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Abstract
We give upper bounds on the power moments of the number of fixed points of a family of
subset sum pseudorandom number generators, introduced by Rueppel (Analysis and design
of stream ciphers, Springer-Verlag, Berlin, 1986).
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1 Introduction

For a positive integer t , we use Zt to denote the residue ring modulo t , which we always
assume to be represented by the set {0, . . . , t − 1}.

We fix an r -dimensional integer vector

z = (z1, . . . , zr ) ∈ Z
r
t (1.1)

and define the function Sr ,t,z : Zt → Zt as follows. Given w ∈ Zt (which following our
convention we interpret as an integer from the set {0, . . . , t − 1}) we expand w in binary
w = us . . . u1, where ui represents the i-th least significant bit of w, that is, the i-th bit from
the right (if r > s we pad w with r − s leading zeroes) and then set

Sr ,t,z(w) =
r∑

i=1

ui zi ∈ Zt .

Furthermore, for a fixed vector z and a given initial value w0 ∈ Zt we define the sequence

v(0) = w0, v(n + 1) = Sr ,t,z (v(n)) , n = 0, 1, . . . .
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This construction has been introduced by Rueppel [23, Chapter 7] (see also [24, 25]), is
known as the subset sum pseudorandom number generator. The efficiency of the generator
and its cryptographic properties have been studied by Impagliazzo and Naor [18]. This
generator is believed to be cryptographically secure since it relies on a combinatorial rather
than an algebraic structure, which prevents mounting attacks similar to those designed in
[2–4, 12–15, 19, 21], see also the references therein.

We note that one of the parameters characterising the pseudorandom properties of any
map is the number of its fixed points since it reflects the mixing properties of this map. For
example, the statistics of fixed points has been investigated for such classical cryptographic
maps as the RSA encryption function [5] and the discrete logarithm [6, 7, 16, 17]. Several
other examples of such results can be found in [1, 8, 9, 11, 20, 22]. A survey of such results,
and of related results on short cycles in these maps, can be found in [27].

Here we consider this question for the map w �→ Sr ,t,z(w). That is, we define and study

Fr ,t (z) = #{w ∈ Zt : w = Sr ,t,z(w)}.
More precisely, we are interested in the powermoments of this quantity over all tr possible

choices of the vectors (1.1):

Mν(r , t) = 1

tr
∑

z∈Zr
t

Fr ,t (z)ν, ν = 1, 2, . . . .

In particular for the first moment, that is, for the average values of Fr ,t (z) we simplify the
notation as

A(r , t) = M1(r , t).

We recall that it has been shown in [26, Theorem 31.2] that for t ≥ 2r the bound

A(r , t) ≤ (2t)1/2 + 2 (1.2)

holds.
Here we improve this bound and also obtain a new bound for higher moments.
We note that the subset sum pseudorandom number generator is very fast as no modular

multiplication is needed and no weaknesses has been discovered so far. However so far very
few theoretical results have been known. Thus besides giving some concrete theoretic results,
we also hope to attract more attention to this generator.

2 Evaluation of the average value of the number of fixed points

We start with a significant improvement of (1.2) and in fact we evaluate A(r , t) explicitly.

Theorem 2.1 For t ≥ 2r , we have

A(r , t) = 2 − ⌈
t/2r

⌉
/t .

Proof Let

m = �log t/ log 2� . (2.1)

be the length of the binary expansion of t . Hence we write binary representations of w ∈ Zt

as binary strings of length exactly m (possible with some zeros on the left, that is, on the
most significant positions).
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Note that by our assumption t ≥ 2r we have m ≥ r . m > r .
Changing the order of summation we write

A(r , t) = 1

tr
∑

z∈Zr
t

∑

w∈Zt
w=Sr,t,z(w)

1 = 1

tr
∑

w∈Zt

∑

z∈Zr
t

w=Sr,t,z(w)

1.

For

w = um . . . ur+1 0 . . . 0︸ ︷︷ ︸
r zeros

∈ Zt (2.2)

whose binary expansion end with a string of r zeros, we obviously obtain Sr ,t,z(w) = 0. This
leaves only one possible value forw ∈ Zt with Sr ,t,z(w) = w, namely,w = 0, in which case
the inner sum is equal to tr .

The condition (2.2) on w means that 2r | w and thus this happens for �t/2r� elements
w ∈ Zt .

For the remaining t − �t/2r� choices of w = um . . . u1 with

(ur , . . . , u1) 	= (0, . . . , 0) ,

there is at least one non-zero entry among the first r least significant bits in its binary rep-
resentation, whose index we define as i . Then the component zi of z as in (1.1) is uniquely
defined from the equation

w = Sr ,t,z(w) =
r∑

i=1

ui zi

by the other components of z, hence there exactly tr−1 such choices for z.
Therefore,

A(r , t) = 1

tr
(
tr + (

t − ⌈
t/2r

⌉)
tr−1) ,

which concludes the proof. 
�

In particular, we see from Theorem 2.1 that we can improve (1.2) as

A(r , t) < 2.

3 Bounding higher moments of the number of fixed points

We recall that the notation U = O(V ), U � V and V 
 U are equivalent to |U | ≤ cV
for some positive constant c, which throughout the paper may depend on the order of the
moment ν.

Here we always assume that t is a prime number, hence Zt = Ft is a finite field of t
elements and hence we can use linear algebra over Ft .

Theorem 3.1 For a prime t > 2r , for any fixed integer ν ≥ 1 we have

Mν(r , t) � (
t/2r

)ν−1
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Proof Let m be defined by (2.1), that is, m is the length of the binary expansion of t . In
particular, by our assumption t > 2r we have m ≥ r .

We start with an observation that the value of Fr ,t (z)ν is equal to the number of solutions
to the system of ν equations in mν variables ui, j ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , ν:

m∑

i=1

ui, j · 2i−1 ≡
r∑

i=1

ui, j · zi (mod t), j ∈ {1, · · · , ν}, (3.1)

Note that the variables ui, j ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , ν, in (3.1) correspond to
ν vectors (u1, . . . ,uν) coming from binary expansions of solutions w1, . . . , wν ∈ Ft to ν

independent equations w j = Sr ,t,z(w j ), j = 1, . . . , ν.
We define Uν,r (s) to be the set ν-tuples of binary vectors (u1, . . . ,uν) for which the first

r components form a matrix of rank s over Ft , that is,

rankFt

⎛

⎝
u1,1 . . . u1,r
. . . . . . . . .

uν,1 . . . uν,r

⎞

⎠ = s. (3.2)

Clearly for every ν-tuple (u1, . . . ,uν) ∈ Uν,r (s) of vectors, the system of congru-
ences (3.1) has at most tr−s solutions in z ∈ Z

r
t .

We now switch the roles of the binary variables ui, j ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , ν,
and the vectors z ∈ Z

r
t . That is, for each choice of ui, j ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , ν,

we count the number of vectors z ∈ Z
r
t satisfying (3.1).

We can then bound our summation in terms of #Uν,r (s):

∑

z∈Zr
t

Fr ,t (z)ν ≤
ν∑

s=0

#Uν,r (s)t
r−s . (3.3)

First we note that #Uν,r (0) = 1 as this corresponds to the zeromatrix in (3.2) and thus (3.1)
implies that the remaining m − r components of each of the binary vectors (u1, . . . ,uν) also
vanish. Then we have tr choices for z. Hence such vectors contribute in total tr to the case
s = 0.

To estimate #Uν,r (s) with s ≥ 1, we note that if we fix s linearly independent vectors

(u j1 , . . . ,u js ), 1 ≤ j1 < . . . < js ≤ ν,

in a family of vectors (u1, . . . ,uν) ∈ Uν,r (s), then any other vector u j belongs to the linear
span of u j1 , . . . ,u js over Ft . That is,

u j = a1u j1 + . . . + asu js (3.4)

for some a1, . . . , as ∈ Ft . By the Cramer rule we have

a j ≡ � j

�
(mod t), j = 1, . . . , s, (3.5)

for some determinants �,�1, . . . , �s over Ft forms by the components of the vectors
u1, . . . ,uν and with � 	≡ 0 (mod t). Since all vectors u1, . . . ,uν are binary, we easily
infer that

|�|, |� j | ≤ 2−s (s + 1)(s+1)/2 . (3.6)
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see, for example, [10, Problem 523]. Thus, adjusting the signs we see from (3.5) and (3.6)
that, regardless of the choice of u j1 , . . . ,u js , each vector (a1, . . . , as) satisfies

(a1, . . . , as) = (
D1D

−1, . . . , DsD
−1) (mod t) (3.7)

(where D−1 is computed modulo t) with some integers

D ∈
[
1, 2−s (s + 1)(s+1)/2

]

and

Dj ∈
[
−2−s (s + 1)(s+1)/2 , 2−s (s + 1)(s+1)/2

]
, j = 1, . . . , s,

and hence there are at most

As = 2−s (s + 1)(s+1)/2
(
1 + 2−s+1 (s + 1)(s+1)/2

)s
(3.8)

choices for the vector of the coefficients (a1, . . . , as) in (3.4).
We emphasise that themeaning of the bound (3.8) is even if the number of possible vectors

(u1, . . . ,uν) ∈ Uν,r (s), and thus the number systems of relations (3.4). grows rapidly with r
and t , the number of possible choices for the coefficients (a1, . . . , as) can be bounded only
in terms of s (and thus of ν) and therefore independently on r and t .

This implies that when u j1 , . . . ,u js are fixed to satisfy (3.2), there at most As possibilities
to form the first r coordinates of each of the other vectors to form a ν-tuple (u1, . . . ,uν) ∈
Uν,r (s), and thus at most As2m−r possibilities for the whole vector. Since there are at most

(
ν

s

)
(2m)s =

(
ν

s

)
2ms

choices for u j1 , . . . ,u js we obtain

#Uν,r (s) ≤
(

ν

s

)
2ms (

As2
m−r )ν−s

.

Since we assume that ν is fixed and s ≤ ν, this simplifies as

#Uν,r (s) � 2ms+(m−r)(ν−s) = 2mν−r(ν−s) � tν2−r(ν−s).

We can now substitute the above bound for #Uν,r (s) in (3.3), getting

∑

z∈Zr
t

Fr ,t (z)ν � tr +
ν∑

s=1

tν+r−s2−r(ν−s) = tr + tr
ν∑

s=1

(
t · 2−r )ν−s

.

Note that we have requested that t > 2r , which implies t · 2−r > 1, so

∑

z∈Zr
t

Fr ,t (z)ν � tr + tr
ν∑

s=1

(
t · 2−r )ν−s � tr

(
t · 2−r )ν−1

,

which concludes the proof. 
�
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4 Comments

In Theorem 3.1, we have suppressed the dependence on the order of the moments ν. There
are two reasons for this.

First, we do not consider ν to be an important parameter. For example, the choice of
ν = 2 already gives us important information and extra technical calculations do not seem
to justify the importance of this. However, we provide all necessary estimates for this, if one
decides to trace the dependence on ν. For example, we note that (3.6) is slightly stronger
that the classicalHadamard inequality, which is still sufficient for our purposes, since we do
not compute the explicit dependence on ν. Besides the potential contribution to computing
explicit dependence on ν, we also present (3.6) because we believe it deserves to be known
more broadly.

The second reason is that before computing the explicit dependence on ν, one has to
attempt to improve the bound (3.8) on the number of distinct vectors which can be solutions
to all non-singular systems of s linear congruences modulo t with binary coefficients. This
question seems to be of independent interest and certainly deserves further investigation.
Certainly one can improve (3.8) by an absolute constant, taking into account that in (3.7) we
need only count D, D1, . . . , Ds with

gcd (D, D1, . . . , Ds) = 1.

However we are interested in more substantial improvements.
We also would like to note that our approach does not extend on bounding the number of

short cycles. For example, we do not have any nontrivial estimate on the number 2-cycles

#{w ∈ Ft : w = Sr ,t,z
(
Sr ,t,z(w)

)}
on average over z ∈ F

r
t , which is another interesting open question.
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