system, respectively,
and κ is a security parameter. Therefore, these constructions establish upper bounds on the
ciphertext-sizes of Anonymous BEs.

On the other hand, Kiayias and Samari [20] investigated lower bounds on ciphertext-sizes
of Anonymous BEs (i.e., ANO-BE and Full-ANO-BE). In particular, they showed that the
ciphertext-sizes are required �(|S| · κ) for ANO-BE and �(N · κ) for Full-ANO-BE, for a
limited class of (Anonymous) BE and listed several BE schemes in [3, 25, 30] in the class.4

Previous work and its issue We emphasize that Kiayias and Samari implicitly assumed a
special property for BE schemes in their main theorem [20, Theorem 1]. More precisely,
they indeed proved “if a BE scheme is anonymous and has the special property, then the
lower bound holds.” However, it is hard to check whether the existing Anonymous BEs in
the limited class (e.g., [3, 20, 25]) meet the property (see Sect. 1.2 for details), and it is not
clearly shown that their lower bound on the ciphertext-sizes is asymptotically tight.

1.1 Our contributions

Asymptotically tight lower bounds In this paper, assuming only properties most existing
(Anonymous) BE schemes have, we show that asymptotic lower bounds on ciphertext size
for ANO-BE and Full-ANO-BE are � (|S| · κ) and �(N · κ), respectively. We note that our
lower bounds are asymptotically tight since they are applicable to the existingAnonymousBE
schemes while Kiayias and Samari’s ones are not. Our results also show that it is impossible
to modify existing non-Anonymous BE schemes to meet anonymity unless their ciphertext
size meets our lower bound, since the properties we assume can be applied for existing (even
non-Anonymous) BE schemes.

We derive the lower bounds by extending the Kiayias and Samari’s approach [20]: they
considered Atomic BE (AtBE) allowing each ciphertext and decryption key to be explicitly
divided into multiple sub-elements, called atomic ciphertexts and decryption keys, respec-
tively, and theAtBE covers several BE schemes in [3, 25, 30]. They then showed lower bounds
on the number of atomic ciphertexts in anonymous AtBE schemes instead of deriving lower
bounds on the ciphertext-sizes directly. However, in the proof, they implicitly assumed a
special property for AtBE schemes, which is hard to be applied to the existing schemes.

To provide the lower bounds without the special property, we modify the Kiayias and
Samari’s strategy as follows: first, we extract several properties of existing BE schemes to
derive a lower bound without the special property. Also, to formalize these properties, we
modify the Kiayias and Samari’s AtBE, which was given only an informal syntax in [20].
Note that our AtBE covers a broad range of (both Anonymous and non-Anonymous) BE

4 Kiayias and Samari also derived lower bounds on the ciphertext sizes � (N + κ) required for any Full-
ANO-BE [20, Lemma 2]. However, it is unclear whether the lower bound is asymptotically tight, because no
Full-ANO-BE constructions attain it.
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schemes [1–3, 6, 15, 16, 24, 25, 30, 38]. We then provide lower bounds on the number of
atomic ciphertexts in our AtBE with anonymity.

We summarize the differences between Kiayias and Samari’s analysis and ours below.

• We assume several properties that most of the existing BE schemes have. To formally
describe them, we give a formal syntax of AtBE, whereas Kiayias and Samari considered
an informal one.

• Our lower bounds hold for most of the previous Anonymous BEs (i.e., BE schemes in [3,
24, 25]), since we only assume the properties common to them. On the other hand, it is
unclear that the special property implicitly assumed in [20] holds for these BE schemes.

Note that our syntax of AtBE and properties cannot be trivially obtained from Kiayias and
Samari’s results.

We also present lower bounds on the authenticator size required for ABA by taking a sim-
ilar approach to ANO-BE’s one. Our lower bounds on the authenticator size are � (|S| · κ)

and�(N · κ) for BAwith anonymity (ANO-BA) or full anonymity (Full-ANO-BA), respec-
tively. These are asymptotically tight as there exists concrete ABA schemes proposed in [37]
that meet our lower bounds on the authenticator size. There are several broadcast authenti-
cation protocols [7, 32, 33] including TESLA [34] with constant-sized authenticators. We
cannot give a fair efficiency comparison between them and ABA since the existing protocols
aim to broadcast information to all receivers and do not allow a sender to choose an arbitrary
subset of receivers. Nevertheless, as in Anonymous BE, our results seem to show anonymity
notions require large authenticator overheads depending on the number of designated or all
recipients.
(Non-asymptotically) tight upper bounds and lower bounds In this work, we further aim
to derive (non-asymptotically) tight upper bounds and lower bounds in Anonymous BE.
First, we show that upper bounds on the ciphertext-size for ANO-BE and Full-ANO-BE are
|S|·κ+o(|S|·κ), N ·κ+o(N ·κ), respectively. Throught this paper, we call a scheme optimal
if a coefficient of a dominant term in the ciphertext-size is one. Li and Gong [24] proposed
an optimal ANO-BE scheme where the ciphertext-size is (|S| + 6) · κ . On the other hand,
there exists no optimal Full-ANO-BE scheme. The only Full-ANO-BE scheme explicitly
described is Libert et al.’s one [25], and it has ciphertexts whose size is N · |pke.ct| + |σ |.
Since any ciphertext-size in IND-CCA secure PKE must be at least 2 · κ to the best of
our knowldege, the most efficient Full-ANO-BE scheme in terms of the ciphertext-size has
ciphertexts whose size is 2N · κ + |σ |. In this paper, we propose a Full-ANO-BE scheme
where the ciphertext-size is (N +6) ·κ based on Li and Gong’s ANO-BE scheme [24]. From
our Full-ANO-BE scheme and ANO-BE scheme in [24], we show that the ciphertext-size in
ANO-BE and Full-ANO-BE are upper bounded by |S| · κ + o(|S| · κ), N · κ + o(N · κ),
respectively. A comparison of the ciphertext-size is given in Table 1.

We also show that lower bounds on the ciphertext-size for ANO-BE and Full-ANO-BE
are |S| ·κ +o(|S| ·κ), N ·κ +o(N ·κ), respectively. In computationally secure cryptographic
constructions, especially in algebraic ones, a coefficient of a dominant term in ciphertext-
sizes is greater than or equal to 1 since each parameter depends on the number of group
elements (see, for example, [39]). Therefore, the coefficient of the dominant term in our
asymptotic lower bounds can also be regarded as 1 or higher. Then, from the above upper
bounds and the asymptotic lower bounds, we also show that the ciphertext-size for ANO-BE
and Full-ANO-BE are lower bounded by |S| · κ + o(|S| · κ), N · κ + o(N · κ), respectively.

In addition, we apply a similar discussion as above to anonymous broadcast authentication
(ABA). In this paper, we propose optimal constructions of ABA with anonymity and full
anonymity, respectively. Table 2 shows a comparison of the authenticator size. Finally, via the
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Table 1 A comparison of the
ciphertext-size between
(Full-)ANO-BE schemes

Scheme |ctS | Security

[24] (|S| + 6) · κ Anonymity

[25] N · |pke.ct| + |ots.sig| Full-anonymity

Ours (N + 6) · κ Full-anonymity

Let |S| and N be the size of a recipient setS and the number of all users in
a system, respectively. |pke.ct| and |ots.sig| denote the ciphertext-size
in IND-CCA secure PKE and the signature-size in sUF-CMA secure
one-time signature, respectively. Note that Libert et al.’s scheme [25,
Sect. 3.1] meets Full-Anonymity, though the original paper [25] only
mentioned that it satisfies Anonymity

Table 2 A comparison of the
authenticator size between ABA
schemes

Scheme |cmdS | Security

[37] (2|S| + 2) · κ Anonymity

Ours (|S| + 2) · κ Anonymity

[37] (2N + 2) · κ Full-anonymity

Ours (N + 2) · κ Full-anonymity

Let |S| and N be the size of a recipient set S and the number of all users
in a system, respectively

same analysis as ANO-BE, we show that lower bounds and upper bounds on the authenticator
size for ABA to satisfy anonymity and full anonymity are |S| ·κ +o(|S| ·κ), N ·κ +o(N ·κ),
respectively.
Differences from the conference paper [22] This paper is an extended version of the con-
ference version [22]. First, since the proof of Lemma 1 in the conference version [22] has
a fatal flaw, we revisit a way to prove the lower bounds. Specifically, we restate the lemma
(see Lemma 2 in Sect. 4) in a computational-security sense, i.e., there is no probabilistic
polynomial-time adversary to find secret keys that fulfil a certain condition, while the lemma
in [22] deals with adversaries with unbounded computational power. Second, we addition-
ally show (non-asymptotically) tight lower bounds and upper bounds while the conference
version [22] covers only asymptotically tight lower bounds.

1.2 Technical overview

Kiayias and Samari’s approach [20] Kiayias and Samari provided a lower bound on the
number of sub-elements in a BE ciphertext, not the bit length of the ciphertexts. To make it
easier to deal with the sub-elements, they introduced AtBE where ciphertexts and decryption
keys are composed of atomic ciphertexts and decryption keys. In more details, a ciphertext
ctS consists of ρ atomic ciphertexts ct(1)S , . . . , ct(ρ)

S , and a decryption key for a recipient

id consists of τ atomic decryption keys sk(1)
id , . . . , sk(τ )

id , respectively. If the recipient id is

included in S, there exists at least one pair of an atomic ciphertext ct(θ)
S and decryption key

sk(γ )

id that produces a messagem (i.e., ct(θ)
S can be decrypted with sk(γ )

id ).
They then analyzed a lower bound on the number of the atomic ciphertexts in any anony-

mous AtBE scheme. More specifically, they showed in [20, Theorem 2] that “for any AtBE
scheme, if there exists a setS such that the number of atomic ciphertexts in ctS is smaller than
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|S|, then there is a successful adversary against anonymity for the AtBE scheme.” However,
the following property was implicitly assumed for AtBE in their proof:

Assumption 1 For all messages m, all privileged sets S ⊆ ID, let {ct(θ)
S }θ∈[ρ] = ctS ←

Enc(pk,m,S), where ID is the set of all recipients. For all id, id′ ∈ S, if they can decrypt the
same atomic ciphertext ct(θ)

S contained in ctS , then atomic decryption keys sk(γ )

id and sk(
γ ′)
id′

used for the decryption are identical.

Namely, they indeed proved “for any AtBE scheme, if Assumption 1 holds (i.e., the AtBE
scheme has the above property) and there exists a set S such that the number of atomic
ciphertexts in ctS is less than |S|, then there is an adversary which can break (full) anonymity
for the AtBE scheme.” However, it is difficult to check whether the above property holds for
the Anonymous BE schemes; in any existing Anonymous BEs [3, 20, 24, 25], a situation
where “any two recipients id, id′ ∈ S decrypt the same atomic ciphertext ct(θ)

S contained
in ctS” never occurs. Here, the contraposition of their theorem is “for any AtBE scheme,
if it satisfies (full) anonymity, then Assumption 1 does not hold, or the number of atomic
ciphertext in ctS is greater than or equal to |S| for all privileged set S.” In other words, the
lower bound holds only if an AtBE scheme satisfies anonymity and Assumption 1 holds. For
this reason, their proof is insufficient to show that their lower bound is asymptotically tight,
since it is unclear whether Assumption 1 holds for existing (Anonymous) BE schemes. Note
that the special property may not be removed from their proof trivially since it enables their
attacker to break (full) anonymity for the AtBE scheme.
Our approach We avoid the problem by developing Kiayias and Samari’s analysis. We
consider other properties common to existing (Anonymous) BE schemes and derive a lower
bound with them instead of the special property. To do so, we newly give a formal definition
of AtBE so that these properties can be described formally, while Kiayias and Samari only
presented AtBE in an informal way. Our AtBE allows a public key pk to be divided into
several sub-elements, called atomic public keys pk(1), . . . ,pk(	), as well as a ciphertext
and a secret key. It also has Enc and Dec which are the same as ones of BE, and Enc-at
and Dec-at algorithms to represent encryption and decryption procedures for each atomic
ciphertext in the Enc and Dec algorithms of BE, respectively. In the Enc-at, multiple atomic
public keys {pk(δ)}δ∈	′ are used to generate an atomic ciphertext ctS,id corresponding to a
recipient id in S, where	′ ⊆ 	. In theDec-at, an atomic ciphertext ctS,id is decrypted using

multiple atomic decryption keys {sk(γ )

id }γ∈�′
id
. Note that almost all (even non-Anonymous)

BE schemes [1–3, 5, 6, 15, 16, 20, 24, 25, 30, 38] indeed have these algorithms inside the
Enc and Dec. We then formalize the following four properties of our AtBE:

1. When a ciphertext has an intended recipient set S, then any recipient in S can obtain the
underlying message by decrypting at least one of the corresponding atomic ciphertexts.

2. A triplet of a recipient, recipient set, and message (id,S,m) uniquely determines the
minimum subset of atomic public keys required to generate an atomic ciphertext ctS,id.

3. A pair of a recipient and recipient set (id,S) uniquely determines the minimum subset
of atomic decryption keys required to decrypt a (correctly-generated) atomic ciphertext
ctS,id.

4. If two atomic ciphertexts ctS,id, ctS,id′ are identical, then the two corresponding mini-
mum subsets of atomic public keys generating ctS,id and ctS,id′ are also identical.

In Sect. 3.2, we show that most existing BE schemes satisfy the above four properties.
Next, we explain how to provide a lower bound on ciphertext-sizes in Anonymous BE

with those properties. In our approach, we derive a neccesary condition for AtBE schemes
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with the properties to meet (full) anonymity while Kiayias and Samari directly prove the
contraposition of “if an AtBE scheme is (full) anonymous, then the lower bound holds”.
Roughly speaking, we show the following necessary condition:

Lemma 2 (Informal, see Sect. 4) Suppose an AtBE scheme satisfies the four properties, and
fix an arbitrary recipient set |S| and an arbitrary ciphertext ctS . Then, though a part of
atomic decryption keys might overlap among recipients in |S|, the minimum subsets of atomic
decryption keys used to decrypt ctS are different for all designated recipients.

We then prove that “for any AtBE scheme, if the lower bound does not hold, then the
neccesary condition also does not hold (i.e., the AtBE does not meet anonymity)”. See
Theorem 1 in Sect. 4 for the formal statement. Here, instead of Assumption 1, we assume
the following property that most Anonymous BEs have [3, 24, 25] to prove Theorem 1:

Assumption 2 For any S ⊂ ID, any id ∈ S, and any m, let pk′ be a subset of atomic
public keys that produces ctS,id ← Enc-at(pk′,S,m, id). Then, pk′ uniquely determines a
minimum subset of atomic decryption keys required to decrypt ctS,id.

Note that, unlike Assumption 1, one can easily check if Assumption 2 holds for all existing
Anonymous BEs [3, 24, 25]. Also, we handle the above property as an assumption since
it does not hold for most of existing non-Anonymous BE schemes. Finally, we prove that
for any AtBE scheme satisfies the four properties and Assumption 2, if there exists a set S
such that the number of atomic ciphertexts in ctS is smaller than |S|, then it contradicts the
neccesary condition (Lemma 3 in Sect. 4).

2 Preliminaries

2.1 Notations

For all natural number n ∈ N, {1, . . . , n} is denoted by [n]. For a finite set X , we denote
by |X | the cardinality of X . For finite sets X ,Y , let X � Y be the symmetric difference
X � Y := (X\Y) ∪ (Y\X ). For any finite set X and any natural number N ∈ N, let
2X≤N := {Y ⊂ X | |Y| ≤ N } be the family of subsets of X whose cardinality is at most N
(i.e., a part of a power set of X ). For any algorithm A, out ← A(in) means that A takes in as

input and outputs out. For any set X , if we write x
U← X , x is chosen uniformly at random

from X . For any distribution D, if we write d
U← D, d is chosen uniformly at random from

D that is uniform over some set. Throughout our paper, we denote a security parameter by
κ and consider probabilistic polynomial-time (PPT). For any element x ∈ {0, 1}∗, let |x | be
the number of bits of x . We say a positive-valued function negl(·) is negligible if for any
polynomial poly(·), there exists some constant κ0, such that negl(κ) < 1/poly(κ) for all
κ ≥ κ0.

2.2 Prime order bilinear groups and cryptographic assumption

Prime-order groupAgroup generatorGGen is a PPT algorithmwhich takes security param-
eter 1κ as input and outputs a description G := (p,G,g). Here G is a finite cyclic group of
prime order p and g is a random generator ofG. For a ∈ Zp and a matrixA = (ai j ) ∈ Z

m×n
p ,

we define the implicit representation [9] as [a] := ga ∈ G and [A] = (gai j ) ∈ G
m×n .
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Prime-order bilinear groups A group generator PGGen is a PPT algorithm which takes
security parameter 1κ as input and outputs a descriptionPG := (p,G1,G2,GT , e,g1,g2) of
bilinear groups. HereG1,G2,GT are finite cyclic groups of prime orderp and e : G1×G2 →
GT is a (non-degenerate, efficiently computable) bilinear map. g1 ∈ G1 and g2 ∈ G2 are
random generators ofG1 andG2, and gT := e(g1,g2) will be a generator of groupGT . The
bilinear map e is called symmetric in the case of G1 = G2, and asymmetric in the case of
G1 = G2. In the case of symmetric, we let the description bePG := (p,G,GT , e,g), where
e : G × G → GT . In this paper, unless otherwise noted, we consider case G1 = G2. For
a ∈ Zp , we define the implicit representation [9] as [a]s := gas ∈ Gs where s ∈ {1, 2, T }. We
let e([A]1 , [B]2) := [AB]T for matrices A and B when the multiplication is well-defined.5

Cryptographic assumptions For any k ∈ N, we call Dk a matrix distribution if it outputs

full-rank matrices in Z(k+1)×k
p in polynomial time. We assume that for all A

U← Dk , the first
k rows of A form an invertible matrix.

We will use Dk-Matrix Diffie–Hellman (Dk-MDDH) assumption [9] and Dk-Kernel
Matrix Diffie–Hellman (Dk-KerMDH) assumption [29] to construct Full-ANO-BE scheme.
As discussed in [9] and [29], these assumptions are known to be standard and reasonable,
and widely used to construct PKE [13, 14, 18, 26] and IBE [4, 17, 19, 23]. They are also used
in [24] in the context of Anonymous Broadcast Encryption.
Assumption1 (Dk-MDDH) [9]We say that theDk-Matrix Diffie–Hellman assumption holds
relative to GGen, if for any PPT algorithm A, the following advantage function is negligible
in κ .

Advmddh
A,G (1κ ) := |Pr [A(G, [A] , [As]) = 1] − Pr [A(G, [A] , [u] = 1]|

where G U← GGen(1κ ),A
U← Dk, s

U← Z
k
p , and u

U← Z
k+1
p .

Assumption2 (Dk-KerMDH) [29] Let s ∈ {1, 2}. We say that theDk-Kernel Matrix Diffie–
Hellman Assumption holds relative to PGGen, if for any PPT algorithm A, the following
advantage function is negligible in κ .

AdvkddhA,Gs
(1κ ) :=

∣
∣
∣
∣
Pr

[

A�a⊥ ∧ a⊥ = 0

∣
∣
∣
∣

[

a⊥]

3−s
← A(G, [A]s)

]∣
∣
∣
∣

where PG U← PGGen(1κ ),A
U← Dk .

2.3 Cryptographic primitives

Symmetric key encryption A symmetric key encryption (SKE) scheme with a key space K
consists of two algorithms �SKE = (E,D):

• c ← EK(m): the encryption algorithm generates a ciphetext c of the message m under
the secret key K ∈ K. Here, K is a secret key space.

• m ← DK(c): the decryption algorithm decrypts the ciphertext c using K, and returns
m ∈ M ∪ {⊥}.

Correctness For all K ∈ K and all messagem, we have DK(EK(m)) = mwith overwhelming
probability.

5 In the case of symmetric, e([B]2 , [A]1) := [BA]T is also allowed.
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Definition 1 (Semantic Security) A SKE scheme is semantically secure, if for all PPT adver-
sary A, the following advantage function is negligible in κ .

AdvseA (κ) :=

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣
b′ = b

∣
∣
∣
∣
∣
∣
∣
∣

(m0,m1) ← A(κ,K),

K
U← K, b

U← {0, 1},
c∗ ← EK(mb),

b′ ← A(1κ ,K, c∗)

⎤

⎥
⎥
⎦

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣

.

Furthermore, we require the symmetric encryption to be key-binding [12]. Namely, for any
message m and any secret key K ∈ K, there exists no key K′ ∈ K such that K′ = K and
DK′(EK(m)) =⊥.
Collision-resilient hash function Let H be a family of hash functions H : X → Y . Here,
X := Xκ ,Y := Yκ are finite sets, respectively. H is said to be collision-resistant if, for all
PPT algorithm A, the following advantage function is negligible in κ .

AdvhashA (κ) := Pr

[

H(x) = H(y) ∧ x = y

∣
∣
∣
∣
H

U← H, (x, y) ← A(1κ ,H)

]

.

Message authentication code A message authentication code (MAC) scheme consists of
three algorithms �MAC = (MAC.Gen,MAC.Auth,MAC.Vrfy):

• K ← MAC.Gen(1κ ): the key generation algorithm takes secruity parameter κ as inputs,
and outputs a symmetric key K.

• τ ← MAC.Auth(K,m): the authentication algorithm takes K and a message m ∈ M as
inputs, and outputs an authentication tag τ ∈ T . Here,M is a message space and T is a
tag space.

• �/ ⊥← MAC.Vrfy(K, τ,m): the verification algorithm takes K, τ and m as inputs, and
outputs � (accept) or ⊥ (reject).

Correctness For all κ ∈ N, all K ← MAC.Gen(1κ ) and all message m ∈ M, we have
MAC.Vrfy(K,MAC.Auth(K,m)) → � with overwhelming probability.
We define unforgeability against chosen message attack (UF-CMA) in a multi-key set-
ting [28]. Let A be any PPT adversary against UF-CMA security. We consider an experiment
ExpUF-CMA

�MAC,A
(κ) between a challenger C and A as follows.

ExpUF-CMA
�MAC,A

(κ)

C runs MAC.Gen(1κ ) to get (K1, . . . , K(κ)). Let M̃, I be empty sets and flag be a flag,
where flag is initialized as 1. We denote M̃ as a set of messages used for authentication
queries. I as a set of indexes used for key derivation queries. A may adaptively issue an
authentication query (id,m) ∈ (κ) × M to Authentication Oracle Auth, and Auth returns
τ ← MAC.Auth(Kid,m), then adds (id,m) to M̃. Also, A may adaptively issue a key
derivation query id ∈ (κ) to Key Derivation Oracle Corr, and Corr returns Kid, then adds
id to I. Finally, A issues a verification query (m∗, τ ∗, id∗) to Verification Oracle Vrfy. At
this point, if id∗ ∈ I or (id∗,m∗) ∈ M̃ or ⊥ ← MAC.Vrfy(Kid∗ , τ ∗,m∗) holds, then C sets
flag := 0 For simplicity, A is restricted to issue this query only once. At some point (right
after some verification query without loss of generality), A terminates the experiment, and C
sets flag as the output of ExpUF-CMA

�MAC,A
(κ).

Definition 2 (UF-CMA) We say �MAC is UF-CMA secure if for any PPT adversary A, for
all sufficiently-large κ ∈ N, it holds that AdvUF-CMA

�MAC,A(κ) < negl(κ), where AdvUF-CMA
�MAC,A(κ) :=

Pr
[

ExpUF-CMA
�MAC,A

(κ) → 1
]

.
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2.4 Core Lemma

We will use the core lemma [21], which was originally used to prove adaptive soundness of
quasi-adaptive non-interactive zero-knowledge (QANIZK) proofs, to prove security of our
Full-ANO-BE scheme in Sect. 5. We review a slightly simplified version of the core lemma
below since it is sufficient for our purpose.

Lemma 1 (Core lemma [21]) Let k ∈ N. For any A,B ∈ Z
(k+1)×k
p and any (possibly

unbounded) adversary A, we have

Pr

[

u /∈ span(A) ∧ α = α∗
∧π� = u�(X + α · Y)

∣
∣
∣
∣

X,Y
U← Z

(k+1)×(k+1)
p

(u, α,π) ← AO(·)(A�X,A�Y,XB,YB)

]

≤ 1

p
,

where (u, α,π) ∈ Z
k+1
p × Zp × Z

k
p, the span span(A) of a matrix A = (a1, . . . , ak) means

the span of the vectors a1, . . . , ak , A can issue α∗ ∈ Zp to oracleO, which returnsX+α∗ ·Y,
only once.

2.5 Broadcast encryption

We define Broadcast Encryption (BE) and its security notions based on [25, 37]. In this paper,
we assume that the maximum number of recipients N in BE is determined at the time of
setup and an arbitrary set of recipients can be specified at the time of encryption.
Syntax A BE scheme �BE consists of four algorithms (Setup, Join, Enc,Dec).

1. (mk,pk) ← Setup(1κ , N ): a probabilistic algorithm for setup. It takes a security param-
eter 1κ and the maximum number of recipients N ∈ N as input, and outputs a master
secret key mk and a public key pk.

2. skid ← Join(mk, id): a decryption key generation algorithm. It takesmk and an identifier
id ∈ ID, as input, and outputs a decryption key skid for id. Here, ID is a set of all possible
identifiers, and |ID| := poly(κ) for some polynomial poly(·).

3. ctS ← Enc(pk,m,S; r): an encryption algorithm. It takes pk, a message m ∈ M,
randomness r ∈ R, and a privileged set S ⊆ ID as input, and outputs a ciphertext
ctS ∈ CT , whereM is a message-space, CT is a ciphetex-space andR is a randomness-
space. It is also possible to omit r from the input.

4. m ← Dec(skid, ctS): a decryption algorithm. It takes skid and ctS as inputs, and outputs
m ∈ M ∪ {⊥}.

To describe properties of the existing Anonymous BE schemes, we regard Join as a deter-
ministic algorithm in this paper.6

Correctness For all κ, N ∈ N, all mk ← Setup(1κ , N ), all m ∈ M, all r ∈ R, all S ⊆ ID
such that |S| ≤ N , and all id ∈ S, we have m ← Dec(Join(mk, id), Enc(pk,m,S; r)) with
overwhelming probability.
Chosen ciphertext security and anonymity We define anonymity and indistinguishability
against chosen ciphertext attack (Full-ANO-IND-CCA) for BE. We consider two anonymity
notions, Full-ANO-IND-CCA [20, 37] and ANO-IND-CCA [24, 25] security. Let A be any
PPT adversary against Full-ANO-IND-CCA security. Following [20, 24, 25, 37], we consider
an experiment ExpFull-ANO-IND-CCA

�BE,A
(κ, N ) between a challenger C and A as follows.

6 It does not affect our analysis since we can covert any probabilistic Join algorithm into a deterministic one
by using a pseudo-random function.

123

2532



Tight lower bounds of anonymous BE and BA

ExpFull-ANO-IND-CCA
�BE,A

(κ, N ) C randomly chooses b ∈ {0, 1}. C runs Setup(1κ , N ) to get mk

and randomly chooses b ∈ {0, 1}. LetD, CD be empty sets.We denoteD as a set of recipients
currently participating in the protocol, and CD as a set of identifiers of recipient from which
A obtained its decryption key, respectively. A may adaptively issue the following queries to
C.

• Key-generation Query: Upon a query id ∈ ID from A, C adds id to D and generates
skid ← Join(mk, id). Note that A obtains nothing, and that A is allowed to make this
query at most N times.

• Corruption Query: Upon a query id ∈ D from A, C adds id to CD, and returns skid to A.

• Challenge Query: Upon a query (m0,m1,S0,S1) ∈ M2 ×
(

2D≤N

)2
from A, C runs

ct∗S ← Enc(pk,mb,Sb) and returns ctS to A. A is allowed to make this query only.
• DecryptionQuery: Upon a query (id, ctS) ∈ D×CT fromA returnsm ← Dec(skid, ctS)

to A. If ct∗S is queried, then returns ⊥.

At some point, A outputs b′. If all of the following conditions hold C then sets 1 as the output
of ExpFull-ANO-IND-CCA

�BE,A
(κ, N ):

• b′ = b
• |m0| = |m1|
• (S0 � S1) ∩ CD = ∅
• If (S0 � S1) ∩ CD = ∅, then m0 = m1

Otherwise, C then sets 0. C terminates the experiment.
We can also define ANO-IND-CCA with an experiment ExpANO-IND-CCA

�BE,A
(κ, N ) which is

the same as ExpFull-ANO-IND-CCA
�BE,A

(κ, N ) except for the following additional condition of the
restriction for challenge query: |S0| = |S1|.
Definition 3 ((Full-)ANO-IND-CCA) We say �BE is X-CCA secure (X ∈ {Full-ANO-
IND, ANO-IND}) secure if for any PPT adversary A, for all sufficiently-large κ ∈ N

and all N ∈ N, it holds that AdvX
�BE,A(κ, N ) < negl(κ), where AdvX

�BE,A(κ, N ) :=
∣
∣
∣Pr
[

ExpX
�BE,A

(κ, N ) → 1
]

− 1
2

∣
∣
∣.

The third and fourth conditions are intended to prevent the trivial attack when a decryption
key of a user id ∈ S0 � S1 is corrupted.
We also define IND-CCA with an experiment ExpIND-CCA

�BE,A
(κ, N ) which is the same as

ExpANO-IND-CCA
�BE,A

(κ, N ), except for the following additional condition of the restriction for
challenge query: S0 = S1.
Definition 4 (IND-CCA) We say �BE is IND-CCA secure if for any PPT adversary A, for
all sufficiently-large κ ∈ N and all N ∈ N, it holds that AdvIND-CCA

�BE,A (κ, N ) < negl(κ), where

AdvIND-CCA
�BE,A (κ, N ) :=

∣
∣
∣Pr
[

ExpIND-CCA
�BE,A

(κ, N ) → 1
]

− 1
2

∣
∣
∣.

Also, (Full-)ANO-CCA can be defined with experiments ExpANO-CCA
�BE,A

(κ, N ) and

ExpFull-ANO-CCA
�BE,A

(κ, N ) which are the same as ExpANO-IND-CCA
�BE,A

(κ, N ) and

ExpFull-ANO-IND-CCA
�BE,A

(κ, N , ) respectively, except for the following additional condition of
the restriction for challenge query:m0 = m1.

Definition 5 ((Full-)ANO-CCA) We say �BE is X-CCA secure (X ∈ {Full-ANO, ANO})
secure if for any PPT adversary A, for all sufficiently-large κ ∈ N and all N ∈ N, it holds that

AdvX
�BE,A(κ, N ) < negl(κ), where AdvX

�BE,A(κ, N ) :=
∣
∣
∣Pr
[

ExpX
�BE,A

(κ, N ) → 1
]

− 1
2

∣
∣
∣.
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2.6 Anonymous broadcast authentication

We define Anonymous Broadcast Authentication (ABA) and its security notions based
on [37].
Syntax An Anonymous Broadcast Authentication scheme �ABA consists of four algorithms
(Setup, Join,Auth,Vrfy).

1. ak ← Setup(1κ , N ): a probabilistic algorithm for setup. It takes a security parameter 1κ

and the maximum number of recipients N ∈ N as input, and outputs authentication key
ak.

2. vkid ← Join(ak, id): a verification key generation algorithm. It takes ak and an identifier
id ∈ ID, as input, and outputs verification key vkid for id. Here, ID is a set of all possible
identifiers, and |ID| := poly(κ) for some polynomial poly(·).

3. cmdS ← Auth(ak,m,S; r): an authentication algorithm. It takes ak, a messagem ∈ M,
a randomness r ∈ R, and a privileged set S ⊆ ID as input, and outputs ciphertext cmdS ,
where M is a message space and R is a randomness space. It is also possible to omit r
from the input.

4. m/⊥ ← Vrfy(vkid, cmdS): a verification algorithm. It takes vkid and cmdS as inputs,
and outputsm ∈ M (accept) or ⊥ (reject).

To describe properties of the existing ABA scheme, we regard Join as a deterministic algo-
rithm in this paper.
Correctness For all κ, N ∈ N, all ak ← Setup(1κ , N ), all m ∈ M, all r ∈ R, and all
S ⊆ ID such that |S| ≤ N , if id ∈ S, then m ← Vrfy(Join(ak, id),Auth(ak,m,S)) holds
with overwhelming probability. Otherwise, ⊥ ← Vrfy(Join(ak, id),Auth(ak,m,S)) holds
with overwhelming probability.
Unforgeability We define unforgeability against chosen message attack (UF-CMA) for
ABA. Let A be any PPT adversary against UF-CMA security. We consider an experiment
ExpUF-CMA

�ABA,A
(κ, N ) between a challenger C and A.

ExpUF-CMA
�ABA,A

(κ, N )

C runs Setup(1κ , N ) to get ak. Let D, CD,Ma,Mv be empty sets and flag be a flag,
where flag is initialized as 0. We denoteD as a set of recipients currently participating in the
protocol, and CD as a set of identifiers of recipient fromwhich A obtained its verification key,
respectively. And we denote Ma,Mv as sets of messages used for authentication queries
and verification queries, respectively. A may adaptively issue the following queries to C.

• Key-generation Query: Upon a query id ∈ ID from A, C adds id to D and generates
vkid ← Join(ak, id). Note that A obtains nothing, and that A is allowed to make this
query at most N times.

• Corruption Query: Upon a query id ∈ D from A, C adds id to CD, and returns vkid to A.
• Authentication Query: Upon a query (m,S) ∈ M× 2D≤N from A, C addsm toMa, and

returns cmdS ← Auth(ak,m,S) toA ifm is not used for a verification query (m /∈ Mv).
• Verification Query: Upon a query (m,S, cmdS) ∈ M × 2D≤N × T from A, C runs

Vrfy(vkid, cmdS) and returns its output to A. C addsm toMv. If there exists at least one
user id ∈ S such that all of the following conditions hold, then C sets flag := 1:

– Vrfy(vkid, cmdS) = m,

– id /∈ CD,

– m /∈ Ma.

A is allowed to make this query only once.
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At some point (right after some verification query without loss of generality), A terminates
the experiment, and C sets flag as the output of ExpUF-CMA

�ABA,A
(κ).

Definition 6 (Unforgeability) We say �ABA is UF-CMA secure if for any PPT adversary A,
for all sufficiently-large κ ∈ N and all N ∈ N, it holds that AdvUF-CMA

�ABA,A (κ, N ) < negl(κ),

where AdvUF-CMA
�ABA,A (κ, N ) := Pr

[

ExpUF-CMA
�ABA,A

(κ, N ) → 1
]

.

Anonymity We define two kinds of anonymity for ABA, full anonymity (Full-ANO-CMA)
and anonymity (ANO-CMA). In this paper, we denote ABA with anonymity and ABA with
full anonymity as ANO-BA and Full-ANO-BA, respectively. Let A be any PPT adversary
against Full-ANO-CMA security.We consider an experiment ExpFull-ANO-CMA

�ABA,A
(κ, N ) between

a challenger C and A.
ExpFull-ANO-CMA

�ABA,A
(κ, N )

C randomly chooses b ∈ {0, 1}. C runs Setup(1κ , N ) to get ak and randomly chooses b ∈
{0, 1}. LetD, CD,Ma be empty sets.WedenoteD as a set of recipients currently participating
in the protocol, and CD as a set of identifiers of recipient fromwhichA obtained its verification
key, respectively. And we denote Ma as a set of messages used for authentication queries.
A may adaptively issue the following queries to C.

• Key-generation Query: Upon a query id ∈ ID from A, C adds id to D and generates
vkid ← Join(ak, id). Note that A obtains nothing, and that A is allowed to make this
query at most N times.

• Corruption Query: Upon a query id ∈ D from A, C adds id to CD, and returns vkid to A.
• Authentication Query: Upon a query (m,S) ∈ M× 2D≤N from A, C addsm toMa, and

returns cmdS ← Auth(ak,m,S) to A.

• Challenge Query: Upon a query (m,S0,S1) ∈ M ×
(

2D≤N

)2
from A, C runs cmdSb ←

Auth(ak,m,Sb) and returns cmdSb toA.A is allowed tomake this query only once under
the restriction that (S0 � S1) ∩ CD = ∅,m /∈ Ma.

At some point, A outputs b′. If b′ = b, C then sets 1 as the output of ExpFull-ANO-CMA
�ABA,A

(κ, N ).
Otherwise, C then sets 0. C terminates the experiment.
We can also define ANO-CMA with an experiment ExpANO-CMA

�ABA,A
(κ, N ) which is the same

as ExpFull-ANO-CMA
�ABA,A

(κ, N ) except for the following additional condition of the restriction for
challenge query: |S0| = |S1|.

Definition 7 (Anonymity) We say �ABA is X secure (X ∈ {Full-ANO-CMA, ANO-CMA})
if for any PPT adversary A, for all sufficiently-large κ ∈ N and all N ∈ N, it holds that

AdvX
�ABA,A(κ, N ) < negl(κ), where AdvX

�ABA,A(κ, N ) :=
∣
∣
∣Pr
[

ExpX
�ABA,A

(κ, N ) → 1
]

− 1
2

∣
∣
∣.

3 Atomic broadcast encryption

In this section, we give a formal syntax of Atomic Broadcast Encryption (AtBE) to formally
describe properties satisfied by existing BE schemes. These properties are used to formalize
properties of existing Anonymous BE schemes and derive lower bounds. We further provide
security definitions for AtBE.
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3.1 Syntax of AtBE

Our AtBE aims to describe encryption and decryption for each recipient in a designated
set performed inside the Enc and Dec algorithms of BE. Towards that aim, ciphertexts,
decryption keys, and public keys are divided into multiple sub-elements. An AtBE scheme
�At-BE consists of six algorithms (Setup-at, Join-at, Enc, Enc-at,Dec,Dec-at), where the
Enc and Dec are the same as ones of BE.

1. (mk, {pk(δ)}δ∈	) ← Setup-at(1κ , N ): a probabilistic algorithm for setup. It takes a
security parameter 1κ and the maximum number of receivers N ∈ N as input, and
outputs a master secret keymk and a public key pk consisting of |	| atomic public keys
{pk(δ)}δ∈	.

2. {sk(γ )

id }γ∈�id ← Join-at(mk, id): a decryption key generation algorithm. It takesmk and
an identifier id ∈ ID, as input, and outputs a decryption key skid for id consisting of
|�id| atomic decryption keys {sk(γ )

id }γ∈�id .

3. ctS,id ← Enc-at({pk(δ)}δ∈	′ ,S,m, id; r): an atomic encryption algorithm. It takes a
subset of the atomic public key {pk(δ)}δ∈	′ , a privileged set S ⊆ ID, a messagem ∈ M,
an identifier id ∈ ID, and randomness r as input, and outputs an atomic ciphertext ctS,id,
where 	′ ⊆ 	.

4. m ← Dec-at({sk(γ )

id }γ∈�′
id
, ctS,id): an atomic decryption algorithm. It takes a subset of

atomic decryption keys {sk(γ )

id }γ∈�′
id
, and ctS,id as input, and outputs a message m ∈

M ∪ {⊥}, where �′
id ⊆ �id.

The Setup-at and Join-at are essentially equivalent to the Setup and Join in BE respec-
tively, except for differences that public and decryption keys are explicitly divided into
multiple sub-elements. As in the case of the Join in BE, we regard the Join-at as being a
deterministic algorithm. On the other hand, the Enc and Dec include the Enc-at and Dec-at
as sub-algorithms, respectively, though they might contain procedures other than the sub-
algorithms. Therefore, AtBE includes both (Enc,Dec) and (Enc-at,Dec-at).

We require a natural property for AtBE that an atomic ciphertext ctS,id contained in

ciphertext ctS will be correctly decrypted by a decryption key {sk(γ )

id }γ∈�id of a recipient
id ∈ S as follows:
Atomic correctness Fix any κ, N ∈ N, any (mk, {pk(δ)}δ∈	) ← Setup-at(1κ , N ), any

S ⊆ ID such that |S| ≤ N , any m ∈ M, any {sk(γ )

id }γ∈�id ← Join-at(mk, id), any r
U← R.

Let ctS ← Enc({pk(δ)}δ∈	,m,S; r). Then, there exists some 	′ ⊆ 	 for every id ∈ S, such
that ctS,id ← Enc-at({pk(δ)}δ∈	′ , id,m,S; r) and ctS,id ∈ ctS . Moreover, the following
conditions hold with overwhelming probability:

• Dec({sk(γ )

id }γ∈�id , ctS) → m.

• Dec-at({sk(γ )

id }γ∈�′
id
, ctS,id) → m for some �′

id ⊆ �id.

Namely, the above guarantees that (1) a BE ciphertext for S contains AtBE ciphertexts
for all id ∈ S; (2) the BE ciphertext can be correctly decrypted by the Dec, which implies
Correctness of BE; and (3) every AtBE ciphertext can be correctly decrypted by the Dec-at.
Therefore, Atomic Correctness of AtBE includes Correctness of BE. Thus, we can say that
a BE scheme is called an AtBE scheme if the Enc and Dec includes the Enc-at and Dec-at
(satisfying the above Atomic Correctness), respectively.
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3.2 Properties in existing BE schemes

As described in Sect. 1.2, Kiayias and Samari [20] assumed a special property forAnonymous
BE schemes in their analysis, and it is difficult to checkwhether the property holds for existing
Anonymous BE schemes. Therefore, our goal is to replace that property with a natural one
that could be checked if it holds for existing Anonymous BE schemes. In order to achieve
this, we describe four properties that holds in most of existing (i.e., both non-Anonymous
and Anonymous) BE schemes in this section. In particular, we show that they hold for the
pairing-based BE scheme of Boneh et al. [5]. The four properties are described as follows:

Property 1 When a ciphertext has intended recipient set S, then any recipient in S can obtain
the underlying message by decrypting at least one of the corresponding atomic ciphertexts.
More formally, ciphertext ctS output from the Enc algorithmconsists of the atomic ciphertexts
ctS,id obtained by the Enc-at algorithm, and other elements.7 In other words, let a set of
atomic ciphertext contained in ctS be {ctS,id}id∈S , and let the union of {ctS,id}id∈S and other

elements contained in ctS be {ct(θ)
S }θ∈[βS ], it holds that {ctS,id}id∈S ⊆ {ct(θ)

S }θ∈[βS ] ⊆ ctS .
Here, the randomness r input to Enc-at is the same when generating each atomic ciphertext in
{ctS,id}id∈S . Also, inside the Dec algorithm, the Dec-at algorithm takes an atomic ciphertext
and a set of atomic decryption keys as input, and outputs amessage. If ctS is a valid ciphertext,
then there is an atomic ciphertext ct(θ)

S in ctS that can be decrypted using a subset of atomic
decryption keys of a recipient id in S. Formally, we require the following property for AtBE
�At-BE:

For all κ, N ∈ N, all (mk, {pk(δ)}δ∈	) ← Setup-at(1κ , N ), allm ∈ M, all S ⊆ ID such

that |S| ≤ N , all id ∈ ID, all {sk(γ )

id }γ∈�id ← Join-at(mk, id), all r
U← R, all {ct(θ)

S }θ∈[βS ] ⊆
ctS ← Enc({pk(δ)}δ∈	,m,S; r), if id ∈ S, then for some �′

id ⊆ �id, there exists θ ∈ [βS ]
such that m ← Dec-at({sk(γ )

id }γ∈�′
id
, ct(θ)

S ) with overwhelming probability. If id /∈ S, then
for all �′

id ⊆ �id, there is no θ ∈ [βS ] such that m ← Dec-at({sk(γ )

id }γ∈�′
id
, ct(θ)

S ) with
overwhelming probability.

Property 2 A triplet of recipient, recipient set, and message (id,S,m) uniquely determines
the minimum subset of atomic public keys required to generate an atomic ciphertext ctS,id.

More formally, when generating ctS,id such thatm ← Dec-at({sk(γ )

id }γ∈�′
id
, ctS,id) for some

γ ∈ �′
id, let 	∗

id,S,m be the minimum subset of atomic public keys required for input to
Enc-at. In this case, for any S ⊂ ID, any id ∈ S, and any m,∈ M, 	∗

id,S,m is uniquely
determined by pairs of (id,S,m) to input to Enc-at.

Property 3 A pair of recipient and recipient set (id,S) uniquely determines the minimum
subset of atomic decryption keys required to decrypt a (correctly-generated) atomic cipher-
text ctS,id. More formally, when m ← Dec-at({sk(γ )

id }γ∈�′
id
, ctS,id) holds, let �∗

id,S be the
minimum subset of atomic decryption keys required for input to the Dec-at. In this case, for
any S ⊂ ID and any id ∈ S, �∗

id,S is uniquely determined by pairs of (id,S) to input to the
Enc-at when generating ctS,id.

Property 4 If two atomic ciphertexts ctS,id, ctS,id′ are identical, then the two corre-
sponding minimum subsets of atomic public keys generating ctS,id and ctS,id′ are

also identical. More formally, for all (mk, {pk(δ)}δ∈	) ← Setup(1κ , N ), id, id′ ∈
7 The “other elements” indicate, e.g., a signature for atomic ciphertexts (found in [25])
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ID, all S ⊂ ID such that {id, id′} ⊆ S, all m ∈ M, r ∈ R, all ctS,id ←
Enc-at({pk(δ)}δ∈	∗

id,S,m
, id,m,S; r), ctS,id′ ← Enc-at({pk(δ′)}δ′∈	∗

id′,S,m
, id′,m,S; r), if

ctS,id = ctS,id′ holds, thenwe have {pk(δ)}δ∈	∗
id,S,m

= {pk(δ′)}δ′∈	∗
id′,S,m

with overwhelming

probability.

We show that the BE scheme in [5] meets Properties 1, 2, 3 and 4. in Appendix A. In
addition, we can similarly show that the existing (both non-Anonymous and Anonymous)
BE schemes [1–3, 6, 15, 16, 24, 25, 30, 38] satisfy Properties 1, 2, 3 and 4 as well, thus it is
reasonable to assume Properties 1, 2, 3 and 4 in this paper.

3.3 Security definitions for AtBE

We define chosen ciphertext security and anonymity for AtBE in the same way as in BE.
In the following, we give definitions of anonymity and indistinguishability against chosen
ciphertext attacks for AtBE ((Full-)ANOat-IND-CCA), IND-CCA (INDat-CCA) and (full)
anonymity ((Full-)ANOat-CCA).

Security games for AtBE are the same as those for BE except that an attacker obtains
explicitly-divided public keys, decryption keys, and a challenge ciphertext. Essentially, there
is no difference in the information the attacker obtains between security games for BE and
those for AtBE. Therefore, we consider (Full-)ANOat-IND-CCA, INDat-CCA and (Full-
)ANOat-CCA defined below to be equivalent security notions as (Full-)ANO-IND-CCA,
IND-CCA and (Full-)ANO-CCA, respectively.
Chosen ciphertext security and anonymity for AtBE Let A be any PPT adversary
against Full-ANOat-IND-CCA security. We define Full-ANOat-IND-CCA with an experi-
ment ExpFull-ANOat-IND-CCA

�At-BE,A
which is the same as ExpFull-ANO-IND-CCA

�BE,A
except for the following

changes to key-generation query, corruption query:

• Key-generation Query: Upon a query id ∈ ID from A, C adds id to D and generates
{sk(γ )

id }γ∈�id ← Join-at(mk, id), not skid ← Join(mk, id).

• Corruption Query: Upon a query id ∈ D fromA, C adds id to CD, and returns {sk(γ )

id }γ∈�id

to A, not skid.

We can also define ANOat-IND-CCA with an experiment ExpANOat-IND-CCA
�At-BE,A

(κ, N ) which is

the same as ExpFull-ANOat-IND-CCA
�At-BE,A

(κ, N ) except for the following additional condition of the
restriction for challenge query: |S0| = |S1|.
Definition 8 ((Full-)ANOat-IND-CCA)We say�At-BE is X-CCA secure (X ∈ {Full-ANOat-
IND, ANOat-IND}) secure if for any PPT adversary A, for all sufficiently-large κ ∈ N

and all N ∈ N, it holds that AdvX
�At-BE,A(κ, N ) < negl(κ), where AdvX

�At-BE,A(κ, N ) :=
∣
∣
∣Pr
[

ExpX
�At-BE,A

(κ, N ) → 1
]

− 1
2

∣
∣
∣.

We also define INDat-CCA with an experiment ExpINDat-CCA
�At-BE,A

(κ, N ) which is the same as

ExpFull-ANOat-IND-CCA
�At-BE,A

(κ, N ), except for the following additional condition of the restriction
for challenge query: S0 = S1.

Definition 9 (INDat-CCA)We say�At-BE is INDat-CCA secure secure if for any PPT adver-
sary A, for all sufficiently-large κ ∈ N and all N ∈ N, it holds that AdvINDat-CCA

�At-BE,A (κ, N ) <

negl(κ), where AdvINDat-CCA
�At-BE,A (κ, N ) :=

∣
∣
∣Pr
[

ExpINDat-CCA
�At-BE,A

(κ, N ) → 1
]

− 1
2

∣
∣
∣.
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Also, (Full-)ANOat-CCA can be defined with experiments ExpFull-ANOat-CCA
�At-BE,A

(κ, N ) and

ExpANOat-CCA
�At-BE,A

(κ, N ) which are the same as ExpFull-ANOat-IND-CCA
�At-BE,A

(κ, N ) and

ExpANOat-IND-CCA
�At-BE,A

(κ, N ) respectively, except for the following additional condition of the
restriction for challenge query:m0 = m1.

Definition 10 ((Full-)ANOat-CCA) We say �At-BE is X-CCA secure (X ∈ {Full-ANOat,
ANOat}) secure if for any PPT adversary A, for all sufficiently-large κ ∈ N and
all N ∈ N, it holds that AdvX

�At-BE,A(κ, N ) < negl(κ), where AdvX
�At-BE,A(κ, N ) :=

∣
∣
∣Pr
[

ExpX
�At-BE,A

(κ, N ) → 1
]

− 1
2

∣
∣
∣.

4 Asymptotic lower bounds in ANO-BE

We derive lower bounds for AtBE schemes with ANOat-CCA security and Full-ANOat-
CCA security. First, we define a property assumed for AtBE schemes and show that it holds
for the ANO-BE scheme of Libert et al. [25]. Then, we derive lower bounds ANO-BE and
Full-ANO-BE with the property described in Sect. 4.1. In the following analysis, we assume
that an AtBE scheme satisfies INDat-CCA security, although this is not explicitly stated.

4.1 A property of ANO-BE and Full-ANO-BE

In order to derive lower bounds for ANO-BE and Full-ANO-BE, we assume a property
that “a minimum subset of atomic decryption keys used to decrypt ciphertexts is uniquely
determined by a subset of public keys used to generate the ciphertext.” Specifically, we
consider the following property for both ANO-BE and Full-ANO-BE (See Sect. 1.2 for the
intuitive definition.):

Assumption 2When (mk, {pk(δ)}δ∈	) ← Setup(1κ , N ) is generated, we denote PK∗ as
a set of all atomic public keys, namely PK∗ := {pk(δ)}δ∈	. And, when {sk(γ )

id }γ∈�id ←
Join-at(mk, id) is generated, SK∗ denotes a family of the minimum subsets of atomic
decryption keys to be input to the Dec-at, namely SK∗ := {{sk(γ )

id }γ∈�∗
id,S }id∈ID,S⊆ID.

Here, we note that SK∗ is uniquely determined, since Join-at is a deterministic algorithm.
At this time, for all id ∈ ID, all S ⊆ ID, all m ∈ M, all r ∈ R, all pk′ ∈ 2PK∗

, all
ctS,id ← Enc-at(pk′, id,m,S; r), a set of atomic decryption keys sk′ ∈ SK∗ ∪ {⊥} such that
m ← Dec-at(sk′, ctS,id) is uniquely determined by the set of atomic public keys pk′.

ANO-BE schemes satisfying the above property include Libert et al.’s scheme [25], which
is a generic construction using a public key encryption PKE and one-time signature OTS. We
show that the scheme in [25] meets the property in Appendix A.

In addition, we can similarly show that all of the existing ANO-BE and Full-ANO-BE
schemes in [3, 20, 24, 25] satisfy Assumption 2.

4.2 Lower bounds in ANOat-CCA secure AtBE

First, we show two lemmas, Lemma 2 and 3, for anANOat-CCA secureAtBEwith Properties
1, 2, 3 and 4 described in Sect. 3.2. In Lemma 2, we show that “if an AtBE is ANOat-CCA
secure, then for ciphertexts with a set S0,S1 whose size is equal, sets of atomic decryption
keys used by a receipient id for each decryption is identical with overwhelming probability.”
Then, in Lemma 3, we show that “if an AtBE is ANOat-CCA secure, then for any set S with
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more than two elements, recipients id, id′ ∈ S must not share a set of atomic decryption keys
used to decrypt ctS with overwhelming probability.”

Then, for an ANOat-CCA secure AtBE with the property described in Assumption 2, we
will derive a lower bound on ciphertext-size by Theorem 1.

For convenience, for any S0,S1 ⊆ ID, we call (S0,S1) challengeable sets if it can be
used for a challenge query in the ANOat-CCA game ExpANOat-CCA

�At-BE,A
.

Lemma 2 If AtBE �At-BE is ANOat-CCA secure, no PPT adversary A in the ANOat-CCA

game can find id ∈ ID and challengable sets (S0,S1) ∈
(

2D≤N

)2
such that id ∈ S0 ∩ S1,

|S0| = |S1|, and {sk(γ )

id }γ∈�∗
id,S0

= {sk(γ )

id }γ∈�∗
id,S1

with non-negligible probability.

Proof We show this lemma by contraposition. Suppose that there exists a PPT adversary A
that can find (id,S0,S1) in the ANOat-CCA game such that (S0,S1) is challengeable sets
and it holds that id ∈ S0 ∩ S1, |S0| = |S1|, and {sk(γ )

id }γ∈�∗
id,S0

= {sk(γ )

id }γ∈�∗
id,S1

with non-

negligible probability. Note that by Property 3, �∗
id,S0

and �∗
id,S1

are uniquely determined.
Then, A can break ANOat-CCA security as follows. During the ANOat-CCA game, A can
find (id∗,S0,S1) such that {sk(γ )

id∗ }γ∈�∗
id∗,S0

= {sk(γ )

id∗ }γ∈�∗
id∗,S1

. A then issues key-generation

queries for every id ∈ S0∪S1 and a corruption query for id∗ (if A has not done them yet), and
obtains a decryption key {sk(γ )

id∗ }γ∈�id∗ . A then issues a challenge query (m,S0,S1) to obtain
{ct(θ)

Sb
}θ∈[βSb

] ⊆ ctSb . Note that A can get the decryption key for id∗ since id∗ ∈ S0 ∩ S1
and (S0,S1) can be used for the challenge query. Finally, A outputs b′ = 0 if there exists
θ ∈ [βSb ] such thatm ← Dec-at({sk(γ )

id∗ }γ∈�∗
id∗,S0

, ct(θ)
Sb

), and b′ = 1 otherwise. In this case,

A can output b′ such that b = b′ with non-negligible probability. ��
Lemma 3 If AtBE�At-BE isANOat-CCAsecure, noPPTadversaryA in theANOat-CCAgame

can find (id, id′,S) ∈ ID2×2D≤N such that id, id′ ∈ S and {sk(γ )

id }γ∈�∗
id,S = {sk(γ ′)

id′ }γ ′∈�∗
id′,S

with non-negligible probability.

Proof Assumeon the contrary that there exists a PPTadversaryA that canfind (id, id′,S) such

that id, id′ ∈ S and {sk(γ )

id }γ∈�∗
id,S = {sk(γ ′)

id′ }γ ′∈�∗
id′,S

with non-negligible probability. Note

that by Property 3, �∗
id,S and �∗

id′,S are uniquely determined. Then, we will show that it con-

tradicts Property 1 of AtBE in Sect. 3.2 for any S ′ such that id ∈ S ′, id′ /∈ S ′, and |S| = |S ′|.
Suppose that A has atomic decryption keys {sk(γ )

id }γ∈�id and {sk(γ ′)
id′ }γ ′∈�id′ by key-generation

queries and corruption queries. Since id ∈ S ′, we havem ← Dec-at({sk(γ )

id }γ∈�∗
id,S′ , ctS ′,id).

From Lemma 2, we have {sk(γ )

id }γ∈�∗
id,S′ = {sk(γ )

id }γ∈�∗
id,S with overwhelming probability.8

Hence, we have m ← Dec-at({sk(γ )

id }γ∈�∗
id,S , ctS ′,id). Here, since {sk(γ )

id }γ∈�∗
id,S =

{sk(γ ′)
id′ }γ ′∈�∗

id′,S
from the assumption, we havem ← Dec-at({sk(γ ′)

id′ }γ ′∈�∗
id′,S

, ctS ′,id). How-

ever, since id′ /∈ S ′ holds, the above contradicts Property 1. ��
In the following, we derive a lower bound on ciphertext-size in ANOat-CCA secure AtBE

with the property described in Assumption 2. Specifically, we show the statement: When
there exists a set S such that the number of atomic ciphertexts ctS contained in ctS is less
than |S| with non-negligible probability, a contradiction occurs for Lemma 3.

8 Otherwise, A can find (id,S0,S1) which contradicts Lemma 2.
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Theorem 1 If AtBE �At-BE is ANOat-CCA secure and has the property in Assumption 2, the
size of ciphertexts for any recipient set S ∈ 2ID≤N and any messagem ∈ M is �(|S| · k) with
overwhelming probability, where k = min

S⊆ID,θ∈[βS ]|ct
(θ)
S | and the probability is taken over

the internal randomness of the Setup-at, Enc, and Enc-at. In other words, if AtBE �At-BE is
ANOat-CCA secure and has the property in Assumption 2, for any recipient set S ∈ 2ID≤N
and any messagem ∈ M, the Enc outputs a ciphertext of size �(|S| · k) with overwhelming
probability.

Proof For some set of recipients S∗ ∈ 2ID≤N and messagem∗ ∈ M, we assume that with non-

negligible probability, the Enc outputs ctS∗ = {ct(θ)
S∗ }θ∈[βS∗ ] ← Enc({pk(δ)}δ∈	,m∗,S∗; r∗)

and βS∗ < |S∗|. Let A be any fixed PPT adversary against the ANOat-CCA game. Then,
A can identify such (S∗,m∗) with non-negligible probability since A knows the concrete
procedure of the Enc (since it should be public due to Kerckhoffs’ principle).9 We then show
that A can find (id, id′,S∗) that contradicts Lemma 3. Now, from βS∗ ≥ 1, we consider that
|S∗| ≥ 2 holds. From βS∗ < |S∗|, for a set of atomic ciphertexts {ct(θ)

S∗ }θ∈βS∗ , there exists at

least one atomic ciphertext ct(θ
∗)

S∗ that can be decrypted by two recipients id, id′ ∈ S∗. That
is, for id, id′ ∈ S∗, it holds that ct(θ

∗)
S∗ = ctS,id = ctS,id′ , where ctS,id, ctS,id′ is generated

by

ctS,id ← Enc-at({pk(δ)}δ∈	∗
id,S∗,m∗ , id,m∗,S∗; r∗),

ctS,id′ ← Enc-at({pk(δ)}δ∈	∗
id′,S∗,m∗ , id′,m∗,S∗; r∗),

where r∗ is the same randomness in the Enc above. Note that by Property 2, 	∗
id,S∗,m∗

and 	∗
id′,S∗,m∗ are uniquely determined, and by Property 4, it holds {pk(δ)}δ∈	∗

id,S∗,m∗ =
{pk(δ)}δ∈	∗

id′,S∗,m∗ . In addition, by Atomic Correctness and Property 1, we have

m∗ ← Dec-at({sk(γ )

id }γ∈�∗
id,S∗ , ct(θ

∗)
S∗ ),

m∗ ← Dec-at({sk(γ ′)
id′ }γ ′∈�∗

id′,S∗ , ct(θ
∗)

S∗ ).

Note that byProperty 3, {sk(γ ′)
id′ }γ ′∈�∗

id,S∗ and {sk(γ ′)
id′ }γ ′∈�∗

id′,S∗ are uniquely determined. From

Assumption 2, {pk(δ)}δ∈	∗
id,S∗,m∗ and {pk(δ)}δ∈	∗

id′,S∗,m∗ uniquely determine {sk(γ ′)
id }γ ′∈�∗

id,S∗

and {sk(γ ′)
id′ }γ ′∈�∗

id′,S∗ such that

m∗ ← Dec-at({sk(γ )

id }γ∈�∗
id,S∗ , Enc-at({pk(δ)}δ∈	∗

id,S∗,m∗ , id,m∗,S∗; r∗)),
m∗ ← Dec-at({sk(γ )

id′ }γ∈�∗
id′,S∗ , Enc-at({pk(δ)}δ∈	∗

id′,S∗,m∗ , id′,m∗,S∗; r∗)),

respectively.Asmentioned above, it holds {pk(δ)}δ∈	∗
id,S∗,m∗ = {pk(δ)}δ∈	∗

id′,S∗,m∗ . Therefore,

despite ANOat-CCA security of �At-BE, A can obtain {sk(γ )

id }γ∈�∗
id,S∗ = {sk(γ ′)

id′ }γ ′∈�∗
id′,S∗ ,

which contradicts Lemma 3. ��
9 From the descriptions of the Enc, A can extract the conditions for obtaining ctS∗ = {ct(θ)

S∗ }θ∈[βS∗ ] such
that βS∗ < |S∗| with non-negligible probability (even if βS∗ is determined randomly) since the Enc is a PPT
algorithm. Note that A does not need to know the concrete randomness r∗ to be used to compute ctS∗ , though
A seems to need to know how the randomness is used in the Enc.
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4.3 Lower bounds in Full-ANOat-CCA secure AtBE

We derive a lower bound on ciphertext size in Theorem 2 for Full-ANOat-CCA secure AtBE
with the property described in Assumption 2, using Theorem 1.

Theorem 2 If AtBE�At-BE is Full-ANOat-CCA secure and has the property in Assumption 2,
the size of ciphertexts for any recipient setS ∈ 2ID≤N and anymessagem ∈ M is�(N ·k)with
overwhelming probability, where k = min

S⊆ID,θ∈[βS ]|ct
(θ)
S | and the probability is taken over

the internal randomness of the Setup-at, Enc, and Enc-at. In other words, if AtBE �At-BE is
Full-ANOat-CCA secure and has the property in Assumption 2, for any recipient set S ∈ 2ID≤N
and any message m ∈ M, the Enc outputs a ciphertext of size �(N · k) with overwhelming
probability.

Proof Since Full-ANOat-CCA security implies ANOat-CCA security, for any S ∈ 2ID≤N ,
we at least have �(|S| · κ) with overwhelming probability from Theorem 1. Now, we
assume that for some set of recipients S∗ ∈ 2ID≤N and message m∗ ∈ M, Enc outputs

ctS∗ = {ct(θ)
S∗ }θ∈[βS∗ ] ← Enc({pk(δ)}δ∈	,m∗,S∗; r∗) such that |S∗| ≤ βS∗ < N , with

non-negligible probability. Let A be any fixed PPT adversary against the Full-ANOat-CCA
game. Then, A can identify such (S∗,m∗) with non-negligible probability since A knows the
concrete procedure of Enc (since it should be public due to Kerckhoffs’ principle). A then
issues a challenge query (m∗,S∗,S), where S = [N ] and S∗ is any set in 2ID≤N \ [N ]. Here,
from the assumption that |S∗| ≤ βS∗ < N , A can trivially break Full-ANOat-CCA, but it
contradicts the premise. Thus, the size of ciphertexts for any S ∈ 2ID≤N must be equal to that
of ciphertexts for [N ] at least, i.e., �(N · κ). ��

5 Non-asymptotic bounds and optimal constructions of ANO-BE

We show (non-asymptotic) upper bounds and lower bounds on the ciphertext-size in ANO-
BE. Li and Gong [24] proposed an ANO-BE scheme where the ciphertext-size is (|S|+6) ·κ ,
which is indeed optimal in the sense that the scheme attains the lower bound on the ciphertext
size (i.e., Theorem 1) non-asymptotically (see Theorem 5). On the other hand, there exists no
optimal Full-ANO-BE scheme. To show a non-asymptotic upper bound on the ciphertext-size
in Full-ANO-BE, we propose an optimal Full-ANO-BE scheme.

Our scheme is achieved by modifying the encryption algorithm Enc and the decryption
algorithm Dec in Li and Gong [24]’s ANO-BE.

• Setup(1κ , N ): Run PGGen(1κ ) to get PG := (p,G1,G2,GT , e,g1,g2). Let A,B
U←

Dk and X,Y
U← Z

(k+1)×(k+1)
p . For all id ∈ [N ], sample kid

U← Z
(k+1)
p .

Select a key-binding secure symmetric encryption scheme �SKE = (E,D) with the key
space K := G1. Sample a collision-resilient hash function H : {0, 1}∗ → Zp from H
uniformly at random. The public key pk is

(

PG, (E,D),H;
[

A�]
1 ,
{[

A�kid
]

1

}N
id=1

, [B]2 ,
[

A�Y
]

1 ,
[

A�X
]

1 , [XB]2 , [YB]2

)

.

and the master secret key is {kid}Nid=1.• Join(mk, id): Output the secret key skid := kid.

123

2542



Tight lower bounds of anonymous BE and BA

• Enc(pk,m,S): Let n be the number of recipients currently participating in the system,

and suppose that skid1 , . . . , skidn have been generated by the Join so far. Sample r
U← Z

k
p ,

and compute
[

u�] := [r�A�]. Select a session key K U← G1 and compute c0 := EK(m).
Compute the following for all id ∈ [N ]:

{

cid := [r�A�kid
]

1 · K, if id ∈ S,

cid
U← G1, if id /∈ S.

(1)

Choose a random permutation σ from {σi : [N ] → [N ]}i∈{0,1}κ and compute [π]1 :=
[

r�A�(X + α · Y)
]

1 where α := H(
[

u�] , c0, cσ(1), . . . , cσ(N )). The ciphertext is

ctS := (
[

u�] , c0, cσ(1), . . . , cσ(N ), [π ]1).

Here, in the scheme of [24], only cid (id ∈ S) is calculated in the Eq. (1), and the
following ciphertext is output.

ctS := (
[

u�] , c0, cσ(1), . . . , cσ(|S|), [π]1).

• Dec(skid, ctS): Let skid = kid, ctS = (
[

u�] , c0, c1, . . . , cN , [π]1). Compute α :=
H(
[

u�] , c0, c1, . . . , cN ) and check

e([π ]1 , [B]2) = e(
[

u�]

1
, [(X + α · Y)B]2). (2)

If the above equation does not hold, return⊥; otherwise, do the following two steps from
j := 1.

– Compute K′ := c j/
[

u�kid
]

1 and m′ := DK′(c0). If m′ =⊥, return m′ and halt;
otherwise, go to the second step.

– If j = N , return ⊥ and halt; otherwise, do the first step with j := j + 1.

Here, in the scheme of [24], parse ctS = (
[

u�] , c0, c1, . . . , c|S|, [π ]1), compute α :=
H(
[

u�] , c0, c1, . . . , c|S|), and check whether the equation (2) holds. Also, the second
step above is described as follows.

– If j = |S|, return ⊥ and halt; otherwise, do the first step with j := j + 1.

We show the correctness of the above Full-ANO-BE scheme. Suppose that ctS =
(
[

u�] , c0, c1, . . . , cN , [π ]1), skid = kid(id ∈ S) are correctly generated. Then the following
equation holds:

e([π]1 , [B]2) = e(
[

u�]

1
, [(X + α · Y)B]2),

where α := H(
[

u�] , c0, c1, . . . , cN ). Given c j := [

r�A�kid
]

1 · K, we have K =
c j/
[

u�kid
]

1 and and the Dec will return m by the correctness of symmetric encryption
scheme �SKE = (E,D). Given c j := [

r�A�kid
]

1 · K, we have K = c j/
[

u�kid′
]

1 for some
id′ /∈ S with overwhelming probability, and the Dec will return ⊥ from key-binding of
�SKE = (E,D).

Theorem 3 The construction described above is Full-ANO-IND-CCA secure assuming that:
(1)H is collision-resistant; (2) theDk-MDDH assumption holds inG1; (3) theDk-KerMDH
assumptions holds in G2; (4) �SKE is semantically secure and key-binding.
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Our security proof is the same as that of Li and Gong [24]’s ANO-BE except that we

added cid
U← G1 (if id /∈ S) to their scheme. We prove Full-ANO-IND-CCA security by

defining the following games:
GameReal: This is the same as the Full-ANO-IND-CCA game.

Game0: This is the same as GameReal except that the challenger samples u∗ U← Z
(k+1)
p and

generates the challenge ciphertext ct∗S := (
[

u∗�] , c∗
0, c

∗
σ(1), . . . , c

∗
σ(|S|), [π ]

∗
1) using u∗.

Game1: This is the same as Game0 except for the following modification: Let (id, ctS =
(
[

u�] , c0, c1, . . . , cN , [π ]1)) be a decryption query, and we denote ctS =
(
[

u�] , c0, c1, . . . , cN ). The Decryption Oracle computes α = H(ctS) and returns ⊥ if one
of the following conditions hold:

(1) ctS = ct∗S ,

(2) e([π]1 , [B]2) = e(
[

u�]
1 , [(X + α · Y)B]2),

(3) ctS = ct∗S and α = α∗,

where α∗ = H(ct∗S).
Game2: This is the same as Game1 except that the condition (2) is replaced by the following
one:

(2′) [π ]1 =
[

u�(X + α · Y)
]

1
.

Game2, j (1 ≤ j ≤ qD): This is the same as Game2 except for the following modification:
Let qD is the maximum number of decryption queries to the Decryption Oracle. Regarding
the first j queries, the Decryption Oracle returns ⊥ if (1) or (3) or

(2′′) u /∈ span(A) || [π]1 =
[

u�(X + α · Y)
]

1

holds instead of (2′). Here, “||” denotes the OR operation which ignores the second operand
if the first one is satisfied. For the rest of queries, the Decryption Oracle returns ⊥ if (1) or
(3) or (2′) as in Game2.
Let SReal, Si (0 ≤ i ≤ 2), and S2, j (0 ≤ j ≤ qD) be the probabilities that the event b′ = b
occurs in GameReal,Gamei , and Game2, j respectively. We have

AdvFull-ANO-IND-CCA
�BE,A (κ, N ) ≤ |SReal − S0| + |S0 − S1| + |S1 − S2|

+ �
qD
j=1

∣
∣S2, j−1 − S2, j

∣
∣+
∣
∣
∣
∣
S2,qD − 1

2

∣
∣
∣
∣
.

The rest of the proof follows from the following lemmas.

Lemma 4 |SReal − S0| ≤ Advmddh
B,G1

(κ).

Proof At the beginning, a PPT adversary B receives an instance ([A]1 , T ) of the MDDH

problem. Then, B randomly selects B
U← Dk and X,Y

U← Z
(k+1)×(k+1)
p . For all id ∈ [N ], B

samples kid
U← Z

(k+1)
p . B selects a key-binding secure symmetric encryption scheme�SKE =

(E,D) with the key space K := G1 and a collision-resilient hash function H : {0, 1}∗ → Zp .
B sends the following master public key:

pk :=
(

PG, (E,D),H;
[

A�]
1 ,
{[

A�kid
]

1

}N
id=1

, [B]2 ,
[

A�Y
]

1 ,
[

A�X
]

1 , [XB]2 , [YB]2

)

.

Note that B knows the master secret keymk := {kid}Nid=1.
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Key-generation Oracle and Corruption Oracle. B can simulate the oracles since it knows the
master secret key.
Decryption Oracle. B can simulate the oracle for the same reason as Key-generation and
Corruption Oracle.

Challenge. B receives (m0,m1,S0,S1) from A. B randomly chooses d
U← {0, 1} and selects

a session key K
U← G1 and compute c0 := EK(md). B sets

[

u∗�] := T and computes the

following for all id ∈ [N ]:
⎧

⎨

⎩

cid :=
[

u∗�kid
]

1
· K, if id ∈ Sd ,

cid
U← G1, if id /∈ Sd .

Then B chooses a random permutation σ from {σi : [N ] → [N ]}i∈{0,1}κ and computes

[π ]1 :=
[

u∗�(X + α · Y)
]

1
where α := H(

[

u∗�]

1
, c0, cσ(1), . . . , cσ(N )). B sends the fol-

lowing ciphertext:

ctS := (
[

u∗�]

1
, c0, cσ(1), . . . , cσ(N ), [π ]1).

If b = 0, then u∗ U← span(A). If b = 1, then u∗ U← Z
k+1
p . After receiving d from A, B sends

b′ = 1 to the challenger of the Dk-MDDH problem if d ′ = d . Otherwise, B sends b′ = 0 to
the challenger. ��
Lemma 5 |S0 − S1| ≤ AdvhashB (κ). (From Difference Lemma [36])

Proof By the collision-resilience of H, Game1 is indistinguishable from Game0. When
A issues a decryption query (id, ctS = (

[

u�] , c0, c1, . . . , cN , [π ]1)) such that ctS =
(
[

u�] , c0, c1, . . . , cN ) is not identical to ct∗S , B check whether the condition (3) holds.
If it does not hold, then B simulates the Decryption Oracle by returning ⊥. Otherwise, B can
break the collision-resilience of H since (ctS ,H(ctS)) is a successful collision. ��
Lemma 6 |S1 − S2| ≤ Advkmdh

B,G2
(κ). (From Difference Lemma [36])

Proof Game2 is the same asGame1 unlessA sends a decryption querywhich is rejected by the
condition (2)but passes through the condition (2′). If such a query is issued,we can construct a
PPT adversary B solving the KMDH problem. At the beginning, B receives an instance ([B]2)

of the KMDH problem. Then, B randomly selects A
U← Dk and X,Y

U← Z
(k+1)×(k+1)
p . For

all id ∈ [N ], B samples kid
U← Z

(k+1)
p . B selects a key-binding secure symmetric encryption

scheme �SKE = (E,D) with the key space K := G1 and a collision-resilient hash function
H : {0, 1}∗ → Zp . B sends the following master public key:

pk :=
(

PG, (E,D),H;
[

A�]
1 ,
{[

A�kid
]

1

}N
id=1

, [B]2 ,
[

A�Y
]

1 ,
[

A�X
]

1 , [XB]2 , [YB]2

)

.

Note that B knows the master secret keymk := {kid}Nid=1.
Key-generation Oracle and Corruption Oracle. B can simulate the oracles since it knows the
master secret key.
Challenge. B simulates the challenge as the same as Game0.
Decryption Oracle. B can simulate the oracle for the same reason as Key-generation and
Corruption Oracle. Upon a decryption query (id, ctS = (

[

u�] , c0, c1, . . . , cN , [π]1)), B
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check whether the conditions (2), (2′) hold. If the condition (2) does not hold but (2′) does,
B outputs

[

t� := π − u�(X + α · Y)
]

1
.

Here,
[

t�
]

1 is a solution to theDk-KMDH problem since t� = 0 from (2′) and t� ∈ Ker(B)

from (2). ��
Lemma 7

∣
∣S2, j−1 − S2, j

∣
∣ ≤ 1

p . (From Difference Lemma [36])

Proof Game2, j−1 is the same as Game2, j unless A sends the j-th decryption query which is
rejected by the condition (2′) but passes through the condition (2′′). That is, if the event that
the j-th decryption query satisfies u /∈ span(A) and survives (1), (2′), (3) does not occur,
there is no difference between the two games. First, we suppose that α = α∗ holds for such
a query. Then, the decryption query (id, ctS = (

[

u�] , c0, c1, . . . , cN , [π]1)) must satisfy
α = α∗,u /∈ span(A) and [π]1 = [

u�(X + α · Y)B
]

1, but this happens with probability at

most 1
p from the core lemma (Lemma 1 [21]). Note that A never obtain more information

than A�X,A�Y by the first j-th decryption queries thanks to the condition u∗ /∈ span(A).
Next, we show that the above query must satisfy α = α∗. Here, if a decryption query

survives the condition (3), ctS = ctS∗
1 or α = α∗ holds. Therefore, we need to show

that ctS = ctS∗
1 holds regarding decryption query which survives under the condition

(1), (2′′), (3) with u /∈ span(A). We suppose ctS = ctS∗
1. We can see that if π = π∗,

then the query is rejected by the condition (1), and if π = π∗, then the query is rejected
by the condition (2′). Thus, since a decryption query with ctS = ctS∗

1 cannot survive the
conditions, α = α∗ holds. ��
Lemma 8

∣
∣S2,qD − 1

2

∣
∣ ≤ 2 · AdvseB (κ).

We prove Lemma 8 by considering two cases.
Case (a) : CD ∩ (S0 ∩ S1) = ∅. In this case, we define the following additional games.

Game3: This is the same as Game2,qD except that the challenger samples cid
U← G1 for all

id ∈ Sb in the challenge ciphertext.
Game4: This is the same as Game3 except that the challenger computes c0 = EK(0κ ) in the
challenge ciphertext.

Lemma 9 S2,qD = S3.

Proof We claim that Game2,qD is statistically indistinguishable from Game3. In Game2,qD ,
A learns information on kid (id ∈ Sb) only from pk since Decryption Oracle returns for
A’s queries such that u /∈ span(A), and u∗ /∈ span(A) holds with overwhelming probability.

Then,
[

u∗�kid
]

1
(id ∈ Sb) is uniformly distributed over G1 from the fact that for any u∗

outside the span of A, u∗�kid is uniformly random given A�kid where kid
U← Z

(k+1)
p . ��

Lemma 10 |S3 − S4| ≤ 2 · AdvseB (κ).

Proof Game4 is indistinguishable fromGame3 due to the semantic security of (E,D). Finally,
we have S4 = 1

2 since the challenge ciphertext has no information about b. ��
Case (b) : CD ∩ (S0 ∩ S1) = ∅. We define the following game.

Game′
3: This is the same as Game2,qD except that the challenger samples cid

U← G1 for all
id ∈ Sb\S1−b.
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Lemma 11 S2,qD = S3′ .

Proof We claim that Game2,qD is statistically indistinguishable from Game3. This follows

from the same discussion as in Case (a), that is, the fact that all
[

u∗�kid
]

1
(id ∈ Sb\S1−b) in

ct∗S is uniformly distributed overG1 conditioned on pk, Key-Generation Oracle and Decryp-
tion Oracle. Although cid (id ∈ Sb ∩S1−b) are not changed, no information about b is leaked
from the challenge ciphertext sincem0 = m1 must hold in this case. We then have S3′ = 1

2 .��
Proof of Lemma 8 Let Sa and Sb be the probabilities that A outputs (S0,S1) in Case (a) and
Case (b), respectively. Then, we have

S2,qD = S3 · Sa + S3′ · Sb
≤ |S3 − S4| · Sa + S4 · Sa + S3′ · Sb
≤ 2 · AdvseB (κ) + 1

2

where Sa + Sb = 1. ��
Proof of Theorem 3 From Lemmas 4–8 we have

AdvFull-ANO-IND-CCA
�BE,A (κ, N ) ≤ Advmddh

B,G1
(κ) + AdvhashB (κ) + Advkmdh

B,G2
(κ)

+ qD · 1
p

+ 2 · AdvseB (κ).

��
Here, the above construction has a ciphertext whose size is (N + 6) · κ where k = 1.10

Therefore, from Li and Gong’s ANO-BE [24] and our Full-ANO-BE scheme, we obtain
upper bounds on the ciphertext-size in (Full)-ANO-BE.

From these upper bounds and the asymptotic lower bounds in Sect. 4, we show tight lower
bounds on the ciphertext-size in (Full)-ANO-BE.

Theorem 4 If BE�BE with properties shown in Sects. 3.2 and 4.1 is Full-ANOat-CCA secure,
a non-asymptotic lower bound on the ciphertext-size with any recipient set S ⊆ ID is
N · κ + o(N · κ), and our Full-ANO-BE scheme attains the lower bound tightly, which is
optimal.

Theorem 5 If BE �BE with properties shown in Sects. 3.2 and 4.1 is ANOat-CCA secure,
a non-asymptotic lower bound on the ciphertext-size with any recipient set S ⊆ ID is
|S| · κ + o(|S| · κ), and the ANO-BE scheme in [24] attains the lower bound tightly, which
is optimal.

6 Atomic broadcast authentication

In this section, we give a syntax of Atomic Broadcast Authentication (AtBA) to formally
describe properties satisfied by the existingABA scheme and derive lower bounds.We further
provide security definitions for ABA covered by AtBA.

10 In this paper, we assume that SKE with key-binding [12] property has a ciphertext of roughly 2 group
elements like Li and Gong [24]. See Sect. 6 in [25] for details.
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6.1 Syntax of AtBA

Our AtBA describes authentication and verification for each recipient in a designated set
performed inside the Auth and Vrfy algorithms of ABA. We define a model for Atomic BA
�At-BA = (Setup-at, Join-at,Auth,Auth-at,Vrfy,Vrfy-at) as follows, where the Auth and
Vrfy are the same as ones of ABA.

1. {ak(δ)}δ∈	 ← Setup-at(1κ , N ): a probabilistic algorithm for setup. It takes a security
parameter 1κ and the maximum number of receivers N ∈ N as input, and outputs authen-
tication key ak consisting of |	| atomic authentication keys {ak(δ)}δ∈	.

2. {vk(γ )

id }γ∈�id ← Join-at({ak(δ)}δ∈	, id): a verification key generation algorithm. It takes

{ak(δ)}δ∈	 and an identifier id ∈ ID, as input, and outputs verification key vkid for id
consisting of |�id| atomic verification keys {vk(γ )

id }γ∈�id .

3. cmdS,id ← Auth-at({ak(δ)}δ∈	′ ,S,m, id; r): an atomic authenticate algorithm. It takes
{ak(δ)}δ∈	′ , a message m ∈ M, a privileged set S ⊆ ID, an identifier id ∈ ID and
randomness r ∈ R as input, and outputs an atomic authenticator cmdS,id, where	′ ⊆ 	.

4. m/⊥ ← Vrfy-at({vk(γ )

id }γ∈�′
id
, cmdS,id): an atomic verification algorithm. It takes a

subset of atomic verification keys {sk(γ )

id }γ∈�′
id
, and cmdS,id as input, and outputs a

messagem(accept) or ⊥(reject), where �′
id ⊆ �id.

The Setup-at and Join-at are essentially equivalent to the Setup and Join inABA respectively,
except for difference that authentication and verification keys are explicitly divided into
multiple sub-elements. As in the case of the Join in BE, we regard the Join-at as being a
deterministic algorithm. On the other hand,Auth and Vrfy includeAuth-at and Vrfy-at as sub-
algorithms, respectively, though theymight contain procedures other than the sub-algorithms.
Therefore, AtBA includes both (Auth,Vrfy) and (Auth-at,Vrfy-at).

We require a natural property for AtBA that an atomic authenticator cmdS,id contained in

authenticator cmdS will be correctly verified by a verification key {vk(γ )

id }γ∈�id of a recipient
id ∈ S as follows:
Atomic correctness Fix any κ, N ∈ N, any {ak(δ)}δ∈	 ← Setup-at(1κ , N ), any S ⊆ ID
such that |S| ≤ N , any m ∈ M, any {vk(γ )

id }γ∈�id ← Join-at({ak(δ)}δ∈	, id), any r
U← R.

Let cmdS ← Auth({ak(δ)}δ∈	,m,S; r). Then, there exists some 	′ ⊆ 	 for every id ∈ S,
such that cmdS,id ← Auth-at({ak(δ)}δ∈	′ ,S,m, id; r) and cmdS,id ∈ cmdS . Moreover, the
following conditions hold with overwhelming probability:

• Vrfy({vk(γ )

id }γ∈�′
id
, cmdS) → m.

• Vrfy-at({vk(γ )

id }γ∈�′
id
, cmdS,id) → m for some �′

id ⊆ �id.

Namely, the above guarantees that (1) a ABA authenticator for S contains AtBA authen-
ticators for all id ∈ S; (2) the ABA authenticator can be correctly verified by the Vrfy, which
implies Correctness of ABA; and (3) every AtBA authenticator can be correctly verified by
the Vrfy-at. Therefore, Atomic Correctness of AtBA includes Correctness of ABA. Thus, we
can say that an ABA scheme is called an AtBA scheme if the Auth and Vrfy includes the
Auth-at and Vrfy-at (satisfying the above Atomic Correctness), respectively.

6.2 Security definitions for AtBA

Wedefine anonymity for AtBA in the sameway as in BE. In the following, we give definitions
of full anonymity (Full-ANOat-CMA) and anonymity (ANOat-CMA). Security games for
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AtBA are the same as those for ABA except that an attacker obtains verification keys and a
challenge authenticator is explicitly-devided into multiple sub-elements. Essentially, there is
no difference in information the attacker obtains between security games for BA and those for
AtBA. Therefore, we consider (Full-)ANOat-CMA defined below to be equivalent security
notions as (full) anonymity.

Let A be any PPT adversary against Full-ANOat-CMA security. We consider an exper-
iment ExpFull-ANOat-CMA

�At-BA,A
(κ, N ) between a challenger C and A. Let ExpFull-ANOat-CMA

�At-BA,A
be the

experiment with the following changes to Key-generation Query and Corruption Query in
experiment ExpFull-ANO-CMA

�ABA,A
.

• Key-generation Query: Upon a query id ∈ ID from A, C adds id to D and generates
{vk(γ )

id }γ∈�id ← Join-at(ak, id), not vkid ← Join(ak, id).

• CorruptionQuery: Upon a query id ∈ D fromA, C adds id to CD, and returns {vk(γ )

id }γ∈�id

to A, not vkid.

We also define ANOat-CMA with an experiment ExpANOat-CMA
�At-BA,A

(κ, N ) which is the same as

ExpFull-ANOat-CMA
�At-BA,A

(κ, N ) except for the following additional condition of the restriction for
challenge query: |S0| = |S1|.
Definition 11 ((Full-)ANOat-CMA) We say �At-BA is X secure (X ∈ Full-ANOat-CMA,
ANOat-CMA) if for any PPT adversary A, for all sufficiently-large κ ∈ N and all
N ∈ N, it holds that AdvX

�At-BA,A(κ, N ) < negl(κ), where AdvX
�At-BA,A(κ, N ) :=

∣
∣
∣Pr
[

ExpX
�At-BA,A

(κ, N ) → 1
]

− 1
2

∣
∣
∣.

6.3 Properties in an existing ABA scheme

In this section, we describe four properties that holds for an existing ABA scheme. The four
properties are as follows.

Property 5 Authenticator cmdS output from the Auth algorithm consists of atomic authen-
ticators cmdS,id obtained by the Auth-at algorithm, and other elements. In other words,
let a set of atomic authenticators contained in cmdS be {cmdS,id}id∈S , and let the union

of {cmdS,id}id∈S and some elements contained in cmdS be {cmd(θ)
S }θ∈[βS ], it holds that

{cmdS,id}id∈S ⊆ {cmd(θ)
S }θ∈[βS ] ⊆ cmdS . Here, the randomness r input to the Auth-at is

the same when generating {cmdS,id}id∈S respectively. Also, inside the Vrfy algorithm, the
Vrfy-at algorithm takes an atomic authenticator and a set of atomic verification keys as input,
and outputs a message. If cmdS is a valid authenticator, then there is an atomic authenticator
cmd(θ)

S in cmdS that can be verified using a subset of atomic verification keys of a recipient
id in S. Formally, we require the following property for AtBA �At-BA:

For all κ, N ∈ N, all ak ← Setup(1κ , N ), all m ∈ M, all S ⊆ ID such that |S| ≤ N ,

all id ∈ ID, all {vk(γ )

id }γ∈�id ← Join-at(ak, id), all r
U← R, all {cmd(θ)

S }θ∈[βS ] ⊆ cmdS ←
Auth(ak,m,S; r), if id ∈ S, then for some �′

id ⊆ �id, there exists θ ∈ [βS ] such that

m ← Vrfy-at({vk(γ )

id }γ∈�′
id
, cmd(θ)

S ). If id /∈ S, then for all �′
id ⊆ �id, there is no θ ∈ [βS ]

such thatm ← Vrfy-at({vk(γ )

id }γ∈�′
id
, cmd(θ)

S ).

Property 6 When generating cmdS,id such that m ← Vrfy-at({vk(γ )

id }γ∈�′
id
, cmdS,id) for

some γ ∈ �′
id, let 	∗

id,S,m be a minimum subset of atomic authentication keys required for
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the input to Auth-at. In this case, 	∗
id,S,m is uniquely determined by pairs of the recipient’s

identifier, the message, and the set (id,S,m) to input to Auth-at.

Property 7 Whenm ← Vrfy-at({vk(γ )

id }γ∈�′
id
, cmdS,id) holds, let�∗

id,S be aminimum subset
of atomic verification keys required for the input to Vrfy-at. In this case, �∗

id,S is uniquely
determined by pairs of the recipient’s identifier, and the set (id,S) to input to Auth-at when
generating cmdS,id.

Property 8 For all (ak, {ak(δ)}δ∈	) ← Setup(1κ , N ), id, id′ ∈ ID, allS such that {id, id′} ⊆
S, all m ∈ M, r ∈ R, all cmdS,id ← Auth-at({ak(δ)}δ∈	∗

id,S,m
, id,m,S; r), cmdS,id′ ←

Auth-at({ak(δ′)}δ′∈	∗
id′,S,m

, id′,m,S; r), if cmdS,id = cmdS,id′ holds, then we have

{ak(δ)}δ∈	∗
id,S,m

= {ak(δ′)}δ′∈	∗
id′,S,m

with overwhelming probability.

Here, we can see that the existing ABA scheme [37] satisfies the above properties in a similar
way in Sect. 3.2.

7 Asymptotic lower bounds in anonymous broadcast authentication

In order to derive lower bounds for ANO-BA and Full-ANO-BA, we assume a property
that “a minimum subset of atomic verification keys used to verify authenticators is uniquely
determined by a subset of authentication keys used to generate the authenticator.” Specifically,
we consider the following property for ANO-BA and Full-ANO-BA:
Assumption 3When {ak(δ)}δ∈	 ← Setup(1κ , N ) is generated, we denoteAK∗ as a set of all
authentication keys, namelyAK∗ := {ak(δ)}δ∈	. And, when {vk(γ )

id }γ∈�id ← Join-at(ak, id)

is generated, VK∗ denotes a family of the minimum subsets of atomic verification keys to be
input to the Vrfy-at, namely VK∗ := {{vk(γ )

id }γ∈�∗
id,S }id∈ID,S⊆ID . Here, we note that VK∗ is

uniquely determined, since Join-at is a deterministic algorithm. At this time, for all id ∈ ID,
all S ⊆ ID, allm ∈ M, all r ∈ R, all ak′ ∈ 2AK∗

, all cmdS,id ← Auth-at(ak′, id,m,S; r),
a set of atomic verification keys vk′ ∈ VK∗ ∪ {⊥} such that m ← Vrfy-at(vk′, cmdS,id) is
uniquely determined by the set of atomic authentication keys ak′.
The above property holds for Watanabe et al.’s ANO-BA and Full-ANO-BA schemes [37],
which is a generic construction using message authentication code and pseudo-random func-
tion. Since it can be shown that they satisfies the above property in the same way as the
ANO-BE scheme of Libert et al. [25], we omit a detailed discussion here.

7.1 Lower bounds in ANOat-CMA secure AtBA

First, we show two lemmas, Lemmas 12 and 13, for ANOat-CMA secure AtBA with Prop-
erties 5, 6, 7 and 8 described in Sect. 6.3. In Lemma 12, we show that “if an AtBA is
ANOat-CMA secure, then for authenticators with a set S0,S1 whose size is equal, sets of
atomic verification keys used by a receipient id for each verification is equal with overwhelm-
ing probability.” Then, in Lemma 13, we show that “if an AtBA is ANOat-CMA secure, then
for any set S with more than two elements, recipients id, id′ ∈ S must not share a set of
atomic verification keys used to verify cmdS with overwhelming probability.”

Then, for ANOat-CMA secure AtBA with the property described in Assumption 3, we
will derive a lower bound on authenticator-size by Theorem 6.
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For convenience, for any S0,S1 ⊆ ID, we call (S0,S1) challengeable sets if it can be
used for a challenge query in the ANOat-CMA game ExpANOat-CMA

�At-BA,A
.

Lemma 12 If AtBA �At-BA is ANOat-CMA secure, no PPT adversary A in the ANOat-CMA

game can find id ∈ ID and challengable sets (S0,S1) ∈
(

2D≤N

)2
such that id ∈ S0 ∩ S1,

|S0| = |S1|, and {vk(γ )

id }γ∈�∗
id,S0

= {vk(γ )

id }γ∈�∗
id,S1

with non-negligible probability.

Proof We show this lemma by contraposition. Suppose that there exists a PPT adversary A
that can find (id,S0,S1) in the ANOat-CMA game such that (S0,S1) is challengeable sets
and it holds that id ∈ S0 ∩ S1, |S0| = |S1|, and {vk(γ )

id }γ∈�∗
id,S0

= {vk(γ )

id }γ∈�∗
id,S1

with non-

negligible probability. Note that by Property 3, �∗
id,S0

and �∗
id,S1

are uniquely determined.
Then, A can break ANOat-CMA security as follows. During the ANOat-CMA game, A can
find (id∗,S0,S1) such that {vk(γ )

id∗ }γ∈�∗
id∗,S0

= {vk(γ )

id∗ }γ∈�∗
id∗,S1

. A then issues key-generation

queries for every id ∈ S0∪S1 and a corruption query for id∗ (if A has not done them yet), and
obtains a verification key {vk(γ )

id∗ }γ∈�id∗ . A then issues a challenge query (m,S0,S1) to obtain
{cmd(θ)

Sb
}θ∈[βSb

] ⊆ cmdSb . Note thatA can get the verification key for id∗ since id∗ ∈ S0∩S1
and (S0,S1) can be used for the challenge query. Finally, A outputs b′ = 0 if there exists
θ ∈ [βSb ] such that m ← Vrfy-at({vk(γ )

id∗ }γ∈�∗
id∗,S0

, cmd(θ)
Sb

), and b′ = 1 otherwise. In this

case, A can output b′ such that b = b′ with non-negligible probability. ��
Lemma 13 If AtBA �At-BA is ANOat-CMA secure, no PPT adversary A in the ANOat-
CMA game can find (id, id′,S) ∈ ID2 × 2D≤N such that id, id′ ∈ S and {vk(γ )

id }γ∈�∗
id,S =

{vk(γ ′)
id’ }γ ′∈�∗

id′,S
with non-negligible probability.

Proof Assume on the contrary that there exists a PPT adversary A that can find (id, id′,S)

such that id, id′ ∈ S and {vk(γ )

id }γ∈�∗
id,S = {vk(γ ′)

id′ }γ ′∈�∗
id′,S

with non-negligible proba-

bility. Note that by Property 7, �∗
id,S and �∗

id′,S are uniquely determined. Then, we will

show that it contradicts Property 5 of AtBA in Sect. 6.3) for any S ′ such that id ∈ S ′,
id′ /∈ S ′, and |S| = |S ′|. Suppose that A has atomic verification keys {vk(γ )

id }γ∈�id and

{vk(γ ′)
id′ }γ ′∈�id′ by key-generation queries and corruption queries. Since id ∈ S ′, we have

m ← Vrfy-at({vk(γ )

id }γ∈�∗
id,S′ , cmdS ′,id). From Lemma 12, we have {vk(γ )

id }γ∈�∗
id,S′ =

{vk(γ )

id }γ∈�∗
id,S with overwhelming probability as discussed in Lemma 3. Hence, we have

m ← Vrfy-at({vk(γ )

id }γ∈�∗
id,S , cmdS ′,id). Here, since {vk(γ )

id }γ∈�∗
id,S = {vk(γ ′)

id′ }γ ′∈�∗
id′,S

from

the assumption, we havem ← Vrfy-at({vk(γ ′)
id′ }γ ′∈�∗

id′,S
, cmdS ′,id). However, since id

′ /∈ S ′

holds, the above contradicts Property 5. ��
In the following, we derive a lower bound on authenticator-size in ANOat-CMA secure

AtBA with the property described in Assumption 3. Specifically, we show the statement:
When there exists a set S such that the number of atomic authenticators cmdS contained in
cmdS is less than |S| with non-negligible probability, a contradiction occurs for Lemma 13.

Theorem 6 If AtBA �At-BA with the property shown in Assumption 3 is ANOat-CMA secure,
the size of authenticators for any recipient set S ∈ 2ID≤N and anymessagem ∈ M is�(|S|·k)
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with overwhelming probability, where k = min
S⊆ID,θ∈[βS ]|cmd(θ)

S | and the probability is taken
over the internal randomness of the Setup-at, Auth, and Auth-at. In other words, if AtBA
�At-BA is ANOat-CMA secure and has the property in Assumption 3, for any recipient set
S ∈ 2ID≤N and any messagem ∈ M, the Auth outputs a authenticator of size �(|S| · k) with
overwhelming probability.

Proof For some set of recipients S∗ ∈ 2ID≤N and message m∗ ∈ M, we assume

that with non-negligible probability, the Auth outputs cmdS∗ = {cmd(θ)
S∗ }θ∈[βS∗ ] ←

Auth({ak(δ)}δ∈	,m∗,S∗; r∗) and βS∗ < |S∗|. Let A be any fixed PPT adversary against
the ANOat-CMA game. Then, as discussed in Theorem 1, A can identify such (S∗,m∗) with
non-negligible probability since A knows the concrete procedure of Auth (since it should be
public due to Kerckhoffs’ principle). We then show that A can find (id, id′,S∗) that contra-
dicts Lemma 13. Now, from βS∗ ≥ 1, we consider that |S∗| ≥ 2 holds. From βS∗ < |S∗|, for
a set of atomic authenticators {cmd(θ)

S∗ }θ∈βS∗ , there exists at least one atomic authenticator

cmd(θ∗)
S∗ that can be decrypted by two recipients id, id′ ∈ S∗. That is, for id, id′ ∈ S∗, it holds

that cmd(θ∗)
S∗ = cmdS,id = cmdS,id′ , where cmdS,id, cmdS,id′ is generated by

cmdS,id ← Auth-at({ak(δ)}δ∈	∗
id,S∗,m∗ , id,m∗,S∗; r∗),

cmdS,id′ ← Auth-at({ak(δ)}δ∈	∗
id′,S∗,m∗ , id′,m∗,S∗; r∗),

where r∗ is the same randomness in Auth above. Note that by Property 6, 	∗
id,S∗,m∗

and 	∗
id′,S∗,m∗ are uniquely determined, and by Property 8, it holds {ak(δ)}δ∈	∗

id,S∗,m∗ =
{ak(δ)}δ∈	∗

id′,S∗,m∗ . In addition, by Atomic Correctness and Property 5, we have

m∗ ← Vrfy-at({vk(γ )

id }γ∈�∗
id,S∗ , cmd(θ∗)

S∗ ),

m∗ ← Vrfy-at({vk(γ ′)
id′ }γ ′∈�∗

id′,S∗ , cmd(θ∗)
S∗ ).

Note that by Property 7, {vk(γ ′)
id′ }γ ′∈�∗

id,S∗ and {vk(γ ′)
id′ }γ ′∈�∗

id′,S∗ are uniquely deter-

mined. From Assumption 3, {ak(δ)}δ∈	∗
id,S∗,m∗ and {ak(δ)}δ∈	∗

id′,S∗,m∗ uniquely determine

{vk(γ ′)
id }γ ′∈�∗

id,S∗ and {vk(γ ′)
id′ }γ ′∈�∗

id′,S∗ such that

m∗ ← Vrfy-at({vk(γ )

id }γ∈�∗
id,S∗ ,Auth-at({ak(δ)}δ∈	∗

id,S∗,m∗ , id,m∗,S∗; r∗)),
m∗ ← Vrfy-at({vk(γ )

id′ }γ∈�∗
id′,S∗ ,Auth-at({ak(δ)}δ∈	∗

id′,S∗,m∗ , id′,m∗,S∗; r∗)),

respectively. Asmentioned above, it holds {ak(δ)}δ∈	∗
id,S∗,m∗ = {ak(δ)}δ∈	∗

id′,S∗,m∗ . Therefore,

despite ANOat-CMA security of �At-BA, A can obtain {vk(γ )

id }γ∈�∗
id,S∗ = {vk(γ ′)

id′ }γ ′∈�∗
id′,S∗ ,

which contradicts Lemma 13. ��

7.2 Lower bounds in Full-ANOat-CMA secure AtBA

We derive a lower bound on authenticator size in Theorem 7 for Full-ANOat-CMA secure
AtBA with the property described in Assumption 3, using Theorem 6.

123

2552



Tight lower bounds of anonymous BE and BA

Theorem 7 If AtBA �At-BA with the property shown in Assumption 3 is Full-ANOat-CMA
secure, the size of authenticators for any recipient set S ∈ 2ID≤N and any messagem ∈ M is

�(N ·k)with overwhelming probability, where k = min
S⊆ID,θ∈[βS ]|cmd(θ)

S | and the probability
is taken over the internal randomness of the Setup-at, Auth, and Auth-at. In other words,
if AtBA �At-BA is Full-ANOat-CMA secure and has the property in Assumption 3, for any
recipient set S ∈ 2ID≤N and any message m ∈ M, the Auth outputs a authenticator of size
�(N · k) with overwhelming probability.

Proof Since Full-ANOat-CMA security implies ANOat-CMA security, for any S ∈ 2ID≤N ,
we at least have �(|S| · κ) with overwhelming probability from Theorem 6. Now, we
assume that for some set of recipients S∗ ∈ 2ID≤N and message m∗ ∈ M, Auth outputs

cmdS∗ = {cmd(θ)
S∗ }θ∈[βS∗ ] ← Auth({pk(δ)}δ∈	,m∗,S∗; r∗) such that |S∗| ≤ βS∗ < N ,

with non-negligible probability. Let A be any fixed PPT adversary against the Full-ANOat-
CMA game. Then, A can identify such (S∗,m∗) with non-negligible probability since A
knows the concrete procedure of Auth (since it should be public due to Kerckhoffs’ prin-
ciple). A then issues a challenge query (m∗,S∗,S), where S = [N ] and S∗ is any set
in 2ID≤N \ [N ]. Here, from the assumption that |S∗| ≤ βS∗ < N , A can trivially break Full-

ANOat-CMA, but it contradicts the premise. Thus, the size of authenticators for anyS ∈ 2ID≤N
must be equal to that of authenticators for [N ] at least, i.e., �(N · κ). ��

8 Non-asymptotic bounds and optimal constructions of ABA

We show (non-asymptotic) upper and lower bounds on the authenticator-size in ABA.
Specifically, we propose optimal constructions of ABA with anonymity and full-anonymity,
respectively, to show non-asymptotic upper bounds of the authenticator size.

Our UF-CMA secure and Full-ANO-CMA secure ABA is as follows.

• Setup(1κ , N ): For all id ∈ [N ], run Kid ← MAC.Gen(1κ ) to get {Kid}id∈[N ]. Output the
authentication key ak := {Kid}id∈[N ].

• Join(mk, id): Output the verification key vkid := Kid.
• Auth(ak,m,S): Let n be the number of recipients currently participating in the sys-

tem, and suppose that vkid1 , . . . , vkidn have been generated by Join so far. Let ak =
{Kid}id∈[N ], x

U← R, and compute the following for all id ∈ [N ]:
{

τ ← MAC.Auth(Kid,m||x), if id ∈ S,

τ ← MAC.Auth(Kid, 0κ ||x), if id /∈ S.

Here, R is a random space. Choose a random permutation σ from {σi : [N ] →
[N ]}i∈{0,1}κ and the authenticator is

cmdS := (m, x, τσ(1), . . . , τσ(N )).

• Vrfy(vkid, cmdS): Let vkid = Kid, cmdS = (m, x, τ1, . . . , τN ). Do the following two
steps from j := 1.

– Run MAC.Vrfy(Kid, τ j ,m||x) and if its output is �, returnm and halt; otherwise, go
to the second step.

– If j = N , return ⊥ and halt; otherwise, do the first step with j := j + 1.
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A proof of UF-CMA security in the above construction is intuitively almost identical to an
evaluation of a probability that an adversary forges a MAC in a multi-key setting. However,
due to an existence of the Key Derivation Oracle, we cannot simply apply the standard hybrid
argument for the number of recipients assuming pseudo-randomness for �MAC (when the
hybrid argument can be applied, i.e., there is no Key Derivation Oracle, we can prove UF-
CMA security assuming pseudo-randomness for �MAC in a single-key setting.). Although
it is not impossible to prove the security with the Key Derivation Oracle in the standard
model assuming pseudo-randomness for �MAC in a multi-key setting, it is known to be a
very inefficient reduction [28]. A simple proof is possible in the non-standard model where
MAC.Auth is regarded as a public random function (Random Oracle). Therefore, in this
paper, we give a proof under an assumption that MAC.Auth is the public random function.

Theorem 8 Assume thatMAC.Auth is a public random function. If�MAC is UF-CMA secure,
the above construction is UF-CMA secure and Full-ANO-CMA secure.

The UF-CMA security can be proved by the H-Coefficient technique [31], which is a stan-
dard framework to analyze the security of symmetric key cryptographic modes (See [8] for
example. However, [8] does not deal with a multi-key setting and a decision game because
they show a proof for a security that combines PRF and UF-CMA security). In the proof, σ
in the authenticator cmdS is omitted because it does not contribute to the security (it only
contributes to the Full-ANO-CMA security).

First, we consider MAC.Auth as a public random function (Random Oracle) and
introduce the so-called Primitive Oracle Prim. This returns MAC.Auth(K̃, m̃) upon an
input (K̃, m̃) ∈ K × M. Then, we express the advantage of an adversary against
UF-CMA security by that of a distinguisher D trying to distinguish the real world
(Autho,Vrfyo,Corr, Prim) and an ideal world (Autho, Rej,Corr, Prim). Autho oracle
receives a query (m,S) and returns Auth(ak,m,S) as described at Sect. 2.6. Vrfyo receives
(id, cmdS) and returns Vrfy(vkid, cmdS). Here, Rej oracle returns ⊥ upon a verification
query (id, cmdS = (m, x, τσ(1), . . . , τσ(N ))) unless Kid has already been exposed by Corr,
orMAC.Auth(Kid,m||x) is included in an output section of Autho oracle for a query response
to a recipient id; otherwise returns the correct value using Kid and a query history in Autho
oracle. Let us assume that the number of queries to Autho are qa and queries to Prim are qp
(queries to Corr do not specifically contribute to a success probability). Let

φPrim = ((K̃1, m̃1, τ̃1), . . . , (K̃qp , m̃qp , τ̃qp ))

be the list of queries to Prim and corresponding answers. Let also

φAuth = ((m1, x1, τ1), . . . , (mqa , xqa , τqa ))

be the list of queries to Auth and corresponding answers.
We let

φVrfy = (m∗, τ ∗, b∗),

denote a query to Vrfy, where b∗ ∈ {�,⊥}. The tuple φ = (φPrim, φAuth, φVrfy, {Kid}id∈A)

forms the transcript of the attack, where A is a set of all identities involved in the game,
namely those queried to Corr and those included in the queries to Autho and Vrfyo. We
assume that the subset of these keys not queried to Corr is attached to the script after the
adversary made all queries (so that the adversary cannot use them to make further queries,
which would trivially break any scheme); this is a common technique to simplify the proof.
Also, we assume that all the keys are distributed uniformly for both worlds, that means, the
keys those queried to Rej (and never queried to other oracles) in the ideal world are dummy
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keys. We say that a transcript φ is attainable if the probability of getting this transcript in
the ideal world is non-zero. We denote � as the set of attainable transcripts. We also let
XReal, X Ideal denote the transcript random variable induced by the real world and the ideal
world, respectively. Here, we say that an attainable transcript is bad if one of the following
conditions holds:

1. There exists two distinct recipients id, id′such that Kid = Kid′ .
2. There exists a symmetric key K̃ in a query (K̃, m̃) to Prim and a verification key Kid such

that (K̃ = Kid).
3. A non-trivial forgery exists, i.e., φVrfy = (m∗, τ ∗, b∗) with b∗ = �.

We denote �bad ,�good as a set of bad transcripts and good transcripts, respectively.
Then, we will upper bound the advantage of the distinguisher by the H-coefficients tech-

nique:

Lemma 14 ([31]) Let � = �good ∪ �bad be a set of attainable transcripts. If there exists ε

such that for any φ ∈ �good , we have

Pr[XReal = φ]
Pr[X Ideal = φ] ≥ 1 − ε,

and that there exists ε′ such that Pr[X Ideal ∈ �bad ] ≤ ε′, the advantage of a distinguisher D
then is upper bounded as Adv(D) ≤ ε + ε′.

We now show a upper bound of the probability to get a bad transcript in the ideal world.

Lemma 15 Let t ≤ N is the number of recipients appearing in a query to Auth or Vrfy. For
any integers qp,

Pr[X Ideal ∈ �bad ] ≤ (2t2 + t · qp)
|K| .

Proof First, we consider the condition 1. For verification keys Kid, K′
id, there are

(t
2

)

possible
choices for id, id′. Then, the probability that the attainable transcript satisfy the condition is
(t
2

)

/|K|.
Next, we consider the condition 2. For each query to Prim, the distinguisher select a

symmetric key K̃ such that K̃ = Kid for some id with probability t
|K| . Thus, we can upper

bound the probability that the condition 2 is satisfied by t ·qp
|K| . The condition 3 trivially never

holds in the ideal world. From above we have

Pr[X Ideal ∈ �bad ] ≤
(t
2

)+ t · qp
|K|

≤ (2t2 + t · qp)
|K| .

��

Lemma 16 For any good transcript φ,

Pr[XReal = φ]
Pr[X Ideal = φ] ≥ 1 − N

|T | ,

where |S| ≤ N.
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Proof Let φ = (φPrim, φAuth, φVrfy, {Kid}id∈A) be a good transcript. When φ is good, the
keys involved in the game has no non-trivial collisions, hence the outputs of Prim oracle are
independent from other oracle responses except the trivial ones (those queried to both Prim
and Corr). Moreover, all the responses from Autho are perfectly random except the trivial
overlap of queried ids. This immediately implies that the probability ratio is the probability
ratio for the event that Vrfyo returns ⊥ (i.e., b∗ = ⊥), since other variables in the transcript
have identical distributions for the both worlds. In the ideal world, the probability of b∗ = ⊥
is one by definition.While in the real world, because the randomoracle returns the completely
random output for any distinct input, and the set of keys involved in the verification query
must contain a distinct one from the definition of bad events and the game definition (that
serves as the distinct input to the random oracle), the probability of b∗ = ⊥ is identical to the
random guess of the true tag values. Hence it is at most |S|/|T | when the verification query
uses the id set S. Therefore, we have

Pr[XReal = φ]
Pr[X Ideal = φ] = PrReal[b∗ = ⊥]

PrIdeal[b∗ = ⊥] ≥ 1 − |S|
|T | ,

which proves Lemma 16. ��
Proof of Theorem 8 For the UF-CMA secuity, by combining Lemmas 14, 15, and 16 we have

AdvUF-CMA
�MAC,A(κ) ≤ (2t2 + t · qp)

|K| + 1

|T | ,

which concludes the proof.
Next, we now consider the Full-ANO-CMA security. Under the assumption that

MAC.Auth is a public random function, when two kinds of key collisions does not occur
(i.e. conditions 1 or 2 does not hold), the Full-ANO-CMA security can be proven since a set
of recipients included in a symmetric difference (S0 �S1) in a challenge query is completely
unpredictable and a permutation σ is chosen completely at random for each challenge query.

��
In addition, we can construct ABA that is UF-CMA secure and ANO-CMA secure by

modifying the Auth and Vrfy algorithms in the above construction as follows:

• Auth(ak,m,S): Let n be the number of recipients currently participating in the sys-
tem, and suppose that vkid1 , . . . , vkidn have been generated by Join so far. Let ak =
{Kid}id∈[N ], x

U← R, and compute τ ← MAC.Auth(Kid,m||x) for all id ∈ S. Choose a
random permutation σ from {σi : [|S|] → [|S|]}i∈{0,1}κ and the authenticator is

cmdS := (m, x, τσ(1), . . . , τσ(|S|)).

• Vrfy(vkid, cmdS): Let vkid = Kid, cmdS = (m, x, τ1, . . . , τ|S|). Do the following two
steps from j := 1.

– Run MAC.Vrfy(Kid, τ j ,m||x) and if its output is �, returnm and halt; otherwise, go
to the second step.

– If j = |S|, return ⊥ and halt; otherwise, do the first step with j := j + 1.

Theorem 9 Assume thatMAC.Auth is a public random function. If�MAC is UF-CMA secure,
the above construction is UF-CMA secure and ANO-CMA secure.

Proof As in Theorem 8, we can prove that the above scheme meets the UF-CMA security.
Also, the ANO-CMA security can be shown in a similar way to Theorem 8. Note that a
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leakage of information about the number of designated recipients S does not involve the
ANO-CMA security thanks to the condition |S0| = |S1| in ExpANO-CMA

�ABA,A
(κ, N ) ��

Here, by the same discussion as in Sect. 5, from the above constructions and the asymptotic
lower bounds in Sect. 7, we show lower bounds on the authenticator-size in (Full)-ANO-BA.

Theorem 10 If ABA �ABA with properties shown in Sects. 6.3 and 7 is Full-ANOat-CMA
secure, a non-asymptotic lowerboundon theauthenticator-sizewith any recipient setS ⊆ ID
is N · κ + o(N · κ), and our Full-ANO-BA scheme attains the lower bound tightly, which is
optimal.

Theorem 11 If ABA �ABA with properties shown in Sects. 6.3 and 7 is ANOat-CMA secure,
a non-asymptotic lower bound on the authenticator-size with any recipient set S ⊆ ID is
|S| ·κ +o(|S| ·κ), and our ANO-BA scheme attains the lower bound tightly, which is optimal.

9 Conclusion

We analyzed an efficiency limit of anonymous Broadcast Encryption (BE) which is a cryp-
tosystem realizing a basic access control. Specifically, we derived an asymptotic lower bound
on the ciphertext size in BE with anonymity (Anonymous BE), assuming only properties that
most existing (Full-)ANO-BE schemes satisfy. Our lower bounds can be applied to the exist-
ing (Full-)ANO-BE schemes while Kiayias and Samari’s ones [20] are hard to apply. As a
result, we show that the existing ANO-BE schemes achieve the optimal ciphertext size. We
further showed that our analysis can be extended to the authentication setting. Specifically,
we first derived asymptotic lower bounds on the authenticator size required for anonymous
broadcast authentication (ABA).

Furthermore, we extended the above result to derive non-asymptotic lower bounds on
the ciphertext size in (Full-)ANO-BE, by proposing an optimal construction based on Li
and Gong’s ANO-BE scheme [24]. In addition, we applied the same analysis to ABA, and
proposed an optimal construction of ABA to show non-asymptotic lower bounds on the
authenticator size in ABA.
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Appendix A

In this section, we show that the BE scheme in [5] meets the properties defined in Sect. 3.2.
We review Boneh et al’s scheme.
BGW05 [5]

• Setup(1κ , N ): Run PGGen(1κ ) to get PG := (p,G,GT , e, g). Let Zp := {1, . . . ,p −
1}, α, s

U← Zp and set v = gs. For all id = 1, 2, . . . , N , N + 2, . . . , 2N , compute

gid = gαid
. The public key is pk := g,g1, . . . ,gn,gN+2, . . . ,g2N , v and the master

secret key is s.
• Join(mk, id): Output the secret key skid := (did = gsid,pk).

• Enc(pk,m,S): Sample r
U← Zp and set K = e(gN+1,g)r . Next, compute

ctS := (gr , (v · �
j∈SgN+1− j )

r , K · m,S)

and output ctS .
• Dec(skid, ctS): Let skid = (did = gsid,pk), ctS = (C0,C1,C2,S). Then output

m =
C2 · e

⎛

⎜
⎝did · �

j∈S
j =id

gN+1− j+id,C0

⎞

⎟
⎠

e
(

gid,C1
) .

We show the correctness of the above scheme. We use the fact that g
(α j )

i = gi+ j for any
i, j . Suppose that ctS = (gr , (v · �

j∈SgN+1− j )
r , K · m,S) are correctly generated. Then the

following equation holds:

e
(

gid,C1
)

e

⎛

⎜
⎝did · �

j∈S
j =id

gN+1− j+id,C0

⎞

⎟
⎠

=
e
(

g(αid), (v · �
j∈SgN+1− j )

r
)

e

⎛

⎜
⎝v(αid) · �

j∈S
j =id

gN+1− j+id,gr

⎞

⎟
⎠

=
e
(

g(αid), (gN+1−id)
r
)

· e
⎛

⎜
⎝g(αid), (v · �

j∈S
j =id

gN+1− j )
r

⎞

⎟
⎠

e

⎛

⎜
⎝v(αid) · �

j∈S
j =id

gN+1− j+id,gr

⎞

⎟
⎠

=
e
(

gN+1,g
)r · e

⎛

⎜
⎝g(αid), (v · �

j∈S
j =id

gN+1− j )
r

⎞

⎟
⎠

e

⎛

⎜
⎝v(αid) · �

j∈S
j =id

gN+1− j+id,gr

⎞

⎟
⎠
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=
e
(

gN+1,g
)r · e

⎛

⎜
⎝g, (v(αid) · �

j∈S
j =id

gN+1− j+id)
r

⎞

⎟
⎠

e

⎛

⎜
⎝v(αid) · �

j∈S
j =id

gN+1− j+id,gr

⎞

⎟
⎠

= e
(

gN+1,g
)r

= K.

Here, we can see the above scheme meets the properties. First, its public key, private key
of a recipient id ∈ [N ], and ciphertext with S can be described in AtBE’s notation as fol-
lows: {pk(δ)}δ∈	 := {g,g1, . . . ,gN ,gN+2, . . . ,g2N , v}, {sk(γ )

id }γ∈�id := {gsid}∪ {pk(δ)}δ∈	,

{ct(θ)
S }θ∈[βS ] = ctS := {(gr , (v · �

j∈SgN+1− j )
r ), K · m,S}.

According to an atomic ciphertext, the following equations hold:

ctS,id := {(gr , (v · �
j∈SgN+1− j )

r , K · m,S)},

{sk(γ )

id }γ∈�′
id

:= {gsid,g, {gN+1− j+id} j∈S
j =id

, v},

m ← Dec-at({sk(γ )

id }γ∈�′
id
, ctS,id).

whereDec-at corresponds toDec algorithm inBGW05 scheme.Hence, Property 1 is satisfied.
According to a public key, a minimum subset of atomic public keys used to generate ctS,id

is uniquely determined as {pk(δ)}δ∈	∗
id,S,m

:= {g, {gN+1− j } j∈S , v}. Therefore, Property 2 is
met.

According to a decryption key, a minimum subset of atomic decryption keys used to
decrypt ctS,id, is uniquely determined as {sk(γ )

id }γ∈�∗
id,S := {gsid,g, {gN+1− j+id} j∈S

j =id
, v}.

Therefore, Property 3 is satisfied.
An atomic ciphertextwith id′ is given as ctS,id′ := {(gr , (v· �

j∈SgN+1− j )
r ), K·m,S}, and if

ctS,id = ctS,id′ holds, thenwe have {pk(δ)}δ∈	∗
id,S,m

= {pk(δ′)}δ′∈	∗
id′,S,m

with overwhelming

probability. Therefore, Property 4 is also satisfied.
From the above, we can see that the BE scheme in [5] meets Properties 1, 2, 3 and 4. In

addition, we can similarly show that the existing (both non-anonymous and anonymous) BE
schemes [1–3, 6, 15, 16, 24, 25, 30, 38] satisfy Properties 1, 2, 3 and 4 as well, thus it is
reasonable to assume Properties 1, 2, 3 and 4 in this paper.

We also show that the ANO-BE scheme in [25] has the property in Assumption 2 defined
in Sect. 4.1. We review Libert et al’s Full-ANO-BE scheme [25].

LPQ12 [25]

• Setup(1κ , N ): Let PKE := (PKE.KGen, PKE.Enc, PKE.Dec) be a PKE scheme with mes-
sage space M = {0, 1}m and OTS := (OTS.KGen,OTS.Sign,OTS.Vrfy) be an one-time
signature scheme with key space SK = {0, 1}v , for some v ∈ poly(1κ ). For all id ∈ [N ],
run (pke.pkid,pke.skid) ← PKE.KGen(1κ ). The public key pk is

({

pke.pkid
}N
id=1 ,OTS, 1κ

)

.

and the master secret key is {pke.skid}Nid=1, where OTS is
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• Join(mk, id): Output the secret key skid := pke.skid.
• Enc(pk,m,S): Letn be the number of recipients currently participating in the system, and

suppose that skid1 , . . . , skidn have been generated by Join so far. Compute the following
for all id ∈ [N ]:

{

pke.ctid ← PKE.Enc(pke.pkid,m||ots.vk), if id ∈ S,

pke.ctid ← PKE.Enc(pke.pkid, 0
v||ots.vk), if id /∈ S.

Run (ots.sk, ots.vk) ← OTS.KGen(1κ ). Choose a random permutation σ from {σi :
[N ] → [N ]}i∈{0,1}κ and run σ ← OTS.Sign(ots.sk, {pke.ctid}Nid=1). The ciphertext is

ctS := (pke.ctσ(1), . . . ,pke.ctσ(N ), σ ).

• Dec(skid, ctS): Let skid = pke.skid, ctS = (σ,pke.ct1, . . . ,pke.ctN ). Do the following
two steps from j := 1.

– Computem′ ← PKE.Dec(pke.skid,pke.ct j ) and parsem′ asm||ots.vk for some bit-
stringsm ∈ {0, 1}m−v and ots.vk ∈ {0, 1}v . Then, if OTS.Vrfy(ots.vk, (pke.ct1, . . . ,
pke.ctN ), σ ) → 1 andm′ /∈ {0v,⊥}, returnm and halt; otherwise, go to the second
step.

– If j = N , return ⊥ and halt; otherwise, do the first step with j := j + 1.

The correctness of the above scheme follows directly from the correctness of PKE and
OTS.

In the above scheme, PKE.Enc executed inside Enc corresponds to Enc-at, and PKE.Dec
executed inside Dec corresponds to Dec-at. Then, PK∗ and SK∗ indicates {pke.pkid}id∈[N ]
and {{pke.sk1}, . . . , {pke.skN }} respectively, and pke.skid = sk′ such that m′ ←
PKE.Dec(pke.skid, ctS,id) is uniquely determined by pke.pkid ∈ 2PK∗

. Therefore, Libert
et al.’s scheme satisfies the property in Assumption 2.
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